1
|
Li SY, Zhang N, Zhang H, Wang N, Du YY, Li HN, Huang CS, Li XR. Deciphering the TCF19/miR-199a-5p/SP1/LOXL2 pathway: Implications for breast cancer metastasis and epithelial-mesenchymal transition. Cancer Lett 2024; 597:216995. [PMID: 38851313 DOI: 10.1016/j.canlet.2024.216995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Globally, breast cancer (BC) is the predominant malignancy with a significant death rate due to metastasis. The epithelial-mesenchymal transition (EMT) is a fundamental initiator for metastatic progression. Through advanced computational strategies, TCF19 was identified as a critical EMT-associated gene with diagnostic and prognostic significance in BC, based on a novel EMT score. Molecular details and the pro-EMT impact of the TCF19/miR-199a-5p/SP1/LOXL2 axis were explored in BC cell lines through in vitro validations, and the oncogenic and metastatic potential of TCF19 and LOXL2 were investigated using subcutaneous and tail-vein models. Additionally, BC-specific enrichment of TCF19 and LOXL2 was measured using a distribution landscape driven by diverse genomic analysis techniques. Molecular pathways revealed that TCF19-induced LOXL2 amplification facilitated migratory, invasive, and EMT activities of BC cells in vitro, and promoted the growth and metastatic establishment of xenografts in vivo. TCF19 decreases the expression of miR-199a-5p and alters the nuclear dynamics of SP1, modulating SP1's affinity for the LOXL2 promoter, leading to increased LOXL2 expression and more malignant characteristics in BC cells. These findings unveil a novel EMT-inducing pathway, the TCF19/miR-199a-5P/SP1/LOXL2 axis, highlighting the pivotal role of TCF19 and suggesting potential for novel therapeutic approaches for more focused BC interventions.
Collapse
Affiliation(s)
- Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ning Wang
- Huzhou Central Hospital, Affiliated Hospital of Zhejiang University, Huzhou, PR China
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chen-Shen Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, PR China.
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
2
|
Rodrigo JP, Moreno-Bueno G, Lequerica-Fernández P, Rodríguez-Santamarta T, Díaz E, Prieto-Fernández L, Álvarez-Teijeiro S, García-Pedrero JM, de Vicente JC. Tumor-Intrinsic Perinuclear LOXL2: Prognostic Relevance and Relationship with YAP1 Activation Status in Oral Squamous Cell Carcinoma. Pathobiology 2024; 91:422-433. [PMID: 38934185 PMCID: PMC11614311 DOI: 10.1159/000539928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Lysyl oxidase-like 2 (LOXL2) expression and function is frequently altered in different cancers but scarcely explored in oral squamous cell carcinoma (OSCC). This prompted us to investigate the clinical relevance of LOXL2 expression pattern in OSCC and also a possible crosstalk with Hippo/YAP1 pathway signaling. METHODS Immunohistochemical analysis of LOXL2 protein expression was performed in 158 OSCC patient samples, together with Yes-associated protein 1 (YAP1) activation status. Correlations with clinicopathological parameters and patient survival were assessed. RESULTS Tumor cell-intrinsic LOXL2 expression showed two distinct expression patterns: diffuse cytoplasmic staining (64.6%) and heterogeneous perinuclear staining (35.4%). Remarkably, perinuclear LOXL2 staining was significantly associated with lymph node metastasis, advanced clinical stage and perineural invasion. Moreover, patients harboring tumors with perinuclear LOXL2 expression exhibited significantly poorer disease-specific survival (DSS) rates, and perinuclear LOXL2 positivity gradually increased in relation to YAP1 activation. Patients harboring tumors with concomitant perinuclear LOXL2 and fully active YAP1 exhibited the worst DSS. Multivariate Cox analysis further revealed combined perinuclear LOXL2 and fully active YAP1 as a significant independent predictor of poor DSS. CONCLUSION Tumor-intrinsic perinuclear LOXL2 emerges as a clinically and biologically relevant feature associated with advanced disease, tumor aggressiveness, and poor prognosis in OSCC. Moreover, this study unprecedentedly uncovers a functional relationship between perinuclear LOXL2 and YAP1 activation with major prognostic implications. Notably, combined perinuclear LOXL2 and fully active YAP1 was revealed as independent predictor of poor prognosis. These findings encourage targeting oncogenic LOXL2 functions for personalized treatment regimens.
Collapse
Affiliation(s)
- Juan P. Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Department of Surgery, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
- Fundación MD Anderson Internacional Madrid, Madrid, Spain
| | - Paloma Lequerica-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Tania Rodríguez-Santamarta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Eva Díaz
- Fundación MD Anderson Internacional Madrid, Madrid, Spain
| | - Llara Prieto-Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos de Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Department of Surgery, Universidad de Oviedo, Oviedo, Spain
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| |
Collapse
|
3
|
Serra-Bardenys G, Blanco E, Escudero-Iriarte C, Serra-Camprubí Q, Querol J, Pascual-Reguant L, Morancho B, Escorihuela M, Tissera NS, Sabé A, Martín L, Segura-Bayona S, Verde G, Aiese Cigliano R, Millanes-Romero A, Jerónimo C, Cebrià-Costa JP, Nuciforo P, Simonetti S, Viaplana C, Dienstmann R, Oliveira M, Peg V, Stracker TH, Arribas J, Canals F, Villanueva J, Di Croce L, García de Herreros A, Tian TV, Peiró S. LOXL2-mediated chromatin compaction is required to maintain the oncogenic properties of triple-negative breast cancer cells. FEBS J 2024; 291:2423-2448. [PMID: 38451841 DOI: 10.1111/febs.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).
Collapse
Affiliation(s)
- Gemma Serra-Bardenys
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Institut Bonanova FP Sanitaria, Consorci Mar Parc de Salut de Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura Pascual-Reguant
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Anna Sabé
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Luna Martín
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Gaetano Verde
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, Spain
| | - Celia Jerónimo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institut de Recherches Cliniques de Montréal, Canada
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Mafalda Oliveira
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Vicente Peg
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Travis H Stracker
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
4
|
Pascual‐Reguant L, Serra‐Camprubí Q, Datta D, Cianferoni D, Kourtis S, Gañez‐Zapater A, Cannatá C, Espinar L, Querol J, García‐López L, Musa‐Afaneh S, Guirola M, Gkanogiannis A, Miró Canturri A, Guzman M, Rodríguez O, Herencia‐Ropero A, Arribas J, Serra V, Serrano L, Tian TV, Peiró S, Sdelci S. Interactions between BRD4S, LOXL2, and MED1 drive cell cycle transcription in triple-negative breast cancer. EMBO Mol Med 2023; 15:e18459. [PMID: 37937685 PMCID: PMC10701626 DOI: 10.15252/emmm.202318459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Laura Pascual‐Reguant
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - Debayan Datta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Antoni Gañez‐Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Chiara Cannatá
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Laura García‐López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sara Musa‐Afaneh
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Guirola
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Anestis Gkanogiannis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Andrea Miró Canturri
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Marta Guzman
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Olga Rodríguez
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Joaquin Arribas
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de CáncerMonforte de LemosMadridSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaBellaterraSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
5
|
Xie W, Peng Z, Zhou X, Xia Q, Chen M, Zheng X, Sun H, Zou H, Xu L, Du Z, Li E, Wu B. The Expression Pattern and Clinical Significance of Lysyl Oxidase Family in Gliomas. DOKL BIOCHEM BIOPHYS 2023; 510:132-143. [PMID: 37582875 DOI: 10.1134/s1607672922600269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 08/17/2023]
Abstract
LOX (Lysyl oxidase) family participates in the catalysis of collagen and elastin to maintain ECM homeostasis. Glioma is the most common primary brain tumor and LOX family has not been systemic studied in glioma. In this study, we found LOX family members are upregulated expressed in gliomas samples. A protein-protein interaction network (PPIN) was construct to visualize and understand the differential expression pattern, as well as functional annotation, for LOX family and their interacting proteins, which involved in collagen fibril organization and MAPK signaling pathway. Through subcellular localization distribution, the LOX family members distribute both intracellular and extracellular. All five LOX members are consistently significantly correlate with dendritic cell both in immune infiltrate of GBM and LGG. Survival analysis showed that high expression of LOX family is associated with a poor prognosis of gliomas patients. These analyses provide important clues to identify the potential biological roles for LOX family in gliomas, which might serve as diagnosis markers.
Collapse
Affiliation(s)
- Weijie Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China
| | - Zhongte Peng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China
| | - Xiao Zhou
- Department of Central Laboratory, Shantou Central Hospital, 515041, Shantou, China
| | - Qiaoxi Xia
- Department of Central Laboratory, Shantou Central Hospital, 515041, Shantou, China
| | - Mantong Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China
| | - Xiaoqi Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China
| | - Hong Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China
| | - Haiying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China
| | - Liyan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, China
| | - Zepeng Du
- Department of Central Laboratory, Shantou Central Hospital, 515041, Shantou, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China.
