1
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
2
|
Azizi F, Ghasemi R, EbrahimiBarough S, Ardalan M, Hadjighassem M. Effect of multifactorial therapeutic approach on axonal regeneration and cell viability in an in-vitro model of spinal-derived neural injury. Cell Tissue Bank 2023; 24:471-484. [PMID: 36396867 DOI: 10.1007/s10561-022-10047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
The highly debilitated nature of spinal cord injuries (SCI) creates an inhibitory repair environment that limits the recovery rate and therefore single interventional treatment has been resulted in incomplete recovery. A multifactorial approach that combines several therapeutic approaches may address diverse aspects of SCI pathology and enhance the recovery rate over single therapy. Accordingly, in this study, we aimed to investigate the effect of combined olfactory ensheathing cells (OECs) (to transport trophic factor, mediate immunomodulation, provide a suitable environment for cell survival), G-CSF (to establish a favorable environment for cell survival) and lipopolysaccharide (LPS) (to boost the protective activity of OEC) therapy on the cell viability after a scratch injury caused by a cataract knife on cells in an in-vitro model of spinal-derived neural injury. In this study, we used mixed neuronal-glial cultures, which are widely used for an in vitro study of neuronal damage. Scratch insult was made on cells using a cataract knife. The cells were divided into 8 groups (two control groups with and without olfactory ensheathing cells (OECs) treatment, injury group, three injury groups with single therapy by using super low dose of LPS (SLD-LPS) (100 pg/ml), OEC group, and G-CSF (100 ng/ml) group, and two injury groups with combined therapy (OEC with SLD-LPS and with all three treatments)). We found a significant decrease in the survival rate of injured cells (p < 0.001) 24 h after scratching insult. Our results indicated morphological alterations in cells in the acute phase (1, 2 and 6 h) after injury, with significant increased gap size at 6 h after induction of injury. Our combined therapy, significantly prevented cell death and decreased the size of the gap over time. We found that combined therapy promoted cell survival following spinal injury by providing a neuroprotective environment for cells. Therefore, our findings provide new insight into the combined therapy, which can be considered for promising preclinical therapeutic strategy for SCI toward clinical trials.
Collapse
Affiliation(s)
- Fateme Azizi
- Department of neuroscience and addiction studies, School of advanced technologies in medicine, Tehran University of medical sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh EbrahimiBarough
- Department of Tissue Engineering and Applied cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mahmoudreza Hadjighassem
- Brain and spinal cord research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of neuroscience and addiction studies, School of advanced technologies in medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
3
|
The Anti-inflammation Property of Olfactory Ensheathing Cells in Neural Regeneration After Spinal Cord Injury. Mol Neurobiol 2022; 59:6447-6459. [PMID: 35962300 DOI: 10.1007/s12035-022-02983-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Neural regeneration has troubled investigators worldwide in the past decades. Currently, cell transplantation emerged as a breakthrough targeted therapy for spinal cord injury (SCI) in the neurotrauma field, which provides a promising strategy in neural regeneration. Olfactory ensheathing cells (OECs), a specialized type of glial cells, is considered as the excellent candidate due to its unique variable and intrinsic regeneration-supportive properties. In fact, OECs could support olfactory receptor neuron turnover and axonal extension, which is essential to maintain the function of olfactory nervous system. Hitherto, an increasing number of literatures demonstrate that transplantation of OECs exerts vital roles in neural regeneration and functional recovery after neural injury, including central and peripheral nervous system. It is common knowledge that the deteriorating microenvironment (ischemia, hypoxia, scar, acute and chronic inflammation, etc.) resulting from injured nervous system is adverse for neural regeneration. Interestingly, recent studies indicated that OECs could promote neural repair through improvement of the disastrous microenvironments, especially to the overwhelmed inflammatory responses. Although OECs possess unusual advantages over other cells for neural repair, particularly in SCI, the mechanisms of OEC-mediated neural repair are still controversial with regard to anti-inflammation. Therefore, it is significant to summarize the anti-inflammation property of OECs, which is helpful to understand the biological characteristics of OECs and drive future studies. Here, we mainly focus on the anti-inflammatory role of OECs to make systematic review and discuss OEC-based therapy for CNS injury.
Collapse
|
4
|
Toebbe JT, Genter MB. An Update on Sphingosine-1-Phosphate and Lysophosphatidic Acid Receptor Transcripts in Rodent Olfactory Mucosa. Int J Mol Sci 2022; 23:ijms23084343. [PMID: 35457160 PMCID: PMC9032240 DOI: 10.3390/ijms23084343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Olfactory neurons connect the external environment and the brain, allowing the translocation of materials from the nasal cavity into the brain. The olfactory system is involved in SARS-CoV-2 infections; early in the pandemic declared in 2020, a loss of the sense of smell was found in many infected patients. Attention has also been focused on the role that the olfactory epithelium appears to play in the entry of the SARS-CoV-2 virus into the brain. Specifically, SARS-CoV-2 enters cells via the angiotensin-converting enzyme 2 protein (ACE2), which is found on supporting cells in the olfactory epithelium. The intranasal administration of sphingosine has been proposed to prevent the binding of SARS-CoV-2 to ACE2. Further, sphingosine-1-phosphate (S1P) receptors appear to facilitate the entry of SARS-CoV-2 into the brain. The goal of these studies was to characterize S1P receptor expression status in rodent olfactory mucosa. The expression of receptors for a related sphingolipid, lysophosphatidic acid (LPA), was also assessed. The results confirm previous reports of S1P1 and S1P3 receptor expression, as well as LPA receptor 1, in mouse olfactory mucosa; moreover, they extend the previous findings to identify additional S1P and LPA receptor transcripts in rat and mouse olfactory mucosa, as well as in cultured olfactory neurons. These findings may enhance the utility of rodent models in identifying agonists and/or antagonists of S1P and LPA receptors that may block the entry of SARS-CoV-2 and other viruses into nasal epithelial cells, and prevent transmission from the nasal cavity into the brain.
