1
|
Zhang WY, Liao JS, Qi JR. Citrus endogenous components as prebiotics: Advances in extraction, digestion, mechanisms, and delivery. Food Res Int 2025; 208:116141. [PMID: 40263823 DOI: 10.1016/j.foodres.2025.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
The large number of by-products during the processing of citrus fruits exert significant pressure on the environment. Citrus by-products contain a variety of bioactive compounds that promote gut health and maintain microbial homeostasis. Therefore, recycling and reuse of these by-products is considered an excellent way to reduce environmental pressure. The purification and characterization methods of bioactive compounds (such as pectin, dietary fiber, polyphenols, essential oils, and limonin) extracted from citrus by-products in recent years are summarised. Subsequently, we summarize the digestive behavior (digestion, absorption, metabolism, and excretion) of these components, focusing on the mechanisms of action through which they exert prebiotic activity. This highlights the interactions between citrus by-product bioactives and gut microbiota, as well as the health effects on the host gut. Additionally, we provide a brief overview of the delivery systems for the active ingredients based on pectin from citrus sources. The results show that extraction methods can significantly affect the composition and structure of citrus by-products, which in turn affects digestive properties and eventually leads to differences in prebiotic activity. Notably, gut microbiota plays a key role in the metabolism and bioactivity of citrus actives. Besides, the innovative embedding methods can markedly enhance their prebiotic potential. Therefore, a comprehensive understanding of the relationship between the extraction, structure, and prebiotic activity of citrus by-products, as well as their delivery methods, is essential to advancing the use of citrus by-products in human health.
Collapse
Affiliation(s)
- Wei-Yun Zhang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- School of Life Sciences, South China Normal University, Guangzhou 510640, PR China; Lemon (Guangzhou City) Biotechnology Co. Ltd, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Wang W, Xu L, Zhang Y, Cao Y, Yang Y, Liu G, Mao X. Effects of Chenpi ( Citrus reticulata cv. Chachiensis) on serum antioxidant enzymes, inflammatory factors, and intestinal health in Beagle dogs. Front Microbiol 2025; 15:1415860. [PMID: 39839098 PMCID: PMC11747223 DOI: 10.3389/fmicb.2024.1415860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Ensuring companion animal welfare is a top priority for the pet industry and owners alike. The health of the pets can be directly and effectively improved through diet. Chenpi includes beneficial ingredients with proven anti-inflammatory, antioxidant, and immunomodulatory properties. The present investigation involved feeding snacks infused with Chenpi powder (CPP) to dogs for 42 days to examine the potential health benefits of CPP. The research evidenced a notable increase in serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity in dogs, accompanied by a decrease in malondialdehyde (MDA), interleukin-8 (IL-8), and interferon-gamma (IFN-γ) level. Additionally, CPP increased fecal scores and significantly reduced fecal odors due to inhibition of 3-methylindole, hydrogen sulfide (H2S), and ammonia nitrogen (NH4 +-N), and also raised the levels of fecal secretory immunoglobulin A (SIgA). Analysis of the microbial composition via 16S rRNA sequencing showed that CPP increased Bacteroidota and decreased Firmicutes in the gut flora at the phylum level. Functional prediction study of microbial communities also showed that the CPP group enriched metabolic and genetic information processing pathways. In addition, there were significant correlations between serum indicators and several significantly altered microorganisms. These findings suggest that CPP can potentially enhance the overall health of dogs by reducing fecal odorants, enhancing antioxidant and immunological capabilities, and modulating intestinal flora. This study establishes a solid scientific foundation regarding the application of CPP in functional pet foods.
Collapse
Affiliation(s)
- Wencan Wang
- Chongqing Sweet Pet Products Co., Ltd., Chongqing, China
| | - Ling Xu
- Chongqing Sweet Pet Products Co., Ltd., Chongqing, China
| | - Yan Zhang
- Department of Animal Nutrition and Feed, College of Biological Engineering, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yixue Yang
- Chongqing Sweet Pet Products Co., Ltd., Chongqing, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xin Mao
- Chongqing Sweet Pet Products Co., Ltd., Chongqing, China
| |
Collapse
|
3
|
Olabiyi D, Diepenbrock LM, Martini X, Stelinski LL. Response of hibiscus mealybug (Hemiptera: Pseudococcidae) to citrus volatiles induced by mechanical injury. ENVIRONMENTAL ENTOMOLOGY 2024; 53:1006-1016. [PMID: 39460745 DOI: 10.1093/ee/nvae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Hibiscus mealybug, Nipaecoccus viridis (Newstead) (Hemiptera: Pseudococcidae), is a recent invasive pest of citrus and many other crops in Florida. Nipaecoccus viridis attacks all above ground parts of citrus trees and heavy infestation can cause leaf drop and premature abortion of developing fruits. We quantified greater captures of N. viridis in cardboard band traps on areas of citrus trees that were intentionally injured by mechanical rasping of epidermal tissues as compared with similar but uninjured citrus branches. Direct field collection of headspace volatiles from mechanically injured or intact citrus branches revealed both qualitative and quantitative differences. Certain volatiles (γ-terpinene, citronellal, citronellyl acetate, β-E-farnesene, α-humulene, and α-E-E-farnesene) were only present in samples from damaged citrus branches. Behavioral assays using a laboratory Y-tube olfactometer revealed attraction of N. viridis to volatiles associated with mechanical damage of citrus including synthetic β-ocimene, γ-terpinene, sabinene, isomers of farnesene, and citronellal when loaded into lures at either of 2 concentrations (0.01 or 0.1 µg/µl). Subsequent field trapping experiments confirmed increased captures of various life stages of N. viridis in cardboard band traps baited with a 10.0 µg/µl concentration of farnesene:ocimene:sabinene blend (in 7:13:17 ratio), as well as those releasing either farnesene or ocimene alone at this same concentration, as compared with the mineral oil (diluent) negative control. Our results indicate that common plant related terpenes released by citrus following mechanical damage may be useful for development of an effective monitoring trap for N. viridis.
Collapse
Affiliation(s)
- David Olabiyi
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida-IFAS, Lake Alfred, FL, USA
| | - Lauren M Diepenbrock
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida-IFAS, Lake Alfred, FL, USA
| | - Xavier Martini
- Entomology and Nematology Department, University of Florida, North Florida Research and Education Center, Quincy, FL, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida-IFAS, Lake Alfred, FL, USA
| |
Collapse
|
4
|
Fernando SSST, Jayasooriya RGPT, Samarakoon KW, Wijegunawardana NDAD, Alahakoon SB. Citrus-Based Bio-Insect Repellents-A Review on Historical and Emerging Trends in Utilizing Phytochemicals of Citrus Plants. J Toxicol 2024; 2024:6179226. [PMID: 39640379 PMCID: PMC11620817 DOI: 10.1155/jt/6179226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/11/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Research on citrus plants is the result of increasing interest in the discovery of plant species with potential insect-repellent properties. Insect-repelling ability can be achieved by the numerous ubiquitous citrus species. This is mainly due to the presence of phytochemicals such as limonene, citronellol, citral, and α-pinene. These phytochemicals' composition varies depending on the geographical location of the plant. The extraction method dictates the configuration of attainable phytochemicals while the dosage affects the repellency potential. Therefore, developing insect repellent involved a number of observations related to the identification of both citrus plant phytochemical composition present in the different parts of the plant and the repellency potential of these phytochemicals in advance. Conversely, the development of repellent methods that go beyond conventional methods has been made possible by scientific developments including modern strategies such as encapsulation, the preparation of emulsion, and the incorporation of repellents into textiles. Therefore, this review article intends to probe into the aforementioned information and provide a sound insight into citrus-based repellent development in the future.