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, China.
| |
Collapse
|
6
|
Xi S, Oyetunji S, Wang H, Azoury S, Liu Y, Hsiao SH, Zhang M, Carr SR, Hoang CD, Chen H, Schrump DS. Cigarette Smoke Enhances the Malignant Phenotype of Esophageal Adenocarcinoma Cells by Disrupting a Repressive Regulatory Interaction Between miR-145 and LOXL2. J Transl Med 2023; 103:100014. [PMID: 36870293 PMCID: PMC10121750 DOI: 10.1016/j.labinv.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023] Open
Abstract
Although linked to esophageal carcinogenesis, the mechanisms by which cigarette smoke mediates initiation and progression of esophageal adenocarcinomas (EAC) have not been fully elucidated. In this study, immortalized esophageal epithelial cells and EAC cells (EACCs) were cultured with or without cigarette smoke condensate (CSC) under relevant exposure conditions. Endogenous levels of microRNA (miR)-145 and lysyl-likeoxidase 2 (LOXL2) were inversely correlated in EAC lines/tumors compared with that in immortalized cells/normal mucosa. The CSC repressed miR-145 and upregulated LOXL2 in immortalized esophageal epithelial cells and EACCs. Knockdown or constitutive overexpression of miR-145 activated or depleted LOXL2, respectively, which enhanced or reduced proliferation, invasion, and tumorigenicity of EACC, respectively. LOXL2 was identified as a novel target of miR-145 as well as a negative regulator of this miR in EAC lines/Barrett's epithelia. Mechanistically, CSC induced recruitment of SP1 to the LOXL2 promoter; LOXL2 upregulation coincided with LOXL2 enrichment and concomitant reduction of H3K4me3 levels within the promoter of miR143HG (host gene for miR-145). Mithramycin downregulated LOXL2 and restored miR-145 expression in EACC and abrogated LOXL2-mediated repression of miR-145 by CSC. These findings implicate cigarette smoke in the pathogenesis of EAC and demonstrate that oncogenic miR-145-LOXL2 axis dysregulation is potentially druggable for the treatment and possible prevention of these malignancies.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shakirat Oyetunji
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haitao Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Said Azoury
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yi Liu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shih-Hsin Hsiao
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shamus R Carr
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chuong D Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Liburkin-Dan T, Toledano S, Neufeld G. Lysyl Oxidase Family Enzymes and Their Role in Tumor Progression. Int J Mol Sci 2022; 23:6249. [PMID: 35682926 PMCID: PMC9181702 DOI: 10.3390/ijms23116249] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
The five genes of the lysyl oxidase family encode enzymes that covalently cross-link components of the extracellular matrix, such as various types of collagen and elastin, and, thus, promote the stabilization of extracellular matrixes. Several of these genes, in particular lysyl oxidase (LOX) and lysyl oxidase like-2 (LOXL2) were identified as genes that are upregulated by hypoxia, and promote tumor cells invasion and metastasis. Here, we focus on the description of the diverse molecular mechanisms by which the various lysyl oxidases affect tumor progression. We also describe attempts that have been made, and are still on-going, that focus on the development of efficient lysyl oxidase inhibitors for the treatment of various forms of cancer, and of diseases associated with abnormal fibrosis.
Collapse
Affiliation(s)
| | | | - Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel; (T.L.-D.); (S.T.)
| |
Collapse
|
8
|
Peng T, Lin S, Meng Y, Gao P, Wu P, Zhi W, Ding W, Cao C, Wu P. LOXL2 small molecule inhibitor restrains malignant transformation of cervical cancer cells by repressing LOXL2-induced epithelial-mesenchymal transition (EMT). Cell Cycle 2022; 21:1827-1841. [PMID: 35509127 PMCID: PMC9359382 DOI: 10.1080/15384101.2022.2073047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysine oxidase (LOX) family. Although its overexpression is known to play pivotal roles in carcinogenesis, its involvement in cervical cancer remains undefined. Here, we comprehensively explored the expression level and functional mechanism of LOXL2 in cervical cancer using bioinformatics and experimental methods. Bioinformatics analysis revealed that LOXL2 was significantly upregulated in cervical cancer compared to normal tissues. Enrichment analysis showed that most positively or negatively correlated genes of LOXL2 were correlated with extracellular matrix (ECM) formation and epithelial-mesenchymal transition (EMT). Further experiments confirmed that overexpression of LOXL2 greatly enhanced the malignant transformation abilities (e.g., proliferation, invasion, and migration) of cervical cancer cells via mediation of EMT. Furthermore, the small molecule inhibitor of LOXL2 ((2-Chloropyridin-4-yl) methanamine hydrochloride) significantly decreased the invasive ability of cervical cancer by reversing the process of LOXL2-induced EMT. In summary, LOXL2 may be a promising diagnostic and therapeutic biomarker for cervical cancer, and its small molecule inhibitor may be an effective anti-tumor drug.
Collapse
Affiliation(s)
- Ting Peng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,These authors contributed equally to this work
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,These authors contributed equally to this work
| | - Yifan Meng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peipei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, P.R. China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Davern M, Donlon NE, Power R, Hayes C, King R, Dunne MR, Reynolds JV. The tumour immune microenvironment in oesophageal cancer. Br J Cancer 2021; 125:479-494. [PMID: 33903730 PMCID: PMC8368180 DOI: 10.1038/s41416-021-01331-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Oesophageal cancer (OC) is an inflammation-associated malignancy linked to gastro-oesophageal reflux disease, obesity and tobacco use. Knowledge of the microenvironment of oesophageal tumours is relevant to our understanding of the development of OC and its biology, and has major implications for understanding the response to standard therapies and immunotherapies, as well as for uncovering novel targets. In this context, we discuss what is known about the TME in OC from tumour initiation to development and progression, and how this is relevant to therapy sensitivity and resistance in the two major types of OC. We provide an immunological characterisation of the OC TME and discuss its prognostic implications with specific comparison with the Immunoscore and immune-hot, -cold, altered-immunosuppressed and -altered-excluded models. Targeted therapeutics for the TME under pre-clinical and clinical investigation in OCs are also summarised. A deeper understanding of the TME will enable the development of combination approaches to concurrently target the tumour cells and TME delivering precision medicine to OC patients.
Collapse
Affiliation(s)
- Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Robert Power
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Ross King
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
10
|
Liu S, Li B, Li Y, Song H. Circular RNA circ_0000228 promotes the malignancy of cervical cancer via microRNA-195-5p/ lysyl oxidase-like protein 2 axis. Bioengineered 2021; 12:4397-4406. [PMID: 34308761 PMCID: PMC8806657 DOI: 10.1080/21655979.2021.1954846] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of novel non-coding RNAs that are vital in modulating gene expression and biological processes. Nevertheless, in cervical cancer (CC), the role of circRNA is much less investigated. In this work, circ_0000228 expression in CC is measured and circ_0000228's function and related mechanism are investigated. Quantitative real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to examine the expression levels of circ_0000228, microRNA-195-5p (miR-195-5p) and lysyl oxidase-like protein 2 (LOXL2). Western blotting was employed to examine LOXL2 protein expression in CC cell lines. CC cell lines with circ_0000228 knockdown were constructed, and the CCK-8 experiment and Transwell experiment were executed to investigate the effect of circ_0000228 on the malignant characteristics of CC cells. Furthermore, a dual-luciferase reporter gene experiment was applied to validate the targeting relationship between circ_0000228 and miR-195-5p, miR-195-5p and LOXL2. In this study, we demonstrated that circ_0000228 showed a remarkable up-modulation in CC tissues and cell lines. Circ_0000228 knockdown repressed the growth and metastatic potential of CC cells. Mechanistically, circ_0000228 facilitated CC progression through sponging miR-195-5p and up-modulating LOXL2 expression. We conclude that circ_0000228 is an oncogenic circRNA, which participates in promoting CC progression via regulating the miR-195-5p/LOXL2 axis.
Collapse
Affiliation(s)
- Shimei Liu
- Department of Obstetrics and Gynecology, The Third People's Hospital of Linyi, Linyi, Shandong, China
| | - Bingqing Li
- Department of Obstetrics and Gynecology, The Third People's Hospital of Linyi, Linyi, Shandong, China
| | - Ying Li
- Department of Obstetrics and Gynecology, The Third People's Hospital of Linyi, Linyi, Shandong, China
| | - Huaihua Song
- Department of Obstetrics and Gynecology, The Third People's Hospital of Linyi, Linyi, Shandong, China
| |
Collapse
|
11
|
Wu S, Xing X, Wang Y, Zhang X, Li M, Wang M, Wang Z, Chen J, Gao D, Zhao Y, Chen R, Ren Z, Zhang K, Cui J. The pathological significance of LOXL2 in pre-metastatic niche formation of HCC and its related molecular mechanism. Eur J Cancer 2021; 147:63-73. [PMID: 33618200 DOI: 10.1016/j.ejca.2021.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mechanisms underlying the contribution of primary tumour to pre-metastatic niche formation remains largely unknown in hepatocellular carcinoma (HCC). We previously reported that the released LOXL2 from HCC cells under higher stiffness stimulation facilitated the formation of lung pre-metastatic niche. Here, we further clarified the pathological role of LOXL2 in promoting lung pre-metastatic niche formation and lung metastasis occurrence in HCC and its relevant molecular mechanism. METHODS Using two different animal models and an in vitro system of mechanically tuneable gel mirroring lung tissue stiffness, we explored the underlying mechanism of LOXL2 in pre-metastatic niche formation. RESULTS We applied tail vein injection of CM-LV-LOXL2-OEsimulating tumour-released soluble factors to induce lung pre-metastatic niche formation and found that the injected LOXL2 remarkably enhanced CD11b+/CD45+ bone marrow-derived cells (BMDCs) recruitment and fibronectin expression in lung. Subsequently, LOXL2-overexpressed xenograft HCC models validated that tumour-secreted LOXL2 significantly promoted the occurrence of pulmonary metastasis. In vitro, LOXL2 and LOXL2-caused matrix stiffening not only obviously upregulated the expressions of MMP9 and fibronectin in lung fibroblasts, but also evidently increased the number of adherent HCC cells and the expression of chemokine CXCL12. The activation of PI3K-AKT pathway mediated LOXL2-upregulated fibronectin. HCC patients in High-LOXL2 group had higher ratio of tumour recurrence than HCC patients in Low-LOXL2 group, supporting a significance of LOXL2 in HCC progression and unfavourable outcome. CONCLUSION Primary tumour-released LOXL2 promotes lung pre-metastatic niche formation and lung metastasis occurrence. LOXL2-caused matrix stiffening synergistically regulates lung pre-metastatic niche formation. Targeting LOXL2-induced lung pre-metastatic niche may be a novel intervention approach against HCC metastasis.
Collapse
Affiliation(s)
- Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Xiaoxia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Kezhi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China.