Collapse
|
5
|
Murtaza M, Mohanty L, Ekberg JAK, St John JA. Designing Olfactory Ensheathing Cell Transplantation Therapies: Influence of Cell Microenvironment. Cell Transplant 2022; 31:9636897221125685. [PMID: 36124646 PMCID: PMC9490465 DOI: 10.1177/09636897221125685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Olfactory ensheathing cell (OEC) transplantation is emerging as a promising treatment option for injuries of the nervous system. OECs can be obtained relatively easily from nasal biopsies, and exhibit several properties such as secretion of trophic factors, and phagocytosis of debris that facilitate neural regeneration and repair. But a major limitation of OEC-based cell therapies is the poor survival of transplanted cells which subsequently limit their therapeutic efficacy. There is an unmet need for approaches that enable the in vitro production of OECs in a state that will optimize their survival and integration after transplantation into the hostile injury site. Here, we present an overview of the strategies to modulate OECs focusing on oxygen levels, stimulating migratory, phagocytic, and secretory properties, and on bioengineering a suitable environment in vitro.
Collapse
Affiliation(s)
- Mariyam Murtaza
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lipsa Mohanty
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Mir SS, Bhat HF, Bhat ZF. Dynamic actin remodeling in response to lysophosphatidic acid. J Biomol Struct Dyn 2020; 38:5253-5265. [PMID: 31920158 DOI: 10.1080/07391102.2019.1696230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saima S Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu And Kashmir, India.,Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Hina F Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Zuhaib F Bhat
- Department of Wine, Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand.,Division of Livestock Products and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), R.S. Pora, Jammu And Kashmir, India
| |
Collapse
|
7
|
Zhong W, Bian K, Hu Y, Ji Z, Xu X, Li J, Wu P, Wang X, Zhang Y, Zhang P, Zhang H, Shen Y. Lysophosphatidic acid guides the homing of transplanted olfactory ensheathing cells to the lesion site after spinal cord injury in rats. Exp Cell Res 2019; 379:65-72. [DOI: 10.1016/j.yexcr.2019.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/21/2019] [Accepted: 03/14/2019] [Indexed: 01/19/2023]
|
8
|
Semaphorin 3A as an inhibitive factor for migration of olfactory ensheathing cells through cofilin activation is involved in formation of olfactory nerve layer. Mol Cell Neurosci 2018; 92:27-39. [PMID: 29940213 DOI: 10.1016/j.mcn.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023] Open
Abstract
Olfactory ensheathing cells (OECs) migrate from olfactory epithelium towards olfactory bulb (OB), contributing to formation of the presumptive olfactory nerve layer during development. However, it remains unclear that molecular mechanism of regulation of OEC migration in OB. In the present study, we found that OECs highly expressed the receptors of semaphorin 3A (Sema3A) in vitro and in vivo, whereas Sema3A displayed a gradient expression pattern with higher in inner layer of OB and lower in outer layer of OB. Furthermore, the collapse assays, Boyden chamber migration assays and single-cell migration assays showed that Sema3A induced the collapse of leading front of OECs and inhibited OEC migration. Thirdly, the leading front of OECs exhibited adaptation in a protein synthesis-independent manner, and endocytosis-dependent manner during Sema3A-induced OEC migration. Finally, Sema3A-induced collapse of leading front was required the decrease of focal adhesion and a retrograde F-actin flow in a cofilin activation-dependent manner. Taken together, these results demonstrate that Sema3A as an inhibitive migratory factor for OEC migration through cofilin activation is involved in the formation of olfactory nerve layer.
Collapse
|
9
|
Zheng CG, Zhang F, Bao XM, Wu SY, Wang P, Zhou JN, Gao Y, Teng HL, Wang Y, Huang ZH. Polarized Distribution of Active Myosin II Regulates Directional Migration of Cultured Olfactory Ensheathing Cells. Sci Rep 2017; 7:4701. [PMID: 28680155 PMCID: PMC5498622 DOI: 10.1038/s41598-017-04914-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 11/09/2022] Open
Abstract
Migration of olfactory ensheathing cells (OECs) is critical for development of olfactory system and essential for neural regeneration after OEC transplantation into nerve injury site. However, the molecular mechanisms underlying the regulation of directional migration of OECs remain unclear. In this study, we found that in migrating OECs, phosphorylated myosin light chain (p-MLC, active myosin II) displayed a polarized distribution, with the leading front exhibiting higher than soma and trailing process. Over-expression of GFP-MLC significantly reduced OEC migration. Moreover, decreasing this front-to-rear difference of myosin II activity by the frontal application of a ML-7 (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation of OECs, whereas, increasing this front-to-rear difference of myosin II activity by the rear application of a ML-7 or BDM gradient or the frontal application of a Caly (myosin II activator) gradient accelerated the soma translocation of OECs. Finally, myosin II as a downstream signaling of repulsive factor Slit-2 mediated the reversal of soma translocation induced by Slit-2. Taken together, these results suggest that the polarized distribution of active myosin II regulates the directional migration of OECs during spontaneous migration or upon to extracellular stimulation such as Slit-2.