Collapse
Affiliation(s)
- S. S. S. T. Fernando
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Kandawala Road, Dehiwala-Mount Lavinia, Sri Lanka
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - R. G. P. T. Jayasooriya
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Kalpa W. Samarakoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Kandawala Road, Dehiwala-Mount Lavinia, Sri Lanka
| | | | - Sampath B. Alahakoon
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
5
|
Yang H, Huang X, Yang M, Zhang X, Tang F, Gao B, Gong M, Liang Y, Liu Y, Qian X, Li H. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chem 2024; 451:139340. [PMID: 38678649 DOI: 10.1016/j.foodchem.2024.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Essential oils (EO), secondary metabolites of plants are fragrant oily liquids with antibacterial, antiviral, anti-inflammatory, anti-allergic, and antioxidant effects. They are widely applied in food, medicine, cosmetics, and other fields. However, the quality of EOs remain uncertain owing to their high volatility and susceptibility to oxidation, influenced by factors such as the harvesting season, extraction, and separation techniques. Additionally, the huge economic value of EOs has led to a market marked by widespread and varied adulteration, making the assessment of their quality challenging. Therefore, developing simple, quick, and effective identification techniques for EOs is essential. This review comprehensively summarizes the techniques for assessing EO quality and identifying adulteration. It covers sensory evaluation, physical and chemical property evaluation, and chemical composition analysis, which are widely used and of great significance for the quality evaluation and adulteration detection of EOs.
Collapse
Affiliation(s)
- Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaofei Zhang
- Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China
| | - Beibei Gao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengya Gong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xingyi Qian
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| |
Collapse
|
6
|
Wang F, He K, Wang R, Ma H, Marriott PJ, Hill MR, Simon GP, Holl MMB, Wang H. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400709. [PMID: 38721928 DOI: 10.1002/adma.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Membrane-based enantioselective separation is a promising method for chiral resolution due to its low cost and high efficiency. However, scalable fabrication of chiral separation membranes displaying both high enantioselectivity and high flux of enantiomers is still a challenge. Here, the authors report the preparation of homochiral porous organic cage (Covalent cage 3 (CC3)-R)-based enantioselective thin-film-composite membranes using polyamide (PA) as the matrix, where fully organic and solvent-processable cage crystals have good compatibility with the polymer scaffold. The hierarchical CC3-R channels consist of chiral selective windows and inner cavities, leading to favorable chiral resolution and permeation of enantiomers; the CC3-R/PA composite membranes display an enantiomeric excess of 95.2% for R-(+)-limonene over S-(-)-limonene and a high flux of 99.9 mg h-1 m-2. This work sheds light on the use of homochiral porous organic cages for preparing enantioselective membranes and demonstrates a new route for the development of next-generation chiral separation membranes.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Kaiqiang He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxin Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip J Marriott
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew R Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
7
|
Kačániová M, Čmiková N, Vukovic NL, Verešová A, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Ban Z, Vukic MD. Citrus limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella enterica Inoculated in Carrot. PLANTS (BASEL, SWITZERLAND) 2024; 13:524. [PMID: 38498554 PMCID: PMC10893099 DOI: 10.3390/plants13040524] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
New goals for industry and science have led to increased awareness of food safety and healthier living in the modern era. Here, one of the challenges in food quality assurance is the presence of pathogenic microorganisms. As planktonic cells can form biofilms and go into a sessile state, microorganisms are now more resistant to broad-spectrum antibiotics. Due to their proven antibacterial properties, essential oils represent a potential option to prevent food spoilage in the search for effective natural preservatives. In this study, the chemical profile of Citrus limon essential oil (CLEO) was evaluated. GC-MS analysis revealed that limonene (60.7%), β-pinene (12.6%), and γ-terpinene (10.3%) are common constituents of CLEO, which prompted further research on antibacterial and antibiofilm properties. Minimum inhibitory concentration (MIC) values showed that CLEO generally exhibits acceptable antibacterial properties. In addition, in situ antimicrobial research revealed that vapour-phase CLEO can arrest the growth of Candida and Y. enterocolitica species on specific food models, indicating the potential of CLEO as a preservative. The antibiofilm properties of CLEO were evaluated by MIC assays, crystal violet assays, and MALDI-TOF MS analysis against S. enterica biofilm. The results of the MIC and crystal violet assays showed that CLEO has strong antibiofilm activity. In addition, the data obtained by MALDI-TOF MS investigation showed that CLEO altered the protein profiles of the bacteria studied on glass and stainless-steel surfaces. Our study also found a positive antimicrobial effect of CLEO against S. enterica. The anti-Salmonella activity of CLEO in vacuum-packed sous vide carrot samples was slightly stronger than in controls. These results highlight the advantages of the antibacterial and antibiofilm properties of CLEO, suggesting potential applications in food preservation.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
- INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| |
Collapse
|
8
|
Gu S, Luo W, Charmchi A, McWhirter KJ, Rosenstiel T, Pankow J, Faiola CL. Limonene Enantiomeric Ratios from Anthropogenic and Biogenic Emission Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:130-135. [PMID: 38371653 PMCID: PMC10867824 DOI: 10.1021/acs.estlett.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Emissions from volatile chemical products (VCPs) have been identified as contributors to air quality degradation in urban areas. Limonene can be a tracer compound for VCPs containing fragrances in densely populated regions, but limonene is also emitted from conifers that are planted in urban areas. This creates challenges for using limonene to estimate VCP emissions. In this study, the -/+ enantiomeric ratios of limonene from VCP and conifer emission sources were quantified to evaluate if this measurement could be used to aid in source apportionment and emission inventory development. Samples were analyzed using a gas chromatograph equipped with a chiral column and mass spectrometry. The results demonstrate that limonene exhibits distinct enantiomeric ratios when sourced from VCPs versus conifers. (+)-Limonene was dominant in VCP sources (>97%), which was not universally true for conifer sources. The results were compared to those of air samples collected outside at two locations and indoors. The levels of (-)-limonene in outdoor air in Irvine and Portland and in indoor air were 50%, 22%, and 4%, respectively. This suggests outdoor limonene had both VCP and plant emission sources while indoor air was dominated by VCP sources. This study demonstrates the potential utility of enantiomeric analysis for improving VCP emission estimates in urban areas.
Collapse
Affiliation(s)
- Shan Gu
- Ecology
and Evolutionary Biology, University of
California Irvine, Irvine, California 92697, United States
| | - Wentai Luo
- Civil
and Environmental Engineering, Portland
State University, Portland, Oregon 97201, United States
| | - Avisa Charmchi
- Ecology
and Evolutionary Biology, University of
California Irvine, Irvine, California 92697, United States
- Chemistry, University
of California Irvine, Irvine, California 92697, United States
| | - Kevin J. McWhirter
- Civil
and Environmental Engineering, Portland
State University, Portland, Oregon 97201, United States
| | - Todd Rosenstiel
- Biology, Portland State University, Portland, Oregon 97201, United States
| | - James Pankow
- Civil
and Environmental Engineering, Portland
State University, Portland, Oregon 97201, United States
| | - Celia L. Faiola
- Ecology
and Evolutionary Biology, University of
California Irvine, Irvine, California 92697, United States
- Chemistry, University
of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
9
|
Nenni M, Karahuseyin S. Medicinal Plants, Secondary Metabolites, and Their Antiallergic Activities. BIOTECHNOLOGY OF MEDICINAL PLANTS WITH ANTIALLERGY PROPERTIES 2024:37-126. [DOI: 10.1007/978-981-97-1467-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Ganjitabar H, Hadidi R, Garcia GA, Nahon L, Powis I. Analysis of the volatile monoterpene composition of citrus essential oils by photoelectron spectroscopy employing continuously monitored dynamic headspace sampling. Analyst 2023; 148:6228-6240. [PMID: 37987708 DOI: 10.1039/d3an01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A new photoelectron spectroscopic method permitting a quantitative analysis of the volatile headspace of several essential oils is presented and discussed. In particular, we focus on the monoterpene compounds, which are known to be the dominant volatile components in many such oils. The photoelectron spectra of the monoterpene constituents may be effectively isolated by accepting for analysis only those electrons that accompany the production of m/z = 136 ions, and by using low photon energies that restrict cation fragmentation. The monoterpene isomers are then identified and quantified by regression modelling using a library of terpene standard spectra. An advantage of this approach is that pre-concentration of the volatile vapour is not required, and all steps are performed at ambient temperature, avoiding the possible deleterious effects (such as isomerisation/decomposition) that may sometimes arise in gas chromatographic (GC) procedures. As a proof-of-principle demonstration, three citrus oils (lemon, lime, bergamot) are analysed with this approach and the results are compared with reported GC composition profiles obtained for these oils. Potential advantages of the methodology that include multiplex detection and real-time, in situ analysis are identified and discussed. Alternative and faster experimental implementations concerning laboratory-based ionization and detection schemes are proposed and considered, as is the possibility of a straightforward extension towards simultaneous determination of enantiomeric excesses.