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China.
| |
Collapse
|
12
|
Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1698. [PMID: 33463090 DOI: 10.1002/wnan.1698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, the spread of disease from a primary to a distal site through the circulatory or lymphatic systems, accounts for over 90% of all cancer related deaths. Despite significant progress in the field of cancer therapy in recent years, mortality rates remain dramatically higher for patients with metastatic disease versus those with local or regional disease. Although there is clearly an urgent need to develop drugs that inhibit cancer spread, the overwhelming majority of anticancer therapies that have been developed to date are designed to inhibit tumor growth but fail to address the key stages of the metastatic process: invasion, intravasation, circulation, extravasation, and colonization. There is growing interest in engineering targeted therapeutics, such as antibody drugs, that inhibit various steps in the metastatic cascade. We present an overview of antibody therapeutic approaches, both in the pipeline and in the clinic, that disrupt the essential mechanisms that underlie cancer metastasis. These therapies include classes of antibodies that indirectly target metastasis, including anti-integrin, anticadherin, and immune checkpoint blocking antibodies, as well as monoclonal and bispecific antibodies that are specifically designed to interrupt disease dissemination. Although few antimetastatic antibodies have achieved clinical success to date, there are many promising candidates in various stages of development, and novel targets and approaches are constantly emerging. Collectively, these efforts will enrich our understanding of the molecular drivers of metastasis, and the new strategies that arise promise to have a profound impact on the future of cancer therapeutic development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zion I Smith
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 2020; 215:107633. [PMID: 32693113 DOI: 10.1016/j.pharmthera.2020.107633] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The lysyl oxidase (LOX) family is comprised of LOX and four LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4), and mainly functions in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. Recently, a growing body of research has demonstrated that LOX family is critically involved in the regulation of cancer cell proliferation, migration, invasion and metastasis. In this review, we discuss the roles of LOX family members in the development and progression of different types of human cancers. Furthermore, we also describe the potential inhibitors of LOX family proteins and highlight that LOX family might be an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China..
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
14
|
Zhang Q, Yang L, Guan G, Cheng P, Cheng W, Wu A. LOXL2 Upregulation in Gliomas Drives Tumorigenicity by Activating Autophagy to Promote TMZ Resistance and Trigger EMT. Front Oncol 2020; 10:569584. [PMID: 33194658 PMCID: PMC7658417 DOI: 10.3389/fonc.2020.569584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Glioma is the most prevalent primary brain tumor in adults and has an extremely unfavorable prognosis. As a member of the lysyl oxidase (LOX) family, lysyl-oxidase-like-2 (LOXL2) is known to play different roles in different tumors. However, the role of LOXL2 in glioma has not yet been fully elucidated. In the present study, we detected that LOXL2 was considerably upregulated in glioma and that LOXL2 upregulation was evidently related to glioma WHO grade, malignant molecular subtypes, and poor prognosis in glioma patients. Additionally, we found that LOXL2 not only promoted glioma cells proliferation, migration, invasion, and induced the epithelial-to-mesenchymal transition (EMT) process, but also reduced the sensitivity of glioma cells to temozolomide (TMZ). Furthermore, we identified that LOXL2 reduced TMZ sensitivity and induced EMT in glioma via the activation of autophagy. Mechanistically, LOXL2 enhanced Atg7 expression by promoting the phosphorylation of Erk1/2, leading to the activation of autophagy and regulation of EMT process and TMZ sensitivity through autophagy. Our study describes an LOXL2-Erk1/2-Atg7 signaling axis that influences glioma EMT and chemosensitivity through autophagy; moreover, LOXL2 may serve as a promising therapeutic target in the treatment of glioma.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Lianhe Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, Lecanda F, Hartmann C, Sibilia M, Wagner EF. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res 2020; 30:885-901. [PMID: 32686768 PMCID: PMC7608146 DOI: 10.1038/s41422-020-0370-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone tumor in urgent need of better therapies. Using genetically modified mouse models (GEMMs), we demonstrate that Wnt signaling promotes c-Fos-induced OS formation via the actions of the collagen-modifying enzyme Loxl2. c-Fos/AP-1 directly regulates the expression of the Wnt ligands Wnt7b and Wnt9a in OS cells through promoter binding, and Wnt7b and Wnt9a in turn promote Loxl2 expression in murine and human OS cells through the transcription factors Zeb1 and Zeb2. Concordantly, inhibition of Wnt ligand secretion by inactivating the Wnt-less (Wls) gene in osteoblasts in c-Fos GEMMs either early or in a therapeutic setting reduces Loxl2 expression and progression of OS. Wls-deficient osteosarcomas proliferate less, are less mineralized and are enriched in fibroblastic cells surrounded by collagen fibers. Importantly, Loxl2 inhibition using either the pan-Lox inhibitor BAPN or a specific inducible shRNA reduces OS cell proliferation in vitro and decreases tumor growth and lung colonization in murine and human orthotopic OS transplantation models. Finally, OS development is delayed in c-Fos GEMMs treated with BAPN or with specific Loxl2 blocking antibodies. Congruently, a strong correlation between c-FOS, LOXL2 and WNT7B/WNT9A expression is observed in human OS samples, and c-FOS/LOXL2 co-expression correlates with OS aggressiveness and decreased patient survival. Therefore, therapeutic targeting of Wnt and/or Loxl2 should be considered to potentiate the inadequate current treatments for pediatric, recurrent, and metastatic OS.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Lena I Wolff
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Markus Linder
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | | | - Ana Patiño-García
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Department of Pediatrics, University Clinic of Navarra, Pamplona, 31008, Spain
| | - Fernando Lecanda
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, 31008, Spain
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Maria Sibilia
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria.
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria.
| |
Collapse
|
16
|
Dong G, Lin LR, Xu LY, Li EM. Reaction mechanism of lysyl oxidase-like 2 (LOXL2) studied by computational methods. J Inorg Biochem 2020; 211:111204. [PMID: 32801097 DOI: 10.1016/j.jinorgbio.2020.111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2) is a copper-dependent amine oxidase that catalyzes the oxidative deamination of the ε-amino group of lysines/hydroxylysines on substrate proteins (collagen and elastin) to form aldehyde groups. The generated aldehyde groups are of significance in crosslinking with the adjacent aldehyde or ε-amino group on proteins in extracellular matrix. In this paper, we have studied the reaction mechanism of LOXL2 by means of quantum mechanics (QM) and combined QM and molecular mechanics (QM/MM) methods. This study is divided into two parts, i.e. the biosynthesis of lysine tyrosylquinone (LTQ) cofactor and oxidative deamination of ε-amino group of lysine by LTQ. For the former part, the reaction is driven by a large exothermicity of about 284 kJ/mol. Dopaquinone radical (DPQr) is suggested to be an intermediate state in this reaction. In addition, His652 residue is predicted to serve as proton acceptor. The rate-determining step for the biosynthesis of LTQ is found to be hydrogen-atom abstraction from the benzene ring on substrate by Cu2+-hydroxide, which is a proton-coupled electron transfer (PCET) process with an energy barrier of 84 kJ/mol. For the latter part, the reaction is exothermic by about 145 kJ/mol, and the copper ion is proposed to play a role of redox catalyst in the last step to generate the product of aldehyde. However, the copper ion might not be indispensable for the latter part, which is consistent with the previous study.
Collapse
Affiliation(s)
- Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou 515041, PR China.
| | - Li-Rui Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou 515041, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou 515041, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, PR China; Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, PR China.
| |
Collapse
|
17
|
Erasmus M, Samodien E, Lecour S, Cour M, Lorenzo O, Dludla P, Pheiffer C, Johnson R. Linking LOXL2 to Cardiac Interstitial Fibrosis. Int J Mol Sci 2020; 21:E5913. [PMID: 32824630 PMCID: PMC7460598 DOI: 10.3390/ijms21165913] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. CVD pathophysiology is often characterized by increased stiffening of the heart muscle due to fibrosis, thus resulting in diminished cardiac function. Fibrosis can be caused by increased oxidative stress and inflammation, which is strongly linked to lifestyle and environmental factors such as diet, smoking, hyperglycemia, and hypertension. These factors can affect gene expression through epigenetic modifications. Lysyl oxidase like 2 (LOXL2) is responsible for collagen and elastin cross-linking in the heart, and its dysregulation has been pathologically associated with increased fibrosis. Additionally, studies have shown that, LOXL2 expression can be regulated by DNA methylation and histone modification. However, there is a paucity of data on LOXL2 regulation and its role in CVD. As such, this review aims to gain insight into the mechanisms by which LOXL2 is regulated in physiological conditions, as well as determine the downstream effectors responsible for CVD development.
Collapse
Affiliation(s)
- Melisse Erasmus
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
- Department of Medical Physiology, Stellenbosch University, Cape Town 7505, South Africa
| | - Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA), University of Cape Town, Cape Town 7925, South Africa;
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, Place d’Arsonval, 69437 Lyon, France;
| | - Oscar Lorenzo
- Institute de Investigación Sanitaria-FJD, Faculty of Medicine, University Autónoma de Madrid, 28049 Madrid, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - Phiwayinkosi Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
- Department of Medical Physiology, Stellenbosch University, Cape Town 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7501, South Africa; (M.E.); (E.S.); (P.D.); (C.P.)
- Department of Medical Physiology, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
18
|
Demidov VV. Site-specifically deuterated essential lipids as new drugs against neuronal, retinal and vascular degeneration. Drug Discov Today 2020; 25:1469-1476. [DOI: 10.1016/j.drudis.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023]
|
19
|
Zou H, Wen B, Li RL, Zhan XH, Jiao JW, Liao LD, Wu BL, Xie WM, Xu LY, Li EM. Lysyl oxidase-like 2 promotes esophageal squamous cell carcinoma cell migration independent of catalytic activity. Int J Biochem Cell Biol 2020; 125:105795. [PMID: 32580015 DOI: 10.1016/j.biocel.2020.105795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase (LOX) family that contributes to tumor cell metastasis. Our previous data identified two splice variants of LOXL2 (i.e., LOXL2 Δ72 and Δ13) in esophageal squamous cell carcinoma (ESCC) cells that increased cell invasiveness and migration but had lower LOX activities than wild-type LOXL2 (LOXL2 WT). We generated a series of LOXL2 deletion mutants with different deleted biochemical domains and examined the relationship between the cell migration abilities and catalytic activities, as well as subcellular locations, of these deletion mutants compared with LOXL2 WT in ESCC cells to explore the mechanism of LOXL2-driven ESCC cell migration. Our results indicated that the deletion mutants of LOXL2 had impaired deamination enzymatic activity; LOXL2 ΔSRCR4, which lacks the fourth scavenger receptor cysteine-rich (SRCR) domain, had lower enzymatic activity; and LOXL2 Y689F had no catalytic activity compared with LOXL2 WT. However these two mutants stimulated greater cellular migration than LOXL2 WT. Furthermore, the degree of cell migration promoted by LOXL2 ΔLO (in which the LOX-like domain was deleted) was higher than that of LOXL2 WT, and LOXL2 ΔSRCR3, which does not have the third SRCR domain, had lower LOX activity and cellular migration ability than LOXL2 WT. These results suggested that LOXL2 promotes ESCC cell migration independent of catalytic activity.