Collapse
Affiliation(s)
- Cheng-Gen Zheng
- Department of Cardiology, Chun'an First People's Hospital (Zhejiang Province People's Hospital Chun'an Branch), Hangzhou, 311700, China
| | - Fan Zhang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Mei Bao
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shi-Yang Wu
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Wang
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jia-Nan Zhou
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuan Gao
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hong-Lin Teng
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Ying Wang
- Department of Cardiology, Chun'an First People's Hospital (Zhejiang Province People's Hospital Chun'an Branch), Hangzhou, 311700, China. .,Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, 310053, China.
| | - Zhi-Hui Huang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
10
|
Hao DJ, Liu C, Zhang L, Chen B, Zhang Q, Zhang R, An J, Zhao J, Wu M, Wang Y, Simental A, He B, Yang H. Lipopolysaccharide and Curcumin Co-Stimulation Potentiates Olfactory Ensheathing Cell Phagocytosis Via Enhancing Their Activation. Neurotherapeutics 2017; 14:502-518. [PMID: 27743319 PMCID: PMC5398976 DOI: 10.1007/s13311-016-0485-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The gradual deterioration following central nervous system (CNS) injuries or neurodegenerative disorders is usually accompanied by infiltration of degenerated and apoptotic neural tissue debris. A rapid and efficient clearance of these deteriorated cell products is of pivotal importance in creating a permissive environment for regeneration of those damaged neurons. Our recent report revealed that the phagocytic activity of olfactory ensheathing cells (OECs) can make a substantial contribution to neuronal growth in such a hostile environment. However, little is known about how to further increase the ability of OECs in phagocytosing deleterious products. Here, we used an in vitro model of primary cells to investigate the effects of lipopolysaccharide (LPS) and curcumin (CCM) co-stimulation on phagocytic activity of OECs and the possible underlying mechanisms. Our results showed that co-stimulation using LPS and CCM can significantly enhance the activation of OECs, displaying a remarkable up-regulation in chemokine (C-X-C motif) ligand 1, chemokine (C-X-C motif) ligand 2, tumor necrosis factor-α, and Toll-like receptor 4, increased OEC proliferative activity, and improved phagocytic capacity compared with normal and LPS- or CCM-treated OECs. More importantly, this potentiated phagocytosis activity greatly facilitated neuronal growth under hostile culture conditions. Moreover, the up-regulation of transglutaminase-2 and phosphatidylserine receptor in OECs activated by LPS and CCM co-stimulation are likely responsible for mechanisms underlying the observed cellular events, because cystamine (a specific inhibitor of transglutaminase-2) and neutrophil elastase (a cleavage enzyme of phosphatidylserine receptor) can effectively abrogate all the positive effects of OECs, including phagocytic capacity and promotive effects on neuronal growth. This study provides an alternative strategy for the repair of traumatic nerve injury and neurologic diseases with the application of OECs in combination with LPS and CCM.
Collapse
Affiliation(s)
- Ding-Jun Hao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Cuicui Liu
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Lingling Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Bo Chen
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Qian Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Rui Zhang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jing An
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Jingjing Zhao
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Mingmei Wu
- Institute of Neurosciences, The Fourth Military Medical University, Shaanxi, 710032, China
| | - Yi Wang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Baorong He
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| | - Hao Yang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, China.
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Shaanxi, 710054, China.
| |
Collapse
|
11
|
Wang Y, Teng HL, Gao Y, Zhang F, Ding YQ, Huang ZH. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels. Glia 2016; 64:2154-2165. [PMID: 27534509 DOI: 10.1002/glia.23049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/24/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023]
Abstract
Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.,Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hong-Lin Teng
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Gao
- Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fan Zhang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China. .,Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Zhi-Hui Huang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Department of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
12
|
Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin. Neuroscience 2016; 324:140-50. [PMID: 26955781 DOI: 10.1016/j.neuroscience.2016.02.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 11/24/2022]
Abstract
Transplantation of peripheral glia is being trialled for neural repair therapies, and identification of compounds that enhance the activity of glia is therefore of therapeutic interest. We have previously shown that curcumin potently stimulates the activity of olfactory glia. We have now examined the effect of curcumin on Schwann cell (SC) activities including proliferation, migration and the expression of protein markers. SCs were treated with control media and with different concentrations of curcumin (0.02-20 μM). Cell proliferation was determined by MTS assay and migration changes were determined by single live cell migration tracking. We found that small doses of curcumin (40 nM) dramatically increased the proliferation and migration in SCs within just one day. When compared with olfactory glia, curcumin stimulated SC proliferation more rapidly and at lower concentrations. Curcumin significantly increased the migration of SCs, and also increased the dynamic activity of lamellipodial waves which are essential for SC migration. Expression of the activated form of the MAP kinase p38 (p-p38) was significantly decreased in curcumin-treated SCs. These results show that curcumin's effects on SCs differ remarkably to its effects on olfactory glia, suggesting that subtypes of closely related glia can be differentially stimulated by curcumin. Overall these results demonstrate that the therapeutically beneficial activities of glia can be differentially enhanced by curcumin which could be used to improve outcomes of neural repair therapies.
Collapse
|
13
|
Tello Velasquez J, Watts ME, Todorovic M, Nazareth L, Pastrana E, Diaz-Nido J, Lim F, Ekberg JAK, Quinn RJ, John JAS. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS One 2014; 9:e111787. [PMID: 25360677 PMCID: PMC4216124 DOI: 10.1371/journal.pone.0111787] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022] Open
Abstract
One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies.
Collapse
Affiliation(s)
| | - Michelle E. Watts
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Michael Todorovic
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Lynnmaria Nazareth
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Erika Pastrana
- Nature Communications, New York, New York, United States of America
| | | | - Filip Lim
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Jenny A. K. Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ronald J. Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - James A. St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- * E-mail:
| |
Collapse
|
14
|
Riggio C, Nocentini S, Catalayud MP, Goya GF, Cuschieri A, Raffa V, del Río JA. Generation of magnetized olfactory ensheathing cells for regenerative studies in the central and peripheral nervous tissue. Int J Mol Sci 2013; 14:10852-68. [PMID: 23708092 PMCID: PMC3709706 DOI: 10.3390/ijms140610852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
Abstract
As olfactory receptor axons grow from the peripheral to the central nervous system (CNS) aided by olfactory ensheathing cells (OECs), the transplantation of OECs has been suggested as a plausible therapy for spinal cord lesions. The problem with this hypothesis is that OECs do not represent a single homogeneous entity, but, instead, a functionally heterogeneous population that exhibits a variety of responses, including adhesion and repulsion during cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. In this paper, we report a system based on modified OECs carrying magnetic nanoparticles as a proof of concept experiment enabling specific studies aimed at exploring the potential of OECs in the treatment of spinal cord injuries. Our studies have confirmed that magnetized OECs (i) survive well without exhibiting stress-associated cellular responses; (ii) in vitro, their migration can be modulated by magnetic fields; and (iii) their transplantation in organotypic slices of spinal cord and peripheral nerve showed positive integration in the model. Altogether, these findings indicate the therapeutic potential of magnetized OECs for CNS injuries.
