1
|
Sharma P, Daksh R, Khanna S, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression. Eur J Pharmacol 2025; 995:177422. [PMID: 39988094 DOI: 10.1016/j.ejphar.2025.177422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Depression, often stress-induced, is closely related to neuroinflammation, in which microglia, the brain's immune cells, are the leading players. Microglia shift between a quiescent and an active state, promoting both pro- and anti-inflammatory responses. Cannabinoid type 2 (CB2) receptor encoded by the CNR2 gene is a key player to modulate inflammatory activity. CB2 receptor is highly controlled at the epigenetic level, especially in response to stressful stimuli, positioning it between stress, neuroinflammation, and depression. The following review addresses how epigenetic regulation of CNR2 expression affects depression and the dissection, further, of molecular pathways driving neuroinflammation-related depressive states. The present study emphasizes the therapeutic potential of CB2 receptor agonists that selectively interact with activated microglia and opens a new avenue for the treatment of depression associated with neuroinflammation. The review, therefore, provides a framework of underlying mechanisms for developing novel therapeutic strategies that focus on relieving symptoms by modulating the neuroinflammatory response. Finally, this review underlines the possibilities of therapeutic interventions taking into account CB2 receptors in combating depression.
Collapse
Affiliation(s)
- Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Yoon CS. Natural Products in the Treatment of Neuroinflammation at Microglia: Recent Trend and Features. Cells 2025; 14:571. [PMID: 40277896 PMCID: PMC12026008 DOI: 10.3390/cells14080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Natural products (NPs) are considered to be the oldest medicine in human history and numerous NPs have been investigated to search for therapeutic agents in various diseases. Neurodegenerative diseases such as dementia, Parkinson's, Alzheimer's, and Huntington's disease have been increasing following the extension of human lifespans. Neuroinflammation is a key factor in the genesis of several neurodegenerative diseases; therefore, many studies have been focused on finding therapeutics for the reduction in neuroinflammation. Microglia cells are found in the central nervous system (CNS) and these play a crucial role in the regulation of neuroinflammation; thus, the importance of microglia research has been recognized. This review focuses on recent research trends in finding neuroinflammatory regulators in microglia by using NPs.
Collapse
Affiliation(s)
- Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
3
|
Martinez MX, Mahler SV. Potential roles for microglia in drug addiction: Adolescent neurodevelopment and beyond. J Neuroimmunol 2025; 404:578600. [PMID: 40199197 DOI: 10.1016/j.jneuroim.2025.578600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Adolescence is a sensitive period for development of addiction-relevant brain circuits, and it is also when people typically start experimenting with drugs. Unfortunately, such substance use may cause lasting impacts on the brain, and might increase vulnerability to later-life addictions. Microglia are the brain's immune cells, but their roles in shaping neural connectivity and synaptic plasticity, especially in developmental sensitive periods like adolescence, may also contribute to addiction-related phenomena. Here, we overview how drugs of abuse impact microglia, and propose that they may play poorly-understood, but important roles in addiction vulnerability and progression.
Collapse
Affiliation(s)
- Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA.
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Wang B, Wang J, Beacher NJ, Lin DT, Zhang Y. Cell-type specific epigenetic and transcriptional mechanisms in substance use disorder. Front Cell Neurosci 2025; 19:1552032. [PMID: 40226298 PMCID: PMC11985801 DOI: 10.3389/fncel.2025.1552032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Substance use disorder (SUD) is a chronic and relapse-prone neuropsychiatric disease characterized by impaired brain circuitry within multiple cell types and neural circuits. Recent advancements in single-cell transcriptomics, epigenetics, and neural circuit research have unveiled molecular and cellular alterations associated with SUD. These studies have provided valuable insights into the transcriptional and epigenetic regulation of neuronal and non-neuronal cells, particularly in the context of drug exposure. Critical factors influencing the susceptibility of individuals to SUD include the regulation of gene expression during early developmental stages, neuroadaptive responses to psychoactive substances, and gene-environment interactions. Here we briefly review some of these mechanisms underlying SUD, with an emphasis on their crucial roles in in neural plasticity and maintenance of addiction and relapse in neuronal and non-neuronal cell-types. We foresee the possibility of integrating multi-omics technologies to devise targeted and personalized therapeutic strategies aimed at both the prevention and treatment of SUD. By utilizing these advanced methodologies, we can gain a deeper understanding of the fundamental biology of SUD, paving the way for more effective interventions.