Collapse
Affiliation(s)
- Haiying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Run-Liu Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-Hui Zhan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ji-Wei Jiao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wen-Ming Xie
- Medical Bioinformatics Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Institute of Oncologic Pathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
20
|
Cao C, Lin S, Zhi W, Lazare C, Meng Y, Wu P, Gao P, Wei J, Wu P. LOXL2 Expression Status Is Correlated With Molecular Characterizations of Cervical Carcinoma and Associated With Poor Cancer Survival via Epithelial-Mesenchymal Transition (EMT) Phenotype. Front Oncol 2020; 10:284. [PMID: 32211324 PMCID: PMC7067748 DOI: 10.3389/fonc.2020.00284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
As molecular analyses based on high-throughput sequencing have developed, the molecular classification of cancer has facilitated clinical work. The aim of the present study was to identify a new potential therapeutic target for cervical carcinoma by molecular analyses. We firstly tested the LOXL2 expression pattern in 50 paired normal cervix and cervical carcinoma via qPCR and immunohistochemistry, and the LOXL2 expression pattern was found to be in accordance with public datasets from Gene Expression Omnibus (GEO). Then, we comprehensively rewired the 176 cervical carcinoma samples from The Cancer Genome Atlas (TCGA), subsequently clustered the samples into two groups corresponding to LOXL2 expression to determined the associations between LOXL2 expression status and molecular characterizations of cervical carcinoma. In vitro assays for further verifying the correlations in SiHa-shLOXL2 and HeLa-shLOXL2 cell lines. In this study, we found that LOXL2 highly expressed in carcinoma tissue, with 14 CpG islands of LOXL2 promoter that were significantly and negatively associated with its expression in cervical carcinoma. And there were notable correlations among LOXL2 expression status and molecular characterizations of cervical carcinoma, including diagnostic age, HPV A7 types, mRNA molecular clusters, miRNA molecular clusters, and DNA methylation molecular clusters et al. In addition, high LOXL2 expression was negatively correlated with lower tumor mutation density, especially in EP300, ERBB2, EGFR and NOTCH2, and was negatively correlated with lower expression of APOBEC3 family genes, such as APOBEC3A, APOBEC3B, APOBEC3D, and APOBEC3G. Furthermore, high LOXL2 expression was associated with poor overall (OS) and poor disease-free survival (DFS) in cervical carcinoma, and was associated with higher epithelial-mesenchymal transition (EMT) score, enrichment of extracellular matrix (ECM) signaling, the phenotype that was found to be associated with poor prognosis in cervical carcinoma from TCGA. Conversely, the ability of cell proliferation and cell migration were reversed in LOXL2 knock-down cervical cell lines via regulating the genes' expression of EMT phenotype in vitro. Overall, we demonstrated the correlation between LOXL2 expression status and cancer molecular characterizations of cervical carcinoma, and identified LOXL2 may serve as a therapeutic target for such carcinoma.
Collapse
Affiliation(s)
- Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cordelle Lazare
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Meng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peipei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juncheng Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020; 9:cells9020455. [PMID: 32079295 PMCID: PMC7072790 DOI: 10.3390/cells9020455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, the extracellular matrix (ECM) has been reported as playing a relevant role in esophageal cancer (EC) development, with this compartment being related to several aspects of EC genesis and progression. This sounds very interesting due to the complexity of this highly incident and lethal tumor, which takes the sixth position in mortality among all tumor types worldwide. The well-established increase in ECM stiffness, which is able to trigger mechanotransduction signaling, is capable of regulating several malignant behaviors by converting alteration in ECM mechanics into cytoplasmatic biochemical signals. In this sense, it has been shown that some molecules play a key role in these events, particularly the different collagen isoforms, as well as enzymes related to its turnover, such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs). In fact, MMPs are not only involved in ECM stiffness, but also in other events related to ECM homeostasis, which includes ECM remodeling. Therefore, the crucial role of distinct MMPs isoform has already been reported, especially MMP-2, -3, -7, and -9, along EC development, thus strongly associating these proteins with the control of important cellular events during tumor progression, particularly in the process of invasion during metastasis establishment. In addition, by distinct mechanisms, a vast diversity of glycoproteins and proteoglycans, such as laminin, fibronectin, tenascin C, galectin, dermatan sulfate, and hyaluronic acid exert remarkable effects in esophageal malignant cells due to the activation of oncogenic signaling pathways mainly involved in cytoskeleton alterations during adhesion and migration processes. Finally, the wide spectrum of interactions potentially mediated by ECM may represent a singular intervention scenario in esophageal carcinogenesis natural history and, due to the scarce knowledge on the cellular and molecular mechanisms involved in EC development, the growing body of evidence on ECM’s role along esophageal carcinogenesis might provide a solid base to improve its management in the future.
Collapse
|
22
|
Liu X, Liu T, Hu L, Jiang T, Liu H, Wang Y, Lei Y, Zhu J, Bu Y. Identification and characterization of the promoter of cancer-related gene LOXL2. Exp Cell Res 2020; 387:111786. [DOI: 10.1016/j.yexcr.2019.111786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023]
|
23
|
The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. JOURNAL OF ONCOLOGY 2019; 2019:6240505. [PMID: 31885581 PMCID: PMC6893275 DOI: 10.1155/2019/6240505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal cancers are still responsible for high numbers of cancer-related deaths despite advances in therapy. Tumor-associated cells play a key role in tumor biology, by supporting or halting tumor development through the production of extracellular matrix, growth factors, cytokines, and extracellular vesicles. Here, we review the roles of these tumor-associated cells in the initiation, angiogenesis, immune modulation, and resistance to therapy of gastrointestinal cancers. We also discuss novel diagnostic and therapeutic strategies directed at tumor-associated cells and their potential benefits for the survival of these patients.
Collapse
|
24
|
Cebrià-Costa JP, Pascual-Reguant L, Gonzalez-Perez A, Serra-Bardenys G, Querol J, Cosín M, Verde G, Cigliano RA, Sanseverino W, Segura-Bayona S, Iturbide A, Andreu D, Nuciforo P, Bernado-Morales C, Rodilla V, Arribas J, Yelamos J, de Herreros AG, Stracker TH, Peiró S. LOXL2-mediated H3K4 oxidation reduces chromatin accessibility in triple-negative breast cancer cells. Oncogene 2019; 39:79-121. [PMID: 31462706 PMCID: PMC6937214 DOI: 10.1038/s41388-019-0969-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Oxidation of H3 at lysine 4 (H3K4ox) by lysyl oxidase-like 2 (LOXL2) generates an H3 modification with an unknown physiological function. We find that LOXL2 and H3K4ox are higher in triple-negative breast cancer (TNBC) cell lines and patient-derived xenografts (PDXs) than those from other breast cancer subtypes. ChIP-seq revealed that H3K4ox is located primarily in heterochromatin, where it is involved in chromatin compaction. Knocking down LOXL2 reduces H3K4ox levels and causes chromatin decompaction, resulting in a sustained activation of the DNA damage response (DDR) and increased susceptibility to anticancer agents. This critical role that LOXL2 and oxidized H3 play in chromatin compaction and DDR suggests that functionally targeting LOXL2 could be a way to sensitize TNBC cells to conventional therapy.
Collapse
Affiliation(s)
- J P Cebrià-Costa
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | | | - A Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - G Serra-Bardenys
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - J Querol
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - M Cosín
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - G Verde
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.,Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - R A Cigliano
- Sequentia Biotech SL, Comte d'Urgell, 240, Barcelona, Spain
| | - W Sanseverino
- Sequentia Biotech SL, Comte d'Urgell, 240, Barcelona, Spain
| | - S Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - A Iturbide
- Institute of Epigenetics and Stem Cells, Helmoholtz Zentrum München, D-81377, München, Germany
| | - D Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - P Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - C Bernado-Morales
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 08035, Barcelona, Spain
| | - V Rodilla
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - J Arribas
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 08035, Barcelona, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.,Departament de Bioquímica y Biología Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - J Yelamos
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - A Garcia de Herreros
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - T H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - S Peiró
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.
