1
|
Su Y, Bu F, Zhu Y, Yang L, Wu Q, Zheng Y, Zhao J, Yu L, Jiang N, Wang Y, Wu J, Xie Y, Zhang X, Gao Y, Lan K, Deng Q. Hepatitis B virus core protein as a Rab-GAP suppressor driving liver disease progression. Sci Bull (Beijing) 2024; 69:2580-2595. [PMID: 38670853 DOI: 10.1016/j.scib.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Chronic hepatitis B virus (HBV) infection can lead to advanced liver pathology. Here, we establish a transgenic murine model expressing a basic core promoter (BCP)-mutated HBV genome. Unlike previous studies on the wild-type virus, the BCP-mutated HBV transgenic mice manifest chronic liver injury that culminates in cirrhosis and tumor development with age. Notably, agonistic anti-Fas treatment induces fulminant hepatitis in these mice even at a negligible dose. As the BCP mutant exhibits a striking increase in HBV core protein (HBc) expression, we posit that HBc is actively involved in hepatocellular injury. Accordingly, HBc interferes with Fis1-stimulated mitochondrial recruitment of Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15). HBc may also inhibit multiple Rab GTPase-activating proteins, including Rab7-specific TBC1D15 and TBC1D5, by binding to their conserved catalytic domain. In cells under mitochondrial stress, HBc thus perturbs mitochondrial dynamics and prevents the recycling of damaged mitochondria. Moreover, sustained HBc expression causes lysosomal consumption via Rab7 hyperactivation, which further hampers late-stage autophagy and substantially increases apoptotic cell death. Finally, we show that adenovirally expressed HBc in a mouse model is directly cytopathic and causes profound liver injury, independent of antigen-specific immune clearance. These findings reveal an unexpected cytopathic role of HBc, making it a pivotal target for HBV-associated liver disease treatment. The BCP-mutated HBV transgenic mice also provide a valuable model for understanding chronic hepatitis B progression and for the assessment of therapeutic strategies.
Collapse
Affiliation(s)
- Yu Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Fan Bu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China; Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Le Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qiong Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Yuan Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Jianjin Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Lin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Nan Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Jian Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Su Q, Wang JJ, Ren JY, Wu Q, Chen K, Tu KH, Zhang Y, Leong SW, Sarwar A, Han X, Zhang M, Dai WF, Zhang YM. Parkin deficiency promotes liver cancer metastasis by TMEFF1 transcription activation via TGF-β/Smad2/3 pathway. Acta Pharmacol Sin 2024; 45:1520-1529. [PMID: 38519646 PMCID: PMC11192956 DOI: 10.1038/s41401-024-01254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-β production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-β inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1β and p53, which accounts for the suppression of TGF-β production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-β/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.
Collapse
Affiliation(s)
- Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing-Jing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jia-Yan Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai-Hui Tu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sze Wei Leong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ammar Sarwar
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xu Han
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei-Feng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yan-Min Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
3
|
Clausen L, Okarmus J, Voutsinos V, Meyer M, Lindorff-Larsen K, Hartmann-Petersen R. PRKN-linked familial Parkinson's disease: cellular and molecular mechanisms of disease-linked variants. Cell Mol Life Sci 2024; 81:223. [PMID: 38767677 PMCID: PMC11106057 DOI: 10.1007/s00018-024-05262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.
Collapse
Affiliation(s)
- Lene Clausen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Vasileios Voutsinos
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE, Brain Research Inter Disciplinary Guided Excellence, University of Southern Denmark, 5230, Odense, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
4
|
Siwo GH, Singal AG, Waljee AK. Pan-cancer molecular signatures connecting aspartate transaminase (AST) to cancer prognosis, metabolic and immune signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582939. [PMID: 38496547 PMCID: PMC10942358 DOI: 10.1101/2024.03.01.582939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Serum aspartate transaminase (sAST) level is used routinely in conjunction with other clinical assays to assess liver health and disease. Increasing evidence suggests that sAST is associated with all-cause mortality and has prognostic value in several cancers, including gastrointestinal and urothelial cancers. Here, we undertake a systems approach to unravel molecular connections between AST and cancer prognosis, metabolism, and immune signatures at the transcriptomic and proteomic levels. Methods We mined public gene expression data across multiple normal and cancerous tissues using the Genotype Tissue Expression (GTEX) resource and The Cancer Genome Atlas (TCGA) to assess the expression of genes encoding AST isoenzymes (GOT1 and GOT2) and their association with disease prognosis and immune infiltration signatures across multiple tumors. We examined the associations between AST and previously reported pan-cancer molecular subtypes characterized by distinct metabolic and immune signatures. We analyzed human protein-protein interaction networks for interactions between GOT1 and GOT2 with cancer-associated proteins. Using public databases and protein-protein interaction networks, we determined whether the subset of proteins that interact with AST (GOT1 and GOT2 interactomes) are enriched with proteins associated with specific diseases, miRNAs and transcription factors. Results We show that AST transcript isoforms (GOT1 and GOT2) are expressed across a wide range of normal tissues. AST isoforms are upregulated in tumors of the breast, lung, uterus, and thymus relative to normal tissues but downregulated in tumors of the liver, colon, brain, kidney and skeletal sarcomas. At the proteomic level, we find that the expression of AST is associated with distinct pan-cancer molecular subtypes with an enrichment of specific metabolic and immune signatures. Based on human protein-protein interaction data, AST physically interacts with multiple proteins involved in tumor initiation, suppression, progression, and treatment. We find enrichments in the AST interactomes for proteins associated with liver and lung cancer and dermatologic diseases. At the regulatory level, the GOT1 interactome is enriched with the targets of cancer-associated miRNAs, specifically mir34a - a promising cancer therapeutic, while the GOT2 interactome is enriched with proteins that interact with cancer-associated transcription factors. Conclusions Our findings suggest that perturbations in the levels of AST within specific tissues reflect pathophysiological changes beyond tissue damage and have implications for cancer metabolism, immune infiltration, prognosis, and treatment personalization.
Collapse
Affiliation(s)
| | - Amit G. Singal
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX
- Center for Global Health Equity, University of Michigan, Ann Arbor, MI, USA
| | - Akbar K. Waljee
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX
- Center for Global Health Equity, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Clausen L, Voutsinos V, Cagiada M, Johansson KE, Grønbæk-Thygesen M, Nariya S, Powell RL, Have MKN, Oestergaard VH, Stein A, Fowler DM, Lindorff-Larsen K, Hartmann-Petersen R. A mutational atlas for Parkin proteostasis. Nat Commun 2024; 15:1541. [PMID: 38378758 PMCID: PMC10879094 DOI: 10.1038/s41467-024-45829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Proteostasis can be disturbed by mutations affecting folding and stability of the encoded protein. An example is the ubiquitin ligase Parkin, where gene variants result in autosomal recessive Parkinsonism. To uncover the pathological mechanism and provide comprehensive genotype-phenotype information, variant abundance by massively parallel sequencing (VAMP-seq) is leveraged to quantify the abundance of Parkin variants in cultured human cells. The resulting mutational map, covering 9219 out of the 9300 possible single-site amino acid substitutions and nonsense Parkin variants, shows that most low abundance variants are proteasome targets and are located within the structured domains of the protein. Half of the known disease-linked variants are found at low abundance. Systematic mapping of degradation signals (degrons) reveals an exposed degron region proximal to the so-called "activation element". This work provides examples of how missense variants may cause degradation either via destabilization of the native protein, or by introducing local signals for degradation.
