1
|
Liu H, Wang X, Wang X, Qiu F, Zhou B. Challenges and hope: latest research trends in the clinical treatment and prognosis of liposarcoma. Front Pharmacol 2025; 16:1529755. [PMID: 40421219 PMCID: PMC12104207 DOI: 10.3389/fphar.2025.1529755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Liposarcoma, as a complex disease, is characterized by intricate interactions between distinct histopathological subtypes and corresponding clinical outcomes, emphasizing the necessity of personalized approaches in diagnosis and treatment strategies. This malignant tumor originating from adipose tissue is classified into different subtypes with specific molecular markers, which not only distinguish them but also guide treatment directions. The main approach for treating liposarcoma is surgical resection, with the aim of complete excision and achieving clean margins (R0 resection) to minimize the risk of recurrence. This surgical principle emphasizes the critical need for precise preoperative planning, and in certain cases, the integration of neoadjuvant therapy may be needed to reduce the tumor to a surgically manageable size. In addition to surgery, systemic therapy plays a key role in the advanced stages of the disease, especially when resistance to traditional treatment arises. The emergence of novel systemic therapies, including chemotherapy, targeted therapy, and immunotherapy, has opened new avenues for treating this challenging malignancy. These systemic therapies are selected on the basis of the specific molecular features of the tumor, highlighting the importance of detailed molecular diagnostics. As our understanding of the molecular basis of liposarcoma deepens, integrating clinical and molecular features is crucial for optimizing treatment outcomes. This comprehensive approach, which combines surgical precision with systemic therapy innovations, will change the treatment landscape for patients with liposarcoma, advancing toward more personalized and effective treatment strategies.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xi Wang
- Department of Oncology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- Department of Anesthesiology Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Saba KH, Difilippo V, Styring E, Nilsson J, Magnusson L, van den Bos H, Wardenaar R, Spierings DCJ, Foijer F, Nathrath M, Haglund de Flon F, Baumhoer D, Nord KH. CDK4 is co-amplified with either TP53 promoter gene fusions or MDM2 through distinct mechanisms in osteosarcoma. NPJ Genom Med 2024; 9:42. [PMID: 39322633 PMCID: PMC11424644 DOI: 10.1038/s41525-024-00430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Amplification of the MDM2 and CDK4 genes on chromosome 12 is commonly associated with low-grade osteosarcomas. In this study, we conducted high-resolution genomic and transcriptomic analyses on 33 samples from 25 osteosarcomas, encompassing both high- and low-grade cases with MDM2 and/or CDK4 amplification. We discerned four major subgroups, ranging from nearly intact genomes to heavily rearranged ones, each harbouring CDK4 and MDM2 amplification or CDK4 amplification with TP53 structural alterations. While amplicons involving MDM2 exhibited signs of an initial chromothripsis event, no evidence of chromothripsis was found in TP53-rearranged cases. Instead, the initial disruption of the TP53 locus led to co-amplification of the CDK4 locus. Additionally, we observed recurring promoter swapping events involving the regulatory regions of the FRS2, PLEKHA5, and TP53 genes. These events resulted in ectopic expression of partner genes, with the ELF1 gene being upregulated by the FRS2 and TP53 promoter regions in two distinct cases.
Collapse
Affiliation(s)
- Karim H Saba
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Valeria Difilippo
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Emelie Styring
- Department of Orthopedics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Jenny Nilsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Michaela Nathrath
- Children's Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| | - Felix Haglund de Flon
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Daniel Baumhoer
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Karolin H Nord
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
de Traux De Wardin H, Cyrta J, Dermawan JK, Guillemot D, Orbach D, Aerts I, Pierron G, Antonescu CR. FGFR1 fusions as a novel molecular driver in rhabdomyosarcoma. Genes Chromosomes Cancer 2024; 63:e23232. [PMID: 38607246 PMCID: PMC11385681 DOI: 10.1002/gcc.23232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.
Collapse
Affiliation(s)
- Henry de Traux De Wardin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Brussels University Hospital, Academic Children’s Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Joanna Cyrta
- Department of Pathology, Institut Curie, PSL University, Paris, France
| | - Josephine K. Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Isabelle Aerts
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Gaelle Pierron
- Unité de Génétique Somatique, Institut Curie,Paris, France
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Linos K, Dermawan JK, Pulitzer M, Hameed M, Agaram NP, Agaimy A, Antonescu CR. Untying the Gordian knot of composite hemangioendothelioma: Discovery of novel fusions. Genes Chromosomes Cancer 2024; 63:e23198. [PMID: 37658696 PMCID: PMC10842102 DOI: 10.1002/gcc.23198] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023] Open
Abstract
Composite hemangioendothelioma is a rare, locally aggressive, and rarely metastasizing vascular neoplasm which affects both children and adults. Recently, a number of gene fusions including YAP1::MAML2, PTBP1::MAML2, and EPC1::PHC2 have been detected in a small subset of cases with or without neuroendocrine expression. Herein, we present four additional cases with novel in-frame fusions. The cohort comprises two females and two males with a wide age range at diagnosis (24-80 years). Two tumors were deep involving the right brachial plexus and mediastinum, while the remaining were superficial (right plantar foot and abdominal wall). The size ranged from 1.5 to 4.8 cm in greatest dimension. Morphologically, all tumors had an admixture of at least two architectural patterns including retiform hemangioendothelioma, hemangioma, epithelioid hemangioendothelioma, or angiosarcoma. The tumors were positive for endothelial markers CD31 (3/3), ERG (4/4), and D2-40 (1/4, focal), while SMA was expressed in 2/3 highlighting the surrounding pericytes. Synaptophysin showed immunoreactivity in 2/3 cases. One patient had a local recurrence after 40 months, while two patients had no evidence of disease 4 months post-resection. Targeted RNA sequencing detected novel in-frame fusions in each of the cases: HSPG2::FGFR1, YAP1::FOXR1, ACTB::MAML2, and ARID1B::MAML2. The two cases with neuroendocrine expression occurred as superficial lesions and harbored YAP1::FOXR1 and ARID1B::MAML2 fusions. Our study expands on the molecular spectrum of this enigmatic tumor, further enhancing our current understanding of the disease.
Collapse
Affiliation(s)
- Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Melissa Pulitzer
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Narasimhan P. Agaram
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nurnberg, University Hospital, Erlangen, Germany
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
5
|
Toivanen K, Kilpinen S, Ojala K, Merikoski N, Salmikangas S, Sampo M, Böhling T, Sihto H. PDE3A Is a Highly Expressed Therapy Target in Myxoid Liposarcoma. Cancers (Basel) 2023; 15:5308. [PMID: 38001568 PMCID: PMC10669966 DOI: 10.3390/cancers15225308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Liposarcomas (LPSs) are a heterogeneous group of malignancies that arise from adipose tissue. Although LPSs are among the most common soft-tissue sarcoma subtypes, precision medicine treatments are not currently available. To discover LPS-subtype-specific therapy targets, we investigated RNA sequenced transcriptomes of 131 clinical LPS tissue samples and compared the data with a transcriptome database that contained 20,218 samples from 95 healthy tissues and 106 cancerous tissue types. The identified genes were referred to the NCATS BioPlanet library with Enrichr to analyze upregulated signaling pathways. PDE3A protein expression was investigated with immunohistochemistry in 181 LPS samples, and PDE3A and SLFN12 mRNA expression with RT-qPCR were investigated in 63 LPS samples. Immunoblotting and cell viability assays were used to study LPS cell lines and their sensitivity to PDE3A modulators. We identified 97, 247, and 37 subtype-specific, highly expressed genes in dedifferentiated, myxoid, and pleomorphic LPS subtypes, respectively. Signaling pathway analysis revealed a highly activated hedgehog signaling pathway in dedifferentiated LPS, phospholipase c mediated cascade and insulin signaling in myxoid LPS, and pathways associated with cell proliferation in pleomorphic LPS. We discovered a strong association between high PDE3A expression and myxoid LPS, particularly in high-grade tumors. Moreover, myxoid LPS samples showed elevated expression levels of SLFN12 mRNA. In addition, PDE3A- and SLFN12-coexpressing LPS cell lines SA4 and GOT3 were sensitive to PDE3A modulators. Our results indicate that PDE3A modulators are promising drugs to treat myxoid LPS. Further studies are required to develop these drugs for clinical use.
Collapse
Affiliation(s)
- Kirsi Toivanen
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Sami Kilpinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00014 Helsinki, Finland;
| | - Kalle Ojala
- HUS Vatsakeskus, Helsinki University Hospital, PL 340, 00290 Helsinki, Finland;
| | - Nanna Merikoski
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Sami Salmikangas
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Mika Sampo
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland;
| | - Tom Böhling
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Harri Sihto
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| |
Collapse
|
6
|
Sguinzi RM, Aissaoui S, Genevay-Infante M, Breguet R, Charbonnet P, Francis K, Kini R, Bühler L. Retroperitoneal liposarcoma and craniosynostosis: possible genomic relationship, case report, and literature review. Funct Integr Genomics 2022; 23:8. [PMID: 36538187 DOI: 10.1007/s10142-022-00924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Based on a case report, this review explores the genomic landscape for patients with liposarcomas and possible relationships with gene mutations related to craniosynostosis. We describe the case of a 40-year-old man, known for a surgical correction of craniosynostosis before the age of 1 year, who underwent a radical resection of a voluminous retroperitoneal liposarcoma; histopathological analysis revealed a low-grade well-differentiated, mostly sclerosing, liposarcoma. A genetic analysis searching for mutations in blood DNA was performed and did not detect any specific mutation. A literature review was also conducted. Several tumors related to syndromic and non-syndromic craniosynostosis are mentioned in the literature; no specific link with retroperitoneal liposarcoma is established but the FGFR3 mutation is detected in dedifferentiated liposarcomas. To date, no case has been reported in the literature demonstrating a genetic relationship between craniosynostosis and low-grade differentiated retroperitoneal liposarcoma. We conclude that further studies for gene complex mutations should be conducted to show a possible genetic relationship between retroperitoneal liposarcoma and craniosynostosis.