| |
Collapse
|
25
|
Steppan J, Wang H, Bergman Y, Rauer MJ, Tan S, Jandu S, Nandakumar K, Barreto-Ortiz S, Cole RN, Boronina TN, Zhu W, Halushka MK, An SS, Berkowitz DE, Santhanam L. Lysyl oxidase-like 2 depletion is protective in age-associated vascular stiffening. Am J Physiol Heart Circ Physiol 2019; 317:H49-H59. [PMID: 31002285 PMCID: PMC6692735 DOI: 10.1152/ajpheart.00670.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 01/04/2023]
Abstract
Vascular stiffening and its sequelae are major causes of morbidity and mortality in the elderly. The increasingly accepted concept of "smooth muscle cell (SMC) stiffness syndrome" along with matrix deposition has emerged in vascular biology to account for the mechanical phenotype of arterial aging, but the molecular targets remain elusive. In this study, using an unbiased proteomic analysis, we identified lysyl oxidase-like 2 (LOXL2) as a critical SMC mediator for age-associated vascular stiffening. We tested the hypothesis that loss of LOXL2 function is protective in aging-associated vascular stiffening. We determined that exogenous and endogenous nitric oxide markedly decreased LOXL2 abundance and activity in the extracellular matrix of isolated SMCs and LOXL2 endothelial cells suppress LOXL2 abundance in the aorta. In a longitudinal study, LOXL2+/- mice were protected from age-associated increase in pulse-wave velocity, an index of vascular stiffening, as occurred in littermate wild-type mice. Using isolated aortic segments, we found that LOXL2 mediates vascular stiffening in aging by promoting SMC stiffness, augmented SMC contractility, and vascular matrix deposition. Together, these studies establish LOXL2 as a nodal point for a new therapeutic approach to treat age-associated vascular stiffening. NEW & NOTEWORTHY Increased central vascular stiffness augments risk of major adverse cardiovascular events. Despite significant advances in understanding the genetic and molecular underpinnings of vascular stiffening, targeted therapy has remained elusive. Here, we show that lysyl oxidase-like 2 (LOXL2) drives vascular stiffening during aging by promoting matrix remodeling and vascular smooth muscle cell stiffening. Reduced LOXL2 expression protects mice from age-associated vascular stiffening and delays the onset of isolated systolic hypertension, a major consequence of stiffening.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Huilei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Yehudit Bergman
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Marcel J Rauer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Siqi Tan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Kavitha Nandakumar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Sebastian Barreto-Ortiz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University , Baltimore, Maryland
| | - Tatiana N Boronina
- Department of Biological Chemistry, Johns Hopkins University , Baltimore, Maryland
| | - Wanqu Zhu
- Bloomberg School of Public Health, Department of Environmental Health and Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland
| | - Steven S An
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland
- Bloomberg School of Public Health, Department of Environmental Health and Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
- Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University , Baltimore, Maryland
- Biomedical Engineering, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
26
|
Sanada T, Islam A, Kaminota T, Kirino Y, Tanimoto R, Yoshimitsu H, Yano H, Mizuno Y, Okada M, Mitani S, Ugumori T, Tanaka J, Hato N. Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. Laryngoscope 2019; 130:E327-E334. [PMID: 31219623 DOI: 10.1002/lary.28142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The secretory enzyme lysyl oxidase like 2 (LOXL2) is speculated to contribute to tumor progression through its functions in the remodeling of extracellular matrix and epithelial-mesenchymal transition. We previously identified elevated expression of LOXL2 in metastatic human head and neck squamous cell carcinoma (HNSCC) cells in a mouse lymph node metastases model. Here we performed a case series study examining LOXL2 expression levels in human serum from HNSCC patients to evaluate whether LOXL2 is worth evaluation in a large cohort study. METHODS LOXL2 protein levels in three serum samples from HNSCC patients were assessed by immunoblotting and LOXL2 tissue expression was examined in one human tongue squamous cell carcinoma (SCC) tissue by immunohistochemistry as a representative of HNSCC tissue. Serum samples were further fractionated in exosomes and supernatants by ultracentrifugation, which were then subjected to immunoblot and in vitro LOX activity analyses. Exosomal LOXL2 levels of 36 serum samples from HNSCC patients and seven healthy volunteers were measured using polymer sedimentation exosome preparation followed by ELISA measurement and subjected to statistical analyses. RESULTS Immunoblot analyses revealed that LOXL2 was present in serum exosomal fractions from three HNSCC patients, and we observed approximately threefold higher levels of LOXL2 in HNSCC patients compared with three healthy volunteers. Immunohistochemical LOXL2 staining was detected in HNSCC cells in addition to non-cancerous lipid tissues and some muscles in human tongue HNSCC tissue. Further measurements of exosomal LOXL2 by ELISA showed over ninefold higher mean LOXL2 levels in patients compared with controls. Statistical analysis revealed a correlation between elevated serum exosomal LOXL2 levels and low-grade, but not high-grade, HNSCC. CONCLUSIONS Our case series study that elevated serum exosomal LOXL2 levels exhibited a correlation with low-grade HNSCCs. A follow-up large cohort clinical study will be required to determine the potential clinical utility of LOXL2 as a new biomarker and/or therapy target for HNSCCs. LEVEL OF EVIDENCE 4 Laryngoscope, 130:E327-E334, 2020.
Collapse
Affiliation(s)
- Tomoyoshi Sanada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Teppei Kaminota
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Yui Kirino
- School of Medicine, Ehime University, Ehime, Japan
| | | | | | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Yosuke Mizuno
- Department of Pathological Diagnosis, Matsuyama Red Cross Hospital, Ehime, Japan
| | - Masahiro Okada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Souhei Mitani
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Tohru Ugumori
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| |
Collapse
|
27
|
Amendola PG, Reuten R, Erler JT. Interplay Between LOX Enzymes and Integrins in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11050729. [PMID: 31130685 PMCID: PMC6562985 DOI: 10.3390/cancers11050729] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
Members of the lysyl oxidase (LOX) family are secreted copper-dependent amine oxidases that catalyze the covalent crosslinking of collagens and elastin in the extracellular matrix (ECM), an essential process for the structural integrity of all tissues. LOX enzymes can also remodel the tumor microenvironment and have been implicated in all stages of tumor initiation and progression of many cancer types. Changes in the ECM can influence several cancer cell phenotypes. Integrin adhesion complexes (IACs) physically connect cells with their microenvironment. This review article summarizes the main findings on the role of LOX proteins in modulating the tumor microenvironment, with a particular focus on how ECM changes are integrated by IACs to modulate cells behavior. Finally, we discuss how the development of selective LOX inhibitors may lead to novel and effective therapies in cancer treatment.
Collapse
Affiliation(s)
- Pier Giorgio Amendola
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Raphael Reuten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Janine Terra Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
28
|
Wang C, Xu S, Tian Y, Ju A, Hou Q, Liu J, Fu Y, Luo Y. Lysyl Oxidase-Like Protein 2 Promotes Tumor Lymphangiogenesis and Lymph Node Metastasis in Breast Cancer. Neoplasia 2019; 21:413-427. [PMID: 30925417 PMCID: PMC6439287 DOI: 10.1016/j.neo.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Tumor lymphangiogenesis has been previously documented to predict regional lymph node metastasis and promote the spread to distant organs. However, the underlying mechanism initiating tumor lymphangiogenesis remains unclear. Here we described a novel role of tumor cell-derived Lysyl Oxidase-like protein 2 (LOXL2) in promoting lymphangiogenesis and lymph node metastasis in breast cancer. Immunohistochemistry (IHC) analysis of samples from breast cancer patients showed that the expression of LOXL2 was positively correlated with lymphatic vessel density and breast cancer malignancy. In animal studies, LOXL2-overexpressing breast cancer cells significantly increased lymphangiogenesis and lymph node metastasis, whereas knockdown of LOXL2 suppressed both processes. In order to study the mechanisms of lymphangiogenesis progression, we performed further in vitro investigations and the data revealed that LOXL2 significantly enhanced lymphatic endothelial cells (LECs) invasion and tube formation through directly activation of the Akt-Snail and Erk pathways. Moreover, LOXL2 also stimulated fibroblasts to secrete high level of pro- lymphangiogenic factors VEGF-C and SDF-1α. Taken together, our study elucidates a novel function of tumor cell secreted LOXL2 in lymphangiogenesis and lymph node metastasis, demonstrating that LOXL2 serves as a promising target for anti-lymphangiogenesis and anti-metastasis therapies for breast cancer.
Collapse
Affiliation(s)
- Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siran Xu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University, Beijing, China
| | - Yang Tian
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anji Ju
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoyun Hou
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Ast V, Kordaß T, Oswald M, Kolte A, Eisel D, Osen W, Eichmüller SB, Berndt A, König R. MiR-192, miR-200c and miR-17 are fibroblast-mediated inhibitors of colorectal cancer invasion. Oncotarget 2018; 9:35559-35580. [PMID: 30473751 PMCID: PMC6238973 DOI: 10.18632/oncotarget.26263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains a leading cause of cancer-related death worldwide. A previous transcriptomics based study characterized molecular subgroups of which the stromal subgroup was associated with the worst clinical outcome. Micro-RNAs (miRNAs) are well-known regulators of gene expression and can follow a non-linear repression mechanism. We set up a model combining piecewise linear and linear regression and applied this combined regression model to a comprehensive colon adenocarcinoma dataset. We identified miRNAs involved in regulating characteristic gene sets, particularly extracellular matrix remodeling in the stromal subgroup. Comparison of expression data from separated (epithelial) cancer cells and stroma cells or fibroblasts associate these regulatory interactions with infiltrating stromal or tumor-associated fibroblasts. MiR-200c, miR-17 and miR-192 were identified as the most promising candidates regulating genes crucial for extracellular matrix remodeling. We validated our computational findings by in vitro assays. Enforced expression of either miR-200c, miR-17 or miR-192 in untransformed human colon fibroblasts down-regulated 85% of all predicted target genes. Expressing these miRNAs singly or in combination in human colon fibroblasts co-cultured with colon cancer cells considerably reduced cancer cell invasion validating these miRNAs as cancer cell infiltration suppressors in tumor associated fibroblasts.
Collapse
Affiliation(s)
- Volker Ast
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - Amol Kolte
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - David Eisel
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alexander Berndt
- Institute of Forensic Medicine, Section Pathology, Jena University Hospital, 07747 Jena, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| |
Collapse
|
30
|
Saxena D, Mahjour F, Findlay A, Mously E, Kantarci A, Trackman P. Multiple Functions of Lysyl Oxidase Like-2 in Oral Fibroproliferative Processes. J Dent Res 2018; 97:1277-1284. [PMID: 29787337 PMCID: PMC6151912 DOI: 10.1177/0022034518775971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gingival overgrowth is a side effect of certain medications, including calcium channel blockers, cyclosporin A, and phenytoin. Phenytoin-induced gingival overgrowth is fibrotic. Lysyl oxidases are extracellular enzymes that are required for biosynthetic cross-linking of collagens, and members of this enzyme family are upregulated in fibrosis. Previous studies in humans and in a mouse model of phenytoin-induced gingival overgrowth have shown that LOXL2 is elevated in the epithelium and connective tissue in gingival overgrowth tissues and not in normal tissues. Here, using a novel LOXL2 isoform-selective inhibitor and knockdown studies in loss- and gain-of-function studies, we investigated roles for LOXL2 in promoting cultures of human gingival fibroblasts to proliferate and to accumulate collagen. Data indicate that LOXL2 stimulates gingival fibroblast proliferation, likely by a platelet-derived growth factor B receptor-mediated mechanism. Moreover, collagen accumulation was stimulated by LOXL2 enzyme and inhibited by LOXL2 inhibitor or gene knockdown. These studies suggest that LOXL2 could serve as a potential therapeutic target to address oral fibrotic conditions.