Collapse
Affiliation(s)
- Lene Clausen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Voutsinos
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Cagiada
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer E Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Snehal Nariya
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rachel L Powell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Magnus K N Have
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Amelie Stein
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Cao M, Tang Y, Luo Y, Gu F, Zhu Y, Liu X, Yan C, Hu W, Wang S, Chao X, Xu H, Chen HB, Wang L. Natural compounds modulating mitophagy: Implications for cancer therapy. Cancer Lett 2024; 582:216590. [PMID: 38097131 DOI: 10.1016/j.canlet.2023.216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Cancer is considered as the second leading cause of mortality, and cancer incidence is still growing rapidly worldwide, which poses an increasing global health burden. Although chemotherapy is the most widely used treatment for cancer, its effectiveness is limited by drug resistance and severe side effects. Mitophagy is the principal mechanism that degrades damaged mitochondria via the autophagy/lysosome pathway to maintain mitochondrial homeostasis. Emerging evidence indicates that mitophagy plays crucial roles in tumorigenesis, particularly in cancer therapy. Mitophagy can exhibit dual effects in cancer, with both cancer-inhibiting or cancer-promoting function in a context-dependent manner. A variety of natural compounds have been found to affect cancer cell death and display anticancer properties by modulating mitophagy. In this review, we provide a systematic overview of mitophagy signaling pathways, and examine recent advances in the utilization of natural compounds for cancer therapy through the modulation of mitophagy. Furthermore, we address the inquiries and challenges associated with ongoing investigations concerning the application of natural compounds in cancer therapy based on mitophagy. Overcoming these limitations will provide opportunities to develop novel interventional strategies for cancer treatment.
Collapse
Affiliation(s)
- Min Cao
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Yancheng Tang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Luo
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fen Gu
- Department of Infection, Hunan Children's Hospital, Changsha, 410007, China
| | - Yuyuan Zhu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Xu Liu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Chenghao Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Wei Hu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Boai Rehabilitation Hospital, Changsha, 410082, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojuan Chao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Siswanto FM, Okukawa K, Tamura A, Oguro A, Imaoka S. Hydrogen peroxide activates APE1/Ref-1 via NF-κB and Parkin: A role in liver cancer resistance to oxidative stress. Free Radic Res 2023:1-31. [PMID: 37364176 DOI: 10.1080/10715762.2023.2229509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells exhibit an altered redox balance and aberrant redox signaling due to genetic, metabolic, and microenvironment-associated reprogramming. Persistently elevated levels of reactive oxygen species (ROS) contribute to many aspects of tumor development and progression. Emerging studies demonstrated the vital role of apurinic/apyrimidinic endonuclease 1 or reduction/oxidation (redox) factor 1(APE1/Ref-1) in the oxidative stress response and survival of cancer cells. APE1/Ref-1 is a multifunctional enzyme involved in the DNA damage response and functions as a redox regulator of transcription factors. We herein demonstrated that basal hydrogen peroxide (H2O2) and APE1/Ref-1 expression levels were markedly higher in cancer cell lines than in non-cancerous cells. Elevated APE1/Ref-1 levels were associated with shorter survival in liver cancer patients. Mechanistically, we showed that H2O2 activated nuclear factor-κB (NF-κB). RelA/p65 inhibited the expression of the E3 ubiquitin ligase Parkin, possibly by interfering with ATF4 activity. Parkin was responsible for the ubiquitination and proteasomal degradation of APE1/Ref-1; therefore, the H2O2-induced suppression of Parkin expression increased APE1/Ref-1 levels. The probability of survival was lower in liver cancer patients with low Parkin and high RelA expression levels. Additionally, Parkin and RelA expression levels negatively and positively correlated with APE1/Ref-1 levels, respectively, in the TCGA liver cancer cohort. We concluded that increases in APE1/Ref-1 via the NF-κB and Parkin pathways are critical for cancer cell survival under oxidative stress. The present results show the potential of the NF-κB-Parkin-APE1/Ref-1 axis as a prognostic factor and therapeutic strategy to eradicate liver cancer.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
- Department of Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Kenta Okukawa
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Akiyoshi Tamura
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
8
|
Zhou J, Feng J, Wu Y, Dai HQ, Zhu GZ, Chen PH, Wang LM, Lu G, Liao XW, Lu PZ, Su WJ, Hooi SC, Ye XP, Shen HM, Peng T, Lu GD. Simultaneous treatment with sorafenib and glucose restriction inhibits hepatocellular carcinoma in vitro and in vivo by impairing SIAH1-mediated mitophagy. Exp Mol Med 2022; 54:2007-2021. [PMID: 36385558 PMCID: PMC9723179 DOI: 10.1038/s12276-022-00878-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Transarterial chemoembolization (TACE) is the first-line treatment for unresectable intermediate-stage hepatocellular carcinoma (HCC). It is of high clinical significance to explore the synergistic effect of TACE with antiangiogenic inhibitors and the molecular mechanisms involved. This study determined that glucose, but not other analyzed nutrients, offered significant protection against cell death induced by sorafenib, as indicated by glucose deprivation sensitizing cells to sorafenib-induced cell death. Next, this synergistic effect was found to be specific to sorafenib, not to lenvatinib or the chemotherapeutic drugs cisplatin and doxorubicin. Mechanistically, sorafenib-induced mitophagy, as indicated by PINK1 accumulation, increased the phospho-poly-ubiquitination modification, accelerated mitochondrial membrane protein and mitochondrial DNA degradation, and increased the amount of mitochondrion-localized mKeima-Red engulfed by lysosomes. Among several E3 ubiquitin ligases tested, SIAH1 was found to be essential for inducing mitophagy; that is, SIAH1 silencing markedly repressed mitophagy and sensitized cells to sorafenib-induced death. Notably, the combined treatment of glucose restriction and sorafenib abolished ATP generation and mitophagy, which led to a high cell death rate. Oligomycin and antimycin, inhibitors of electron transport chain complexes, mimicked the synergistic effect of sorafenib with glucose restriction to promote cell death mediated via mitophagy inhibition. Finally, inhibition of the glucose transporter by canagliflozin (a clinically available drug used for type-II diabetes) effectively synergized with sorafenib to induce HCC cell death in vitro and to inhibit xenograft tumor growth in vivo. This study demonstrates that simultaneous treatment with sorafenib and glucose restriction is an effective approach to treat HCC, suggesting a promising combination strategy such as transarterial sorafenib-embolization (TASE) for the treatment of unresectable HCC.
Collapse
Affiliation(s)
- Jing Zhou
- grid.256607.00000 0004 1798 2653Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China ,grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, 117593 Singapore
| | - Ji Feng
- grid.256607.00000 0004 1798 2653Department of Toxicology, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Yong Wu
- grid.256607.00000 0004 1798 2653Department of Toxicology, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Hui-Qi Dai
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, 117593 Singapore ,grid.256607.00000 0004 1798 2653Department of Toxicology, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Guang-Zhi Zhu
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Pan-Hong Chen
- grid.256607.00000 0004 1798 2653Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Li-Ming Wang
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, 117593 Singapore
| | - Guang Lu
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, 117593 Singapore
| | - Xi-Wen Liao
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Pei-Zhi Lu
- grid.256607.00000 0004 1798 2653Department of Toxicology, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Wen-Jing Su
- grid.256607.00000 0004 1798 2653Department of Toxicology, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Shing Chuan Hooi
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, 117593 Singapore
| | - Xin-Pin Ye
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China
| | - Han-Ming Shen
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, 117593 Singapore ,grid.437123.00000 0004 1794 8068Faculty of Health Sciences, University of Macau, Macau, P. R. China
| | - Tao Peng
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China ,grid.256607.00000 0004 1798 2653Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), 530021 Nanning, Guangxi Province P. R. China
| | - Guo-Dong Lu
- grid.256607.00000 0004 1798 2653Department of Toxicology, School of Public Health, Guangxi Medical University, 530021 Nanning, Guangxi Province P. R. China ,grid.256607.00000 0004 1798 2653Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), 530021 Nanning, Guangxi Province P. R. China
| |
Collapse
|
9
|
Chen X, Jiang L, Zhou Z, Yang B, He Q, Zhu C, Cao J. The Role of Membrane-Associated E3 Ubiquitin Ligases in Cancer. Front Pharmacol 2022; 13:928794. [PMID: 35847032 PMCID: PMC9285105 DOI: 10.3389/fphar.2022.928794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The cell membrane system comprises the plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosome, mitochondria, and nuclear membrane, which are essential for maintaining normal physiological functions of cells. The proteins associated with these membrane-organelles are frequently modified to regulate their functions, the most common of which is ubiquitin modification. So far, many ubiquitin E3 ligases anchored in the membrane system have been identified as critical players facilitating intracellular biofunctions whose dysfunction is highly related to cancer. In this review, we summarized membrane-associated E3 ligases and revealed their relationship with cancer, which is of great significance for discovering novel drug targets of cancer and may open up new avenues for inducing ubiquitination-mediated degradation of cancer-associated membrane proteins via small chemicals such as PROTAC and molecular glue.