Collapse
Affiliation(s)
| | - Souria Aissaoui
- Genetic Consultation, Genesupport - Centre du Sein, Geneva, Switzerland
| | | | | | | | | | - Riad Kini
- Vesenaz Medical Center, Geneva, Switzerland
| | - Leo Bühler
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland.,Hirslanden Clinic Grangettes, Geneva, Switzerland.,Vesenaz Medical Center, Geneva, Switzerland
| |
Collapse
|
7
|
Cassinelli G, Pasquali S, Lanzi C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers. Front Oncol 2022; 12:965261. [PMID: 36119484 PMCID: PMC9479065 DOI: 10.3389/fonc.2022.965261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Well differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are tumors of the adipose tissue poorly responsive to conventional cytotoxic chemotherapy which currently remains the standard-of-care. The dismal prognosis of the DDLPS subtype indicates an urgent need to identify new therapeutic targets to improve the patient outcome. The amplification of the two driver genes MDM2 and CDK4, shared by WDLPD and DDLPS, has provided the rationale to explore targeting the encoded ubiquitin-protein ligase and cell cycle regulating kinase as a therapeutic approach. Investigation of the genomic landscape of WD/DDLPS and preclinical studies have revealed additional potential targets such as receptor tyrosine kinases, the cell cycle kinase Aurora A, and the nuclear exporter XPO1. While the therapeutic significance of these targets is being investigated in clinical trials, insights into the molecular characteristics associated with dedifferentiation and progression from WDLPS to DDLPS highlighted additional genetic alterations including fusion transcripts generated by chromosomal rearrangements potentially providing new druggable targets (e.g. NTRK, MAP2K6). Recent years have witnessed the increasing use of patient-derived cell and tumor xenograft models which offer valuable tools to accelerate drug repurposing and combination studies. Implementation of integrated "multi-omics" investigations applied to models recapitulating WD/DDLPS genetics, histologic differentiation and biology, will hopefully lead to a better understanding of molecular alterations driving liposarcomagenesis and DDLPS progression, as well as to the identification of new therapies tailored on tumor histology and molecular profile.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Xie Y, Jing W, Zhao W, Peng R, Chen M, Lan T, Peng H, He X, Chen H, Zhang Z, Zhang H. Primary intrathoracic liposarcomas: A clinicopathologic and molecular study of 43 cases in one of the largest medical centers of China. Front Oncol 2022; 12:949962. [PMID: 36059611 PMCID: PMC9432863 DOI: 10.3389/fonc.2022.949962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Primary intrathoracic liposarcoma is extremely rare, and most published series lack genetic analyses. The aim of our study is to better understand the clinicopathologic and genetic features of these rare lesions. Materials and methods Forty-three primary intrathoracic liposarcomas were identified and most cases were analyzed by systematic genetic studies, including fluorescence in situ hybridization (FISH), whole-exome sequencing (WES), and Sanger sequencing. Results This series included 27 males and 16 females (ratios, 1.68:1) aged 24-73 years (median, 53 years). Tumors mainly occurred in the mediastinum (n=23, 53.5%), followed by pleural cavity (n=16, 37.2%) and lung (n=4, 9.3%). The study included 21 well-differentiated liposarcomas (WDLs), 19 dedifferentiated liposarcomas (DDLs), 2 myxoid pleomorphic liposarcomas (MPLs) and 1 pleomorphic liposarcoma (PL), without identification of myxoid liposarcoma. FISH analysis identified MDM2 amplification in 17 of 18 WDLs (94.4%) and all DDLs (16/16, 100.0%). The MDM2-nonamplified WDL was CDK4-nonamplified but FRS2-amplified. WES and Sanger sequencing found somatic TP53 mutation in the 2 MPLs. Follow-up information was available for 33 of 38 cases (86.8%). Thirteen patients (39.4%) showed no evidence of disease, 10 patients (30.3%) were alive with disease, and 8 patients (24.2%) died of disease. Fourteen cases developed recurrence and 1 with metastasis. Conclusions WDL/DDL was the overwhelming subtype in this location, followed by MPL and PL. Analysis of the FRS2 gene, in combination with MDM2 and other genes of 12q13-15, may more precisely characterize WDL/DDLs. MPL is the most fatal subtype of this site. Further studies are needed to explore the role of TP53 in the pathogenesis of MPL.
Collapse
Affiliation(s)
- You Xie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyi Jing
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Peng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Lan
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Peng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hongying Zhang,
| |
Collapse
|
9
|
Cytogenomic Characterization of Giant Ring or Rod Marker Chromosome in Four Cases of Well-Differentiated and Dedifferentiated Liposarcoma. Case Rep Genet 2022; 2022:6341207. [PMID: 35450197 PMCID: PMC9018199 DOI: 10.1155/2022/6341207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosome and array comparative genomic hybridization (aCGH) analyses were performed on two cases of well-differentiated liposarcoma (WDLPS) and two cases of dedifferentiated liposarcoma (DDLPS). The results revealed the characteristic giant ring (GR) or giant rod marker (GRM) chromosomes in all four cases and amplification of numerous somatic copy number alterations (SCNAs) involving a core segment of 12q14.1q15 and other chromosomal regions in three cases. The levels of amplification for oncogenes OS9, CDK4, HMGA2, NUP107, MDM2, YEATS4, and FRS2 at the core segment or other SCNAs should be characterized to facilitate pathologic correlation and prognostic prediction. Further studies for the initial cellular crisis event affecting chromosome intermingling regions for cell-type specific gene regulation may reveal the underlying mutagenesis mechanism for GR and GRM in WDLPS and DDLPS.
Collapse
|
10
|
Lu Y, Li T, Chen M, Peng H, Du T, Qiu Y, Zhang H. Coamplification of 12q15 and 12p13 and homozygous CDKN2A/2B deletion: synergistic role of fibrosarcomatous transformation in dermatofibrosarcoma protuberans with a cryptic COL1A1-PDGFB fusion. Virchows Arch 2022; 481:313-319. [PMID: 35171326 DOI: 10.1007/s00428-022-03297-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is characterized by collagen type I alpha 1 chain-platelet-derived growth factor B chain (COL1A1-PDGFB) fusion. We present a case of fibrosarcomatous DFSP with lung metastasis in a 53-year-old man. Histologically, the primary and metastatic tumors were composed of high-grade fibrosarcomatous component with varying myxoid changes, while only a small focus of the classic DFSP element was identified in the primary lesion. No evidence of COL1A1-PDGFB fusion was identified by routine fluorescence in situ hybridization (FISH). Subsequent next-generation sequencing and COL1A1 break-apart FISH identified the fusion. In addition, coamplification of 12q15 and 12p13, along with CDKN2A/2B deletion, was confirmed to be limited to the fibrosarcomatous component. The current case is a novel FS-DFSP with cryptic COL1A1-PDGFB fusion. This is the first published example of DFSP harboring coamplification of 12q and 12p sequences. More importantly, the genetic aberrations restricted to the fibrosarcomatous component indicated a synergistic role of higher-grade progression.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pathology, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Tao Li
- Department of Pathology, Pujiang County People's Hospital, Chengdu, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Heng Peng
- Department of Pathology, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Tianhai Du
- Department of Pathology, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Expression of FRS2 in atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma: an immunohistochemical analysis of 182 cases with genetic data. Diagn Pathol 2021; 16:96. [PMID: 34696768 PMCID: PMC8543942 DOI: 10.1186/s13000-021-01161-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023] Open
Abstract
Background The fibroblast growth factor receptor substrate 2 (FRS2) gene is located close to MDM2 and CDK4 within the 12q13-15 chromosomal region. FRS2 gene was recently found to be consistently amplified in atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDL) and dedifferentiated liposarcoma (DDL), suggesting the detection of FRS2 amplification could be a diagnostic tool for ALT/WDL/DDLs. However, the expression of FRS2 protein and diagnostic value of FRS2 immunohistochemistry (IHC) has not been evaluated in a large cohort of ALT/WDL/DDLs. Methods A SNOMED search of hospital surgical pathology files from January 2007 to July 2020 identified 182 ALT/WDL/DDLs with available materials. FRS2 fluorescence in situ hybridization (FISH) and IHC were performed on 182 ALT/WDL/DDLs and 64 control samples. The expression of FRS2 was also compared with that of classic immunomarkers (MDM2 and CDK4) of this tumor entity. Results This study included 91 ALT/WDLs and 91 DDLs. The FISH results showed 172 of 182 (94.5%) cases were FRS2-amplified, and 10 cases were FRS2-nonamplified. Immunostaining results showed 171 (94.0%) ALT/WDL/DDLs were positive for FRS2 and 11 cases (6.0%) were FRS2-immunonegative. In 172 FRS2-amplified cases, 166 (96.5%) were FRS2-immunopositive, and 6 (3.5%) were negative. Among 10 FRS2-nonamplified ALT/WDL/DDL cases, 5 cases were FRS2-immunonegative, and 5 tumors displayed 1+ staining for this marker. In 64 control cases, none of them exhibited FRS2 amplification. Forty-seven (73.5%) control cases were negative for FRS2 immunostaining, while 17 cases (26.5%) were FRS2-immunopositive. Fifteen of these false positive samples (15/17, 88.2%) showed 1+ positivity and only 2 cases (2/17, 11.8%) displayed 2+ positivity. In ALT/WDL/DDLs, the sensitivity of FRS2 immunostaining was slightly lower than MDM2 (FRS2 vs. MDM2: 94.0% vs 100.0%) and CDK4 (FRS2 vs. CDK4: 94.0% vs 97.0%). However, the specificity of FRS2 (73.5%) was slightly higher than that of MDM2 (67.8%) and CDK4 (64.4%). Conclusion This study indicated that FRS2 IHC had relatively good consistency with FRS2 FISH, suggesting that FRS2 immunostaining could be utilized as an additional screening tool for the diagnosis of ALT/WDL/DDL. It must be emphasized that MDM2/CDK4/FRS2 especially MDM2 FISH remains the gold standard and the most recommended method to diagnose this entity.
Collapse
|
12
|
Pei J, Flieder DB, Talarchek JN, Cooper HS, Patchefsky AS, Wei S. Clinical Application of Chromosome Microarray Analysis in the Diagnosis of Lipomatous Tumors. Appl Immunohistochem Mol Morphol 2021; 29:592-598. [PMID: 33734108 DOI: 10.1097/pai.0000000000000923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
Well-differentiated liposarcoma/atypical lipomatous tumor (WDLS/ALT) and dedifferentiated liposarcoma (DDLS) have characteristic supernumerary ring and giant marker chromosomes involving the chromosomal region 12q13-15 which contains MDM2 (12q15), CDK4 (12q14.1), HMGA2 (12q14.3), YEATS4 (12q15), CPM (12q15), and FRS2 (12q15). Detecting MDM2 amplification by fluorescence in situ hybridization (FISH) is considered to be the gold standard for the diagnosis of WDLS/ALT and DDLS. In this study, formalin fixed paraffin embedded clinical specimens (16 liposarcomas and 19 benign lipomatous tumors) were used to detect MDM2 amplification and other chromosomal alterations in WDLS/ALT and DDLS by single nucleotide polymorphism-based chromosome microarray (CMA). All 16 liposarcomas showed MDM2 amplification with a MDM2/cep12 ratio from 2.4 to 8.4 by CMA. Ten (62.5%) of these cases had CDK4/cep12 ratio ≥2.0. All the cases without CDK4 amplification were from the thigh. The MDM2/cep12 ratio of all the benign lipomatous tumors (19/19) was within the normal limits. Twenty-one of the 35 benign lipomatous tumors and liposarcomas were also tested for MDM2 amplification by FISH. All the FISH results were consistent with the CMA results (100%). Along with MDM2 amplification, all 16 liposarcomas (100%) also showed amplification of YEATS4, CPM and FRS2. Only 11 of 16 (69%) cases showed HMGA2 amplification. In conclusion, this study demonstrated that CMA on routine formalin fixed paraffin embedded tissue is a sensitive and specific clinical test for detection of MDM2 gene amplification. Moreover, CMA allows simultaneous detection of genomic changes of interest including CDK4 and others, which provides enriched information for diagnosing lipomatous tumors.