Collapse
Affiliation(s)
- Cristina Riggio
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
| | - Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, Barcelona 08028, Spain; E-Mails: (S.N.); (J.A.R.)
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona 08028, Spain
- Networked Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Barcelona 08028, Spain
| | - Maria Pilar Catalayud
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor, Zaragoza 50018, Spain; E-Mails: (M.P.C.); (G.F.G.)
| | - Gerardo Fabian Goya
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor, Zaragoza 50018, Spain; E-Mails: (M.P.C.); (G.F.G.)
| | - Alfred Cuschieri
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
| | - Vittoria Raffa
- Institute of Life Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy; E-Mails: (A.C.); (V.R.)
- Department of Biology, University of Pisa, Via Luca Ghini 5, Pisa 56126, Italy
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Baldiri Reixac 15-21, Barcelona 08028, Spain; E-Mails: (S.N.); (J.A.R.)
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, Barcelona 08028, Spain
- Networked Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Barcelona 08028, Spain
| |
Collapse
|
15
|
Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, Liu X, Pu Y, He C. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 2013; 61:490-503. [PMID: 23339073 DOI: 10.1002/glia.22450] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/09/2012] [Indexed: 11/11/2022]
Abstract
The olfactory system is an unusual tissue in which olfactory receptor neurons (ORNs) are continuously replaced throughout the life of mammals. Clearance of the apoptotic ORNs corpses is a fundamental process serving important functions in the regulation of olfactory nerve turnover and regeneration. However, little is known about the underlying mechanisms. Olfactory ensheathing cells (OECs) are a unique type of glial cells that wrap olfactory axons and support their continual regeneration from the olfactory epithelium to the bulb. In the present study, OECs were identified to exist in two different states, resting and reactive, in which resting OECs could be activated by LPS stimulation and functioned as phagocytes for cleaning apoptotic ORNs corpses. Confocal analysis revealed that dead ORNs debris were engulfed by OECs and co-localized with lysosome associated membrane protein 1. Moreover, phosphatidylserine (PS) receptor was identified to express on OECs, which allowed OECs to recognize apoptotic ORNs by binding to PS. Importantly, engulfment of olfactory nerve debris by OECs was found in olfactory mucosa under normal turnover and was significantly increased in the animal model of olfactory bulbectomy, while little phagocytosis by Iba-1-positive microglia/macrophages was observed. Together, these results implicate OEC as a primary innate immunocyte in the olfactory pathway, and suggest a cellular and molecular mechanism by which ORNs corpses are removed during olfactory nerve turnover and regeneration.
Collapse
Affiliation(s)
- Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Morphological phenotypes of olfactory ensheathing cells display different migratory responses upon Slit-2. Exp Cell Res 2012; 318:1889-900. [DOI: 10.1016/j.yexcr.2012.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022]
|
17
|
Nocentini S, Reginensi D, Garcia S, Carulla P, Moreno-Flores MT, Wandosell F, Trepat X, Bribian A, del Río JA. Myelin-associated proteins block the migration of olfactory ensheathing cells: an in vitro study using single-cell tracking and traction force microscopy. Cell Mol Life Sci 2012; 69:1689-703. [PMID: 22205212 PMCID: PMC11114797 DOI: 10.1007/s00018-011-0893-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 12/16/2022]
Abstract
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but instead a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion, and crossover during cell-cell and cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo receptor complex and that their migration is blocked by myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over myelin. Our data relate the decrease of traction force of OEC with lower migratory capacity over myelin, which correlates with changes in the F-actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo receptor inhibitor NEP1-40.
Collapse
Affiliation(s)
- Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Diego Reginensi
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Simón Garcia
- Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
| | - Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - María Teresa Moreno-Flores
- Centro de Biología Molecular “Severo Ochoa”, Nicolás Cabrera, 1, Universidad Autónoma de Madrid (CBM-UAM), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa”, Nicolás Cabrera, 1, Universidad Autónoma de Madrid (CBM-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), CBM-UAM, Madrid, Spain
| | - Xavier Trepat
- Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bribian
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - José A. del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
18
|
Frisca F, Sabbadini RA, Goldshmit Y, Pébay A. Biological Effects of Lysophosphatidic Acid in the Nervous System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 296 2012; 296:273-322. [DOI: 10.1016/b978-0-12-394307-1.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Abstract
Plant phospholipases can be grouped into four major types, phospholipase D, phospholipase C, phospholipase A1 (PLA(1)), and phospholipase A2 (PLA(2)), that hydrolyze glycerophospholipids at different ester bonds. Within each type, there are different families or subfamilies of enzymes that can differ in substrate specificity, cofactor requirement, and/or reaction conditions. These differences provide insights into determining the cellular function of specific phospholipases in plants, and they can be explored for different industrial applications.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
| | | | | |
Collapse
|
20
|
Whittington MA, Cunningham MO, LeBeau FEN, Racca C, Traub RD. Multiple origins of the cortical γ rhythm. Dev Neurobiol 2011; 71:92-106. [PMID: 21154913 DOI: 10.1002/dneu.20814] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gamma rhythms (30-80 Hz) are a near-ubiquitous feature of neuronal population activity in mammalian cortices. Their dynamic properties permit the synchronization of neuronal responses to sensory input within spatially distributed networks, transient formation of local neuronal "cell assemblies," and coherent response patterns essential for intercortical regional communication. Each of these phenomena form part of a working hypothesis for cognitive function in cortex. All forms of physiological gamma rhythm are inhibition based, being characterized by rhythmic trains of inhibitory postsynaptic potentials in populations of principal neurons. It is these repeating periods of relative enhancement and attenuation of the responsivity of major cell groups in cortex that provides a temporal structure shared across many millions of neurons. However, when considering the origins of these repeating trains of inhibitory events considerable divergence is seen depending on cortical region studied and mode of activation of gamma rhythm generating networks. Here, we review the evidence for involvement of multiple subtypes of interneuron and focus on different modes of activation of these cells. We conclude that most massively parallel brain regions have different mechanisms of gamma rhythm generation, that different mechanisms have distinct functional correlates, and that switching between different local modes of gamma generation may be an effective way to direct cortical communication streams. Finally, we suggest that developmental disruption of the endophenotype for certain subsets of gamma-generating interneuron may underlie cognitive deficit in psychiatric illness.