Collapse
Affiliation(s)
- Xuankun Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Zhesheng Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Chengliang Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, China
- *Correspondence: Chengliang Zhu, ; Ji Cao,
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
- *Correspondence: Chengliang Zhu, ; Ji Cao,
| |
Collapse
|
10
|
Bhat ZI, Naseem A, Kumar B, Ponnusamy K, Tiwari RR, Sharma GD, Rizvi MMA. Association of PARK-2 Non-synonyms Polymorphisms and Their In Silico Validation Among North Indian Colorectal Cancer Patients. J Gastrointest Cancer 2021; 53:674-682. [PMID: 34467515 DOI: 10.1007/s12029-021-00693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE PARK2 is a potential tumour suppressor gene and its genetic alterations (regionic loss) are common across many human cancers. The association of PARK2 germline variations (SNPs) with Parkinson's has been shown, but their association in development and progression of cancer remains elusive. The aim of this study was to identify association of PARK2 polymorphisms (rs1801474, rs1801334) with colorectal cancer in a case control study design. METHODS This case control study included a total of 650 genetically unrelated subjects comprising 300 colorectal cancer cases and 350 healthy controls belonging to North Indian. Both SNPs were analyzed using the PCR-RFLP assay. Statistical analysis for describing risk and association was performed using SPSS-17 software. Structural deviations due to non- synonymous substitutions (S167N and D394N) were analyzed using MD simulations. RESULTS The genotype distributions of both the SNPs were in Hardy-Weinberg equilibrium. For both the polymorphisms, the allelic model showed statistically significant risk with OR ~ 1.3. Many of the associations remained significant even after Bonferroni correction (P < 0.00125). The result suggested that both S167N and D394N were deviated from wild type and structures and were stable after 5 ns. The average value of RMSD for backbone atoms was calculated from 5 to 10 ns molecular dynamics simulation data. CONCLUSION In conclusion, our study revealed a significant association of PARK2 SNPs with colorectal cancer as well as their relations with other clinical parameters highlighting their contribution towards colorectal cancer susceptibility in North Indian population.
Collapse
Affiliation(s)
- Zafar Iqbal Bhat
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Afreen Naseem
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Kalaiarasan Ponnusamy
- Synthetic Biology Lab, School ofBiotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Raj Ranjan Tiwari
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - G D Sharma
- Department of Zoology, P.M.B Gujarati Science College, Indore, India
| | - M Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
11
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
12
|
Longo M, Paolini E, Meroni M, Dongiovanni P. Remodeling of Mitochondrial Plasticity: The Key Switch from NAFLD/NASH to HCC. Int J Mol Sci 2021; 22:4173. [PMID: 33920670 PMCID: PMC8073183 DOI: 10.3390/ijms22084173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and the third-leading cause of cancer-related mortality. Currently, the global burden of nonalcoholic fatty liver disease (NAFLD) has dramatically overcome both viral and alcohol hepatitis, thus becoming the main cause of HCC incidence. NAFLD pathogenesis is severely influenced by lifestyle and genetic predisposition. Mitochondria are highly dynamic organelles that may adapt in response to environment, genetics and epigenetics in the liver ("mitochondrial plasticity"). Mounting evidence highlights that mitochondrial dysfunction due to loss of mitochondrial flexibility may arise before overt NAFLD, and from the early stages of liver injury. Mitochondrial failure promotes not only hepatocellular damage, but also release signals (mito-DAMPs), which trigger inflammation and fibrosis, generating an adverse microenvironment in which several hepatocytes select anti-apoptotic programs and mutations that may allow survival and proliferation. Furthermore, one of the key events in malignant hepatocytes is represented by the remodeling of glucidic-lipidic metabolism combined with the reprogramming of mitochondrial functions, optimized to deal with energy demand. In sum, this review will discuss how mitochondrial defects may be translated into causative explanations of NAFLD-driven HCC, emphasizing future directions for research and for the development of potential preventive or curative strategies.
Collapse
Affiliation(s)
- Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milano, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
| |
Collapse
|
13
|
Perwez A, Wahabi K, Rizvi MA. Parkin: A targetable linchpin in human malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188533. [PMID: 33785381 DOI: 10.1016/j.bbcan.2021.188533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Parkin, an E3 ubiquitin ligase has been found to be deregulated in a variety of human cancers. Our current understanding is endowed with strong evidences that Parkin plays crucial role in the pathogenesis of cancer by controlling/interfering with major hallmarks of cancer delineated till today. Consistent with the idea of mitophagy, the existing studies imitates the tumor suppressive potential of Parkin, resolved by its capacity to regulate cell proliferation, cell migration, angiogenesis, apoptosis and overall cellular survival. Dysfunction of Parkin has resulted in the loss of ubiquitination of cell cycle components followed by their accumulation leading to genomic instability, perturbed cell cycle and eventually tumor progression. In this review, we provide an overview of current knowledge about the critical role of Parkin in cancer development and progression and have focussed on its therapeutic implications highlighting the diagnostic and prognostic value of Parkin as a biomarker. We earnestly hope that an in-depth knowledge of Parkin will provide a linchpin to target in various cancers that will open a new door of clinical applications and therapeutics.
Collapse
Affiliation(s)
- Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khushnuma Wahabi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
14
|
Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021; 10:248. [PMID: 33562035 PMCID: PMC7915370 DOI: 10.3390/antiox10020248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria, as "power house of the cell", are crucial players in cell pathophysiology. Beyond adenosine triphosphate (ATP) production, they take part in a generation of reactive oxygen species (ROS), regulation of cell signaling and cell death. Dysregulation of mitochondrial dynamics may lead to cancers and neurodegeneration; however, the fusion/fission cycle allows mitochondria to adapt to metabolic needs of the cell. There are multiple data suggesting that disturbed mitochondrial homeostasis can lead to Parkinson's disease (PD) development. 2-methoxyestradiol (2-ME), metabolite of 17β-estradiol (E2) and potential anticancer agent, was demonstrated to inhibit cell growth of hippocampal HT22 cells by means of nitric oxide synthase (NOS) production and oxidative stress at both pharmacologically and also physiologically relevant concentrations. Moreover, 2-ME was suggested to inhibit mitochondrial biogenesis and to be a dynamic regulator. This review is a comprehensive discussion, from both scientific and clinical point of view, about the influence of 2-ME on mitochondria and its plausible role as a modulator of neuron survival.
Collapse
Affiliation(s)
- Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Dulski
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Anna Roszmann
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Slawek
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174 Stuttgart, Germany
| |
Collapse
|
15
|
Wang X, Fan L, Wang S, Zhang Y, Li F, Zan Q, Lu W, Shuang S, Dong C. Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe. Anal Chem 2021; 93:3241-3249. [PMID: 33539094 DOI: 10.1021/acs.analchem.0c04826] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off-on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.