Collapse
Affiliation(s)
- Hassan Ganjitabar
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Rim Hadidi
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Gustavo A Garcia
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Laurent Nahon
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Ivan Powis
- School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
11
|
Afzal A, Shah SNH, Javed H, Mumtaz A, Saeed J, Rasheed HM, Arshad R, Ansari SA, Alkahtani HM, Ansari IA. Spilanthes acmella Extract-Based Natural Oils Loaded Emulgel for Anti-Microbial Action against Dermatitis. Gels 2023; 9:832. [PMID: 37888404 PMCID: PMC10606145 DOI: 10.3390/gels9100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Dermatitis is skin disorder that is complicated by recurrent infections of skin by bacteria, viruses, and fungi. Spilanthol is an active constituent of Spilanthes acmella, which possess strong anti-bacterial properties. The purpose of this study was to develop a herbal emulgel for the treatment of dermal bacterial infections, as microscopic organisms have created solid resistance against anti-microbials. METHODS Emulgels were prepared and characterized for parameters such as physical examination, rheological studies, spreading coefficient, bio-adhesive strength measurement, extrudability study, antibacterial activity, FTIR analysis, in vitro drug dissolution, and ex vivo permeation studies. RESULT With a statistically significant p-value = 0.024, 100% antibacterial activity was observed by F4 against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli (mean ± S.D) (25.33 ± 0.28, 27.33 ± 0.5, and 27 ± 0.5). However, maximum antibacterial effect 100% formulations produced zones of inhibitions against E. colip-value = 0.001. The mean zone of inhibition produced by F4 was greatest among all at 26.44 ± 0.37 mm (mean ± S.D). The F4 formulation produced a maximum percentage dissolution, permeation, and flux of 86.35 ± 0.576, 55.29 ± 0.127%, and 0.5532 ug/cm2/min, respectively. CONCLUSIONS The present study therefore, suggests the use of S. acmella extract and olive oil containing emulgel for treating bacterial skin infections.
Collapse
Affiliation(s)
- Aqsa Afzal
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.A.); (J.S.)
| | | | - Hina Javed
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.A.); (J.S.)
| | - Asma Mumtaz
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.A.); (J.S.)
| | - Javeria Saeed
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.A.); (J.S.)
| | | | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| |
Collapse
|
12
|
Bechis G, Minteguiaga MA, Sgorbini B, Marengo A, Rubiolo P, Cagliero C. Make the Quality Control of Essential Oils Greener: Fast Enantioselective GC-MS Analysis of Sweet and Bitter Orange as a Case Study. Molecules 2023; 28:6231. [PMID: 37687059 PMCID: PMC10488983 DOI: 10.3390/molecules28176231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Quality control of essential oils is fundamental for verifying their authenticity and conformity with quality standards, ensuring their safety and regulatory compliance, and monitoring their consistency. Companies that produce or market essential oils routinely evaluate the quality and authenticity of their products. However, they also must deal with increasing attention to environmental sustainability as well as practical considerations such as productivity, cost, and simplicity of methods. In this study, enantioselective gas chromatography (GC) was adopted to evaluate the quality of sweet and bitter orange essential oils, used as a case study. The analytical conditions were optimized and translated to fast GC to evaluate the impact of this approach on the environmental footprint of the analyses. The greenness of fast GC, compared with conventional GC, was quantitatively evaluated using a dedicated metric tool (AGREE), and important improvements have been calculated. The developed methods were applied to a set of commercial essential oils, and the data about the enantiomeric composition and relative percentage abundance were elaborated through multivariate statistics (principal component analysis). The results showed that fast chiral gas chromatography enables the classification of citrus essential oil samples and can be considered an environmentally friendly and sustainable approach for evaluating their quality.
Collapse
Affiliation(s)
- Gaia Bechis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.B.); (M.A.M.); (B.S.); (A.M.); (P.R.)
| | - Manuel A. Minteguiaga
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.B.); (M.A.M.); (B.S.); (A.M.); (P.R.)
- Espacio de Ciencia y Tecnología Química (ECTQ), CENUR Noreste-Tacuarembó, Universidad de la República, Tacuarembó 45000, Uruguay
- Laboratorio de Biotecnología de Aromas (LaBiotA), Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.B.); (M.A.M.); (B.S.); (A.M.); (P.R.)
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.B.); (M.A.M.); (B.S.); (A.M.); (P.R.)
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.B.); (M.A.M.); (B.S.); (A.M.); (P.R.)
| | - Cecilia Cagliero
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.B.); (M.A.M.); (B.S.); (A.M.); (P.R.)
| |
Collapse
|
13
|
Zhou J, Kong L, Li D, Zhang X, Fu Z, Pan T, Yu Y. Nutritional and volatile profiles of pulp and flavedo from four local pummelo cultivars grown in Fujian province of China. J Food Sci 2023; 88:3357-3372. [PMID: 37458289 DOI: 10.1111/1750-3841.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 08/05/2023]
Abstract
The nutritional and volatile profiles of pulp and flavedo samples from four distinct local pummelo landraces ("Siji," "Pingshan," "Wendan," and "Guanxi") cultivated in Fujian province of China were investigated. "Guanxi" pummelo exhibited relatively high contents of vitamin C (42.01 mg/100 mL) and phenols (360.61 mg/L) and displayed a robust antioxidant capacity (41.15 mg/100 mL). Conversely, the red pulp from "Pingshan" demonstrated relatively high values of carotenoids (55.96 µg/g) and flavonoids (79.79 mg/L). Considerable differences were observed in volatile compositions between the two fruit tissues and among the four genotypes. A total of 166 and 255 volatile compounds were detected in the pulp and flavedo samples, respectively. Notably, limonene and β-myrcene were identified as the principal volatile compounds in flavedo, whereas hexanal was highly abundant in the pulp of "Siji," "Pingshan," and "Guanxi." "Wendan" displayed distinct separation from the other three pummelo cultivars in principal component analysis based on the pulp volatile compositions. This distinction was attributed to the higher number and content of volatile compounds in "Wendan" pulp, particularly the remarkable enrichment of β-myrcene. The newly characterized pummelo landraces and genotype/tissue-dependent variations in volatiles provide essential information for the genetic improvement of pummelo aroma, as well as for fruit processing and utilization.
Collapse
Affiliation(s)
- Jinyu Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingchao Kong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Debao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijun Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Salerno TMG, Trovato E, Cafeo G, Vento F, Zoccali M, Donato P, Dugo P, Mondello L. Hidden threat lurking in extensive hand hygiene during the Covid-19 pandemic: investigation of sensitizing molecules in gel products by hyphenated chromatography techniques. Anal Bioanal Chem 2023:10.1007/s00216-023-04714-7. [PMID: 37191715 DOI: 10.1007/s00216-023-04714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
During the Covid-19 pandemic, health agencies worldwide have recommended frequent handwashing and sanitizing. A variety of hand gel products were made available on the market, often with fragrances added to curtail the strong smell of alcohol. Commonly used Citrus fragrances contain volatile aroma constituents and non-volatile oxygen heterocyclic compounds (OHCs), consisting mostly of polymethoxyflavones, coumarins, and furocoumarins. The latter have long been investigated for their phototoxic properties, and their safety as cosmetic product ingredients has been debated recurrently. To this concern, twelve commercial Citrus-scented products were investigated in this study. An extraction method was optimized for thirty-seven OHC compounds, obtaining absolute mean recovery values in the 73.5-116% range with only few milliliters of solvent consumption. Analysis by ultra-high-pressure liquid chromatography with tandem mass spectrometry detection evidenced that three samples did not conform to the labeling requirements for fragrance allergens (coumarin) laid down by the European Union Regulation on Cosmetic Products. The total furocoumarin (FC) content of the samples investigated was in the 0.003-3.7ppm range, with some noteworthy exceptions. Specifically, in two samples, the total FCs were quantified as 89 and 219 ppm, thus exceeding the safe limits recommended up to a factor of 15. Finally, the consistency of the volatile fingerprint attained by gas chromatography allowed drawing conclusions on the authenticity of the Citrus fragrances labeled, and several products did not conform to the information reported on the label concerning the presence of essential oils. Besides the issue of product authenticity, analytical tools and regulatory actions for widespread testing of hand hygiene products are urgent, to protect consumers' health and safety.