Collapse
Affiliation(s)
- Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
13
|
Montoya-Cerrillo DM, Diaz-Perez JA, Velez-Torres JM, Montgomery EA, Rosenberg AE. Novel fusion genes in spindle cell rhabdomyosarcoma: The spectrum broadens. Genes Chromosomes Cancer 2021; 60:687-694. [PMID: 34184341 DOI: 10.1002/gcc.22978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) encompasses a heterogeneous group of tumors with striated muscle differentiation. RMSs are classified as alveolar, embryonal, spindle cell/sclerosing, and pleomorphic types and molecular analysis of these tumors has identified aberrations that are useful in their further subclassification. Spindle cell rhabdomyosarcoma (SpRMS) is uncommon and has been described with VGLL2 fusions, EWSR1/FUS-TFCP2 rearrangements, and myoD1 mutations-the mutations are associated with significantly different prognoses. In addition, the NCOA2-MEIS1 fusion gene was recently described in two primary intraosseous RMS that contained spindle cell components. Herein, we report three cases of SpRMS harboring different novel fusion genes, one possessing EP300-VGLL3, a second with NCOA2-MEIS1 and CAV1-MET, and the third case had HMGA2-NEGR1 and multiple amplified genes.
Collapse
Affiliation(s)
- Diego M Montoya-Cerrillo
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jaylou M Velez-Torres
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Elizabeth A Montgomery
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
14
|
Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10:cells10061533. [PMID: 34204560 PMCID: PMC8235236 DOI: 10.3390/cells10061533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies originating from mesenchymal tissues with limited therapeutic options. Recently, alterations in components of the fibroblast growth factor receptor (FGFR) signaling pathway have been identified in a range of different sarcoma subtypes, most notably gastrointestinal stromal tumors, rhabdomyosarcomas, and liposarcomas. These alterations include genetic events such as translocations, mutations, and amplifications as well as transcriptional overexpression. Targeting FGFR has therefore been proposed as a novel potential therapeutic approach, also in light of the clinical activity shown by multi-target tyrosine kinase inhibitors in specific subtypes of sarcomas. Despite promising preclinical evidence, thus far, clinical trials have enrolled very few sarcoma patients and the efficacy of selective FGFR inhibitors appears relatively low. Here, we review the known alterations of the FGFR pathway in sarcoma patients as well as the preclinical and clinical evidence for the use of FGFR inhibitors in these diseases. Finally, we discuss the possible reasons behind the current clinical data and highlight the need for biomarker stratification to select patients more likely to benefit from FGFR targeted therapies.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- Department of Medical Oncology, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alexandra E. Ostler
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Correspondence: ; Tel.: +44-207-153-5554
| |
Collapse
|
15
|
Lu J, Wood D, Ingley E, Koks S, Wong D. Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma. Mol Biol Rep 2021; 48:3637-3647. [PMID: 33893924 DOI: 10.1007/s11033-021-06362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/13/2023]
Abstract
Well-differentiated liposarcoma (WDLPS) is the most frequent subtype of liposarcoma and may transform into dedifferentiated liposarcoma (DDLPS) which is a more aggressive subtype. Retroperitoneal lesions of WDLPS/DDLPS tend to recur repeatedly due to incomplete resections, and adjuvant chemotherapy and radiotherapy have little effect on patient survival. Consequently, identifying therapeutic targets and developing targeted drugs is critical for improving the outcome of WDLPS/DDLPS patients. In this review, we summarised the mutational landscape of WDLPS/DDLPS from recent studies focusing on potential oncogenic drivers and the development of molecular targeted drugs for DDLPS. Due to the limited number of studies on the molecular networks driving WDLPS to DDLPS development, we looked at other dedifferentiation-related tumours to identify potential parallel mechanisms that could be involved in the dedifferentiation process generating DDLPS.
Collapse
Affiliation(s)
- Jun Lu
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia. .,Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
| | - David Wood
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,Discipline of Medical, Molecular and Forensic Sciences, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6009, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6009, Australia
| | - Daniel Wong
- Anatomical Pathology, PathWest, QEII Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
16
|
Yamashita K, Kohashi K, Yamada Y, Akatsuka S, Ikuta K, Nishida Y, Toyokuni S, Oda Y. Prognostic significance of the MDM2/HMGA2 ratio and histological tumor grade in dedifferentiated liposarcoma. Genes Chromosomes Cancer 2020; 60:26-37. [PMID: 33111425 DOI: 10.1002/gcc.22899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is a relatively common soft tissue sarcoma that results from the progression of well-differentiated liposarcoma (WDLPS). This study aimed to investigate the progression process and to clarify the pathological and genetic factors related to poor prognosis in DDLPS. In 32 DDLPS cases and five WDLPS cases, genetic factors were analyzed by custom comparative genomic hybridization (CGH) array, which was designed to densely cover gene regions known to be frequently amplified in WD/DDLPS. The analyses comparing primary and metastatic lesions and those comparing histologically different areas in the same tumor revealed intra-tumoral genetic heterogeneity and progression. According to a prognostic analysis comparing the good-prognosis and the poor-prognosis groups, we selected MDM2 and HMGA2 as candidate genes associated with poor and good prognosis, respectively. The ratios of the amplification or gain levels of MDM2 and HMGA2 expressed in log ratios (log[MDM2/HMGA2] = log[MDM2]-log[HMGA2]) were significantly associated with prognosis. An amplification or gain level of MDM2 that was more than twice that of HMGA2 (MDM2/HMGA2 > 2, log[MDM2/HMGA2] > 1) was strongly related to poor OS (P < .001) and poor distant metastasis-free survival (DMFS) (P < .001). In the pathological analysis of 44 cases of DDLPS, histological tumor grade, cellular atypia, and MDM2 immunoreactivity were related to overall survival (OS), while HMGA2 immunoreactivity tended to be associated with OS. Cellular atypia was also associated with DMFS. In conclusion, histological grade and MDM2 expression were determined to be prognostically important, and the MDM2/HMGA2 amplification or gain ratio was found to have significant prognostic value by the custom CGH array analysis.
Collapse
Affiliation(s)
- Kyoko Yamashita
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, Nagoya, Japan.,Medical Genomic Center, Nagoya University Hospital, Nagoya, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, Nagoya, Japan.,Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Novel Therapeutic Insights in Dedifferentiated Liposarcoma: A Role for FGFR and MDM2 Dual Targeting. Cancers (Basel) 2020; 12:cancers12103058. [PMID: 33092134 PMCID: PMC7589658 DOI: 10.3390/cancers12103058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Well-differentiated/dedifferentiated liposarcomas (WDLPS/DDLPS) are the most frequent soft tissue sarcomas. Despite the hopes raised by some targeted therapies, effective well-tolerated treatments for DDLPS are still lacking. Small-molecule FGFR inhibitors are currently evaluated in advanced clinical trials including the potent FDA-approved pan-FGFR inhibitor erdafitinib. We provide the first analysis of FGFR1-4 expression and their prognostic value in a series of 694 WDLPS/DDLPS samples. We identified FGFR1 and FGFR4 as prognostic biomarkers. We demonstrated erdafitinib efficacy and showed that erdafitinib combination with the MDM2 antagonist idasanutlin was highly synergistic in vitro and in vivo. The clinical relevance of our findings was supported by our data on a patient with DDLPS refractory to multiple lines of treatment whose tumor was stabilized for 12 weeks on erdafitinib. These data provide a rationale to use FGFR expression as a biomarker to select patients for clinical trials investigating FGFR inhibitors and to test combined erdafitinib and idasanutlin. Abstract We aimed to evaluate the therapeutic potential of the pan-FGFR inhibitor erdafitinib to treat dedifferentiated liposarcoma (DDLPS). FGFR expression and their prognostic value were assessed in a series of 694 samples of well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS). The effect of erdafitinib—alone or in combination with other antagonists—on tumorigenicity was evaluated in vitro and in vivo. We detected overexpression of FGFR1 and/or FGFR4 in a subset of WDLPS and DDLPS and demonstrated correlation of this expression with poor prognosis. Erdafitinib treatment reduced cell viability, inducing apoptosis and strong inhibition of the ERK1/2 pathway. Combining erdafitinib with the MDM2 antagonist RG7388 exerted a synergistic effect on viability, apoptosis, and clonogenicity in one WDLPS and two DDLPS cell lines. Efficacy of this combination was confirmed in vivo on a DDLPS xenograft. Importantly, we report the efficacy of erdafitinib in one patient with refractory DDLPS showing disease stabilization for 12 weeks. We provide evidence that the FGFR pathway has therapeutic potential for a subset of DDLPS and that an FGFR1/FGFR4 expression might constitute a powerful biomarker to select patients for FGFR inhibitor clinical trials. In addition, we show that combining erdafitinib with RG7388 is a promising strategy for patients with DDLPS that deserves further investigation in the clinical setting.
Collapse
|
18
|
Kukull BJ, Khalighi MA, Gundle KR, Hansford BG, Corless CL, Davis JL. Low-grade Osteosarcomatous Dedifferentiation of an Atypical Lipomatous Tumor in a Pediatric Patient. Pediatr Dev Pathol 2020; 23:240-246. [PMID: 31739757 DOI: 10.1177/1093526619889130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atypical and malignant lipomatous tumors are infrequent in the pediatric population. Within this uncommon cohort, the morphologically and genetically related spectrum of atypical lipomatous tumor/well-differentiated liposarcoma/dedifferentiated liposarcoma (ALT/WDL/DDLS) is markedly rare. Their shared characteristic molecular aberration is a genomic amplicon of a region of chromosome 12q, including the oncogenes MDM2 and CDK4. We present an unusual case of a pediatric patient with an ALT, with recurrence after 2 years in the form of a bone-forming mass, radiologically and pathologically mimicking parosteal osteosarcoma, a tumor also molecularly characterized by amplification of MDM2 and CDK4. However, with ample histologic sampling, a single focus of lipogenic differentiation was identified, thus representing the first near complete low-grade osteosarcomatous dedififferentation reported within ALT/WDL/DDLS and the first ever in pediatric patient. The case serves a reminder of a diagnosis differential and pitfalls within MDM2-amplified tumors.