Collapse
Affiliation(s)
- Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shuohang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Feng Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qi Zan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Wenjing Lu
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
16
|
Tyagi A, Sarodaya N, Kaushal K, Chandrasekaran AP, Antao AM, Suresh B, Rhie BH, Kim KS, Ramakrishna S. E3 Ubiquitin Ligase APC/C Cdh1 Regulation of Phenylalanine Hydroxylase Stability and Function. Int J Mol Sci 2020; 21:E9076. [PMID: 33260674 PMCID: PMC7729981 DOI: 10.3390/ijms21239076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by the dysfunction of the enzyme phenylalanine hydroxylase (PAH). Alterations in the level of PAH leads to the toxic accumulation of phenylalanine in the blood and brain. Protein degradation mediated by ubiquitination is a principal cellular process for maintaining protein homeostasis. Therefore, it is important to identify the E3 ligases responsible for PAH turnover and proteostasis. Here, we report that anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 is an E3 ubiquitin ligase complex that interacts and promotes the polyubiquitination of PAH through the 26S proteasomal pathway. Cdh1 destabilizes and declines the half-life of PAH. In contrast, the CRISPR/Cas9-mediated knockout of Cdh1 stabilizes PAH expression and enhances phenylalanine metabolism. Additionally, our current study demonstrates the clinical relevance of PAH and Cdh1 correlation in hepatocellular carcinoma (HCC). Overall, we show that PAH is a prognostic marker for HCC and Cdh1 could be a potential therapeutic target to regulate PAH-mediated physiological and metabolic disorders.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
| | - Neha Sarodaya
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
| | - Kamini Kaushal
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
| | - Arun Pandian Chandrasekaran
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
| | - Ainsley Mike Antao
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
| | - Bharathi Suresh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
| | - Byung Ho Rhie
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
| | - Kye Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.T.); (N.S.); (K.K.); (A.P.C.); (A.M.A.); ( (B.S.); (B.H.R.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
17
|
Genovese I, Vezzani B, Danese A, Modesti L, Vitto VAM, Corazzi V, Pelucchi S, Pinton P, Giorgi C. Mitochondria as the decision makers for cancer cell fate: from signaling pathways to therapeutic strategies. Cell Calcium 2020; 92:102308. [PMID: 33096320 DOI: 10.1016/j.ceca.2020.102308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
As pivotal players in cellular metabolism, mitochondria have a double-faceted role in the final decision of cell fate. This is true for all cell types, but it is even more important and intriguing in the cancer setting. Mitochondria regulate cell fate in many diverse ways: through metabolism, by producing ATP and other metabolites deemed vital or detrimental for cancer cells; through the regulation of Ca2+ homeostasis, especially by the joint participation of the endoplasmic reticulum in a membranous tethering system for Ca2+ signaling called mitochondria-ER associated membranes (MAMs); and by regulating signaling pathways involved in the survival of cancer cells such as mitophagy. Recent studies have shown that mitochondria can also play a role in the regulation of inflammatory pathways in cancer cells, for example, through the release of mitochondrial DNA (mtDNA) involved in the activation of the cGAS-cGAMP-STING pathway. In this review, we aim to explore the role of mitochondria as decision makers in fostering cancer cell death or survival depending on the tumor cell stage and describe novel anticancer therapeutic strategies targeting mitochondria.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bianca Vezzani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Virginia Corazzi
- ENT & Audiology Department, University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Pelucchi
- ENT & Audiology Department, University Hospital of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
18
|
Ejma M, Madetko N, Brzecka A, Guranski K, Alster P, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Aliev G. The Links between Parkinson's Disease and Cancer. Biomedicines 2020; 8:biomedicines8100416. [PMID: 33066407 PMCID: PMC7602272 DOI: 10.3390/biomedicines8100416] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiologic studies indicate a decreased incidence of most cancer types in Parkinson’s disease (PD) patients. However, some neoplasms are associated with a higher risk of occurrence in PD patients. Both pathologies share some common biological pathways. Although the etiologies of PD and cancer are multifactorial, some factors associated with PD, such as α-synuclein aggregation; mutations of PINK1, PARKIN, and DJ-1; mitochondrial dysfunction; and oxidative stress can also be involved in cancer proliferation or cancer suppression. The main protein associated with PD, i.e., α-synuclein, can be involved in some types of neoplastic formations. On the other hand, however, its downregulation has been found in the other cancers. PINK1 can act as oncogenic or a tumor suppressor. PARKIN dysfunction may lead to some cancers’ growth, and its expression may be associated with some tumors’ suppression. DJ-1 mutation is involved in PD pathogenesis, but its increased expression was found in some neoplasms, such as melanoma or breast, lung, colorectal, uterine, hepatocellular, and nasopharyngeal cancers. Both mitochondrial dysfunction and oxidative stress are involved in PD and cancer development. The aim of this review is to summarize the possible associations between PD and carcinogenesis.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Konstanty Guranski
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.E.); (N.M.); (K.G.)
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa, Poland;
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: or ; Tel.: +1-210-442-8625 or +1-440-263-7461
| |
Collapse
|
19
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
20
|
Wang Y, Liu HH, Cao YT, Zhang LL, Huang F, Yi C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front Cell Dev Biol 2020; 8:413. [PMID: 32587855 PMCID: PMC7297908 DOI: 10.3389/fcell.2020.00413] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are key cellular organelles and play vital roles in energy metabolism, apoptosis regulation and cellular homeostasis. Mitochondrial dynamics refers to the varying balance between mitochondrial fission and mitochondrial fusion that plays an important part in maintaining mitochondrial homeostasis and quality. Mitochondrial malfunction is involved in aging, metabolic disease, neurodegenerative disorders, and cancers. Mitophagy, a selective autophagy of mitochondria, can efficiently degrade, remove and recycle the malfunctioning or damaged mitochondria, and is crucial for quality control. In past decades, numerous studies have identified a series of factors that regulate mitophagy and are also involved in carcinogenesis, cancer cell migration and death. Therefore, it has become critically important to analyze signal pathways that regulate mitophagy to identify potential therapeutic targets. Here, we review recent progresses in mitochondrial dynamics, the mechanisms of mitophagy regulation, and the implications for understanding carcinogenesis, metastasis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui-Hui Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yu-Ting Cao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei-Lei Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Cong Yi
- Department of Biochemistry, Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
22
|
Duan H, Lei Z, Xu F, Pan T, Lu D, Ding P, Zhu C, Pan C, Zhang S. PARK2 Suppresses Proliferation and Tumorigenicity in Non-small Cell Lung Cancer. Front Oncol 2019; 9:790. [PMID: 31508359 PMCID: PMC6716169 DOI: 10.3389/fonc.2019.00790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
Aims: PARK2 mutation is originally associated with the progression of Parkinson's disease. In recent years, PARK2 has been reported as a tumor suppressor gene in various cancers, including lung cancer. However, the biological functions and potential molecular mechanisms of PARK2 in non-small cell lung cancer (NSCLC) are still unclear. Methods: The level of PARK2 expression in 32 tissue samples of NSCLC and matched non-tumor lung tissues was detected by Western blot, and 64 specimens of NSCLC tissues were detected by immunohistochemistry. H1299 and H460 cell lines were used to PARK2 overexpression models, and H460 cell line was also used to PARK2 knockdown model. Using cell viability, colony formation, cell cycle, apoptosis, migration, and invasion assay, the biological functions of PARK2 were evaluated and the potential molecular mechanism of PARK2 was investigated in vitro. Meanwhile, 22 nude mice were employed for in vivo studies. Results: Western blot analysis revealed a decrease of PARK2 protein expression in human NSCLC samples. Immunohistochemistry also identified a vastly reduced expression of PARK2 in NSCLC (72%) and low PARK2 expression was significantly associated with tumor histological grade, lymph node metastasis and advanced TNM stage. Overexpression of PARK2 suppressed cell proliferation, colony formation, migration, and invasion, arrested cell cycle progression in the G1 phase, and induced apoptosis in human non-small cell lines H1299 and H460 in vitro. Meanwhile, knockdown of PARK2 had the opposite biological functions. In addition, PARK2 significantly decreased the tumor volumes in subcutaneous xenograft model and reduced the incidence of metastatic tumors in the transfer model. Exploration of the molecular mechanism of PARK2 in NSCLC showed that PARK2 negatively regulated the EGFR/AKT/mTOR signaling pathway. Conclusions: PARK2 was an important tumor suppressor in NSCLC, which might inhibit cancer growth and metastases through the down regulation of the EGFR/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Huijie Duan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, China
| | - Zhong Lei
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Xu
- Department of Oncology, Municipal Hospital of Qingdao, Qingdao, China
| | - Tao Pan
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Demin Lu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, China
| | - Peili Ding
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, China
| | - Chunpeng Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Pan
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Suzhan Zhang
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Cancer Institute, Zhejiang University, Hangzhou, China.,Research Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
González-Barbosa E, García-Aguilar R, Vega L, Cabañas-Cortés MA, Gonzalez FJ, Segovia J, Morales-Lázaro SL, Cisneros B, Elizondo G. Parkin is transcriptionally regulated by the aryl hydrocarbon receptor: Impact on α-synuclein protein levels. Biochem Pharmacol 2019; 168:429-437. [PMID: 31404530 DOI: 10.1016/j.bcp.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
Parkin (PRKN) is a ubiquitin E3 ligase that catalyzes the ubiquitination of several proteins. Mutations in the human Parkin gene, PRKN, leads to degeneration of dopaminergic (DA) neurons, resulting in autosomal recessive early-onset parkinsonism and the loss of PRKN function is linked to sporadic Parkinson's disease (PD). Additionally, several in vitro studies have shown that overexpression of exogenous PRKN protects against the neurotoxic effects induced by a wide range of cellular stressors, emphasizing the need to study the mechanism(s) governing PRKN expression and induction. Here, Prkn was identified as a novel target gene of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor and member of the bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim) superfamily. AhR binds and transactivates the Prkn gene promoter. We also demonstrated that AhR is expressed in DA neurons and that its activation upregulates Prkn mRNA and protein levels in the mouse ventral midbrain. Additionally, the AhR-dependent increase in PRKN levels is associated with a decrease in the protein levels of its target substrate, α-synuclein, in an AhR-dependent manner, because this effect is not observed in Ahr-null mice. These results suggest that treatments designed to induce PRKN expression through the use of nontoxic AhR agonist ligands may be novel strategies to prevent and delay PD.