Collapse
Affiliation(s)
- Miles A Whittington
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom.
| | | | | | | | | |
Collapse
|
21
|
Huang ZH, Wang Y, Yuan XB, He C. RhoA-ROCK-Myosin pathway regulates morphological plasticity of cultured olfactory ensheathing cells. Exp Cell Res 2011; 317:2823-34. [PMID: 21946234 DOI: 10.1016/j.yexcr.2011.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/09/2011] [Accepted: 09/09/2011] [Indexed: 12/23/2022]
Abstract
Olfactory ensheathing cells (OECs) are glial cells in the olfactory system with morphological and functional plasticity. Cultured OECs have the flattened and process-bearing shape. Reversible changes have been found between these two morphological phenotypes. However, the molecular mechanism underlying the regulation of their morphological plasticity remains elusive. Using RhoA FRET biosensor, we found that the active RhoA signal mainly distributed in the lamellipodia and/or filopodia of OECs. Local disruption of these active RhoA distributions led to the morphological change from the flattened into process-bearing shape and promoted process outgrowth. Furthermore, RhoA pathway inhibitors, Toxin-B, C3, Y-27632 or over-expression of DN-RhoA blocked serum-induced morphological change of OECs from the process-bearing into flattened shape, whereas the activation of RhoA pathway by lysophosphatidic acid (LPA) promoted the morphological change from the process-bearing into flattened shape. Finally, ROCK-Myosin-F-actin as a downstream of RhoA pathway was involved in morphological plasticity of OECs. Taken together, these results suggest that RhoA-ROCK-Myosin pathway mediates the morphological plasticity of cultured OECs in response to extracellular cues.
Collapse
Affiliation(s)
- Zhi-hui Huang
- Institute of Hypoxia Medicine, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | |
Collapse
|
22
|
Huang ZH, Wang Y, Su ZD, Geng JG, Chen YZ, Yuan XB, He C. Slit-2 repels the migration of olfactory ensheathing cells by triggering Ca2+-dependent cofilin activation and RhoA inhibition. J Cell Sci 2011; 124:186-97. [PMID: 21187345 DOI: 10.1242/jcs.071357] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Olfactory ensheathing cells (OECs) migrate from the olfactory epithelium towards the olfactory bulb during development. However, the guidance mechanism for OEC migration remains a mystery. Here we show that migrating OECs expressed the receptor of the repulsive guidance factor Slit-2. A gradient of Slit-2 in front of cultured OECs first caused the collapse of the leading front, then the reversal of cell migration. These Slit-2 effects depended on the Ca(2+) release from internal stores through inositol (1,4,5)-triphosphate receptor channels. Interestingly, in response to Slit-2 stimulation, collapse of the leading front required the activation of the F-actin severing protein cofilin in a Ca(2+)-dependent manner, whereas the subsequent reversal of the soma migration depended on the reversal of RhoA activity across the cell. Finally, the Slit-2-induced repulsion of cell migration was fully mimicked by co-application of inhibitors of F-actin polymerization and RhoA kinase. Our findings revealed Slit-2 as a repulsive guidance factor for OEC migration and an unexpected link between Ca(2+) and cofilin signaling during Slit-2-triggered repulsion.
Collapse
Affiliation(s)
- Zhi-Hui Huang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Gueye Y, Ferhat L, Sbai O, Bianco J, Ould-Yahoui A, Bernard A, Charrat E, Chauvin JP, Risso JJ, Féron F, Rivera S, Khrestchatisky M. Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: A role in cell migration? Glia 2011; 59:750-70. [DOI: 10.1002/glia.21146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023]
|
24
|
Lu ZF, Shen YX, Zhang P, Xu YJ, Fan ZH, Cheng MH, Dong QR. Ginsenoside Rg1 promotes proliferation and neurotrophin expression of olfactory ensheathing cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:265-272. [PMID: 20419536 DOI: 10.1080/10286021003689791] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Transplantation of olfactory ensheathing cells (OECs) is currently considered to be one of the most promising repair strategies for human spinal cord injury. However, the factors that regulate OECs are still poorly understood. Ginsenoside Rg1 (Rg1), the phytosterol from Panax ginseng, is a potent neuroprotective agent that promotes axonal regeneration. The aim of this study is to determine whether Rg1 would influence the biological activity of OECs. Primary cultured OECs from the olfactory bulb of neonatal rats were treated with Rg1 of various concentrations and durations. Using MTT and bromodeoxyuridine assays, we found that Rg1 significantly promoted cell proliferation, with an optimal concentration of 40 mug/ml of Rg1 at 72 h. In addition, RT-PCR and ELISA assays showed that Rg1 could upregulate the mRNA expression and secretion of glial cell-derived neurotrophic factor, brain-derived neurotrophic factor, and nerve growth factor. These results suggest that Rg1 may have a great potential in OEC therapy.