Collapse
Affiliation(s)
- Benjamin J Kukull
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Mazdak A Khalighi
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Kenneth R Gundle
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon.,Operative Care Division, Portland VA Medical Center, Portland, Oregon
| | - Barry G Hansford
- Department of Radiology, Oregon Health & Science University, Portland, Oregon
| | - Christopher L Corless
- Department of Pathology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Portland, Oregon
| | - Jessica L Davis
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
19
|
Yang L, Chen S, Luo P, Yan W, Wang C. Liposarcoma: Advances in Cellular and Molecular Genetics Alterations and Corresponding Clinical Treatment. J Cancer 2020; 11:100-107. [PMID: 31892977 PMCID: PMC6930414 DOI: 10.7150/jca.36380] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liposarcoma is a malignant tumor of mesenchymal origin with significant tissue diversity. It is composed of adipocytes with different degrees of differentiation and different degrees of heteromorphosis. It is not sensitive to traditional radiotherapy and chemotherapy and has a poor prognosis. In recent years, with the rapid development of basic immunology, molecular genetics and tumor molecular biology, the histological classification of liposarcoma has become increasingly clear. More and more new methods and technologies, such as gene expression profile analysis, the whole genome sequencing, miRNA expression profile analysis and RNA sequencing, have been successfully applied to liposarcoma, bringing about a deeper understanding of gene expression changes and molecular pathogenic mechanisms in the occurrence and development of liposarcoma. This study reviews the present research status and progress of cellular and molecular alterations of liposarcoma and corresponding clinical treatment progress.
Collapse
Affiliation(s)
- Lingge Yang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiqi Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Luo
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Parikh MP, Chandran A, Satiya J, Raja S, Sanaka MR. Dedifferentiated Liposarcoma in a Giant Esophageal Polyp: A Case Report and Review of the Literature. Cureus 2019; 11:e4480. [PMID: 31249757 PMCID: PMC6579326 DOI: 10.7759/cureus.4480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023] Open
Abstract
Soft tissue sarcomas represent an extremely rare cause of esophageal masses, and undifferentiated sarcomas are rarer. The proportion of dedifferentiated liposarcomas (DDL) is even lower. The case of a 58-year-old male who complained of dysphagia and was found to have an 18-centimeter long esophageal mass/polyp on esophagogastroduodenoscopy is presented. The lesion was resected endoscopically and a diagnosis of DDL was confirmed by fluorescence in situ hybridization. Due to its rarity, the treatment experience with esophageal DDLs is limited. However, based on our experience, endoscopic resection of the lesion can be considered as the treatment of choice when feasible. We performed a review of the literature to identify and analyze similar reported cases.
Collapse
Affiliation(s)
- Malav P Parikh
- Gastroenterology and Hepatology, Cleveland Clinic Foundation, Cleveland, USA
| | - Aswathi Chandran
- Gastroenterology, Hepatology and Nutrition, University of Texas Health Science Center at Houston, Houston, USA
| | - Jinendra Satiya
- Internal Medicine, University of Miami, John F Kennedy Medical Center, Atlantis, USA
| | - Siva Raja
- Thoracic Surgery, Cleveland Clinic Foundation, Cleveland, USA
| | | |
Collapse
|
21
|
Abstract
Adipocytic neoplasms include a diversity of both benign tumors (lipomas) and malignancies (liposarcomas), and each tumor type is characterized by its own unique molecular alterations driving tumorigenesis. Work over the past 30 years has established the diagnostic utility of several of these characteristic molecular alterations (e.g. MDM2 amplification in well- and dedifferentiated liposarcoma, FUS/EWSR1-DDIT3 gene fusions in myxoid liposarcoma, RB1 loss in spindle cell/pleomorphic lipoma). More recent studies have focused on additional molecular alterations which may have therapeutic or prognostic impact. This review will summarize several of the important molecular findings in adipocytic tumors that have been described over the past 10 years.
Collapse
Affiliation(s)
- Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Hanes R, Munthe E, Grad I, Han J, Karlsen I, McCormack E, Meza-Zepeda LA, Stratford EW, Myklebost O. Preclinical Evaluation of the Pan-FGFR Inhibitor LY2874455 in FRS2-Amplified Liposarcoma. Cells 2019; 8:cells8020189. [PMID: 30795553 PMCID: PMC6406403 DOI: 10.3390/cells8020189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background: FGFR inhibition has been proposed as treatment for dedifferentiated liposarcoma (DDLPS) with amplified FRS2, but we previously only demonstrated transient cytostatic effects when treating FRS2-amplified DDLPS cells with NVP-BGJ398. Methods: Effects of the more potent FGFR inhibitor LY2874455 were investigated in three DDLPS cell lines by measuring effects on cell growth and apoptosis in vitro and also testing efficacy in vivo. Genome, transcriptome and protein analyses were performed to characterize the signaling components in the FGFR pathway. Results: LY2874455 induced a stronger, longer-lasting growth inhibitory effect and moderate level of apoptosis for two cell lines. The third cell line, did not respond to FGFR inhibition, suggesting that FRS2 amplification alone is not sufficient to predict response. Importantly, efficacy of LY2874455 was confirmed in vivo, using an independent FRS2-amplified DDLPS xenograft model. Expression of FRS2 was similar in the responding and non-responding cell lines and we could not find any major difference in downstream FGFR signaling. The only FGF expressed by unstimulated non-responding cells was the intracellular ligand FGF11, whereas the responding cell lines expressed extracellular ligand FGF2. Conclusion: Our study supports LY2874455 as a better therapy than NVP-BGJ398 for FRS2-amplified liposarcoma, and a clinical trial is warranted.
Collapse
Affiliation(s)
- Robert Hanes
- Department of Tumor Biology, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
- Norwegian Cancer Genomics Consortium, 0379 Oslo, Norway.
| | - Else Munthe
- Department of Tumor Biology, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
| | - Iwona Grad
- Department of Tumor Biology, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
| | - Jianhua Han
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Sciences, University of Bergen, 5021 Bergen, Norway.
| | - Ida Karlsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Sciences, University of Bergen, 5021 Bergen, Norway.
- KinN Therapeutics AS, 5021 Bergen, Norway.
| | - Emmet McCormack
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Sciences, University of Bergen, 5021 Bergen, Norway.
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
- Norwegian Cancer Genomics Consortium, 0379 Oslo, Norway.
- Genomics Core Facility, Department of Core Facilities, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
| | - Eva Wessel Stratford
- Department of Tumor Biology, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
| | - Ola Myklebost
- Department of Tumor Biology, Institute of Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
- Norwegian Cancer Genomics Consortium, 0379 Oslo, Norway.
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
23
|
|
24
|
Somaiah N, Beird HC, Barbo A, Song J, Mills Shaw KR, Wang WL, Eterovic K, Chen K, Lazar A, Conley AP, Ravi V, Hwu P, Futreal A, Simon G, Meric-Bernstam F, Hong D. Targeted next generation sequencing of well-differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and mutations. Oncotarget 2018; 9:19891-19899. [PMID: 29731991 PMCID: PMC5929434 DOI: 10.18632/oncotarget.24924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/20/2018] [Indexed: 11/28/2022] Open
Abstract
Well-differentiated/dedifferentiated liposarcoma is a common soft tissue sarcoma with approximately 1500 new cases per year. Surgery is the mainstay of treatment but recurrences are frequent and systemic options are limited. 'Tumor genotyping' is becoming more common in clinical practice as it offers the hope of personalized targeted therapy. We wanted to evaluate the results and the clinical utility of available next-generation sequencing panels in WD/DD liposarcoma. Patients who had their tumor sequenced by either FoundationOne (n = 13) or the institutional T200/T200.1 panels (n = 7) were included in this study. Significant copy number alterations were identified, but mutations were infrequent. Out of the 27 mutations detected in 7 samples, 8 (CTNNB1, MECOM, ZNF536, EGFR, EML4, CSMD3, PBRM1, PPP1R3A) were identified as deleterious (on Condel, PolyPhen and SIFT) and a truncating mutation was found in NF2. Of these, EGFR and NF2 are potential driver mutations and have not been reported previously in liposarcoma. MDM2 and CDK4 amplification was universally present in all the tested samples and multiple other recurrent genes with high amplification or high deletion were detected. Many of these targets are potentially actionable. Eight patients went on to receive an MDM2 inhibitor with a median time to progression of 23 months (95% CI: 10-83 months).
Collapse
Affiliation(s)
- Neeta Somaiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Andrea Barbo
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Juhee Song
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Kenna R. Mills Shaw
- Khalifa Institute for Personalized Cancer Therapy (IPCT), University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Karina Eterovic
- Khalifa Institute for Personalized Cancer Therapy (IPCT), University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Ken Chen
- Khalifa Institute for Personalized Cancer Therapy (IPCT), University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Alexander Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Patrick Hwu
- Division Chair, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - George Simon
- Department of Thoracic Medical Oncology, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| | - David Hong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA
| |
Collapse
|
25
|
Gouravan S, Meza-Zepeda LA, Myklebost O, Stratford EW, Munthe E. Preclinical Evaluation of Vemurafenib as Therapy for BRAF V600E Mutated Sarcomas. Int J Mol Sci 2018; 19:ijms19040969. [PMID: 29570692 PMCID: PMC5979358 DOI: 10.3390/ijms19040969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
The BRAFV600E mutation, which in melanoma is targetable with vemurafenib, is also found in sarcomas and we here evaluate the therapeutic potential in sarcoma cell lines. Methods: Four sarcoma cell lines harboring the BRAFV600E mutation, representing liposarcomas (SA-4 and SW872), Ewing sarcoma (A673) and atypical synovial sarcoma (SW982), were treated with vemurafenib and the effects on cell growth, apoptosis, cell cycle progression and cell signaling were determined. Results: Vemurafenib induced a strong cytostatic effect in SA-4 cells, mainly due to cell cycle arrest, whereas only moderate levels of apoptosis were observed. However, a high dose was required compared to BRAFV600E mutated melanoma cells, and removal of vemurafenib demonstrated that the continuous presence of drug was required for sustained growth inhibition. A limited growth inhibition was observed in the other three cell lines. Protein analyses demonstrated reduced phosphorylation of ERK during treatment with vemurafenib in all the four sarcoma cell lines confirming that the MAPK pathway is active in these cell lines, and that the pathway can be inhibited by vemurafenib, but also that these cells can proliferate despite this. Conclusions: These findings indicate that vemurafenib alone would not be an efficient therapy against BRAFV600E mutated sarcomas. However, further investigations of combination with other drugs are warranted.