Collapse
Affiliation(s)
- D. Saxena
- Department of Molecular and Cell Biology,
Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - F. Mahjour
- Department of Molecular and Cell Biology,
Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | | | - E.A. Mously
- Department of Molecular and Cell Biology,
Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- College of Dentistry, Taibah University,
Medina, Saudi Arabia
| | | | - P.C. Trackman
- Department of Molecular and Cell Biology,
Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Gambichler T, Mahjurian-Namari M, Reininghaus L, Schmitz L, Skrygan M, Schulze HJ, Schaller J, Girolomoni G. Lysyl oxidase-like-2 mutations and reduced mRNA and protein expression in mid-dermal elastolysis. Clin Exp Dermatol 2018; 44:47-51. [PMID: 29845638 DOI: 10.1111/ced.13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mid-dermal elastolysis (MDE) is a rare skin condition, characterized by selective loss of elastic fibres in the mid dermis. The pathogenesis of MDE is still unclear. AIM To investigate expression of lysyl oxidase-like 2 (LOXL2) in a reasonable sample of patients with MDE and to search for mutations in LOXL2. METHODS We investigated archived lesional tissue of 13 patients with MDE and skin tissue samples of 10 sex- and age-matched healthy controls (HCs). Gene and protein expression of LOXL2 was investigated using real-time reverse-transcription PCR and immunohistochemistry. Mutation analysis was performed using the Sanger method. RESULTS We observed decreased LOXL2 mRNA expression in lesional skin of patients with MDE (0.48 ± 0.16) compared with healthy skin of the same patients (1.5 ± 0.51) and normal skin of HCs (1.9 ± 0.13). Compared with healthy patient skin (epidermis 2.38 ± 1.6, dermis 1.2 ± 1), LOXL2 protein expression in lesional patient skin (epidermis 1.1 ± 0.7, dermis 0.3 ± 0.45) was significantly decreased (P < 0.04 and P = 0.02, respectively). Mutation analysis of the entire LOXL2 gene could be performed for five patients, all of whom were found to have at least one mutation in the LOXL2 gene. Three of these had a mutation in the promoter region (c.967 G>C, c.1022 C>T, and c.1025 G>A, respectively), and one of them also had a mutation in the splice region of intron 11/exon 12 (IVS11-1 G>A). Of the remaining two patients, one had a mutation in exon 3 (T1391), and the other had a mutation in exon 11 (C663Y). CONCLUSIONS Our present data suggest that decreased elastin renewal due to LOXL2 mutations and consecutive reduced LOXL2 expression contribute to the pathogenesis of MDE.
Collapse
Affiliation(s)
- T Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | | | - L Reininghaus
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - L Schmitz
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - M Skrygan
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - H-J Schulze
- Fachklinik Hornheide, Department of Dermatology and Dermato-Histo-Pathology, Münster, Germany
| | - J Schaller
- Dermatopathology Duisburg, Duisburg, Germany
| | - G Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
32
|
Wu S, Zheng Q, Xing X, Dong Y, Wang Y, You Y, Chen R, Hu C, Chen J, Gao D, Zhao Y, Wang Z, Xue T, Ren Z, Cui J. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:99. [PMID: 29728125 PMCID: PMC5935912 DOI: 10.1186/s13046-018-0761-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. METHODS We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre-metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. RESULTS: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1 and α5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. Moreover, activation of Akt pathway contributed to LOXL2-induced fibronectin upregulation. LOXL2 in CM as chemoattractant increased motility and invasion of BMCs, implicating a significant role of LOXL2 in BMCs recruitment. Except that, CM-LV-LOXL2-OE as chemoattractant also increased the number of migrated HCC cells, and improved chemokine CXCL12 expression in lung fibroblasts. The number of HCC cells adhered to surface of lung fibroblasts treated with CM-LV-LOXL2-OE was remarkably higher than that of the control cells. These results indicated that the secreted LOXL2 facilitated the motility of HCC cells and strengthened CTCs settlement on the remodeled matrix "soil". CONCLUSION Integrin β1/α5/JNK/c-JUN signaling pathway participates in higher matrix stiffness-induced LOXL2 upregulation in HCC cells. The secreted LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.
Collapse
Affiliation(s)
- Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Xiaoxia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
33
|
Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression. Oncotarget 2018; 7:23684-99. [PMID: 27008697 PMCID: PMC5029656 DOI: 10.18632/oncotarget.8152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.
Collapse
|
34
|
López-Jiménez AJ, Basak T, Vanacore RM. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV. J Biol Chem 2017; 292:16970-16982. [PMID: 28864775 DOI: 10.1074/jbc.m117.798603] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV.
Collapse
Affiliation(s)
- Alberto J López-Jiménez
- From the Department of Medicine, Division of Nephrology and Hypertension and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Trayambak Basak
- From the Department of Medicine, Division of Nephrology and Hypertension and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Roberto M Vanacore
- From the Department of Medicine, Division of Nephrology and Hypertension and .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
35
|
Cadamuro M, Stecca T, Brivio S, Mariotti V, Fiorotto R, Spirli C, Strazzabosco M, Fabris L. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1435-1443. [PMID: 28757170 DOI: 10.1016/j.bbadis.2017.07.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Prognosis of cholangiocarcinoma, a devastating liver epithelial malignancy characterized by early invasiveness, remains very dismal, though its incidence has been steadily increasing. Evidence is mounting that in cholangiocarcinoma, tumor epithelial cells establish an intricate web of mutual interactions with multiple stromal components, largely determining the pervasive behavior of the tumor. The main cellular components of the tumor microenvironment (i.e. myofibroblasts, macrophages, lymphatic endothelial cells), which has been recently termed as 'tumor reactive stroma', are recruited and activated by neoplastic cells, and in turn, deleteriously mold tumor behavior by releasing a huge variety of paracrine signals, including cyto/chemokines, growth factors, morphogens and proteinases. An abnormally remodeled and stiff extracellular matrix favors and supports these cell interactions. Although the mechanisms responsible for the generation of tumor reactive stroma are largely uncertain, hypoxia presumably plays a central role. In this review, we will dissect the intimate relationship among the different cell elements cooperating within this complex 'ecosystem', with the ultimate goal to pave the way for a deeper understanding of the mechanisms underlying cholangiocarcinoma aggressiveness, and possibly, to foster the development of innovative, combinatorial therapies aimed at halting tumor progression. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Massimiliano Cadamuro
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy
| | - Tommaso Stecca
- Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Simone Brivio
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padua School of Medicine, 35121 Padua, Italy
| | - Romina Fiorotto
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carlo Spirli
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mario Strazzabosco
- Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Luca Fabris
- International Center for Digestive Health (ICDH), University of Milan-Bicocca School of Medicine, 20126 Milan, Italy; Department of Molecular Medicine, University of Padua School of Medicine, 35121 Padua, Italy; Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Choi SE, Jeon N, Choi HY, Shin JI, Jeong HJ, Lim BJ. Lysyl oxidase‑like 2 is expressed in kidney tissue and is associated with the progression of tubulointerstitial fibrosis. Mol Med Rep 2017; 16:2477-2482. [PMID: 28677767 PMCID: PMC5548064 DOI: 10.3892/mmr.2017.6918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/05/2017] [Indexed: 02/02/2023] Open
Abstract
Tubulointerstitial fibrosis is a common end point of chronic kidney diseases, and preventing its progression is key to avoiding renal failure. Transforming growth factor-β (TGF-β) and associated molecules promote tubulointerstitial fibrosis; however, effective therapies targeting these molecules have yet to be developed. Lysyl oxidase-like 2 (LOXL2), which is involved in invasive growth and metastasis of malignant neoplasms, has recently been reported to serve a key role in hepatic and pulmonary fibrosis. However, little is currently known regarding LOXL2 expression in the kidney and its involvement in tubulointerstitial fibrosis. The present study evaluated LOXL2 expression in human and mouse kidney tissues, as well as in cultured renal cells. LOXL2 protein expression was detected in glomerular capillary loops and tubular epithelial cells in human and mouse kidneys. Glomerular LOXL2 was localized to the cytoplasm of podocytes, as determined by double immunofluorescence microscopy using a podocyte marker (synaptopodin). This result was supported by western blot analysis, which demonstrated that LOXL2 protein expression is present in cultured human podocytes and HK-2 human proximal tubular cells. In addition, the mRNA and protein expression levels of LOXL2 were higher in a mouse model of tubulointerstitial fibrosis compared with in control mice. In addition, immunohistochemistry results demonstrated that LOXL2 is present in the fibrous interstitium and infiltrating mononuclear cells in a mouse model of tubulointerstitial fibrosis. The present study demonstrated that LOXL2 is expressed in compartments of renal tissue, where it appears to contribute to the progression of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nara Jeon
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hoon Young Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae Il Shin
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeon Joo Jeong
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
37
|
Park PG, Jo SJ, Kim MJ, Kim HJ, Lee JH, Park CK, Kim H, Lee KY, Kim H, Park JH, Dong SM, Lee JM. Role of LOXL2 in the epithelial-mesenchymal transition and colorectal cancer metastasis. Oncotarget 2017; 8:80325-80335. [PMID: 29113306 PMCID: PMC5655201 DOI: 10.18632/oncotarget.18170] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most dangerous types of malignant tumors, and cancer metastasis is a major factor in the failure of CRC therapy. Recently, LOXL2 (lysyl oxidase-like 2) has been shown to represent a regulator of epithelial-mesenchymal transition (EMT) in different cancer types. However, LOXL2 has not been reported to be involved in CRC metastasis. In this study, we demonstrated that LOXL2 expression is strongly correlated with the rate of CRC metastasis, it participates in the regulation of EMT-related molecule expression in CRC cells in vitro, and it is involved in migratory potential alterations. Additionally, tissue microarray analysis of CRC patients showed an increase in the probability of developing CRC distant metastasis and a decrease in the survival rate of patients with high LOXL2 expression. The results obtained in this study indicate that LOXL2 is involved in the development and progression of CRC metastasis, and therefore, its expression levels may represent a useful prognostic marker.
Collapse
Affiliation(s)
- Pil-Gu Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Ji Jo
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pediatrics, Severance Hospital, Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hae Lee
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Cheol Keun Park
- Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | - Kang Young Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoguen Kim
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | - Jeon Han Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,IMK Bio-Convergence R&D Center, International Vaccine Institute SNU Research Park, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Peng DH, Ungewiss C, Tong P, Byers LA, Wang J, Canales JR, Villalobos PA, Uraoka N, Mino B, Behrens C, Wistuba II, Han RI, Wanna CA, Fahrenholtz M, Grande-Allen KJ, Creighton CJ, Gibbons DL. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene 2017; 36:1925-1938. [PMID: 27694892 PMCID: PMC5378666 DOI: 10.1038/onc.2016.358] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.