Collapse
Affiliation(s)
| | - Rosario García-Aguilar
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Libia Vega
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | | | - Frank J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico.
| |
Collapse
|
24
|
Kishinevsky S, Wang T, Rodina A, Chung SY, Xu C, Philip J, Taldone T, Joshi S, Alpaugh ML, Bolaender A, Gutbier S, Sandhu D, Fattahi F, Zimmer B, Shah SK, Chang E, Inda C, Koren J, Saurat NG, Leist M, Gross SS, Seshan VE, Klein C, Tomishima MJ, Erdjument-Bromage H, Neubert TA, Henrickson RC, Chiosis G, Studer L. HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons. Nat Commun 2018; 9:4345. [PMID: 30341316 PMCID: PMC6195591 DOI: 10.1038/s41467-018-06486-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases. The early molecular events that ultimately lead to neuronal cell death in pathologies such as Parkinson’s disease are poorly understood. Here the authors use pluripotent stem-cell-derived human midbrain neurons and chemical biology tools to gain molecular level insight into the events induced by toxic and genetic stresses that mimic those occurring during neurodegeneration.
Collapse
Affiliation(s)
- Sarah Kishinevsky
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Neuroscience Graduate Program of Weill Cornell Graduate School of Biomedical Sciences, Weill Cornell Medical College, 1300 York Avenue, Box 65, New York, NY, 10065, USA
| | - Tai Wang
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Anna Rodina
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Chao Xu
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John Philip
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tony Taldone
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Suhasini Joshi
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mary L Alpaugh
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Molecular and Cellular Biosciences, Rowan University, 1275 York Avenue, Glassboro, NJ, 08028, USA
| | - Alexander Bolaender
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, 78464, Germany
| | - Davinder Sandhu
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Faranak Fattahi
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Bastian Zimmer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Smit K Shah
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Elizabeth Chang
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Carmen Inda
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Hostos Community College, City University of New York, Bronx, NY, 10453, USA
| | - John Koren
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nathalie G Saurat
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, 78464, Germany
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10017, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, 23538, Germany
| | - Mark J Tomishima
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,SKI Stem Cell Research Facility, 1275 York Avenue, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Ronald C Henrickson
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA.,Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 256, New York, NY, 10065, USA
| |
Collapse
|
25
|
Liu J, Zhang C, Hu W, Feng Z. Parkinson's disease-associated protein Parkin: an unusual player in cancer. Cancer Commun (Lond) 2018; 38:40. [PMID: 29941042 PMCID: PMC6020249 DOI: 10.1186/s40880-018-0314-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
The mutation of the Parkin gene is a cause of familial Parkinson’s disease. A growing body of evidence suggests that Parkin also functions as a tumor suppressor. Parkin is an ubiquitin E3 ligase, and plays important roles in a variety of cellular processes implicated in tumorigenesis, including cell cycle, cell proliferation, apoptosis, metastasis, mitophagy and metabolic reprogramming. Here we review the role and mechanism of Parkin in cancer.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA. .,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
26
|
Williams JA, Ding WX. Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights. Biol Chem 2018; 399:147-178. [PMID: 28976892 DOI: 10.1515/hsz-2017-0228] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
In 2012, we briefly summarized the mechanisms, pathophysiological roles and methods for analyzing mitophagy. As then, the mitophagy field has continued to grow rapidly, and many new molecular mechanisms regulating mitophagy and molecular tools for monitoring mitophagy have been discovered and developed. Therefore, the purpose of this review is to update information regarding these advances in mitophagy while focusing on basic molecular mechanisms of mitophagy in different organisms and its pathophysiological roles. We also discuss the advantage and limitations of current methods to monitor and quantify mitophagy in cultured cells and in vivo mouse tissues.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
27
|
Parkin in Parkinson’s Disease and Cancer: a Double-Edged Sword. Mol Neurobiol 2018; 55:6788-6800. [DOI: 10.1007/s12035-018-0879-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
|
28
|
Lee S, She J, Deng B, Kim J, de Andrade M, Na J, Sun Z, Wampfler JA, Cunningham JM, Wu Y, Limper AH, Aubry MC, Wendt C, Biterman P, Yang P, Lou Z. Multiple-level validation identifies PARK2 in the development of lung cancer and chronic obstructive pulmonary disease. Oncotarget 2018; 7:44211-44223. [PMID: 27329585 PMCID: PMC5190090 DOI: 10.18632/oncotarget.9954] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
An important precursor to lung cancer development is chronic obstructive pulmonary disease (COPD), independent of exposure to tobacco smoke. Both diseases are associated with increased host susceptibility, inflammation, and genomic instability. However, validation of the candidate genes and functional confirmation to test shared genetic contribution and cellular mechanisms to the development of lung cancer in patients with COPD remains underexplored. Here, we show that loss of PARK2 (encoding Parkin) increases the expression of proinflammation factors as well as nuclear NF-κB localization, suggesting a role of PARK2 loss in inflammation. Additional exploration showed that PARK2 deficiency promotes genomic instability and cell transformation. This role of PARK2 in inflammation and chromosome instability provides a potential link among Parkin, COPD and lung cancer. A further comprehensive validation of 114 informative single nucleotide polymorphism (SNP) variants of PARK2, in 2,484 cases and controls with well-defined lung cancer and COPD phenotypes, found rs577876, rs6455728 and rs9346917 (p<0.01) to be significantly associated with lung cancer development in people with COPD. Our findings support the evidence that PARK2 might have a tumor suppressor role in the development of COPD and lung cancer.