Collapse
Affiliation(s)
- Tania M G Salerno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Giovanna Cafeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Federica Vento
- Chromaleont S.R.L., at Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Mariosimone Zoccali
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Paola Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
- Chromaleont S.R.L., at Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy.
- Chromaleont S.R.L., at Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy.
| |
Collapse
|
15
|
Pasdaran A, Hamedi A, Shiehzadeh S, Hamedi A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin Nutr ESPEN 2023; 54:311-336. [PMID: 36963879 DOI: 10.1016/j.clnesp.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Fruits, flowers, leaves, essential oils, hydrosols, and juices of citrus spp. Are utilized to prepare various forms of food products. Along with their nutritional values, in the health industry, different parts of the plants of the citrus genus have been used as supplements or remedies to prevent or control diseases. This review focused on reported meta-analyses and clinical trials on the health benefits of citrus plants as functional foods. Also, chemical compounds of various citrus species were reviewed. The following information sources were used for data collection: Google Scholar, the Web of Science, Scopus, and PubMed. Various keywords, including "citrus AND chemical compounds," "citrus AND phytochemicals," "citrus species," "citrus AND meta-analysis," "nutritional and therapeutical values of citrus spp.," "clinical trials AND citrus," "clinical trials AND Rutaceae," "health benefits of citrus spp.," "citrus edible or non-edible applications," and scientific names of the citrus plants were utilized to collect data for the review. The scientific name and common name of all twenty-eight citrus species, along with any of the above keywords, were also searched in the mentioned databases. Scientific papers and data sources were sought to review and discuss the citrus plant's nutritional and therapeutic importance. Several meta-analyses and clinical trials have reported beneficial effects of citrus spices on a variety of cancer risks, cardiovascular risk factors, neurologic disorders, urinary tract conditions, and gastrointestinal tract conditions. They have shown anxiolytic, antimicrobial, and pain-alleviating effects. Some of them can be helpful in managing obesity and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Shiehzadeh
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Tundis R, Xiao J, Silva AS, Carreiró F, Loizzo MR. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. PLANTS (BASEL, SWITZERLAND) 2023; 12:991. [PMID: 36903853 PMCID: PMC10005512 DOI: 10.3390/plants12050991] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
Citrus is an important genus in the Rutaceae family, with high medicinal and economic value, and includes important crops such as lemons, orange, grapefruits, limes, etc. The Citrus species is rich sources of carbohydrates, vitamins, dietary fibre, and phytochemicals, mainly including limonoids, flavonoids, terpenes, and carotenoids. Citrus essential oils (EOs) consist of several biologically active compounds mainly belonging to the monoterpenes and sesquiterpenes classes. These compounds have demonstrated several health-promoting properties such as antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Citrus EOs are obtained mainly from peels, but also from leaves and flowers, and are widely used as flavouring ingredients in food, cosmetics, and pharmaceutical products. This review focused on the composition and biological properties of the EOs of Citrus medica L. and Citrus clementina Hort. Ex Tan and their main constituents, limonene, γ-terpinene, myrcene, linalool, and sabinene. The potential applications in the food industry have been also described. All the articles available in English or with an abstract in English were extracted from different databases such as PubMed, SciFinder, Google Scholar, Web of Science, Scopus, and Science Direct.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
| | - Filipa Carreiró
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, 4485-655 Vila do Conde, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de St. Comba, 3000-548 Coimbra, Portugal
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
17
|
Essential Oil of Greek Citrus sinensis cv New Hall - Citrus aurantium Pericarp: Effect upon Cellular Lipid Composition and Growth of Saccharomyces cerevisiae and Antimicrobial Activity against Bacteria, Fungi, and Human Pathogenic Microorganisms. Processes (Basel) 2023. [DOI: 10.3390/pr11020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this study, the essential oil (EO) from the peel of the Greek citrus hybrid Citrus sinensis cv New Hall - Citrus aurantium was studied in terms of its antimicrobial properties as well as its effect on Saccharomyces cerevisiae. According to the analysis of the EO, 48 compounds are contained in it, with the main compounds being limonene, β-pinene, myrcene, α-pinene, valencene, and α-terpineol. As regards its antimicrobial properties, the EO was evaluated against nine human pathogenic microorganisms, six bacteria, and three fungi. Taking the results into account, it was apparent that Gram-negative bacteria were the most susceptible to the addition of the EO, followed by the Gram-positive bacteria, and finally the examined yeasts. The minimum inhibitory concentrations were found to be lower compared to other studies. Finally, the effect of the EO on the biochemical behavior of the yeast Saccharomyces cerevisiae LMBF Y-16 was investigated. As the concentration of the EO increased, the more the exponential phase of the microbial growth decreased; furthermore, the biomass yield on the glucose consumed significantly decreased with the addition of the oil on the medium. The addition of the EO in small concentrations (e.g., 0.3 mL/L) did not present a remarkable negative effect on both the final biomass concentration and maximum ethanol quantity produced. In contrast, utilization of the extract in higher concentrations (e.g., 1.2 mL/L) noticeably inhibited microbial growth as the highest biomass concentration achieved, maximum ethanol production, and yield of ethanol produced per glucose consumed drastically declined. Concerning the composition of cellular lipids, the addition of the EO induced an increment in the concentration of cellular palmitic, stearic, and linoleic acids, with a concomitant decrease in the cellular palmitoleic acid and oleic acids.
Collapse
|
18
|
Abd Elghani EM, Elsayed AM, Omar FA, Abdel-Aziz Emam MM, Tadros SH, Soliman FM, Al-Mahallawi AM. Comparative GC Analysis of Valencia orange Ripe and Unripe Peel Essential Oils, Nano-formulation, Anti- Helicobacter Pylori and Anti-inflammatoryEvaluation: in vitro and in silico. JOURNAL OF ESSENTIAL OIL BEARING PLANTS 2023; 26:190-205. [DOI: 10.1080/0972060x.2023.2182706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 01/02/2025]
Affiliation(s)
- Eman M. Abd Elghani
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abeer M. Elsayed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Farghaly A. Omar
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Marwa M. Abdel-Aziz Emam
- Medical Microbiology Department, The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo Egypt
| | - Soad H. Tadros
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fathy M. Soliman
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdulaziz M. Al-Mahallawi
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| |
Collapse
|
19
|
Agaj A, Peršurić Ž, Pavelić SK. Mediterranean Food Industry By-Products as a Novel Source of Phytochemicals with a Promising Role in Cancer Prevention. Molecules 2022; 27:8655. [PMID: 36557789 PMCID: PMC9784942 DOI: 10.3390/molecules27248655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet is recognized as a sustainable dietary approach with beneficial health effects. This is highly relevant, although the production of typical Mediterranean food, i.e., olive oil or wine, processed tomatoes and pomegranate products, generates significant amounts of waste. Ideally, this waste should be disposed in an appropriate, eco-friendly way. A number of scientific papers were published recently showing that these by-products can be exploited as a valuable source of biologically active components with health benefits, including anticancer effects. In this review, accordingly, we elaborate on such phytochemicals recovered from the food waste generated during the processing of vegetables and fruits, typical of the Mediterranean diet, with a focus on substances with anticancer activity. The molecular mechanisms of these phytochemicals, which might be included in supporting treatment and prevention of various types of cancer, are presented. The use of bioactive components from food waste may improve the economic feasibility and sustainability of the food processing industry in the Mediterranean region and can provide a new strategy to approach prevention of cancer.