Collapse
Affiliation(s)
- Sarina Gouravan
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway.
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway.
- Genomics Core Facility, Department of Core facility, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway.
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Eva W Stratford
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway.
| | - Else Munthe
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway.
| |
Collapse
|
26
|
Jing W, Lan T, Chen H, Zhang Z, Chen M, Peng R, He X, Zhang H. Amplification of FRS2 in atypical lipomatous tumour/well-differentiated liposarcoma and de-differentiated liposarcoma: a clinicopathological and genetic study of 146 cases. Histopathology 2018; 72:1145-1155. [PMID: 29368794 DOI: 10.1111/his.13473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/18/2018] [Indexed: 02/05/2023]
Abstract
AIMS The aim of this study was to evaluate the frequency of FRS2 amplification and its relationship with the clinicopathological features of atypical lipomatous tumour (ALT)/well-differentiated liposarcoma (WDL)/de-differentiated liposarcoma (DDL). METHODS AND RESULTS FRS2 and MDM2 fluorescence in-situ hybridisation (FISH) was performed on 146 tumours (70 ALT/WDLs and 76 DDLs). One hundred and eight control samples were included for FRS2 analysis. FRS2 amplification was detected in 136 of 146 (93.2%) ALT/WDL/DDLs, including 63 ALT/WDLs and 73 DDLs. A higher FRS2/CEP12 ratio was observed in DDLs than in ALT/WDLs (P = 0.0005). The FRS2/CEP12 ratio of peripheral tumours was lower than that of central tumours (P = 0.00004). All the ALT/WDL/DDLs showed MDM2 amplification (100%). The MDM2+ /FRS2- series included seven ALT/WDLs and three DDLs. Four of seven (57.1%) MDM2+ /FRS2- ALT/WDLs occurred in peripheral sites, slightly higher than the percentage of MDM2+ /FRS2+ ALT/WDLs (28 of 63, 44.4%). All the three MDM2+ /FRS2- DDLs (100%) were peripheral tumours, a much higher proportion than that of MDM2+ /FRS2+ DDLs (10 of 73, 13.7%). A high percentage of homologous pleomorphic liposarcoma-like DDLs (two of three) were observed in the MDM2+ /FRS2- group. In the control group all the parosteal osteosarcomas (five of five, 100%) were FRS2 amplified, whereas the remaining 103 samples were FRS2 non-amplified. CONCLUSIONS These findings suggest that FRS2 is amplified consistently in ALT/WDL/DDLs and offer another avenue for the investigation of the biology of this tumour group. MDM2+ /FRS2- cases seem to be associated with certain clinicopathological features, and further investigation is needed.
Collapse
Affiliation(s)
- Wenyi Jing
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Lan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Peng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma. Oncotarget 2018; 7:54583-54595. [PMID: 27409346 PMCID: PMC5342366 DOI: 10.18632/oncotarget.10518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
Sarcomas are rare cancers with limited treatment options. Patients are generally treated by chemotherapy and/or radiotherapy in combination with surgery, and would benefit from new personalized approaches. In this study we demonstrate the potential of combining personal genomic characterization of patient tumors to identify targetable mutations with in vitro testing of specific drugs in patient-derived cell lines. We have analyzed three metastases from a patient with high-grade metastatic dedifferentiated liposarcoma (DDLPS) by exome and transcriptome sequencing as well as DNA copy number analysis. Genomic aberrations of several potentially targetable genes, including amplification of KITLG and FRS2, in addition to amplification of CDK4 and MDM2, characteristic of this disease, were identified. We evaluated the efficacy of drugs targeting these aberrations or the corresponding signaling pathways in a cell line derived from the patient. Interestingly, the pan-FGFR inhibitor NVP-BGJ398, which targets FGFR upstream of FRS2, strongly inhibited cell proliferation in vitro and induced an accumulation of cells into the G0 phase of the cell cycle. This study indicates that FGFR inhibitors have therapeutic potential in the treatment of DDLPS with amplified FRS2.
Collapse
|
28
|
Ricciotti RW, Baraff AJ, Jour G, Kyriss M, Wu Y, Liu Y, Li SC, Hoch B, Liu YJ. High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases. Cancer Genet 2017; 218-219:69-80. [PMID: 29153098 DOI: 10.1016/j.cancergen.2017.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
Dedifferentiated liposarcoma (DDLS) is characterized at the molecular level by amplification of genes within 12q13-15 including MDM2 and CDK4. However, other than FNCLCC grade, prognostic markers are limited. We aim to identify molecular prognostic markers for DDLS to help risk stratify patients. To this end, we studied 49 cases of DDLS in our institutional archives and performed cytogenomic microarray analysis on 47 cases. Gene copy numbers for 12 loci were evaluated and correlated with outcome data retrieved from our institutional electronic medical records. Using cut point analysis and comparison of Kaplan-Meier survival curves by log rank tests, high amplification levels of MDM2 (>38 copies) and CDK4 (>30 copies) correlated with decreased disease free survival (DFS) (P = .0168 and 0.0169 respectively) and disease specific survival (DSS) (P = .0082 and 0.0140 respectively). Additionally, MDM2 and CDK4 showed evidence of a synergistic effect so that each additional copy of one enhances the effect on prognosis of each additional copy of the other for decreased DFS (P = .0227, 0.1% hazard). High amplification of JUN (>16 copies) also correlated with decreased DFS (P = .0217), but not DSS. The presence of copy number alteration at 3q29 correlated with decreased DSS (P = .0192). The presence of >10 mitoses per 10 high power fields and FNCLCC grade 3 also correlated with decreased DFS (P = .0310 and 0.0254 respectively). MDM2 and CDK4 gene amplification levels, along with JUN amplification and copy alterations at 3q29, can be utilized for predicting outcome in patients with DDLS.
Collapse
Affiliation(s)
- Robert W Ricciotti
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Aaron J Baraff
- Department of BioStatistics, University of Washington School of Medicine, Seattle, WA
| | - George Jour
- Department of Pathology and Laboratory Medicine, MD Anderson Cancer Center at Cooper, Camden, NJ
| | | | - Yu Wu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Yuhua Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Shao-Chun Li
- Department of Pharmacology, School of Medicine, Hebei University, PR China
| | - Benjamin Hoch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA.
| | - Yajuan J Liu
- Department of Pathology, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
29
|
Wang L, Lu J, Wu H, Wang L, Liang X, Liang Z, Liu T. Expression of signaling adaptor proteins predicts poor prognosis in pancreatic ductal adenocarcinoma. Diagn Pathol 2017; 12:42. [PMID: 28558797 PMCID: PMC5450263 DOI: 10.1186/s13000-017-0633-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 05/12/2017] [Indexed: 11/17/2022] Open
Abstract
Background Adaptor proteins bridge the gap between cell surface receptors and their downstream signaling elements. The clinicopathological and prognostic values of adaptor proteins remain poorly understood. The purpose of the present study was to explore the expression and prognostic value of three adaptor proteins: GRB2-associated binding protein 2 (GAB2), CRK-like protein (CRKL) and fibroblast growth factor receptor substrate 2 (FRS2) in pancreatic ductal adenocarcinoma (PDAC). Methods The expression of GAB2, CRKL, and FRS2 in 77 formalin fixed paraffin embedded (FFPE) samples from 77 PDAC patients, along with three paired fresh PDAC and matched normal tissues from 3 PDAC patients was analyzed by immunohistochemistry and western blot, respectively. The association between the expression of the three proteins and the clinicopathological factors of PDAC was assessed by χ2 test. The correlation between the expression levels of the three proteins was analyzed by Spearman rank correlation analyses; Kaplan-Meier survival analyses were also performed. Results IHC was successful in 75, 76, and 77 cases for GAB2, CRKL, and FRS2, respectively. Of which, the positive rate of GAB2, CRKL, and FRS2 protein expression was 40.00% (30/75), 53.95% (41/76) and 35.06% (27/77), respectively. The positive rate of GAB2, CRKL and FRS2 co-expression was 16.88% (13/77). Though there was no association between GAB2 expression, CRKL expression, FRS2 expression, GAB2/CRKL/FRS2 co-expression and the clinicopathological parameters of PDAC, positive correlations were observed between the expressions of the three proteins. Further, univariate survival analysis showed that positive expression of GAB2, CRKL and FRS2 and co-expression of GAB2/CRKL/FRS2 of PDAC predicted poor clinical outcomes, and multivariate survival analysis suggested that positive expression of GAB2 and positive co-expression of GAB2/CRKL/FRS2 were independent prognostic factors for disease-free survival (DFS) and overall survival (OS), respectively. Conclusion In conclusion, GAB2, CRKL, and FRS2 may be potential prognosticators and therapeutic targets for PDAC patients.