Collapse
Affiliation(s)
- SeungBaek Lee
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Jun She
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bo Deng
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - JungJin Kim
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jie Na
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jason A Wampfler
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Yanhong Wu
- Genomics Shared Resource, Mayo Clinic, Rochester, MN, USA
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Chris Wendt
- Department of Medicine, Pulmonary Division, University of Minnesota, Minneapolis, MN, USA.,Department of Medicine, Pulmonary Section, Minneapolis VA Medical Center, Minneapolis, MN, USA
| | - Peter Biterman
- Department of Medicine, Pulmonary Division, University of Minnesota, Minneapolis, MN, USA
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
da Silva-Camargo CCV, Svoboda Baldin RK, Costacurta Polli NL, Agostinho AP, Olandosk M, de Noronha L, Sotomaior VS. Parkin protein expression and its impact on survival of patients with advanced colorectal cancer. Cancer Biol Med 2018; 15:61-69. [PMID: 29545969 PMCID: PMC5842336 DOI: 10.20892/j.issn.2095-3941.2017.0136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective Features of colorectal cancer such as natural history, molecular, chromosomal, and epigenetic alterations have been well described. However, there is still a lack of accurate prognostic markers, which is evident by the lower overall survival rates of patients with advanced cancer. Although alterations in parkin protein expression have been described in colorectal cancer, the functional significance of this protein remains unknown. The present study aimed to investigate the involvement of parkin expression in colorectal adenocarcinoma development and progression by evaluating the association between its expression, clinicopathological parameters, and expression of known proteins involved in colorectal cancer. Methods Tissue microarrays consisting of 73 tumor and 64 normal tissue samples were generated to examine parkin expression and localization by immunohistochemistry. Results A positive correlation of parkin and APC expression was observed in the superficial, intermediate, and profound regions of all cases (ρ = 0.37; P = 0.001). Parkin expression was also significantly associated with tumors in men (P = 0.049), those of the mucinous subtype (P = 0.028), and of advanced stage (III + IV, P = 0.041). In addition, increased parkin expression was observed in the invasive front tumor region (P = 0.013). More importantly, a positive correlation was found between parkin expression and the overall survival of patients with advanced colorectal cancer (P = 0.019). Multivariate analysis showed that parkin expression was independent of any of the clinicopathological parameters evaluated in relation to patient survival. Conclusions These results suggest that parkin expression status can be used as a potential independent prognostic marker of survival in advanced colorectal cancer.
Collapse
Affiliation(s)
- Claudia Caroline Veloso da Silva-Camargo
- Group for Advanced Molecular Investigation (NIMA), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil
| | - Rosimeri Kuhl Svoboda Baldin
- Group for Advanced Molecular Investigation (NIMA), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil
| | - Nayanne Louise Costacurta Polli
- Group for Advanced Molecular Investigation (NIMA), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil
| | - Amanda Pereira Agostinho
- Group for Advanced Molecular Investigation (NIMA), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil
| | - Marcia Olandosk
- Group for Advanced Molecular Investigation (NIMA), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil
| | - Lúcia de Noronha
- Group for Advanced Molecular Investigation (NIMA), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil.,Hospital de Clínicas da Universidade Federal do Paraná (HC-UFPR), Curitiba 80215-901, Brazil
| | - Vanessa Santos Sotomaior
- Group for Advanced Molecular Investigation (NIMA), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil
| |
Collapse
|
30
|
Zhang C, Liu Z, Bunker E, Ramirez A, Lee S, Peng Y, Tan AC, Eckhardt SG, Chapnick DA, Liu X. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J Biol Chem 2017; 292:15105-15120. [PMID: 28673964 DOI: 10.1074/jbc.m117.783175] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Sorafenib (Nexavar) is a broad-spectrum multikinase inhibitor that proves effective in treating advanced renal-cell carcinoma and liver cancer. Despite its well-characterized mechanism of action on several established cancer-related protein kinases, sorafenib causes variable responses among human tumors, although the cause for this variation is unknown. In an unbiased screening of an oncology drug library, we found that sorafenib activates recruitment of the ubiquitin E3 ligase Parkin to damaged mitochondria. We show that sorafenib inhibits the activity of both complex II/III of the electron transport chain and ATP synthase. Dual inhibition of these complexes, but not inhibition of each individual complex, stabilizes the serine-threonine protein kinase PINK1 on the mitochondrial outer membrane and activates Parkin. Unlike the protonophore carbonyl cyanide m-chlorophenylhydrazone, which activates the mitophagy response, sorafenib treatment triggers PINK1/Parkin-dependent cellular apoptosis, which is attenuated upon Bcl-2 overexpression. In summary, our results reveal a new mechanism of action for sorafenib as a mitocan and suggest that high Parkin activity levels could make tumor cells more sensitive to sorafenib's actions, providing one possible explanation why Parkin may be a tumor suppressor gene. These insights could be useful in developing new rationally designed combination therapies with sorafenib.
Collapse
Affiliation(s)
- Conggang Zhang
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Zeyu Liu
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Eric Bunker
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Adrian Ramirez
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Schuyler Lee
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Yinghua Peng
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Aik-Choon Tan
- the Developmental Therapeutics Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - S Gail Eckhardt
- the Developmental Therapeutics Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Douglas A Chapnick
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| | - Xuedong Liu
- From the Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303 and
| |
Collapse
|
31
|
Naseem A, Bhat ZI, Kalaiarasan P, Kumar B, Gandhi G, Rizvi MMA. Genetic and epigenetic alterations affecting PARK-2 expression in cervical neoplasm among North Indian patients. Tumour Biol 2017. [DOI: 10.1177/1010428317703635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Afreen Naseem
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Zafar Iqbal Bhat
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Gauri Gandhi
- Department of Obstetrics & Gynecology, Lok Nayak Jayaprakash Hospital (LNJP), Maulana Azad Medical College (MAMC), New Delhi, India
| | - M. Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
32
|
Gupta A, Anjomani-Virmouni S, Koundouros N, Dimitriadi M, Choo-Wing R, Valle A, Zheng Y, Chiu YH, Agnihotri S, Zadeh G, Asara JM, Anastasiou D, Arends MJ, Cantley LC, Poulogiannis G. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell 2017; 65:999-1013.e7. [PMID: 28306514 PMCID: PMC5426642 DOI: 10.1016/j.molcel.2017.02.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/13/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
Abstract
PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylation in supporting cell survival and proliferation under conditions of energy deprivation.
Collapse
Affiliation(s)
- Amit Gupta
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Sara Anjomani-Virmouni
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Nikos Koundouros
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Maria Dimitriadi
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rayman Choo-Wing
- Novartis Institutes for BioMedical Research, Inc., 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Adamo Valle
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Energy Metabolism and Nutrition, University of Balearic Islands, Research Institute of Health Sciences (IUNICS) and Medical Research Institute of Palma (IdISPa), 07122 Palma de Mallorca, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yuxiang Zheng
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yu-Hsin Chiu
- Novartis Institutes for BioMedical Research, Inc., 22 Windsor Street, Cambridge, MA 02139, USA
| | - Sameer Agnihotri
- MacFeeters-Hamilton Neurooncology Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Neurooncology Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02175, USA
| | | | - Mark J Arends
- University of Edinburgh, Division of Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh EH4 2XR, UK
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - George Poulogiannis
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
33
|
Hua K, Lin CH, Chen YL, Lin CH, Ping YH, Jou YS, Chen CF. Identification of novel cancer fusion genes using chromosome breakpoint screening. Oncol Rep 2017; 37:2101-2108. [DOI: 10.3892/or.2017.5492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
|
34
|
Chakraborty J, Basso V, Ziviani E. Post translational modification of Parkin. Biol Direct 2017; 12:6. [PMID: 28222786 PMCID: PMC5319146 DOI: 10.1186/s13062-017-0176-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
Mutations in the gene encoding for the E3 ubiquitin ligase Parkin are associated to a rare form of familiar autosomal recessive Parkinsonism. Despite decades of research on the Parkin protein, whose structure has been recently solved, little is known about the specific signalling pathways that lead to Parkin activation. Parkin activity spans from mitochondria quality control to tumor suppression and stress protection; it is thus tempting to hypothesize that the broad impact of Parkin on cellular physiology might be the result of different post translational modifications that can be controlled by balanced opposing events. Sequence alignment of Parkin from different species indicates high homology between domains across Parkin orthologs and identifies highly conserved amino acid residues that, if modified, impinge on Parkin functions. In this review, we summarize findings on post translational modifications that have been shown to affect Parkin activity and stability. REVIEWERS This article was reviewed by Prof. Dr. Konstanze F. Winklhofer and by Prof. Thomas Simmen. Both reviewers have been nominated by Professor Luca Pellegrini.