Collapse
Affiliation(s)
- Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ul. Viktora cara Emina 5, 51000 Rijeka, Croatia
| |
Collapse
|
20
|
Citrus Essential Oils in Aromatherapy: Therapeutic Effects and Mechanisms. Antioxidants (Basel) 2022; 11:antiox11122374. [PMID: 36552586 PMCID: PMC9774566 DOI: 10.3390/antiox11122374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40-47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found in significant quantities in oil sacs or oil glands present in the leaves, flowers, and fruit peels (mainly the flavedo part). Citrus EO is a complex mixture of ~400 compounds and has been found to be useful in aromatic infusions for personal health care, perfumes, pharmaceuticals, color enhancers in foods and beverages, and aromatherapy. The citrus EOs possess a pleasant scent, and impart relaxing, calming, mood-uplifting, and cheer-enhancing effects. In aromatherapy, it is applied either in message oils or in diffusion sprays for homes and vehicle sittings. The diffusion creates a fresh feeling and enhances relaxation from stress and anxiety and helps uplifting mood and boosting emotional and physical energy. This review presents a comprehensive outlook on the composition, properties, characterization, and mechanism of action of the citrus EOs in various health-related issues, with a focus on its antioxidant properties.
Collapse
|
21
|
Citrus Essential Oils: a Treasure Trove of Antibiofilm Agent. Appl Biochem Biotechnol 2022; 194:4625-4638. [PMID: 35779176 DOI: 10.1007/s12010-022-04033-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Biofilms are groups of adherent cell communities that cohere to the biotic and abiotic surfaces with the help of extracellular polymeric substances (EPS). EPS allow bacteria to form a biofilm that facilitates their binding to biotic and abiotic surfaces and provides resistance to the host immune responses and to antibiotics. There are efforts that have led to the development of natural compounds that can overcome this biofilm-mediated resistance. Essential oils (EOs) are a unique mixture of compounds that plays a key role in preventing the development of biofilm. The present overview focusses on the role of various types of citrus essential oils in acting against the biofilm, and the antibiofilm properties of natural compounds that may show an avenue to treat the multidrug-resistant bacteria.
Collapse
|
22
|
Hussien Abou Baker D, Ahmed Ibrahim E, Abd El-Rhaman Salama Z. Citrus Peels as a Source of Bioactive Compounds with Industrial and Therapeutic Applications. PHENOLIC COMPOUNDS - CHEMISTRY, SYNTHESIS, DIVERSITY, NON-CONVENTIONAL INDUSTRIAL, PHARMACEUTICAL AND THERAPEUTIC APPLICATIONS 2022. [DOI: 10.5772/intechopen.99591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Agriculture wastes are considered a good starting point to discover for new drugs all over the world. In this context, Agriculture wastes contain millions of compounds to be screened to find bioactive compounds responsible for the activity to be used in drugs. Citrus agriculture is one of the most important commercial and industrial agricultural activities in the world. The peel waste of Citrus species is a rich source of bioactive compounds such as essential oils, flavones, polyphenols, and pigment. Citrus peel has been widely used in the medicine industry. The waste peel of citrus consider a rich source of pharmacologically active metabolites with antioxidant activities.
Collapse
|
23
|
Jafari M, Shahsavar A. The Effect of Foliar Application of Melatonin on Changes in Secondary Metabolite Contents in Two Citrus Species Under Drought Stress Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:692735. [PMID: 34567024 PMCID: PMC8455919 DOI: 10.3389/fpls.2021.692735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
Plant secondary metabolites are compounds that play an important role in plant interactions and defense. Persian lime and Mexican lime as the two most important sour lime varieties with high levels of secondary metabolites, are widely cultivated in tropical and subtropical areas. Melatonin is a pleiotropic molecule that plays a key role in protecting plants against drought stress through regulating the secondary metabolite biosynthesis pathway. This study was performed as a factorial experiment consisting of three factors in a completely randomized design (CRD), including four concentrations of melatonin (0, 50, 100, and 150 μM), three levels of drought stress [100% (control), 75% (moderate stress), and 40% (severe stress) field capacity (FC)], and two Citrus cultivars. The experiment was conducted for 60 days in a greenhouse condition. Based on the results of this study under severe drought stress, melatonin-treated crops had higher total flavonoid and total phenolic contents than the untreated crops. The highest level of essential oils components was observed on 100 μM foliar application of melatonin under severe drought stress in both varieties. The main component of the essential oil was limonene in both Citrus species. Moreover, based on the analysis of the results, hesperidin was the main polyphenol in both varieties. Since the use of melatonin often increases the production of secondary metabolites, this study can be considered as a very effective method for controlling the adverse effects of drought stress in citrus for both industrial and horticultural aims.
Collapse
Affiliation(s)
| | - Alireza Shahsavar
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
24
|
Qian Y, Gao Z, Wang C, Ma J, Li G, Fu F, Guo J, Shan Y. Effects of Different Treatment Methods of Dried Citrus Peel ( Chenpi) on Intestinal Microflora and Short-Chain Fatty Acids in Healthy Mice. Front Nutr 2021; 8:702559. [PMID: 34434953 PMCID: PMC8381872 DOI: 10.3389/fnut.2021.702559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Chenpi is a kind of dried citrus peel from Citrus reticulata, and it is often used as traditional Chinese medicine to treat dyspepsia and respiratory tract inflammation. In this study, to determine which way of chenpi treatment plays a better effect on the prevention of obesity in healthy mice, we conducted 16S ribosomal RNA (rRNA) gene sequencing for intestinal microbiota and gas chromatography-mass spectrometry detector (GC/MSD) analysis for short-chain fatty acids (SCFAs) of female rats fed with either chenpi decoction or chenpi powder-based diet (n = 10 per group) for 3 weeks. Chenpi powder (CP) group significantly reduced abdominal adipose tissues, subcutaneous adipose tissue, and the serum level of total triacylglycerol (TG). At a deeper level, chenpi powder has a better tendency to increase the ratio of Bacteroidetes to Firmicutes. It alters the Muribaculaceae and Muribaculum in intestinal microbiota, though it is not significant. The concentrations of acetic acid, valeric acid, and butyric acid increased slightly but not significantly in the CP group. Chenpi decoction just reduced perirenal adipose tissues, but it shows better antioxidant activity. It has little effect on intestinal microbiota. No differences were found for SCFAs in the chenpi decoction (CD) group. The results indicated that chenpi powder has a better effect in preventing obesity in mice. It can provide a basis for the development of functional products related to chenpi powder.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
25
|
Ambrosio CMS, Diaz-Arenas GL, Agudelo LPA, Stashenko E, Contreras-Castillo CJ, da Gloria EM. Chemical Composition and Antibacterial and Antioxidant Activity of a Citrus Essential Oil and Its Fractions. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102888. [PMID: 34068115 PMCID: PMC8152727 DOI: 10.3390/molecules26102888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022]
Abstract
Essential oils (EOs) from Citrus are the main by-product of Citrus-processing industries. In addition to food/beverage and cosmetic applications, citrus EOs could also potentially be used as an alternative to antibiotics in food-producing animals. A commercial citrus EO—Brazilian Orange Terpenes (BOT)—was fractionated by vacuum fractional distillation to separate BOT into various fractions: F1, F2, F3, and F4. Next, the chemical composition and biological activities of BOT and its fractions were characterized. Results showed the three first fractions had a high relative amount of limonene (≥10.86), even higher than the whole BOT. Conversely, F4 presented a larger relative amount of BOT’s minor compounds (carvone, cis-carveol, trans-carveol, cis-p-Mentha-2,8-dien-1-ol, and trans-p-Mentha-2,8-dien-1-ol) and a very low relative amount of limonene (0.08–0.13). Antibacterial activity results showed F4 was the only fraction exhibiting this activity, which was selective and higher activity on a pathogenic bacterium (E. coli) than on a beneficial bacterium (Lactobacillus sp.). However, F4 activity was lower than BOT. Similarly, F4 displayed the highest antioxidant activity among fractions (equivalent to BOT). These results indicated that probably those minor compounds that detected in F4 would be more involved in conferring the biological activities for this fraction and consequently for the whole BOT, instead of the major compound, limonene, playing this role exclusively.