Collapse
Affiliation(s)
- Lili Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junliang Lu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaolong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Tonghua Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
30
|
Koczkowska M, Lipska-Ziętkiewicz BS, Iliszko M, Ryś J, Miettinen M, Lasota J, Biernat W, Harazin-Lechowska A, Kruczak A, Limon J. Application of high-resolution genomic profiling in the differential diagnosis of liposarcoma. Mol Cytogenet 2017; 10:7. [PMID: 28331547 PMCID: PMC5356274 DOI: 10.1186/s13039-017-0309-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/06/2017] [Indexed: 01/04/2023] Open
Abstract
Background Rarity and heterogeneity of liposarcomas (LPS) make their diagnosis difficult even for sarcoma-experts pathologists. The molecular mechanism underlying the development and progression of liposarcomas (LPS) remains only partially known. In order to identify and compare the genomic profiles, we analyzed array-based comparative genomic hybridization (array-CGH) profiles of 66 liposarcomas, including well-differentiated (WDLPS), dedifferentiated (DDLPS) and myxoid (MLPS) subtypes. Results Copy number aberrations (CNAs) were identified in 98% of WDLPS and DDLPS and in 95% of MLPS cases. The minimal common region of amplification at 12q14.1q21.1 was observed in 96% of WDLPS and DDLPS cases. Four regions of CNAs, including losses of chromosome 6, 11 and 13 and gains of chromosome 14 were classified as recurrent in DDLPS; at least one was identified in 74% of DDLPS tumors. The DDLPS-associated losses were much more common in tumors with increased genomic complexity. In MLPS, the most frequent CNAs were losses of chromosome 6 (40%) and gains of chromosome 1 (30%), with the minimal overlapping regions 6q14.1q22.31 and 1q25.1q32.2, respectively. Conclusions Our findings show that the application of array-CGH allows to delineate clearly the genomic profiles of WDLPS, DDLPS and MLPS that reflect biological differences between these tumors. Although CNAs varied widely, the subtypes of tumors have characteristic genomic profiles that could facilitate the differential diagnosis of LPS subtypes, especially between WDLPS and DDLPS. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0309-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Koczkowska
- Department of Biology and Genetics, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdansk, Poland
| | | | - Mariola Iliszko
- Department of Biology and Genetics, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdansk, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, M. Sklodowska-Curie Memorial Institute of Oncology, 11 Garncarska Street, 31-115 Krakow, Poland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Building 10, Room B1B47, 10 Center Drive, Bethesda, 20892 MD USA
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Building 10, Room B1B47, 10 Center Drive, Bethesda, 20892 MD USA
| | - Wojciech Biernat
- Department of Pathology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Agnieszka Harazin-Lechowska
- Department of Tumor Pathology, M. Sklodowska-Curie Memorial Institute of Oncology, 11 Garncarska Street, 31-115 Krakow, Poland
| | - Anna Kruczak
- Department of Tumor Pathology, M. Sklodowska-Curie Memorial Institute of Oncology, 11 Garncarska Street, 31-115 Krakow, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdansk, Poland
| |
Collapse
|
31
|
Patel RB, Li T, Liao Z, Jaldeepbhai JA, Perera HAPNV, Muthukuda SK, Dhirubhai DH, Singh V, Du X, Yang J. Recent translational research into targeted therapy for liposarcoma. Stem Cell Investig 2017; 4:21. [PMID: 28447036 DOI: 10.21037/sci.2017.02.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/19/2017] [Indexed: 12/18/2022]
Abstract
Liposarcomas (LPS) are among the most common soft tissue sarcomas, originating from adipocytes. Treatment for LPS typically involves surgical resection and radiation therapy, while the use of conventional cytotoxic chemotherapy for unresectable or metastatic LPS remains controversial. This review summarizes the results of recent translational research and trials of novel therapies targeting various genetic and molecular aberrations in different subtypes of LPS. Genetic aberrations such as the 12q13-15 amplicon, genetic amplification of MDM2, CDK4, TOP2A, PTK7, and CHEK1, point mutations in CTNNB1, CDH1, FBXW7, and EPHA1, as the fusion of FUS-DDIT3/EWSR1-DDIT3 are involved in the pathogenesis LPS and represent potential therapeutic candidates. Tyrosine kinase inhibitors targeting MET, AXL, IGF1R, EGFR, VEGFR2, PDGFR-β and Aurora kinase are effective in certain types of LPS. Abnormalities in the PI3K/Akt signaling pathway deregulation of C/EBP-α and its partner PPAR-γ, and the interaction between calreticulin (CRT) and CD47 are also promising therapeutic targets. These promising new approaches may help to supplement existing treatments for LPS.
Collapse
Affiliation(s)
- Rashi Bharat Patel
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Jivani Aakash Jaldeepbhai
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - H A Pavanika N V Perera
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Sujani Kaushalya Muthukuda
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Dholiya Hardeep Dhirubhai
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Vaibhav Singh
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xiaoling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300061, China
| | - Jilong Yang
- International Medical School, Tianjin Medical University, Tianjin 300061, China.,Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| |
Collapse
|
32
|
Bill KLJ, Casadei L, Prudner BC, Iwenofu H, Strohecker AM, Pollock RE. Liposarcoma: molecular targets and therapeutic implications. Cell Mol Life Sci 2016; 73:3711-8. [PMID: 27173057 PMCID: PMC7175098 DOI: 10.1007/s00018-016-2266-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 01/07/2023]
Abstract
Liposarcoma (LPS) is the most common soft tissue sarcoma and accounts for approximately 20 % of all adult sarcomas. Current treatment modalities (surgery, chemotherapy, and radiotherapy) all have limitations; therefore, molecularly driven studies are needed to improve the identification and increased understanding of genetic and epigenetic deregulations in LPS if we are to successfully target specific tumorigenic drivers. It can be anticipated that such biology-driven therapeutics will improve treatments by selectively deleting cancer cells while sparing normal tissues. This review will focus on several therapeutically actionable molecular markers identified in well-differentiated LPS and dedifferentiated LPS, highlighting their potential clinical applicability.
Collapse
Affiliation(s)
- Kate Lynn J Bill
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Bethany C Prudner
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Hans Iwenofu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Anne M Strohecker
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
33
|
Zhou WY, Zheng H, Du XL, Yang JL. Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients. Cancer Biol Med 2016; 13:260-8. [PMID: 27458533 PMCID: PMC4944539 DOI: 10.20892/j.issn.2095-3941.2015.0102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studies on the FGF/FGFR pathway have been conducted in sarcoma, which has a poor outcome with traditional treatments such as surgery, chemotherapy, and radiotherapy. Hence, in the present review, we provide an overview of the role of the FGF/FGFR pathway signal in sarcoma and FGFR inhibitors, which might be new targets for the treatment of sarcomas according to recent research.
Collapse
Affiliation(s)
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiao-Ling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300061, China
| | | |
Collapse
|
34
|
Oncogene mutation profiling reveals poor prognosis associated with FGFR1/3 mutation in liposarcoma. Hum Pathol 2016; 55:143-50. [PMID: 27237367 DOI: 10.1016/j.humpath.2016.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 01/11/2023]
Abstract
Liposarcoma (LPS) is one of the most prevalent soft tissue sarcomas. LPS shows a poor response to radiation and chemotherapy. The causes of death in patients with LPS include locally recurrent and metastatic disease. We sought to examine novel gene mutations and pathways in primary and matched recurrent LPSs to identify potential therapeutic targets. We conducted a high-throughput analysis of 238 known mutations in 19 oncogenes using Sequenom MassARRAY technology. Nucleic acids were extracted from 19 primary and recurrent LPS samples, encompassing 9 dedifferentiated LPSs (DDLPS), 9 myxoid/round cell LPSs, and 1 pleomorphic LPS. Mutation screening revealed missense mutations in 21.1% (4/19) of the LPS specimens, including 4 different genes (FGFR1, FGFR3, PIK3CA, and KIT). Based on histologic subtypes, 22.2% DDLPS (2/9) and 22.2% myxoid cell LPS (2/9) contained gene mutations. Specifically, 3 (23.1%) of 13 primary tumors harbored mutations. Furthermore, although gene mutations were identified in 1 (11.1%) of 9 recurrent LPS samples, the difference between the primary and the recurrence was not statistically significant. Analysis of patient survival data indicated that patients harboring FGFR1/3 mutations experienced reduced overall survival (P<.05). Despite the limited number of samples, our findings provide the first evidence of FGFR1/3 mutations in DDLPS, which were associated with poor clinical outcomes. The FGFR pathway may play an important role in the development and progression of DDLPS and warrants further investigation; moreover, PIK3CA mutation is a common event (11.1%) in myxoid cell LPS.
Collapse
|
35
|
Leibowitz ML, Zhang CZ, Pellman D. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Annu Rev Genet 2015; 49:183-211. [DOI: 10.1146/annurev-genet-120213-092228] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mitchell L. Leibowitz
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | - Cheng-Zhong Zhang
- Department of Pediatric Oncology,
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
| | - David Pellman
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
36
|
Saâda-Bouzid E, Burel-Vandenbos F, Ranchère-Vince D, Birtwisle-Peyrottes I, Chetaille B, Bouvier C, Château MC, Peoc'h M, Battistella M, Bazin A, Gal J, Michiels JF, Coindre JM, Pedeutour F, Bianchini L. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol 2015; 28:1404-14. [PMID: 26336885 DOI: 10.1038/modpathol.2015.96] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/09/2022]
Abstract
HMGA2, CDK4, and JUN genes have been described as frequently coamplified with MDM2 in atypical lipomatous tumor, well-differentiated liposarcoma, and dedifferentiated liposarcoma. We studied the frequency of amplification of these genes in a series of 48 dedifferentiated liposarcomas and 68 atypical lipomatous tumors/well-differentiated liposarcomas. We correlated their amplification status with clinicopathological features and outcomes. Histologically, both CDK4 (P=0.007) and JUN (P=0.005) amplifications were associated with dedifferentiated liposarcoma, whereas amplification of the proximal parts of HMGA2 (5'-untranslated region (UTR) and exons 1-3) was associated with atypical lipomatous tumor/well-differentiated liposarcoma (P=0.01). CDK4 amplification was associated with axial tumors. Amplification of 5'-UTR and exons 1-3 of HMGA2 was associated with primary status and grade 1. Shorter overall survival was correlated with: age >64 years (P=0.03), chemotherapy used in first intent (P<0.001), no surgery (P=0.003), grade 3 (P<0.001), distant metastasis (P<0.001), node involvement (P=0.006), and CDK4 amplification (P=0.07). In multivariate analysis, distant metastasis (HR=8.8) and grade 3 (HR=18.2) were associated with shorter overall survival. A shorter recurrence-free survival was associated with dedifferentiated liposarcoma (P<0.001), grade 3 (P<0.001), node involvement (P<0.001), distant metastasis (P=0.02), recurrent status (P=0.009), axial location (P=0.001), and with molecular features such as CDK4 (P=0.05) and JUN amplification (P=0.07). Amplification of 5'-UTR and exons 1-3 (P=0.08) and 3'-UTR (P=0.01) of HMGA2 were associated with longer recurrence-free survival. Distant metastasis was associated with shorter recurrence-free survival (HR=5.8) in multivariate analysis. Dedifferentiated liposarcoma type was associated with axial location, grade 3 and recurrent status. In conclusion, we showed that the amplification of HMGA2 was associated with the atypical lipomatous tumor/well-differentiated liposarcoma histological type and a good prognosis, whereas CDK4 and JUN amplifications were associated with dedifferentiated liposarcoma histology and a bad prognosis. In addition, we also provided the first description of the molecular evolution of a well-differentiated liposarcoma into four successive dedifferentiated liposarcoma relapses, which was consistent with our general observations.