Collapse
Affiliation(s)
- Zheng-Feng Lu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Chiu SC, Hung HS, Lin SZ, Chiang E, Liu DD. Therapeutic potential of olfactory ensheathing cells in neurodegenerative diseases. J Mol Med (Berl) 2009; 87:1179-89. [PMID: 19756447 DOI: 10.1007/s00109-009-0528-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
The regenerative capacity of the olfactory system has generated interest in potential clinical application of cells from the olfactory epithelium in the treatment of neurodegenerative diseases. Experimental evidence from animal models and clinical studies suggest that transplantation of olfactory ensheathing cells (OEC), specialized glia in the olfactory system, may be therapeutically useful in neurodegenerative diseases such as spinal cord injury and stroke. This review article describes the different experimental approaches in OEC transplantation. We also discuss the possible effects of OEC implantation on the underlying pathophysiology in neurological disease, including neuroplasticity. Our recent study of this particular population of cells has disclosed some of the molecular basis of the regenerative mechanism of OECs. In summary OECs produce several neurotrophic factors such as stromal cell-derived factor 1alpha and brain-derived neurotrophic factor and enhance axonal regeneration to promote neuroplasticity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Huang ZH, Wang Y, Cao L, Su ZD, Zhu YL, Chen YZ, Yuan XB, He C. Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell Res 2008; 18:479-90. [DOI: 10.1038/cr.2008.38] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Endogenous RGS proteins attenuate Galpha(i)-mediated lysophosphatidic acid signaling pathways in ovarian cancer cells. Cell Signal 2007; 20:381-9. [PMID: 18083345 DOI: 10.1016/j.cellsig.2007.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 10/30/2007] [Indexed: 01/06/2023]
Abstract
Lysophosphatidic acid is a bioactive phospholipid that is produced by and stimulates ovarian cancer cells, promoting proliferation, migration, invasion, and survival. Effects of LPA are mediated by cell surface G-protein coupled receptors (GPCRs) that activate multiple heterotrimeric G-proteins. G-proteins are deactivated by Regulator of G-protein Signaling (RGS) proteins. This led us to hypothesize that RGS proteins may regulate G-protein signaling pathways initiated by LPA in ovarian cancer cells. To determine the effect of endogenous RGS proteins on LPA signaling in ovarian cancer cells, we compared LPA activity in SKOV-3 ovarian cancer cells expressing G(i) subunit constructs that are either insensitive to RGS protein regulation (RGSi) or their RGS wild-type (RGSwt) counterparts. Both forms of the G-protein contained a point mutation rendering them insensitive to inhibition with pertussis toxin, and cells were treated with pertussis toxin prior to experiments to eliminate endogenous G(i/o) signaling. The potency and efficacy of LPA-mediated inhibition of forskolin-stimulated adenylyl cyclase activity was enhanced in cells expressing RGSi G(i) proteins as compared to RGSwt G(i). We further showed that LPA signaling that is subject to RGS regulation terminates much faster than signaling thru RGS insensitive G-proteins. Finally, LPA-stimulated SKOV-3 cell migration, as measured in a wound-induced migration assay, was enhanced in cells expressing Galpha(i2) RGSi as compared to cells expressing Galpha(i2) RGSwt, suggesting that endogenous RGS proteins in ovarian cancer cells normally attenuate this LPA effect. These data establish RGS proteins as novel regulators of LPA signaling in ovarian cancer cells.
Collapse
|
28
|
Su Z, Cao L, Zhu Y, Liu X, Huang Z, Huang A, He C. Nogo enhances the adhesion of olfactory ensheathing cells and inhibits their migration. J Cell Sci 2007; 120:1877-87. [PMID: 17488779 DOI: 10.1242/jcs.03448] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The migration of olfactory ensheathing cells (OECs) is essential for pioneering the olfactory nerve pathway during development and for promoting axonal regeneration when implanted into the injured central nervous system (CNS). In the present study, recombinant Nogo-66 enhanced the adhesion of OECs and inhibited their migration. Using immunocytochemistry and western blot, we showed that the Nogo-66 receptor (NgR) was expressed on OECs. When NgR was released from the cell surface with phosphatidylinositol-specific phospholipase C or neutralized by NgR antibody, the effect of Nogo-66 on OEC adhesion and migration was markedly attenuated. Nogo-66 was found to promote the formation of focal adhesion in OECs and inhibited their membrane protrusion through the activation of RhoA. Furthermore, the co-culture migration assay demonstrated that OEC motility was significantly restricted by Nogo-A expressed on Cos7 cell membranes or oligodendrocytes. Moreover, treatment with anti-NgR antibody facilitated migration of implanted OECs in a spinal cord hemisection injury model. Taken together, we demonstrate, for the first time, that Nogo, a myelin-associated inhibitor of axon regeneration in the CNS, enhances the adhesion and inhibits the migration of OECs via NgR regulation of RhoA.
Collapse
Affiliation(s)
- Zhida Su
- Department of Neurobiology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
29
|
De Mello TR, Busfield S, Dunlop SA, Plant GW. Culture conditions affect proliferative responsiveness of olfactory ensheathing glia to neuregulins. Glia 2007; 55:734-45. [PMID: 17348025 DOI: 10.1002/glia.20502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Olfactory ensheathing glia (OEG) have been used to improve outcome after experimental spinal cord injury and are being trialed clinically. Their rapid proliferation in vitro is essential to optimize clinical application, with neuregulins (NRG) being potential mitogens. We examined the effects of NRG-1beta, NRG-2alpha, and NRG3 on proliferation of p75-immunopurified adult OEG. OEG were grown in serum-containing medium with added bovine pituitary extract and forskolin (added mitogens) or in serum-containing medium (no added mitogens). Cultures were switched to chemically defined medium (no added mitogens or serum), NRG added and OEG proliferation assayed using BrdU. OEG grown initially with added mitogens were not responsive to added NRGs and pre-exposure to forskolin and pituitary extract increased basal proliferation rates so that OEG no longer responded to added NRG. However, NRG promoted proliferation but only if cells were initially grown in mitogen-free medium. Primary OEG express ErbB2, ErbB3, and small levels of ErbB4 receptors; functional blocking indicates that ErbB2 and ErbB3 are the main NRG receptors utilized in the presence of NRG-1beta. The long-term stimulation of OEG proliferation by initial culture conditions raises the possibility of manipulating OEG before therapeutic transplantation.