Collapse
Affiliation(s)
- Carmen M. S. Ambrosio
- Dirección de Investigación y Desarrollo, Universidad Privada del Norte (UPN), 13001 Trujillo, Peru
- Correspondence: (C.M.S.A.); (E.M.d.G.)
| | - Gloria L. Diaz-Arenas
- Research Center of Excellence CENIVAM, CIBIMOL, Industrial University of Santander, 680002 Bucaramanga, Colombia; (G.L.D.-A.); (E.S.)
| | | | - Elena Stashenko
- Research Center of Excellence CENIVAM, CIBIMOL, Industrial University of Santander, 680002 Bucaramanga, Colombia; (G.L.D.-A.); (E.S.)
| | - Carmen J. Contreras-Castillo
- Department of Agri-Food Industry, Food and Nutrition, ESALQ, University of São Paulo, Piracicaba, 13418-900 São Paulo, Brazil;
| | - Eduardo M. da Gloria
- Department of Biological Science, Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, 13418-900 São Paulo, Brazil
- Correspondence: (C.M.S.A.); (E.M.d.G.)
| |
Collapse
|
26
|
Gaff M, Esteban‐Decloux M, Giampaoli P. Bitter orange peel essential oil: A review of the different factors and chemical reactions influencing its composition. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marion Gaff
- Unité Mixte de Recherche Ingénierie Procédés AlimentsAgroParisTech, INRA, Université Paris‐Saclay Massy France
| | - Martine Esteban‐Decloux
- Unité Mixte de Recherche Ingénierie Procédés AlimentsAgroParisTech, INRA, Université Paris‐Saclay Massy France
| | - Pierre Giampaoli
- Unité Mixte de Recherche Ingénierie Procédés AlimentsAgroParisTech, INRA, Université Paris‐Saclay Massy France
| |
Collapse
|
27
|
Abstract
A fast, sensitive, accurate and robust GC-FID and confirmatory GC-MS method, was developed to simultaneously determine squalene and underivatized free plant sterols in Citrus essential oils (cEOs). The method was applied to assess the content of squalene and free plant sterols in four most commonly employed cold-pressed cEOs (bergamot, lemon, mandarin and orange). cEOs plant sterols exhibited distinctive molecular patterns, with levels ranging from 182 to 1100 mg kg-1 in lemon and bergamot essential oils, respectively. β-sitosterol was the dominant compound in all cases, with an average content of ∼650 mg kg-1 in bergamot and orange essential oils. Campesterol and brassicasterol occurred at much lower amount in all samples. Bergamot essential oil was also the richest in squalene (537 mg kg-1) compared to the other cEOs. The method developed could contribute to define compositional patterns of cEOs, thus supporting their versatile utilisation in the food and flavour industry.
Collapse
Affiliation(s)
- Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA) - Azienda Speciale della Camera di Commercio di Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
28
|
Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019; 24:molecules24173053. [PMID: 31443455 PMCID: PMC6749507 DOI: 10.3390/molecules24173053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
The effects of two different processing methods on the volatile components of candied kumquats were investigated via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). The characteristic volatile fingerprints of fresh kumquats (FKs), vacuum sugaring osmosis combined with hot-air drying kumquats (VS-ADKs), and atmospheric pressure sugaring osmosis combined with hot-air drying kumquats (AS-ADKs) were established using 3D topographic plots. From the fingerprints, 40 signal peaks for 22 compounds were confirmed and quantified in all types of kumquats, namely, two terpenes, four esters, seven aldehydes, three ketones, and six alcohols. 3-Pentanone was identified as the major component of FKs; followed by 1-hexanol and the Z-3-hexen-1-ol dimer. The hexanal dimer, 2-hexen-1-ol, and the ethyl acetate dimer were the major markers of VS-ADKs. Benzaldehyde and furfurol were the prominent constituent parts of AS-ADKs. Compared with that in FKs, the pentanal and dimethyl ketone contents of VS-ADKs and AS-ADKs exhibited a dramatic increase (p < 0.05). By contrast, the change in ethanol dimer tended to decrease (p < 0.05). Principal component analysis (PCA) clearly showed that the samples, which were distributed in a separate space could be well-distinguished. Furthermore, the similarity of different processed kumquats and their corresponding volatile components was demonstrated via heat map clustering analysis. The results confirmed the potential of HS-GC-IMS-based approaches to evaluate processed kumquats with various volatile profiles.
Collapse
|
29
|
González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2019; 10:12. [PMID: 30804951 PMCID: PMC6370709 DOI: 10.3389/fpls.2019.00012] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 05/09/2023]
Abstract
The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.
Collapse
Affiliation(s)
- M. Carmen González-Mas
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| |
Collapse
|
30
|
Schipilliti L, Bonaccorsi IL, Mondello L. Evaluation of the carbon isotope ratios of selected volatiles determined in several citrus authentic petitgrain oils. Bigarade (C. aurantium) petitgrain oil’s first case report. JOURNAL OF ESSENTIAL OIL RESEARCH 2018. [DOI: 10.1080/10412905.2018.1556745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Luisa Schipilliti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| | - Ivana L. Bonaccorsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
- Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Nair S A, Sr RK, Nair AS, Baby S. Citrus peels prevent cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:231-237. [PMID: 30466983 DOI: 10.1016/j.phymed.2017.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/26/2017] [Accepted: 08/14/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Citrus comprises the largest fruit sector worldwide, and its fruit peels are the dominant 'residue' of the industry. Though not profitable, Citrus peels are industrially used for making some byproducts (cattle feed, molasses, ethanol, fiber) and for the extraction of bioactives (flavonoids, essential oils, d-limonene). Still huge amounts of peels are wasted by Citrus industries, juice and other vending sectors. PURPOSE The biological potentials of these unutilized or 'wasted' Citrus peels are least exploited. Here we tested the anticancer potentials of Citrus medica (2 morphotypes), C. sinensis, C. maxima, C. limon and C. reticulata peels by in vitro assays and in vivo cancer models. METHODS Chemical profiles of Citrus peel oils and peel extracts were analyzed by gas chromatographic techniques (GC-FID, GC-MS) and HPTLC-densitometry, respectively. Anticancer potentials of Citrus peels (Citrus medica 2 morphotypes, C. sinensis, C. maxima, C. limon and C. reticulata) were evaluated by various in vitro assays (MTT assay, morphological observations, fast halo assay, flow cytometric analysis) and in vivo cancer models. RESULTS C. reticulata peels (extracts, essential oils) showed significant activity against DLA cell line in MTT assay. We found C. reticulata peel water extract inducing cell cycle arrest of DLA in G0/G1 phase followed by nuclear condensation, membrane blebbing, formation of apoptotic bodies and DNA damage leading to apoptosis. In in vivo experiments, C. reticulata peel extract pre-treated mice were significantly (50%) protected from DLA compared to post-treated mice (33%), without any conspicuous toxic symptoms. Citrus peels have volatiles (essential oils, limonoids) and non-volatiles (mainly polymethoxy flavones) as their bioactive/anticancer constituents. CONCLUSION Our results encourage the use of Citrus peels, which is wasted in huge amounts, as cancer preventive food additives and as anticancer agents.
Collapse
Affiliation(s)
- Ajikumaran Nair S
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695 562 Thiruvananthapuram, Kerala, India.
| | - Rajani Kurup Sr
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695 562 Thiruvananthapuram, Kerala, India.
| | - Akhila S Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695 562 Thiruvananthapuram, Kerala, India.
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695 562 Thiruvananthapuram, Kerala, India.
| |
Collapse
|
32
|
Elbashir AA, Aboul-Enein HY. Multidimensional Gas Chromatography for Chiral Analysis. Crit Rev Anal Chem 2018; 48:416-427. [DOI: 10.1080/10408347.2018.1444465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Division of Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
33
|
Limonene: Aroma of innovation in health and disease. Chem Biol Interact 2018; 283:97-106. [PMID: 29427589 DOI: 10.1016/j.cbi.2018.02.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Natural products obtained in dietary components may aid the prevention and treatment of a variety of diseases. Reports in the scientific literature have demonstrated that the consumption of terpenes is a successful alternative in the treatment of several diseases, triggering beneficial biological effects in clinical and preclinical studies. The monoterpene limonene is largely used in alimentary items, cleaning products, and it is one of the most frequent fragrances used in cosmetics formulation. The therapeutic effects of limonene have been extensively studied, proving anti-inflammatory, antioxidant, antinociceptive, anticancer, antidiabetic, antihyperalgesic, antiviral, and gastroprotective effects, among other beneficial effects in health. In this review, we collected, presented, and analyzed evidence from the scientific literature regarding the usage of limonene and its activities and underlying mechanisms involved in combating diseases. The highlighting of limonene applications could develop a useful targeting of innovative research in this field as well as the development of a limonene-based phytomedicine which could be used in a variety of conditions of health and disease.