Collapse
Affiliation(s)
- Esma Saâda-Bouzid
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France.,Medical Oncology Department, Centre Antoine-Lacassagne, Nice, France
| | | | | | | | - Bruno Chetaille
- Biopathology Department, Institut Paoli-Calmettes, Marseille, France
| | - Corinne Bouvier
- Pathology Department, Marseille University Hospital La Timone, Marseille, France
| | | | - Michel Peoc'h
- Laboratory of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Maxime Battistella
- Laboratory of Pathology, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - Audrey Bazin
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France
| | - Jocelyn Gal
- Department of Biostatistics, Centre Antoine-Lacassagne, Nice, France
| | | | | | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France
| | - Laurence Bianchini
- Laboratory of Solid Tumor Genetics, IRCAN, Nice University Hospital, Nice, France.,Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
37
|
Luo LY, Hahn WC. Oncogenic Signaling Adaptor Proteins. J Genet Genomics 2015; 42:521-529. [PMID: 26554907 PMCID: PMC4643408 DOI: 10.1016/j.jgg.2015.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023]
Abstract
Signal transduction pathways activated by receptor tyrosine kinases (RTK) play a critical role in many aspects of cell function. Adaptor proteins serve an important scaffolding function that facilitates key signaling transduction events downstream of RTKs. Recent work integrating both structural and functional genomic approaches has identified several adaptor proteins as new oncogenes. In this review, we focus on the discovery, structure and function, and therapeutic implication of three of these adaptor oncogenes, CRKL, GAB2, and FRS2. Each of the three genes is recurrently amplified in lung adenocarcinoma or ovarian cancer, and is essential to cancer cell lines that harbor such amplification. Overexpression of each gene is able to transform immortalized human cell lines in in vitro or in vivo models. These observations identify adaptor protein as a distinct class of oncogenes and potential therapeutic targets.
Collapse
Affiliation(s)
- Leo Y Luo
- Health Sciences and Technology Program, Harvard Medical School, Boston, MA 02115, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
38
|
Hierro C, Rodon J, Tabernero J. Fibroblast Growth Factor (FGF) Receptor/FGF Inhibitors: Novel Targets and Strategies for Optimization of Response of Solid Tumors. Semin Oncol 2015; 42:801-19. [PMID: 26615127 DOI: 10.1053/j.seminoncol.2015.09.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor receptor (FGFR) pathway plays a major role in several biological processes, from organogenesis to metabolism homeostasis and angiogenesis. Several aberrations, including gene amplifications, point mutations, and chromosomal translocations have been described across solid tumors. Most of these molecular alterations promote multiple steps of carcinogenesis in FGFR oncogene-addicted cells, increasing cell proliferation, angiogenesis, and drug resistance. Data suggest that upregulation of FGFR signaling is a common event in many cancer types. The FGFR pathway thus arises as a potential promising target for cancer treatment. Several FGFR inhibitors are currently under development. Initial preclinical results have translated into limited successful clinical responses when first-generation, nonspecific FGFR inhibitors were evaluated in patients. The future development of selective and unselective FGFR inhibitors will rely on a better understanding of the tissue-specific role of FGFR signaling and identification of biomarkers to select those patients who will benefit the most from these drugs. Further studies are warranted to establish the predictive significance of the different FGFR-aberrations and to incorporate them into clinical algorithms, now that second-generation, selective FGFR inhibitors exist.
Collapse
Affiliation(s)
- Cinta Hierro
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jordi Rodon
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
39
|
Hyperactivated FRS2α-mediated signaling in prostate cancer cells promotes tumor angiogenesis and predicts poor clinical outcome of patients. Oncogene 2015; 35:1750-9. [PMID: 26096936 DOI: 10.1038/onc.2015.239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022]
Abstract
Metastasis of tumors requires angiogenesis, which is comprised of multiple biological processes that are regulated by angiogenic factors. The fibroblast growth factor (FGF) is a potent angiogenic factor and aberrant FGF signaling is a common property of tumors. Yet, how the aberration in cancer cells contributes to angiogenesis in the tumor is not well understood. Most studies of its angiogenic signaling mechanisms have been in endothelial cells. FGF receptor substrate 2α (FRS2α) is an FGF receptor-associated protein required for activation of downstream signaling molecules that include those in the mitogen-activated protein and AKT kinase pathways. Herein, we demonstrated that overactivation and hyperactivity of FRS2α, as well as overexpression of cJUN and HIF1α, were positively correlated with vessel density and progression of human prostate cancer (PCa) toward malignancy. We also demonstrate that FGF upregulated the production of vascular endothelial growth factor A mainly by increasing expression of cJUN and HIF1α. This then promoted recruitment of endothelial cells and vessel formation for the tumor. Tumor angiogenesis in mouse PCa tissues was compromised by tissue-specific ablation of Frs2α in prostate epithelial cells. Depletion of Frs2α expression in human PCa cells and in a preclinical xenograft model, MDA PCa 118b, also significantly suppressed tumor angiogenesis accompanied with decreased tumor growth in the bone. The results underscore the angiogenic role of FRS2α-mediated signaling in tumor epithelial cells in angiogenesis. They provide a rationale for treating PCa with inhibitors of FGF signaling. They also demonstrate the potential of overexpressed FRS2α as a biomarker for PCa diagnosis, prognosis and response to therapies.
Collapse
|
40
|
Luo LY, Kim E, Cheung HW, Weir BA, Dunn GP, Shen RR, Hahn WC. The Tyrosine Kinase Adaptor Protein FRS2 Is Oncogenic and Amplified in High-Grade Serous Ovarian Cancer. Mol Cancer Res 2015; 13:502-9. [PMID: 25368431 PMCID: PMC4369154 DOI: 10.1158/1541-7786.mcr-14-0407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED High-grade serous ovarian cancers (HGSOC) are characterized by widespread recurrent regions of copy-number gain and loss. Here, we interrogated 50 genes that are recurrently amplified in HGSOC and essential for cancer proliferation and survival in ovarian cancer cell lines. FRS2 is one of the 50 genes located on chromosomal region 12q15 that is focally amplified in 12.5% of HGSOC. We found that FRS2-amplified cancer cell lines are dependent on FRS2 expression, and that FRS2 overexpression in immortalized human cell lines conferred the ability to grow in an anchorage-independent manner and as tumors in immunodeficient mice. FRS2, an adaptor protein in the FGFR pathway, induces downstream activation of the Ras-MAPK pathway. These observations identify FRS2 as an oncogene in a subset of HGSOC that harbor FRS2 amplifications. IMPLICATIONS These studies identify FRS2 as an amplified oncogene in a subset of HGSOC. FRS2 expression is essential to ovarian cancer cells that harbor 12q15 amplification.
Collapse
Affiliation(s)
- Leo Y Luo
- Health Sciences and Technology Program, Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eejung Kim
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hiu Wing Cheung
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Barbara A Weir
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gavin P Dunn
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Rhine R Shen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Astellas Pharma U.S. Inc., Santa Monica, California
| | - William C Hahn
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
41
|
Matthyssens LE, Creytens D, Ceelen WP. Retroperitoneal liposarcoma: current insights in diagnosis and treatment. Front Surg 2015; 2:4. [PMID: 25713799 PMCID: PMC4322543 DOI: 10.3389/fsurg.2015.00004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
Retroperitoneal liposarcoma (RLS) is a rare, biologically heterogeneous tumor that present considerable challenges due to its size and deep location. As a consequence, the majority of patients with high-grade RLS will develop locally recurrent disease following surgery, and this constitutes the cause of death in most patients. Here, we review current insights and controversies regarding histology, molecular biology, extent of surgery, (neo)adjuvant treatment, and systemic treatment including novel targeted agents in RLS.
Collapse
Affiliation(s)
| | - David Creytens
- Department of Pathology, Ghent University Hospital , Ghent , Belgium
| | - Wim P Ceelen
- Department of Surgery, Ghent University Hospital , Ghent , Belgium
| |
Collapse
|
42
|
STAT6 is amplified in a subset of dedifferentiated liposarcoma. Mod Pathol 2014; 27:1231-7. [PMID: 24457460 DOI: 10.1038/modpathol.2013.247] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022]
Abstract
A recurrent intrachromosomal rearrangement on chromosome 12q in solitary fibrous tumor leads to the formation of a NAB2-STAT6 fusion oncogene. As a result, nuclear expression of the cytoplasmic transcription factor STAT6 is found in solitary fibrous tumor and serves as a useful diagnostic marker. STAT6 is located in 12q13, a region containing well-characterized oncogenes that are commonly amplified in dedifferentiated liposarcoma; we have previously reported that STAT6 is expressed in a subset of dedifferentiated liposarcoma. The aim of this study was to determine the frequency of STAT6 expression in dedifferentiated liposarcoma and the underlying genetic mechanism. STAT6 protein expression was analyzed by immunohistochemistry in a well-characterized series of 35 previously unpublished cases of dedifferentiated liposarcoma, all with nuclear MDM2 and/or CDK4 expression by immunohistochemistry and/or cytogenetic features of dedifferentiated liposarcoma. FISH for STAT6 was performed in all cases with STAT6 expression, and a subset of control cases without STAT6 expression. In total 4/35 cases (11%) showed STAT6 expression (three with multifocal staining of moderate to strong intensity and one with weak focal staining). FISH demonstrated amplification of STAT6 in all cases positive for STAT6 by immunohistochemistry; in contrast, FISH performed on four STAT6-negative dedifferentiated liposarcomas demonstrated no STAT6 amplification (P=0.0286). Of the four STAT6 amplified cases, three patients were male and one was female, ranging in age from 51 to 76 years. Tumors were located in the mediastinum (n=2), paratesticular soft tissue (n=1), and perirenal soft tissue (n=1). Three patients received pre-operative chemotherapy +/- radiation therapy. In conclusion, STAT6 is amplified in a subset of dedifferentiated liposarcoma, resulting in STAT6 protein expression that can be detected by immunohistochemistry and may be a potential pitfall in the differential diagnosis of dedifferentiated liposarcoma and solitary fibrous tumor. These findings suggest a role for STAT6-mediated transcriptional activity in some cases of dedifferentiated liposarcoma and highlight the genomic complexity and heterogeneity of dedifferentiated liposarcoma.
Collapse
|
43
|
Zhou L, Talebian A, Meakin SO. The signaling adapter, FRS2, facilitates neuronal branching in primary cortical neurons via both Grb2- and Shp2-dependent mechanisms. J Mol Neurosci 2014; 55:663-77. [PMID: 25159185 DOI: 10.1007/s12031-014-0406-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022]
Abstract
The neurotrophins are a family of closely related growth factors that regulate proliferation and differentiation in the developing and mature nervous systems. Neurotrophins stimulate a family of receptor tyrosine kinases (Trk receptors) and utilize an intracellular docking protein termed fibroblast growth factor (FGF) receptor substrate 2 (FRS2) as a major downstream adapter to activate Ras, phosphatidylinositide 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) signaling cascades. The goals of this study were twofold: first, to investigate the complexity of neurotrophin-induced FRS2 interactions in primary cortical neurons and to determine which pathway(s) are important in regulating neuronal growth and, second, to determine whether the related signaling adapter, FRS3, stimulates neuron growth comparable to FRS2. We find that neurotrophin treatment of primary cortical neurons stimulates the tyrosine phosphorylation of FRS2 and the subsequent recruitment of Shp2, Grb2, and Gab2. With FRS2 mutants deficient in Grb2 or Shp2 binding, we demonstrate that FRS2 binds Gab1 and Gab2 through Grb2, providing an alternative route to activate PI3 kinase and Shp2. Using recombinant adenoviruses expressing FRS2, we demonstrate that FRS2 overexpression promotes neurite outgrowth and branching in cortical neurons relative to controls. In contrast, overexpression of FRS3 does not stimulate neuronal growth. Moreover, we find that while loss of Shp2, but not Grb2, reduces brain-derived neurotrophic factor (BDNF)-induced MAPK activation, the loss of either pathway impairs neuronal growth. Collectively, these experiments demonstrate that FRS2 functions as an adapter of a multiprotein complex that is activated by the Trk receptors and that the activation of both Grb2- and Shp2-dependent pathways facilitates cortical neuronal growth.