Collapse
Affiliation(s)
- T R De Mello
- Red's Spinal Cord Research Laboratory, School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | | | | | | |
Collapse
|
30
|
Wen J, Xu N, Li A, Bourgeois J, Ofosu FA, Hortelano G. Encapsulated human primary myoblasts deliver functional hFIX in hemophilic mice. J Gene Med 2007; 9:1002-10. [PMID: 17868187 DOI: 10.1002/jgm.1098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hemophilia B is a bleeding disorder caused by defective factor IX (FIX), currently treated by regular infusions of plasma-derived or recombinant FIX. We propose a gene therapy strategy based on the implantation of cells secreting FIX enclosed in alginate microcapsules as a highly desirable alternative treatment. We have reported sustained delivery of human factor IX (hFIX) in immunocompetent mice implanted with encapsulated primary mouse myoblasts engineered to secrete hFIX. As a step towards the treatment of human patients, in this study we report the implantation of encapsulated human primary myoblasts secreting hFIX in hemophilia B mice. METHODS Human primary myoblasts were transfected with plasmids pKL4M-hFIX, pLNM-betaIXL, pMFG-hFIX, and transduced with retrovirus MFG-hFIX. Two human primary myoblast clones secreting approximately 1 microg hFIX/10(6) cells/day were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into SCID and hemophilic mice. RESULTS Circulating hFIX (peak of approximately 120 ng/ml) was detected in hemophilia B mice on day 1 after implantation. Human FIX delivery was transient, however, becoming undetectable on day 14. Concurrently, anti-hFIX antibodies were detected. At the same time, activated partial thromboplastin time (APTT) was reduced from 94 s before treatment to 78-80 s. Tail bleeding time decreased from 15 min to 1.5-7 min after treatment, some mice being normalised. These findings indicate that the delivered hFIX is biologically active. Similarly treated NOD/SCID mice had circulating hFIX levels of 170 ng/ml on day 1 that remained detectable for 1 month, albeit at low levels. Cell viability of microcapsules retrieved on day 60 was below 5%. CONCLUSIONS Our findings indicate that encapsulated human primary myoblasts secrete functional hFIX. Furthermore, implantation of encapsulated human primary myoblasts can partially correct the phenotype of hemophilia B mice, supporting the feasibility of this gene therapy approach for hemophilia B. However, the long-term viability of the encapsulated human myoblasts must first be improved.
Collapse
Affiliation(s)
- Jianping Wen
- Research & Development, Canadian Blood Services, McMaster University, Hamilton, Ontario, L8N 3Z5 Canada
| | | | | | | | | | | |
Collapse
|
31
|
Vincent AJ, West AK, Chuah MI. Morphological and functional plasticity of olfactory ensheathing cells. ACTA ACUST UNITED AC 2006; 34:65-80. [PMID: 16374710 DOI: 10.1007/s11068-005-5048-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Revised: 04/04/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
In the primary olfactory pathway, olfactory ensheathing cells (OECs) extend processes to envelop bundles of olfactory axons as they course towards their termination in the olfactory bulb. The expression of growth-promoting adhesion and extracellular matrix molecules by OECs, and their spatially close association with olfactory axons are consistent with OECs being involved in promoting and guiding olfactory axon growth. Because of this, OECs have been employed as a possible tool for inducing axonal regeneration in the injured adult CNS, resulting in significant functional recovery in some animal models and promising outcomes from early clinical applications. However, fundamental aspects of OEC biology remain unclear. This brief review discusses some of the experimental data that have resulted in conflicting views with regard to the identity of OECs. We present here recent findings which support the notion of OECs as a single but malleable phenotype which demonstrate extensive morphological and functional plasticity depending on the environmental stimuli. The review includes a discussion of the normal functional role of OECs in the developing primary olfactory pathway as well as their interaction with regenerating axons and reactive astrocytes in the novel environment of the injured CNS. The use of OECs to induce repair in the injured nervous system reflects the functional plasticity of these cells. Finally, we will explore the possibility that recent microarray data could point to OECs assuming an innate immune function or playing a role in modulating neuroinflammation.
Collapse
Affiliation(s)
- Adele J Vincent
- NeuroRepair Group, Discipline of Anatomy and Physiology, University of Tasmania Hobart, Private Bag 24, Tasmania, Australia 7001
| | | | | |
Collapse
|
32
|
Polentes J, Gauthier P. Transplantation de cellules gliales olfactives après traumatisme médullaire. Neurochirurgie 2005; 51:563-76. [PMID: 16553329 DOI: 10.1016/s0028-3770(05)83631-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over recent years, a certain number of experimental investigations have studied the effect of the transplantation of olfactory ensheathing glial cells (OEC) after spinal traumatism in animal, the rat in particular. Some of these studies have reported improvements in motor (mainly locomotor, postural and respiratory) and sensory function. While these new data provide additional support for the interest of the strategy of EOC transplantation to minimise the incapacitating effects of spinal pathologies in clinical therapy, it nonetheless remains necessary to continue experiments on animal models in order to better understand and master certain important points: beneficial effects according to the nature and composition of the transplants; therapeutic impact according to the type of pathology and the nature of the traumatism; influence of the dose effect; migration of the transplanted OECs (distance, pathways); active principles of the transplants; beneficial effect on various functions, in particular at the level of the vesico-sphincteric area; long-term innocuousness; long-term posttraumatic efficacy. Although therapeutic trials are in progress in certain countries (Australia, China, Portugal), it would nonetheless appear essential that these somewhat obscure points should be better understood before any clinical application might be seriously envisaged, in order to respect the principles of precaution, maximum efficacy and observance of the prevailing ethical rules.