Collapse
|
34
|
Cuevas FJ, Pereira-Caro G, Moreno-Rojas JM, Muñoz-Redondo JM, Ruiz-Moreno MJ. Assessment of premium organic orange juices authenticity using HPLC-HR-MS and HS-SPME-GC-MS combining data fusion and chemometrics. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Silina YE, Tillotson JR, Manz A. Storage and controlled release of fragrances maintaining a constant ratio of volatile compounds. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:6073-6082. [PMID: 39825511 DOI: 10.1039/c7ay01799e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Controlled fragrance release at the right time, in the right place, depending on the context remains a technological challenge in the areas of psychophysiology, biochemistry and the entertainment industry. In this study, we demonstrate how bulk poly(dimethylsiloxane) (PDMS) templates may effectively take up and retain volatile organic compounds of essential orange oil in the original form without significantly shifting the scent profile. This is done depending on the sampling approach that follows a controllable and slow fragrance release maintaining a constant ratio of volatile compounds in a template-thickness, temperature and time-dependent manner. Thus, the increase in temperature up to 80 °C enhances the intensity of the fragrance release almost 13 fold without a significant shift in the chemical profile for 6 consecutive "ON/OFF" cycles. We believe that the concept demonstrated here towards fragrance storage via bulk PDMS templates can be used as a model case for the future use of scents.
Collapse
Affiliation(s)
- Y E Silina
- Chemical Analytics, INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | - J R Tillotson
- University of Cambridge, Department of Chemical Engineering and Biotechnology, West Cambridge Site Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - A Manz
- KIST Europe GmbH, 66123, Saarbrücken, Germany
| |
Collapse
|
36
|
Tranchida PQ, Franchina FA, Mondello L. Analysis of essential oils through comprehensive two-dimensional gas chromatography: General utility. FLAVOUR FRAG J 2017. [DOI: 10.1002/ffj.3383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Q. Tranchida
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali; University of Messina - Polo Annunziata; 98168 Messina Italy
| | - Flavio A. Franchina
- Chromaleont s.r.l., c/o University of Messina; viale Annunziata 98168 Messina Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali; University of Messina - Polo Annunziata; 98168 Messina Italy
- Chromaleont s.r.l., c/o University of Messina; viale Annunziata 98168 Messina Italy
| |
Collapse
|
37
|
Mohammadhosseini M, Sarker SD, Akbarzadeh A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:257-315. [PMID: 0 DOI: 10.1016/j.jep.2017.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 05/25/2023]
|
38
|
Torres-Alvarez C, Núñez González A, Rodríguez J, Castillo S, Leos-Rivas C, Báez-González JG. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1220021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Taverna D, Di Donna L, Mazzotti F, Tagarelli A, Napoli A, Furia E, Sindona G. Rapid discrimination of bergamot essential oil by paper spray mass spectrometry and chemometric analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:761-767. [PMID: 27460885 DOI: 10.1002/jms.3820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
A novel approach for the rapid discrimination of bergamot essential oil from other citrus fruits oils is presented. The method was developed using paper spray mass spectrometry (PS-MS) allowing for a rapid molecular profiling coupled with a statistic tool for a precise and reliable discrimination between the bergamot complex matrix and other similar matrices, commonly used for its reconstitution. Ambient mass spectrometry possesses the ability to record mass spectra of ordinary samples, in their native environment, without sample preparation or pre-separation by creating ions outside the instrument. The present study reports a PS-MS method for the determination of oxygen heterocyclic compounds such as furocoumarins, psoralens and flavonoids present in the non-volatile fraction of citrus fruits essential oils followed by chemometric analysis. The volatile fraction of Bergamot is one of the most known and fashionable natural products, which found applications in flavoring industry as ingredient in beverages and flavored foodstuff. The development of the presented method employed bergamot, sweet orange, orange, cedar, grapefruit and mandarin essential oils. PS-MS measurements were carried out in full scan mode for a total run time of 2 min. The capability of PS-MS profiling to act as marker for the classification of bergamot essential oils was evaluated by using multivariate statistical analysis. Two pattern recognition techniques, linear discriminant analysis and soft independent modeling of class analogy, were applied to MS data. The cross-validation procedure has shown excellent results in terms of the prediction ability because both models have correctly classified all samples for each category. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Domenico Taverna
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Leonardo Di Donna
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Fabio Mazzotti
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Antonio Tagarelli
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Anna Napoli
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Emilia Furia
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Giovanni Sindona
- University of Calabria, Department of Chemistry and Chemical Technologies-CTC, Arcavacata di Rende, Cosenza, 87036, Italy
| |
Collapse
|
40
|
Masson J, Liberto E, Beolor JC, Brevard H, Bicchi C, Rubiolo P. Oxygenated heterocyclic compounds to differentiate Citrus spp. essential oils through metabolomic strategies. Food Chem 2016; 206:223-33. [PMID: 27041320 DOI: 10.1016/j.foodchem.2016.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
This study aimed to characterise and discriminate 44 authenticated commercial samples of citrus essential oils (EO) from seven species (bergamot, lemon, bigarade, orange, mandarin, grapefruit, lime) by analysing the non-volatile oxygenated heterocyclic compounds (OHC) by UHPLC/TOF-HRMS, multivariate data analysis (PCA, PLS-DA) and metabolomic strategies; the OHC fraction includes coumarins, furocoumarins, and polymethoxylated flavonoids. Two different approaches were adopted: (i) targeted profiling based on quantifying 18 furocoumarins and coumarins, some of which are regulated by law, and (ii) targeted fingerprinting based on 140 OHCs reported in citrus essential oils, from which 38 discriminant markers were defined. This approach correctly discriminated the Citrus species; its "sensitivity" to relatively low adulteration rate (10%) was highly satisfactory. The proposed method is complementary to that of analysing the citrus EO volatile part by GC techniques.
Collapse
Affiliation(s)
- Jerome Masson
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-10125 Torino, Italy; Robertet SA, Research Division, 37 Avenue Sidi Brahim, F-06130 Grasse, France
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-10125 Torino, Italy
| | - Jean-Claude Beolor
- Robertet SA, Research Division, 37 Avenue Sidi Brahim, F-06130 Grasse, France
| | - Hugues Brevard
- Robertet SA, Research Division, 37 Avenue Sidi Brahim, F-06130 Grasse, France
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-10125 Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-10125 Torino, Italy.
| |
Collapse
|
41
|
Petretto GL, Sarais G, Maldini MT, Foddai M, Tirillini B, Rourke JP, Chessa M, Pintore G. C
itrus monstruosa
Discrimination among Several C
itrus
Species by Multivariate Analysis of Volatiles: A Metabolomic Approach. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Giorgia Sarais
- Department of Life and Environmental Sciences; University of Cagliari; Cagliari Italy
| | - Maria Teresa Maldini
- Department of Chemistry and Pharmacy; University of Sassari; 07100 Sassari Italy
| | - Marzia Foddai
- Department of Chemistry and Pharmacy; University of Sassari; 07100 Sassari Italy
| | - Bruno Tirillini
- Department of Biomolecular Science; University of Urbino; Urbino Italy
| | | | - Mario Chessa
- Department of Chemistry and Pharmacy; University of Sassari; 07100 Sassari Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy; University of Sassari; 07100 Sassari Italy
| |
Collapse
|
42
|
Schipilliti L, Bonaccorsi I, Cotroneo A, Dugo P, Mondello L. Carbon isotope ratios of selected volatiles in Citrus sinensis and in orange-flavoured food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2944-2950. [PMID: 25475589 DOI: 10.1002/jsfa.7037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/17/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Twenty genuine samples of industrially cold-pressed sweet orange essential oils, were analysed by gas chromatography-combustion-isotope ratio mass spectrometry to determine the values of the carbon isotope ratios (δ(13)C(VPDB)) of selected volatiles and assess the corresponding range of authenticity. Successively, four commercial orange-flavoured products were analysed under identical conditions to evaluate the authenticity of the orange flavour. The samples were extracted by solid-phase microextraction under optimised conditions. The evaluation was performed by using an internal standard procedure to neglect the contribution due to the original environment to the isotopic abundance of (13)C. The composition of the volatile fraction of the essential oils and of the flavoured products was determined by gas chromatography coupled to mass spectrometry with linear retention indices, and by gas chromatography with a flame ionisation detector. RESULTS The δ(13)C(VPDB) values of seven secondary metabolites determined here were successfully used to characterise genuine orange essential oil. These values were used to evaluate the quality of orange-flavoured products, revealing the presence of compounds of different origin, not compatible with the values of genuine orange secondary metabolites. CONCLUSIONS This study provides the range of authenticity of δ(13)C(VPDB) of seven different secondary metabolites in sweet orange genuine essential oil, useful for evaluating the genuineness of orange flavour. In accord with a previous study on different essential oils, the values determined here can be successfully applied for the evaluation of a large number of flavoured food stuffs and correlated with their origins.