Collapse
Affiliation(s)
- Li Zhou
- Laboratory of Neural Signaling, Molecular Medicine Research Group, The Robarts Research Institute, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| | | | | |
Collapse
|
44
|
Biswas S, Killick E, Jochemsen AG, Lunec J. The clinical development of p53-reactivating drugs in sarcomas - charting future therapeutic approaches and understanding the clinical molecular toxicology of Nutlins. Expert Opin Investig Drugs 2014; 23:629-45. [PMID: 24579771 DOI: 10.1517/13543784.2014.892924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The majority of human sarcomas, particularly soft tissue sarcomas, are relatively resistant to traditional cytotoxic therapies. The proof-of-concept study by Ray-Coquard et al., using the Nutlin human double minute (HDM)2-binding antagonist RG7112, has recently opened a new chapter in the molecular targeting of human sarcomas. AREAS COVERED In this review, the authors discuss the challenges and prospective remedies for minimizing the significant haematological toxicities of the cis-imidazole Nutlin HDM2-binding antagonists. Furthermore, they also chart the future direction of the development of p53-reactivating (p53-RA) drugs in 12q13-15 amplicon sarcomas and as potential chemopreventative therapies against sarcomagenesis in germ line mutated TP53 carriers. Drawing lessons from the therapeutic use of Imatinib in gastrointestinal tumours, the authors predict the potential pitfalls, which may lie in ahead for the future clinical development of p53-RA agents, as well as discussing potential non-invasive methods to identify the development of drug resistance. EXPERT OPINION Medicinal chemistry strategies, based on structure-based drug design, are required to re-engineer cis-imidazoline Nutlin HDM2-binding antagonists into less haematologically toxic drugs. In silico modelling is also required to predict toxicities of other p53-RA drugs at a much earlier stage in drug development. Whether p53-RA drugs will be therapeutically effective as a monotherapy remains to be determined.
Collapse
Affiliation(s)
- Swethajit Biswas
- University Hospitals Southampton NHS Foundation Trust, Southampton General Hospital, Division of Medical Oncology, Sarcoma Unit , Floor D, East Wing, Southampton, Tremona Road, Southampton, SO16 6YD , UK
| | | | | | | |
Collapse
|
45
|
Kakazu N, Yamane H, Miyachi M, Shiwaku K, Hosoi H. Identification of the 12q15 amplicon within the homogeneously staining regions in the embryonal rhabdomyosarcoma cell line RMS-YM. Cytogenet Genome Res 2014; 142:167-73. [PMID: 24480864 DOI: 10.1159/000357930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/19/2022] Open
Abstract
Gene amplification represents one of the molecular mechanisms of oncogene overexpression in many types of tumors. Homogeneously staining regions (HSRs) are cytogenetic hallmarks of gene amplification. Rhabdomyosarcoma is the most common malignant soft-tissue tumor in children. RMS-YM is an embryonal rhabdomyosarcoma cell line that possesses 3 HSRs. This cytogenetic finding suggests the presence of gene amplifications associated with tumor development or progression in RMS-YM. Here, using fluorescence in situ hybridization, we detected high amplification of the MDM2 gene in the HSRs of RMS-YM. We also refined the region of the amplicon and identified that the FRS2 gene and others are amplified in RMS-YM. MDM2 and FRS2 play important roles as a regulator of p53 and a mediator of FGF signaling, respectively, and thus are potential molecular targets for therapy in many different tumors. RMS-YM may be useful for studies of the molecular pathways of tumorigenesis and tumor progression in rhabdomyosarcoma and for in vitro evaluation of newly developed therapeutic agents that target MDM2 or FRS2.
Collapse
Affiliation(s)
- N Kakazu
- Department of Environmental and Preventive Medicine, Shimane University School of Medicine, Izumo, Japan
| | | | | | | | | |
Collapse
|
46
|
Nord KH, Macchia G, Tayebwa J, Nilsson J, Vult von Steyern F, Brosjö O, Mandahl N, Mertens F. Integrative genome and transcriptome analyses reveal two distinct types of ring chromosome in soft tissue sarcomas. Hum Mol Genet 2013; 23:878-88. [PMID: 24070870 DOI: 10.1093/hmg/ddt479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene amplification is a common phenomenon in malignant neoplasms of all types. One mechanism behind increased gene copy number is the formation of ring chromosomes. Such structures are mitotically unstable and during tumor progression they accumulate material from many different parts of the genome. Hence, their content varies considerably between and within tumors. Partly due to this extensive variation, the genetic content of many ring-containing tumors remains poorly characterized. Ring chromosomes are particularly prevalent in specific subtypes of sarcoma. Here, we have combined fluorescence in situ hybridization (FISH), global genomic copy number and gene expression data on ring-containing soft tissue sarcomas and show that they harbor two fundamentally different types of ring chromosome: MDM2-positive and MDM2-negative rings. While the former are often found in an otherwise normal chromosome complement, the latter seem to arise in the context of general chromosomal instability. In line with this, sarcomas with MDM2-negative rings commonly show complete loss of either CDKN2A or RB1 -both known to be important for genome integrity. Sarcomas with MDM2-positive rings instead show co-amplification of a variety of potential driver oncogenes. More than 100 different genes were found to be involved, many of which are known to induce cell growth, promote proliferation or inhibit apoptosis. Several of the amplified and overexpressed genes constitute potential drug targets.
Collapse
Affiliation(s)
- Karolin H Nord
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Al-Zaid T, Wang WL, Lopez-Terrada D, Lev D, Hornick JL, Hafeez Diwan A, Fletcher CDM, Lazar AJ. Pleomorphic fibroma and dermal atypical lipomatous tumor: are they related? J Cutan Pathol 2013; 40:379-84. [DOI: 10.1111/cup.12095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/06/2013] [Accepted: 01/13/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Tariq Al-Zaid
- Department of Pathology; The University of Texas MD Anderson Cancer Center; Houston; TX; USA
| | - Wei-Lien Wang
- Department of Pathology; The University of Texas MD Anderson Cancer Center; Houston; TX; USA
| | | | | | - Jason L. Hornick
- Department of Pathology; Brigham and Women's Hospital and Harvard Medical School; Boston; MA; USA
| | - A. Hafeez Diwan
- Department of Pathology; Baylor College of Medicine; Houston; TX; USA
| | | | | |
Collapse
|
48
|
Zhang K, Chu K, Wu X, Gao H, Wang J, Yuan YC, Loera S, Ho K, Wang Y, Chow W, Un F, Chu P, Yen Y. Amplification of FRS2 and activation of FGFR/FRS2 signaling pathway in high-grade liposarcoma. Cancer Res 2013; 73:1298-307. [PMID: 23393200 DOI: 10.1158/0008-5472.can-12-2086] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor (FGF) receptor (FGFR) substrate 2 (FRS2) is an adaptor protein that plays a critical role in FGFR signaling. FRS2 is located on chromosome 12q13-15 that is frequently amplified in liposarcomas. The significance of FRS2 and FGFR signaling in high-grade liposarcomas is unknown. Herein, we first comparatively examined the amplification and expression of FRS2 with CDK4 and MDM2 in dedifferentiated liposarcoma (DDLS) and undifferentiated high-grade pleomorphic sarcoma (UHGPS). Amplification and expression of the three genes were identified in 90% to 100% (9-11 of 11) of DDLS, whereas that of FRS2, CDK4, and MDM2 were observed in 55% (41 of 75), 48% (36 of 75), and 44% (33/75) of clinically diagnosed UHGPS, suggesting that these "UHGPS" may represent DDLS despite lacking histologic evidence of lipoblasts. Immunohistochemical analysis of phosphorylated FRS2 protein indicated that the FGFR/FRS2 signaling axis was generally activated in about 75% of FRS2-positive high-grade liposarcomas. Moreover, we found that FRS2 and FGFRs proteins are highly expressed and functional in three high-grade liposarcoma cell lines: FU-DDLS-1, LiSa-2, and SW872. Importantly, the FGFR selective inhibitor NVP-BGJ-398 significantly inhibited the growth of FU-DDLS-1 and LiSa-2 cells with a concomitant suppression of FGFR signal transduction. Attenuation of FRS2 protein in FU-DDLS-1 and LiSa-2 cell lines decreased the phosphorylated extracellular signal-regulated kinase 1/2 and AKT and repressed cell proliferation. These findings indicate that analysis of FRS2 in combination with CDK4 and MDM2 will more accurately characterize pathologic features of high-grade liposarcomas. Activated FGFR/FRS2 signaling may play a functional role in the development of high-grade liposarcomas, therefore, serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Keqiang Zhang
- Department of Molecular Pharmacology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dedifferentiated liposarcoma arising in an esophageal polyp: a case report. Case Rep Gastrointest Med 2012; 2012:141693. [PMID: 22924136 PMCID: PMC3424652 DOI: 10.1155/2012/141693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/09/2012] [Indexed: 11/17/2022] Open
Abstract
Liposarcoma is one of the most common sarcomas in adults, but only rarely presents as an esophageal primary. There have been several reports of well-differentiated liposarcoma (WDL) arising in the esophagus, but we present a case of dedifferentiated liposarcoma (DL) presenting as a large esophageal polyp. We believe this is the first reported case of DL of the esophagus with morphologic evidence of both well-differentiated and dedifferentiated components. The diagnosis was confirmed by demonstration of CPM gene amplification by fluorescence in situ hybridization (FISH).
Collapse
|
50
|
Pedeutour F, Maire G, Pierron A, Thomas DM, Garsed DW, Bianchini L, Duranton-Tanneur V, Cortes-Maurel A, Italiano A, Squire JA, Coindre JM. A newly characterized human well-differentiated liposarcoma cell line contains amplifications of the 12q12-21 and 10p11-14 regions. Virchows Arch 2012; 461:67-78. [DOI: 10.1007/s00428-012-1256-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
|