Collapse
Affiliation(s)
- J Polentes
- Physiologie Neurovégétative, UMR CNRS 6153 INRA 1147, Université Paul-Cézanne, Faculté des Sciences et Techniques de Saint-Jérôme (Aix-Marseille III), Marseille
| | | |
Collapse
|
33
|
Cechin SR, Dunkley PR, Rodnight R. Signal transduction mechanisms involved in the proliferation of C6 glioma cells induced by lysophosphatidic acid. Neurochem Res 2005; 30:603-11. [PMID: 16176063 DOI: 10.1007/s11064-005-2747-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We studied pathways involved in the proliferation of rat C6 glioma cells induced by lysophosphatidic acid (LPA), a phospholipid with diverse biological functions. LPA induced a dose-responsive proliferation of C6 cells after 48 h. Proliferation was blocked by inhibitors of the sodium/proton exchanger type 1 (NHE1), Rho-associated kinase, the phosphatidylinositol 3-kinase/Akt pathway (PI3K/Akt), protein kinase C (PKC) and extracellular signal regulated kinase kinase (MEK). Phospho-specific antibodies were used to investigate the pathways involved. LPA induced transient (10 min) phosphorylations of ERK 1/2, Akt and the transcription factor CREB. The LPA-induced phosphorylation of ERK 1/2 and CREB was blocked by inhibition of PI3K, PKC and MEK, but that of Akt was only inhibited by wortmannin, the PI3K inhibitor. Inhibition of Rho kinase or NHE1 did not reduce the LPA-induced phosphorylation of ERK, Akt or CREB. The results were compared with the effects of LPA on transduction pathways in other cell types.
Collapse
Affiliation(s)
- Sirlene R Cechin
- School of Biomedical Sciences and the Hunter Medical Research Institute, University of Newcastle, 2308, Callaghan, NSW, Australia
| | | | | |
Collapse
|
34
|
Abstract
Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are endogenous bioactive lipids that participate in the regulation of mammalian cell proliferation, apoptosis, migration, and angiogenesis. These processes are each critical for successful embryogenesis, raising the possibility that lysophospholipid signaling may contribute to normal animal development. In fact, recent studies in developmental model systems have established that S1P and LPA are necessary for diverse developmental programs including those required for morphogenesis of vertebrate reproductive, cardiovascular and central and peripheral nervous systems (PNS), as well as the establishment of maternal-fetal circulation and the immune system. Genetic, morphological, and biochemical characterization of developmental model systems offer powerful approaches to elucidating the molecular mechanisms of lysophospholipid signaling and its contributions to animal development and postnatal physiology. In this review, the routes of S1P and LPA metabolism and our current understanding of lysophospholipid-mediated signal transduction in mammalian cells will be summarized. The evidence implicating lysophospholipid signaling in the development of specific vertebrate systems will then be reviewed, with an emphasis on signals mediated through G protein-coupled receptors of the Edg family. Lastly, recent insights derived from the study of simple metazoan models and implications regarding lysophospholipid signaling in organisms in which Edg receptors are not conserved will be explored.
Collapse
Affiliation(s)
- Julie D Saba
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609-1673, USA.
| |
Collapse
|
35
|
Lloyd B, Tao Q, Lang S, Wylie C. Lysophosphatidic acid signaling controls cortical actin assembly and cytoarchitecture in Xenopus embryos. Development 2005; 132:805-16. [PMID: 15659484 DOI: 10.1242/dev.01618] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms that control shape and rigidity of early embryos are not well understood, and yet are required for all embryonic processes to take place. In the Xenopus blastula, the cortical actin network in each blastomere is required for the maintenance of overall embryonic shape and rigidity. However, the mechanism whereby each cell assembles the appropriate pattern and number of actin filament bundles is not known. The existence of a similar network in each blastomere suggests two possibilities: cell-autonomous inheritance of instructions from the egg; or mutual intercellular signaling mediated by cell contact or diffusible signals. We show that intercellular signaling is required for the correct pattern of cortical actin assembly in Xenopus embryos, and that lysophosphatidic acid (LPA) and its receptors, corresponding to LPA1 and LPA2 in mammals, are both necessary and sufficient for this function.
Collapse
Affiliation(s)
- Brett Lloyd
- Cincinnati Children's Hospital Research Foundation, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
36
|
Schilling T, Stock C, Schwab A, Eder C. Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 2004; 19:1469-74. [PMID: 15066143 DOI: 10.1111/j.1460-9568.2004.03265.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract Migration of microglial cells towards damaged tissue plays a key role in central nervous system regeneration under pathological conditions. Using time lapse video microscopy we show that lysophosphatidic acid (LPA) enhances chemokinetic migration of murine microglial cells. In the presence of 1 micro m LPA, the mean migration rate of microglial cells was increased 3.8-fold. In patch-clamp studies we demonstrate that LPA induces activation of a Ca(2+)-activated K(+) current. Microglial Ca(2+)-activated K(+) currents were abolished by either 50 nm charybdotoxin or 10 micro m clotrimazole. In contrast, 5 micro m paxilline did not have any significant effects on Ca(2+)-activated K(+) currents. The LPA-stimulated migration of microglial cells was inhibited by blockers of IKCa1 Ca(2+)-activated K(+) channels. The mean migration rate of LPA-stimulated cells was decreased by 61% in the presence of 50 nm charybdotoxin or by 51% during exposure to 10 micro m clotrimazole. Microglial migration was not inhibited by 5 micro m paxilline. It is concluded that IKCa1 Ca(2+)-activated K(+) channels are required for LPA-stimulated migration of microglial cells.
Collapse
Affiliation(s)
- Tom Schilling
- Institute of Physiology, Humboldt University Berlin, Tucholsky Strasse 2, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Ryu SB. Phospholipid-derived signaling mediated by phospholipase A in plants. TRENDS IN PLANT SCIENCE 2004; 9:229-235. [PMID: 15130548 DOI: 10.1016/j.tplants.2004.03.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Stephen B Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|