Collapse
Affiliation(s)
- Luisa Schipilliti
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, 98168, Messina, Italy
| | - Ivana Bonaccorsi
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, 98168, Messina, Italy
| | - Antonella Cotroneo
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, 98168, Messina, Italy
| | - Paola Dugo
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, 98168, Messina, Italy
- Centro Integrato di Ricerca (C.I.R.), University Campus Bio-Medico of Rome, Roma, Italy
- Chromaleont s.r.l., A start-up of the University of Messina, c/o Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Messina, Italy
| | - Luigi Mondello
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, 98168, Messina, Italy
- Centro Integrato di Ricerca (C.I.R.), University Campus Bio-Medico of Rome, Roma, Italy
- Chromaleont s.r.l., A start-up of the University of Messina, c/o Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Messina, Italy
| |
Collapse
|
43
|
Xiao Z, Ma S, Niu Y, Chen F, Yu D. Characterization of odour-active compounds of sweet orange essential oils of different regions by gas chromatography-mass spectrometry, gas chromatography-olfactometry and their correlation with sensory attributes. FLAVOUR FRAG J 2015. [DOI: 10.1002/ffj.3268] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 China
- Shanghai Research Institute of Fragrance and Flavor Industry; Shanghai 200232 China
| | - Shengtao Ma
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 China
| | - Yunwei Niu
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences; Clemson University; SC 29634 USA
| | - Dan Yu
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 China
| |
Collapse
|
44
|
Changes in the Composition of Aromatherapeutic Citrus Oils during Evaporation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:421695. [PMID: 26161120 PMCID: PMC4486248 DOI: 10.1155/2015/421695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022]
Abstract
The composition of some commercial Citrus oils, lemon, sweet orange, and tangerine, designated for aromatherapy, was examined before and after partial evaporation in a stream of nitrogen. The intact oils contained the expected mixtures of mono- and sesquiterpenes, with hydrocarbons dominating and lesser amounts of oxygenated analogues making up the remainder. Gas chromatography-mass spectrometry was used to follow alterations in the relative amounts of the various components present as evaporation proceeded. Changes were marked, and in particular more volatile components present in the intact oils rapidly disappeared. Thus the balance of content was shifted away from monoterpene hydrocarbons towards the analogous alcohols and carbonyl compounds. The results of this differential evaporation are discussed and possible consequences for aromatherapy use are noted. The case of lemon oil was especially interesting as the relative amount of citral, a known sensitizer, remaining as time elapsed represented an increasing percentage of the total oil.
Collapse
|
45
|
Jerković I, Družić J, Marijanović Z, Gugić M, Jokić S, Roje M. GC-FID/MS Profiling of Supercritical CO 2 Extracts of Peels from Citrus aurantium, C. sinensis cv. Washington navel, C. sinensis cv. Tarocco and C. sinensis cv. Doppio Sanguigno from Dubrovnik Area (Croatia). Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The peels of Citrus aurantium L. and Citrus sinensis Osbeck cultivars from the Dubrovnik region (south Croatia) were extracted by supercritical CO2 at 40°C and 10 MPa at 1.76 kg/h to obtain enriched extracts in comparison with simple pressing of the peels. The extracts were analyzed in detail by gas chromatography and mass spectrometry (GC-FID/MS). Relevant similarities among the peel oil compositions of C. aurantium and C. sinensis cultivars were found with limonene predominance (up to 54.3%). The principal oxygenated monoterpenes were linalool (3.0%–5.9%), α-terpineol (0.7%–2.4%), linalyl acetate (0.0%–5.0%), geranyl acetate (0.0%-0.4%), ( Z)-citral (0.0%–1.8%) and ( E)-citral (0.0%–1.9%). Several sesquiterpenes were found with minor percentages. Coumarin derivatives were identified in all the samples among the relevant compounds. Isogeijerin dominated in the peels of C. sinensis cv. Tarocco (15.3%) and C. aurantium (11.2%). Scoparone ranged from 0.1% to 0.5% in all the samples. Bergapten (up to 1.4%), osthole (up to 1.1%) and 7-methoxy-8-(2-formylpropyl)coumarin (up to 1.1%) were found mostly in C. sinensis cv. Doppio Sanguigno. It was possible to indicate a few other differences among the extracts such as higher percentage of linalool, linalyl and geranyl acetates, as well as the abundance of sabinene and isogeijerin in C. aurantium or the occurrence of β-sinensal in C. sinensis cultivars.
Collapse
Affiliation(s)
- Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, N. Tesle 10/V, HR-21000 Split, Croatia
| | - Jasmina Družić
- Department of Mediterranean Crops, University of Dubrovnik, Marka Marojice 4, HR-20000 Dubrovnik, Croatia
| | - Zvonimir Marijanović
- Department of Food Technology, Marko Marulić Polytechnic in Knin, Petra Krešimira IV 30, HR-22300 Knin, Croatia
| | - Mirko Gugić
- Department of Food Technology, Marko Marulić Polytechnic in Knin, Petra Krešimira IV 30, HR-22300 Knin, Croatia
| | - Stela Jokić
- Department of Process Engineering, Faculty of Food Technology, University of J. J. Strossmayer, Franje Kuhača 18, HR-18000 Osijek, Croatia
| | - Marin Roje
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
46
|
Carrasco A, Martinez-Gutierrez R, Tomas V, Tudela J. Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oil from Spain: determination of aromatic profile by gas chromatography–mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities. Nat Prod Res 2015; 30:1123-30. [DOI: 10.1080/14786419.2015.1043632] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alejandro Carrasco
- Department of Biochemistry and Molecular Biology-A, GENZ-Group of Research on Enzymology,Faculty of Veterinary Science, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo 30100, Murcia, Spain
| | | | - Virginia Tomas
- Department of Analytical Chemistry, University of Murcia, Murcia, Spain
| | - Jose Tudela
- Department of Biochemistry and Molecular Biology-A, GENZ-Group of Research on Enzymology,Faculty of Veterinary Science, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo 30100, Murcia, Spain
| |
Collapse
|
47
|
Karami A, Rowshan V. Temporal Analysis of Volatile Oil Compounds from Winter Season Flowering ‘Eureka’ Lemon. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/22297928.2015.1039581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
|
49
|
Lange BM. Biosynthesis and Biotechnology of High-Value p-Menthane Monoterpenes, Including Menthol, Carvone, and Limonene. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:319-53. [PMID: 25618831 DOI: 10.1007/10_2014_289] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monoterpenes of the p-menthane group are volatile secondary (or specialized) metabolites found across the plant kingdom. They are dominant constituents of commercially important essential oils obtained from members of the genera Mentha (Lamiaceae), Carum (Apiaceae), Citrus (Rutaceae), and Eucalyptus (Myrtaceae). p-Menthane monoterpenes have also attracted interest as chiral specialty chemicals, and the harvest from natural sources is therefore supplemented by chemical synthesis. More recently, microbial and plant-based platforms for the high-level accumulation of specific target monoterpenes have been developed. In this review chapter, I discuss the properties of the genes and enzymes involved in p-menthane biosynthesis and provide a critical assessment of biotechnological production approaches.
Collapse
Affiliation(s)
- Bernd Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-6340, USA,
| |
Collapse
|
50
|
Marti G, Boccard J, Mehl F, Debrus B, Marcourt L, Merle P, Delort E, Baroux L, Sommer H, Rudaz S, Wolfender JL. Comprehensive profiling and marker identification in non-volatile citrus oil residues by mass spectrometry and nuclear magnetic resonance. Food Chem 2014; 150:235-45. [DOI: 10.1016/j.foodchem.2013.10.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 11/30/2022]
|