Collapse
Affiliation(s)
- David H. Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Christin Ungewiss
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaime Rodriguez Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pamela A. Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naohiro Uraoka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard I Han
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Charles A. Wanna
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | | | - Chad J. Creighton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Benson AB, Wainberg ZA, Hecht JR, Vyushkov D, Dong H, Bendell J, Kudrik F. A Phase II Randomized, Double-Blind, Placebo-Controlled Study of Simtuzumab or Placebo in Combination with Gemcitabine for the First-Line Treatment of Pancreatic Adenocarcinoma. Oncologist 2017; 22:241-e15. [PMID: 28246206 PMCID: PMC5344644 DOI: 10.1634/theoncologist.2017-0024] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023] Open
Abstract
LESSONS LEARNED The safety profile in the gemcitabine/simtuzumab group was similar to that in the gemcitabine/placebo group.The addition of simtuzumab to gemcitabine does not improve clinical outcomes in patients with metastatic pancreatic adenocarcinoma ABSTRACT: Background.The humanized IgG4 monoclonal antibody simtuzumab inhibits the extracellular matrix-remodeling enzyme lysyl oxidase-like 2 maintaining pathological stroma in tumors. METHODS Adult patients with metastatic pancreatic adenocarcinoma (mPaCa) were randomly assigned to receive intravenous gemcitabine, 1,000 mg/m2, in combination with 200 or 700 mg simtuzumab or placebo. Primary endpoint was progression-free survival (PFS), secondary endpoints included overall survival (OS), objective response rate (ORR), and safety. RESULTS Of 240 patients, 80 were randomly assigned to gemcitabine/simtuzumab 700 mg, 79 to gemcitabine/simtuzumab 200 mg, and 81 to gemcitabine/placebo. After a median follow-up of 3.0, 1.9, and 3.4 months for gemcitabine/simtuzumab 700 mg, gemcitabine/simtuzumab 200 mg, and gemcitabine/placebo, respectively, the median PFS was 3.7 months (adjusted hazard ratio [HR], 95% confidence interval [CI], p value vs placebo: 1.09 [0.74-1.61]; p = .73), 3.5 months (1.13 [0.76-1.66], p = .61]), and 3.7 months, respectively. Median OS was 7.6 months (0.83 [0.57-1.22]; p = .28), 5.9 months (1.07 [0.73-1.55]; p = .69), and 5.7 months, respectively. ORRs were 13.9%, 14.5%, and 23.5%, respectively. Simtuzumab was well tolerated. CONCLUSION The addition of simtuzumab to gemcitabine did not improve clinical outcomes in patients with mPaCa. The Oncologist 2017;22:241-e7.
Collapse
Affiliation(s)
- Al B Benson
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Zev A Wainberg
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - J Randolph Hecht
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Dmitry Vyushkov
- Budgetary Healthcare Institution of Omsk Region, Clinical Oncologic Dispensary, Omsk, Russia
| | - Hua Dong
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Fred Kudrik
- South Carolina Oncology Associates, Columbia, South Carolina, USA
| |
Collapse
|
40
|
Hecht JR, Benson AB, Vyushkov D, Yang Y, Bendell J, Verma U. A Phase II, Randomized, Double-Blind, Placebo-Controlled Study of Simtuzumab in Combination with FOLFIRI for the Second-Line Treatment of Metastatic KRAS Mutant Colorectal Adenocarcinoma. Oncologist 2017; 22:243-e23. [PMID: 28246207 PMCID: PMC5344646 DOI: 10.1634/theoncologist.2016-0479] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
Lessons Learned. The safety profile in the patient groups who received FOLFIRI and simtuzumab did not differ from that in the FOLFIRI and placebo group. The addition of simtuzumab to chemotherapy with FOLFIRI does not improve clinical outcomes in patients with metastatic KRAS mutant colorectal carcinoma.
Background. Simtuzumab, a humanized IgG4 monoclonal antibody to lysyl oxidase‐like 2 (LOXL2), blocks desmoplastic reaction in colorectal carcinoma (CRC) cells in vitro. Methods. Patients with metastatic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutant CRC were randomized to receive second‐line 5‐fluorouracil, leucovorin, and irinotecan (FOLFIRI) with either 200 or 700 mg simtuzumab or placebo every 2 weeks in cycles of 28 days. Progression‐free survival (PFS), overall survival (OS), objective response rate (ORR), and safety were assessed. Results. In total, 249 patients were randomized and treated with FOLFIRI/simtuzumab 700 mg (n = 84), FOLFIRI/simtuzumab 200 mg (n = 85), and FOLFIRI/placebo (n = 80). After a median follow‐up of 5.1, 3.8, and 5.5 months, respectively, median PFS for each of the respective treatment groups was 5.5 months (adjusted HR [95% CI], p value versus placebo; 1.32 [0.92, 1.89]; p = .10), 5.4 months (1.45 [1.01, 2.06]; p = .04), and 5.8 months. Median OS was 11.4 months (1.23 [0.80, 1.91]; p = .25), 10.5 months (1.50 [0.98, 2.30]; p = .06), and 16.3 months, respectively. ORR was 11.9%, 5.9%, and 10%, respectively. Simtuzumab was tolerable in metastatic KRAS mutant CRC patients. Conclusion. The addition of simtuzumab to FOLFIRI did not improve clinical outcomes in patients with metastatic KRAS mutant CRC.
Collapse
Affiliation(s)
- J Randolph Hecht
- David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| | - Al B Benson
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Dmitry Vyushkov
- Budgetary Healthcare Institution of Omsk Region, Clinical Oncologic Dispensary, Omsk, Russia
| | - Yingsi Yang
- Gilead Sciences, Inc., Foster City, California, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee, USA
| | - Udit Verma
- The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Verstovsek S, Savona MR, Mesa RA, Dong H, Maltzman JD, Sharma S, Silverman J, Oh ST, Gotlib J. A phase 2 study of simtuzumab in patients with primary, post-polycythaemia vera or post-essential thrombocythaemia myelofibrosis. Br J Haematol 2017; 176:939-949. [DOI: 10.1111/bjh.14501] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Srdan Verstovsek
- The University of Texas MD Anderson Cancer Center; Houston TX USA
| | | | | | - Hua Dong
- Gilead Sciences, Inc.; Foster City CA USA
| | | | | | | | - Stephen T. Oh
- Washington University School of Medicine; St. Louis MO USA
| | - Jason Gotlib
- Stanford University School of Medicine/Stanford Cancer Institute; Stanford CA USA
| |
Collapse
|
42
|
Rajajeyabalachandran G, Kumar S, Murugesan T, Ekambaram S, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin Ther Targets 2016; 21:145-157. [PMID: 28019723 DOI: 10.1080/14728222.2017.1272580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION SET and MYND domain containing-3 (SMYD3) is a member of the lysine methyltransferase family of proteins, and plays an important role in the methylation of various histone and non-histone targets. Proper functioning of SMYD3 is very important for the target molecules to determine their different roles in chromatin remodeling, signal transduction and cell cycle control. Due to the abnormal expression of SMYD3 in tumors, it is projected as a prognostic marker in various solid cancers. Areas covered: Here we elaborate on the general information, structure and the pathological role of SMYD3 protein. We summarize the role of SMYD3-mediated protein interactions in oncology pathways, mutational effects and regulation of SMYD3 in specific types of cancer. The efficacy and mechanisms of action of currently available SMYD3 small molecule inhibitors are also addressed. Expert opinion: The findings analyzed herein demonstrate that aberrant levels of SMYD3 protein exert tumorigenic effects by altering the epigenetic regulation of target genes. The partial involvement of SMYD3 in some distinct pathways provides a vital opportunity in targeting cancer effectively with fewer side effects. Further, identification and co-targeting of synergistic oncogenic pathways is suggested, which could provide much more beneficial effects for the treatment of solid cancers.
Collapse
Affiliation(s)
| | - Swetha Kumar
- a Bioinformatics, Jubilant Biosys Ltd ., Bangalore , India
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhan P, Lv XJ, Ji YN, Xie H, Yu LK. Increased lysyl oxidase-like 2 associates with a poor prognosis in non-small cell lung cancer. CLINICAL RESPIRATORY JOURNAL 2016; 12:712-720. [PMID: 27860390 DOI: 10.1111/crj.12584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Ping Zhan
- Department of Respiratory Medicine; Nanjing Chest Hospital, Medical School of Southeast University; Nanjing 210029 China
- Clinical Center of Nanjing Respiratory Diseases and Imaging; Nanjing 210029 China
| | - Xiao-Jing Lv
- Department of Respiratory Medicine; Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine; Nanjing 210029 China
| | - Ya-Nan Ji
- Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine; Nanjing 210029 China
| | - Haiyan Xie
- Department of Respiratory Medicine; Nanjing Chest Hospital, Medical School of Southeast University; Nanjing 210029 China
- Clinical Center of Nanjing Respiratory Diseases and Imaging; Nanjing 210029 China
| | - Li-Ke Yu
- Department of Respiratory Medicine; Nanjing Chest Hospital, Medical School of Southeast University; Nanjing 210029 China
- Clinical Center of Nanjing Respiratory Diseases and Imaging; Nanjing 210029 China
| |
Collapse
|
44
|
Majeski HE, Yang J. The 2016 John J. Abel Award Lecture: Targeting the Mechanical Microenvironment in Cancer. Mol Pharmacol 2016; 90:744-754. [PMID: 27742780 PMCID: PMC5118638 DOI: 10.1124/mol.116.106765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Past decades of cancer research have mainly focused on the role of various extracellular and intracellular biochemical signals on cancer progression and metastasis. Recent studies suggest an important role of mechanical forces in regulating cellular behaviors. This review first provides an overview of the mechanobiology research field. Then we specially focus on mechanotransduction pathways in cancer progression and describe in detail the key signaling components of such mechanotransduction pathways and extracellular matrix components that are altered in cancer. Although our understanding of mechanoregulation in cancer is still in its infancy, some agents against key mechanoregulators have been developed and will be discussed to explore the potential of pharmacologically targeting mechanotransduction in cancer.