Collapse
Affiliation(s)
- Joy Chakraborty
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Valentina Basso
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy. .,Istituto IRCCS San Camillo, Lido di Venezia, Venezia,, Italy.
| |
Collapse
|
35
|
Prieto-Domínguez N, Ordóñez R, Fernández A, Méndez-Blanco C, Baulies A, Garcia-Ruiz C, Fernández-Checa JC, Mauriz JL, González-Gallego J. Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J Pineal Res 2016; 61:396-407. [PMID: 27484637 PMCID: PMC5018464 DOI: 10.1111/jpi.12358] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022]
Abstract
Effects of sorafenib in hepatocellular carcinoma (HCC) are frequently transient due to tumor-acquired resistance, a phenotype that could be targeted by other molecules to reduce this adaptive response. Because melatonin is known to exert antitumor effects in HCC cells, this study investigated whether and how melatonin reduces resistance to sorafenib. Susceptibility to sorafenib (10 nmol/L to 50 μmol/L) in the presence of melatonin (1 and 2 mmol/L) was assessed in HCC cell lines HepG2, HuH7, and Hep3B. Cell viability was reduced by sorafenib from 1 μmol/L in HepG2 or HuH7 cells, and 2.5 μmol/L in Hep3B cells. Co-administration of melatonin and sorafenib exhibited a synergistic cytotoxic effect on HepG2 and HuH7 cells, while Hep3B cells displayed susceptibility to doses of sorafenib that had no effect when administrated alone. Co-administration of 2.5 μmol/L sorafenib and 1 mmol/L melatonin induced apoptosis in Hep3B cells, increasing PARP hydrolysis and BAX expression. We also observed an early colocalization of mitochondria with lysosomes, correlating with the expression of mitophagy markers PINK1 and Parkin and a reduction of mitofusin-2 and mtDNA compared with sorafenib administration alone. Moreover, increased reactive oxygen species production and mitochondrial membrane depolarization were elicited by drug combination, suggesting their contribution to mitophagy induction. Interestingly, Parkin silencing by siRNA to impair mitophagy significantly reduced cell killing, PARP cleavage, and BAX expression. These results demonstrate that the pro-oxidant capacity of melatonin and its impact on mitochondria stability and turnover via mitophagy increase sensitivity to the cytotoxic effect of sorafenib.
Collapse
Affiliation(s)
- Néstor Prieto-Domínguez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Anna Baulies
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
| | - José C Fernández-Checa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC) and Liver Unit-Hospital Clinic, Barcelona, Spain
- University of Southern California Research Center for Alcohol Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| |
Collapse
|
36
|
Hjelmeland A, Zhang J. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression. Biomed J 2016; 39:98-106. [PMID: 27372165 PMCID: PMC5514543 DOI: 10.1016/j.bj.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex disease marked by uncontrolled cell growth and invasion. These processes are driven by the accumulation of genetic and epigenetic alterations that promote cancer initiation and progression. Contributing to genome changes are the regulation of oxidative stress and reactive species-induced damage to molecules and organelles. Redox regulation, metabolic plasticity, autophagy, and mitophagy play important and interactive roles in cancer hallmarks including sustained proliferation, activated invasion, and replicative immortality. However, the impact of these processes can differ depending on the signaling pathways altered in cancer, tumor type, tumor stage, and/or the differentiation state. Here, we highlight some of the representative studies on the impact of oxidative and nitrosative activities, mitochondrial bioenergetics, metabolism, and autophagy and mitophagy in the context of tumorigenesis. We discuss the implications of these processes for cellular activities in cancer for anti-cancer-based therapeutics.
Collapse
Affiliation(s)
- Anita Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
37
|
Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res 2016; 5. [PMID: 27239288 PMCID: PMC4870992 DOI: 10.12688/f1000research.6946.1] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality and has an increasing incidence worldwide. HCC can be induced by multiple etiologies, is influenced by many risk factors, and has a complex pathogenesis. Furthermore, HCCs exhibit substantial heterogeneity, which compounds the difficulties in developing effective therapies against this highly lethal cancer. With advances in cancer biology and molecular and genetic profiling, a number of different mechanisms involved in the development and progression of HCC have been identified. Despite the advances in this area, the molecular pathogenesis of hepatocellular carcinoma is still not completely understood. This review aims to elaborate our current understanding of the most relevant genetic alterations and molecular pathways involved in the development and progression of HCC, and anticipate the potential impact of future advances on therapeutic drug development.
Collapse
Affiliation(s)
| | - Salome Bandoh
- Department of Medicine, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
38
|
Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4587691. [PMID: 26977249 PMCID: PMC4763003 DOI: 10.1155/2016/4587691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/24/2015] [Accepted: 12/31/2015] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic organelles that provide essential metabolic functions and represent the major bioenergetic hub of eukaryotic cell. Therefore, maintenance of mitochondria activity is necessary for the proper cellular function and survival. To this end, several mechanisms that act at different levels and time points have been developed to ensure mitochondria quality control. An interconnected highly integrated system of mitochondrial and cytosolic chaperones and proteases along with the fission/fusion machinery represents the surveillance scaffold of mitostasis. Moreover, nonreversible mitochondrial damage targets the organelle to a specific autophagic removal, namely, mitophagy. Beyond the organelle dynamics, the constant interaction with the ubiquitin-proteasome-system (UPS) has become an emerging aspect of healthy mitochondria. Dysfunction of mitochondria and UPS increases with age and correlates with many age-related diseases including cancer and neurodegeneration. In this review, we discuss the functional cross talk of proteostasis and mitostasis in cellular homeodynamics and the impairment of mitochondrial quality control during ageing, cancer, and neurodegeneration.
Collapse
|
39
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
40
|
Lee MH, Cho Y, Jung BC, Kim SH, Kang YW, Pan CH, Rhee KJ, Kim YS. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells. Biochem Biophys Res Commun 2015; 464:63-9. [DOI: 10.1016/j.bbrc.2015.05.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
41
|
MAUGERI GRAZIA, D'AMICO AGATAGRAZIA, MAGRO GAETANO, SALVATORELLI LUCIA, BARBAGALLO GIUSEPPEM, SACCONE SALVATORE, DRAGO FILIPPO, CAVALLARO SEBASTIANO, D'AGATA VELIA. Expression profile of parkin isoforms in human gliomas. Int J Oncol 2015; 47:1282-92. [DOI: 10.3892/ijo.2015.3105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/05/2022] Open
|
42
|
Williams JA, Ni HM, Haynes A, Manley S, Li Y, Jaeschke H, Ding WX. Chronic Deletion and Acute Knockdown of Parkin Have Differential Responses to Acetaminophen-induced Mitophagy and Liver Injury in Mice. J Biol Chem 2015; 290:10934-46. [PMID: 25752611 DOI: 10.1074/jbc.m114.602284] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that pharmacological induction of autophagy protected against acetaminophen (APAP)-induced liver injury in mice by clearing damaged mitochondria. However, the mechanism for removal of mitochondria by autophagy is unknown. Parkin, an E3 ubiquitin ligase, has been shown to be required for mitophagy induction in cultured mammalian cells following mitochondrial depolarization, but its role in vivo is not clear. The purpose of this study was to investigate the role of Parkin-mediated mitophagy in protection against APAP-induced liver injury. We found that Parkin translocated to mitochondria in mouse livers after APAP treatment followed by mitochondrial protein ubiquitination and mitophagy induction. To our surprise, we found that mitophagy still occurred in Parkin knock-out (KO) mice after APAP treatment based on electron microscopy analysis and Western blot analysis for some mitochondrial proteins, and Parkin KO mice were protected against APAP-induced liver injury compared with wild type mice. Mechanistically, we found that Parkin KO mice had decreased activated c-Jun N-terminal kinase (JNK), increased induction of myeloid leukemia cell differentiation protein (Mcl-1) expression, and increased hepatocyte proliferation after APAP treatment in their livers compared with WT mice. In contrast to chronic deletion of Parkin, acute knockdown of Parkin in mouse livers using adenovirus shRNA reduced mitophagy and Mcl-1 expression but increased JNK activation after APAP administration, which exacerbated APAP-induced liver injury. Therefore, chronic deletion (KO) and acute knockdown of Parkin have differential responses to APAP-induced mitophagy and liver injury in mice.