Collapse
Affiliation(s)
- Hannah E Majeski
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jing Yang
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
45
|
Añazco C, López-Jiménez AJ, Rafi M, Vega-Montoto L, Zhang MZ, Hudson BG, Vanacore RM. Lysyl Oxidase-like-2 Cross-links Collagen IV of Glomerular Basement Membrane. J Biol Chem 2016; 291:25999-26012. [PMID: 27770022 DOI: 10.1074/jbc.m116.738856] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
The 7S dodecamer is recognized as an important structural cross-linking domain of collagen IV networks that provide mechanical stability to basement membranes, a specialized form of extracellular matrix essential for the development and maintenance of tissue architecture. Although the 7S dodecamer is stabilized by covalent cross-linking, the molecular mechanism by which such cross-links are formed has not been revealed. Here, we aimed to identify the enzyme(s) that cross-links the 7S dodecamer and characterize its expression in the kidney glomerulus. Pharmacological inhibition of candidate extracellular matrix enzymes revealed that lysyl oxidase activity is required for cross-linking of 7S polypeptides. Among all lysyl oxidase family members, lysyl oxidase-like-2 (LOXL2) was identified as the isoform cross-linking collagen IV in mouse embryonal PFHR-9 cells. Biochemical analyses revealed that LOXL2 readily promoted the formation of lysyl-derived cross-links in the 7S dodecamer but not in the NC1 domain. We also established that LOXL2 is the main lysyl oxidase family member present in the glomerular extracellular matrix. Altogether, we demonstrate that LOXL2 is a novel component of the molecular machinery that forms cross-linked collagen IV networks, which are essential for glomerular basement membrane stability and molecular ultrafiltration function.
Collapse
Affiliation(s)
- Carolina Añazco
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alberto J López-Jiménez
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Mohamed Rafi
- From the Division of Nephrology and Hypertension, Department of Medicine, and
| | - Lorenzo Vega-Montoto
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ming-Zhi Zhang
- From the Division of Nephrology and Hypertension, Department of Medicine, and
| | - Billy G Hudson
- From the Division of Nephrology and Hypertension, Department of Medicine, and.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Roberto M Vanacore
- From the Division of Nephrology and Hypertension, Department of Medicine, and .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
46
|
Bergeat D, Fautrel A, Turlin B, Merdrignac A, Rayar M, Boudjema K, Coulouarn C, Sulpice L. Impact of stroma LOXL2 overexpression on the prognosis of intrahepatic cholangiocarcinoma. J Surg Res 2016; 203:441-450. [PMID: 27363654 DOI: 10.1016/j.jss.2016.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is associated with a poor prognosis related to early recurrence especially in the remnant liver after surgery. ICC exhibits a dense desmoplastic stroma which plays a pivotal role in ICC aggressiveness. Thus, analyzing gene deregulation in the stroma of ICC may help to identify new prognosis biomarkers and promising therapeutic targets. The aim of this study was to evaluate the clinical relevance of the matrix-remodeling enzyme lysyl oxidase-like 2 (LOXL2) expression in ICC. MATERIAL AND METHODS LOXL2 messenger RNA levels were evaluated in microdissected tumoral stroma (TS) and in nontumoral fibrous tissue by gene expression profiling (testing set, n = 10) obtained from gene expression omnibus database and by quantitative real time polymerase chain reaction (validating set, n = 6). LOXL2 protein levels were evaluated by immunohistochemistry on a tissue microarray containing 80 independent patients. The relationship between LOXL2 expression and survival was assessed by univariate and multivariate analyses. RESULTS LOXL2 messenger RNA levels were increased in TS, both in the testing and the validating sets (P < 0.01). These results were confirmed at a protein level, with a significantly higher LOXL2 immunostaining in TS (P < 0.01). Univariate analysis revealed that LOXL2 expression was correlated with a poor overall survival and disease-free survival (P < 0.01). Importantly, high expression of LOXL2 was an independent prognostic factor of worst overall survival (hazard ratio = 5.29, confidence interval [CI] 95% = 1.71-16.3, P < 0.01) and disease-free survival (hazard ratio = 5.55, CI 95% = 2.14-14.37, P < 0.01). CONCLUSIONS Our study provides additional arguments for a role of extracellular matrix remodeling in ICC aggressiveness and identifies LOXL2 as a new prognostic marker and a promising therapeutic target in ICC.
Collapse
Affiliation(s)
- Damien Bergeat
- Service de Chirurgie Hépatobiliaire et Digestive, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France; INSERM, UMR991 Liver Metabolism and Cancer, Rennes, France
| | - Alain Fautrel
- Université de Rennes 1, Rennes, France; INSERM, UMR991 Liver Metabolism and Cancer, Rennes, France
| | - Bruno Turlin
- Université de Rennes 1, Rennes, France; INSERM, UMR991 Liver Metabolism and Cancer, Rennes, France; Service d'Anatomo-Pathologie, Hôpital Pontchaillou, Rennes, France
| | - Aude Merdrignac
- Service de Chirurgie Hépatobiliaire et Digestive, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France; INSERM, UMR991 Liver Metabolism and Cancer, Rennes, France
| | - Michel Rayar
- Service de Chirurgie Hépatobiliaire et Digestive, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France
| | - Karim Boudjema
- Service de Chirurgie Hépatobiliaire et Digestive, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France
| | - Cédric Coulouarn
- Université de Rennes 1, Rennes, France; INSERM, UMR991 Liver Metabolism and Cancer, Rennes, France
| | - Laurent Sulpice
- Service de Chirurgie Hépatobiliaire et Digestive, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France; INSERM, UMR991 Liver Metabolism and Cancer, Rennes, France.
| |
Collapse
|
47
|
A truncated splice variant of human lysyl oxidase-like 2 promotes migration and invasion in esophageal squamous cell carcinoma. Int J Biochem Cell Biol 2016; 75:85-98. [DOI: 10.1016/j.biocel.2016.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 02/04/2023]
|
48
|
Kurozumi A, Kato M, Goto Y, Matsushita R, Nishikawa R, Okato A, Fukumoto I, Ichikawa T, Seki N. Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma. Int J Oncol 2016; 48:1837-46. [PMID: 26983694 PMCID: PMC4809659 DOI: 10.3892/ijo.2016.3440] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 12/29/2022] Open
Abstract
Our recent studies of microRNA (miRNA) expression signatures in human cancers revealed that microRNA-26a (miRNA-26a) and microRNA-26b (miRNA-26b) were significantly reduced in cancer tissues. To date, few reports have provided functional analyses of miR-26a or miR-26b in renal cell carcinoma (RCC). The aim of the present study was to investigate the functional significance of miR-26a and miR-26b in RCC and to identify novel miR-26a/b-mediated cancer pathways and target genes involved in RCC oncogenesis and metastasis. Downregulation of miR-26a or miR-26b was confirmed in RCC clinical specimens. Restoration of miR-26a or miR-26b in RCC cell lines (786-O and A498) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Our in silico analysis and luciferase reporter assays showed that lysyl oxidase-like 2 (LOXL2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) were directly regulated by these miRNAs. Moreover, downregulating the PLOD2 gene significantly inhibited cell migration and invasion in RCC cells. Thus, our data showed that two genes promoting metastasis, LOXL2 and PLOD2, were epigenetically regulated by tumor-suppressive microRNAs, miR-26a and miR-26b, providing important insights into the molecular mechanisms of RCC metastasis.
Collapse
Affiliation(s)
- Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Rika Nishikawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Ichiro Fukumoto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
49
|
Insight On Colorectal Carcinoma Infiltration by Studying Perilesional Extracellular Matrix. Sci Rep 2016; 6:22522. [PMID: 26940881 PMCID: PMC4778019 DOI: 10.1038/srep22522] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) from perilesional and colorectal carcinoma (CRC), but not healthy colon, sustains proliferation and invasion of tumor cells. We investigated the biochemical and physical diversity of ECM in pair-wised comparisons of healthy, perilesional and CRC specimens. Progressive linearization and degree of organization of fibrils was observed from healthy to perilesional and CRC ECM, and was associated with a steady increase of stiffness and collagen crosslinking. In the perilesional ECM these modifications coincided with increased vascularization, whereas in the neoplastic ECM they were associated with altered modulation of matrisome proteins, increased content of hydroxylated lysine and lysyl oxidase. This study identifies the increased stiffness and crosslinking of the perilesional ECM predisposing an environment suitable for CRC invasion as a phenomenon associated with vascularization. The increased stiffness of colon areas may represent a new predictive marker of desmoplastic region predisposing to invasion, thus offering new potential application for monitoring adenoma with invasive potential.
Collapse
|
50
|
The tumor microenvironment in esophageal cancer. Oncogene 2016; 35:5337-5349. [PMID: 26923327 PMCID: PMC5003768 DOI: 10.1038/onc.2016.34] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
Esophageal cancer is a deadly disease, ranking sixth among all cancers in mortality. Despite incremental advances in diagnostics and therapeutics, esophageal cancer still carries a poor prognosis, and thus there remains a need to elucidate the molecular mechanisms underlying this disease. There is accumulating evidence that a comprehensive understanding of the molecular composition of esophageal cancer requires attention to not only tumor cells but also the tumor microenvironment, which contains diverse cell populations, signaling factors, and structural molecules that interact with tumor cells and support all stages of tumorigenesis. In esophageal cancer, environmental exposures can trigger chronic inflammation, which leads to constitutive activation of pro-inflammatory signaling pathways that promote survival and proliferation. Anti-tumor immunity is attenuated by cell populations such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), as well as immune checkpoints like programmed death-1 (PD-1). Other immune cells such as tumor-associated macrophages can have other pro-tumorigenic functions, including the induction of angiogenesis and tumor cell invasion. Cancer-associated fibroblasts secrete growth factors and alter the extracellular matrix (ECM) to create a tumor niche and enhance tumor cell migration and metastasis. Further study of how these TME components relate to the different stages of tumor progression in each esophageal cancer subtype will lead to development of novel and specific TME-targeting therapeutic strategies, which offer considerable potential especially in the setting of combination therapy.
Collapse
|