Collapse
Affiliation(s)
- Jessica A Williams
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hong-Min Ni
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Anna Haynes
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Sharon Manley
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Yuan Li
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wen-Xing Ding
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
43
|
Yin J, Zhu JM, Shen XZ. The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma. Int J Cancer 2014; 136:249-57. [PMID: 24420637 DOI: 10.1002/ijc.28717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/30/2022]
Abstract
Increasing evidence indicates that deregulation of RING-finger ubiquitin-protein ligases (E3s) involves in the development of hepatocellular carcinoma (HCC). These RING-finger E3s serve as oncoproteins or tumor suppressors in HCC under specific conditions. In this review, we summarize current knowledge about abnormal RING-finger E3s and their clinical significance in the development of HCC, and discuss parts of critical substrates for these RING-finger E3s in detail. Furthermore, in light of success of Bortezomib in treating hematological malignancies, we describe the preclinical and clinical studies of therapeutic approaches targeting aberrant RING-finger E3s in HCC.
Collapse
Affiliation(s)
- Jie Yin
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | | | | |
Collapse
|
44
|
Xu L, Lin DC, Yin D, Koeffler HP. An emerging role of PARK2 in cancer. J Mol Med (Berl) 2014; 92:31-42. [PMID: 24297497 DOI: 10.1007/s00109-013-1107-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/14/2013] [Indexed: 12/13/2022]
Abstract
PARK2 (PARKIN) is an E3 ubiquitin ligase involved in multiple signaling pathways and cellular processes. Activity of PARK2 is tightly regulated through inter- and intra-molecular interactions. Dysfunction of PARK2 is associated with the progression of parkinsonism. Notably, frequent PARK2 inactivation has been identified in various human cancers. Park2-deficient mice are more susceptible to tumorigenesis, indicating its crucial role as a tumor suppressor. However, biological studies also show that PARK2 possesses both pro-survival and growth suppressive functions. Here, we summarize the genetic lesions of PARK2 in human cancers and discuss the current knowledge of PARK2 in cancer progression. We further highlight future efforts for the study of PARK2 in cancer.
Collapse
Affiliation(s)
- Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | | | | |
Collapse
|
45
|
Parkin induces upregulation of 40S ribosomal protein SA and posttranslational modification of cytokeratins 8 and 18 in human cervical cancer cells. Appl Biochem Biotechnol 2013; 171:1630-8. [PMID: 23990477 DOI: 10.1007/s12010-013-0443-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Parkin was originally identified as a protein associated with Parkinson's disease. Recently, numerous research studies have suggested that parkin acts as a tumor suppressor. In accordance with these studies, we previously reported that overexpression of parkin in HeLa cells induced growth inhibition. To elucidate possible mechanisms by which parkin may inhibit cell growth, HeLa cells were infected with adenoviruses expressing either the parkin gene or adenovirus alone for 72 h and a total proteomic analysis was performed using 2-D gel electrophoresis followed by LC-MS/MS. We identified three proteins whose expression changed between the two groups: the 40S ribosomal protein SA (RPSA) was downregulated in parkin virus-infected cells, and cytokeratins 8 and 18 exhibited an acid shift in pI value without a change in molecular weight, suggesting that these proteins became phosphorylated in parkin virus-infected cells. The changes in these three proteins were first observed at 60 h postinfection and were most dramatic at 72 h postinfection. Because upregulation of RPSA and dephosphorylation of cytokeratins 8/18 have been linked with tumor progression, these data suggest that parkin may inhibit cell growth, at least in part, by decreasing RPSA expression and inducing phosphorylation of cytokeratin 8/18.
Collapse
|
46
|
Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 2013; 14:505. [PMID: 23885787 PMCID: PMC3727977 DOI: 10.1186/1471-2164-14-505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. Results Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. Conclusions The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.
Collapse
|
47
|
Viotti J, Duplan E, Caillava C, Condat J, Goiran T, Giordano C, Marie Y, Idbaih A, Delattre JY, Honnorat J, Checler F, Alves da Costa C. Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene 2013; 33:1764-75. [DOI: 10.1038/onc.2013.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
|
48
|
Sun X, Liu M, Hao J, Li D, Luo Y, Wang X, Yang Y, Li F, Shui W, Chen Q, Zhou J. Parkin deficiency contributes to pancreatic tumorigenesis by inducing spindle multipolarity and misorientation. Cell Cycle 2013; 12:1133-41. [PMID: 23470638 DOI: 10.4161/cc.24215] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parkin, an E3 ubiquitin ligase well known for its role in the pathogenesis of juvenile Parkinson disease, has been considered as a candidate tumor suppressor in certain types of cancer. It remains unknown whether parkin is involved in the development of pancreatic cancer, the fourth leading cause of cancer-related deaths worldwide. Herein, we demonstrate the downregulation and copy number loss of the parkin gene in human pancreatic cancer specimens. The expression of parkin negatively correlates with clinicopathological parameters indicating the malignancy of pancreatic cancer. In addition, knockdown of parkin expression promotes the proliferation and tumorigenic properties of pancreatic cancer cells both in vitro and in mice. We further find that parkin deficiency increases the proportion of cells with spindle multipolarity and multinucleation. Parkin-depleted cells also show a significant increase in spindle misorientation. These findings indicate crucial involvement of parkin deficiency in the pathogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Key Laboratory of Protein Science and Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee K, Lee MH, Kang YW, Rhee KJ, Kim TU, Kim YS. Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells. BMB Rep 2013; 45:526-31. [PMID: 23010174 DOI: 10.5483/bmbrep.2012.45.9.104] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many malignant tumors become resistant to tumor necrosis factor-alpha (TNF-α)-induced cell death during carcinogenesis. In the present study, we examined whether parkin acts as a tumor suppressor in HeLa cells, a human cervical cancer cell line resistant to TNF-α-induced cell death. TNF-α-treatment alone did not affect HeLa cell viability. However, expression of parkin restored TNF-α-induced apoptosis in HeLa cells. Increased cell death was due to the activation of the apoptotic pathway. Expression of parkin in TNF-α-treated HeLa cells stimulated cleavage of the pro-apoptotic proteins caspase-8, -9, -3, -7 and poly ADP ribose polymerase (PARP). In addition, parkin expression resulted in decreased expression of the caspase inhibitory protein, survivin. These results suggest that parkin acts as a tumor suppressor in human cervical cancer cells by modulating survivin expression and caspase activity. We propose that this pathway is a novel molecular mechanism by which parkin functions as a tumor suppressor.
Collapse
Affiliation(s)
- Kyunghong Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 220-710, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Two genes responsible for the juvenile Parkinson’s disease (PD), PINK1 and Parkin, have been implicated in mitochondrial quality control. The inactivation of PINK1, which encodes a mitochondrial kinase, leads to age-dependent mitochondrial degeneration in Drosophila. The phenotype is closely associated with the impairment of mitochondrial respiratory chain activity and defects in mitochondrial dynamics. Drosophila genetic studies have further revealed that PINK1 is an upstream regulator of Parkin and is involved in the mitochondrial dynamics and motility. A series of cell biological studies have given rise to a model in which the activation of PINK1 in damaged mitochondria induces the selective elimination of mitochondria in cooperation with Parkin through the ubiquitin-proteasome and autophagy machineries. Although the relevance of this pathway to PD etiology is still unclear, approaches using stem cells from patients and animal models will help to understand the significance of mitochondrial quality control by the PINK1-Parkin pathway in PD and in healthy individuals. Here I will review recent advances in our understanding of the PINK1-Parkin signaling and will discuss the roles of PINK1-Parkin signaling for mitochondrial maintenance and how the failure of this signaling leads to neurodegeneration.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|