Collapse
Affiliation(s)
- Bin Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiale Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
5
|
Kim KW, Choi BR, Shin WC, Jang JK, Lee YS, Yoon D, Lee DY. Metabolic Profiling of Fermented Products of the Ethanolic Extract of Acanthopanax sessiliflorus Fruit and Evaluation of Its Immune Enhancement Effect in RAW 264.7 Macrophages and BV2 Microglia. Antioxidants (Basel) 2025; 14:397. [PMID: 40298657 PMCID: PMC12024371 DOI: 10.3390/antiox14040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
In this study, we sought to evaluate the potential availability of 30% ethanol extract of Acanthopanax sessiliflorus fruit (ASE) as a prebiotic and compare the immune enhancement effect of ASE and its fermented products, which were fermented with three probiotic bacteria, namely, Lactobacillus plantarum (ASE-LPF), Streptococcus thermophilus (ASE-STF), and Lactobacillus helveticus (ASE-LHF). RAW264.7 and BV2 cells were treated with various concentrations of ASE and its fermented products. The level of nitric oxide was evaluated using a Griess reagent, and the levels of inflammatory cytokines were determined through an enzyme-linked immunosorbent assay. Western blot analysis was employed to determine the expression of various proteins related to immune responses. Our results show that fermentation with ASE significantly improved the probiotic growth of S. thermophilus and L. helveticus. Compared with ASE, treatment with only ASE-LHF increased the level of nitric oxide. Compared with ASE, treatment with ASE-LHF augmented the expression of inducible nitric oxide synthase, cyclooxygenase-2, and the production of inflammatory cytokines. It was confirmed that these enhancement effects were due to the activation of the nuclear factor kappa B and extracellular signal-regulated kinase mitogen-activated protein kinase signaling pathways. Additionally, secondary metabolite profiling of ASE and its fermented products was performed using UPLC-QTOF/MS to identify ASE's promising compounds. Through metabolomic analysis, 23 metabolites showing significant differences between ASE and its fermented products were compared. Therefore, this study demonstrates the possibility of ASE-LHF as a potential material for immune-enhancing agents.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Woo-Cheol Shin
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Kyu Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Lopes S, Pabst L, Bahougne T, Barthélémy P, Guitton R, Didier K, Geoffrois L, Granel-Brocard F, Mennecier B, Mascaux C, Kremer S, Collongues N. Central nervous system complications of immune checkpoint inhibitors: A comprehensive review. Crit Rev Oncol Hematol 2025; 206:104595. [PMID: 39674302 DOI: 10.1016/j.critrevonc.2024.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024] Open
Abstract
The ever-increasing use of immune checkpoint inhibitors (ICIs) has significantly improved cancer management, but at the cost of frequent immunologic side effects. Among them, neurologic immune-related adverse events (nirAEs) are less common but pose a challenge to clinicians due to their severity, heterogeneous nature and nonspecific clinical presentation, making diagnosis complex. The prognosis of these nirAEs, especially those related to the central nervous system (CNS), correlates with their rapid recognition and therapeutic management. Indeed, the therapeutic options are sometimes unfamiliar and may be further complicated by the lack of recommendations in the event of failure of a well-managed first-line treatment. Finally, the attribution of ICIs to certain CNS disorders is controversial and may lead to an incorrect decision to discontinue or contraindicate treatment, resulting in an irremediable loss of opportunity for the patient. Therefore, the aim of this review is to present known/suspected CNS nirAEs induced by ICI, their diagnostic approach and management through therapeutic advices for optimal treatment and rechallenge opportunities.
Collapse
Affiliation(s)
- Sébastien Lopes
- Center for Clinical Investigation, INSERM U1434, Strasbourg University, 1 Avenue Molière, Strasbourg 67098, France; Pharmacy Pharmacology Department, Strasbourg University Hospitals, 1 Place de l'hopital, Strasbourg 67000, France; Regenerative Nanomedicine, INSERM U1260, Strasbourg University, 1 rue Eugène Boeckel, Strasbourg 67000, France.
| | - Lucile Pabst
- Pulmonology Department, Strasbourg University Hospitals, 1 Place de l'hopital, Strasbourg 67000, France; Regenerative Nanomedicine, INSERM U1260, Strasbourg University, 1 rue Eugène Boeckel, Strasbourg 67000, France.
| | - Thibault Bahougne
- Endocrinology Department, Strasbourg University Hospitals, 1 Avenue Molière, Strasbourg 67098, France.
| | - Philippe Barthélémy
- Oncology Department, Institut de Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, Strasbourg 67200, France.
| | - Romain Guitton
- Internal Medicine Department, Assistance Publique des Hôpitaux de Paris, Bicetre hospital, 78 Rue du Général Leclerc, Paris 94270, France.
| | - Kevin Didier
- Internal medicine Department, Reims University Hospital, Rue du Général Koenig, Reims 51110, France.
| | - Lionnel Geoffrois
- Oncology Department, Lorraine Cancerology Institute, 6 Avenue de Bourgogne, Nancy 54519, France.
| | | | - Bertrand Mennecier
- Pulmonology Department, Strasbourg University Hospitals, 1 Place de l'hopital, Strasbourg 67000, France.
| | - Céline Mascaux
- Pulmonology Department, Strasbourg University Hospitals, 1 Place de l'hopital, Strasbourg 67000, France; Regenerative Nanomedicine, INSERM U1260, Strasbourg University, 1 rue Eugène Boeckel, Strasbourg 67000, France.
| | - Stéphane Kremer
- Neuroradiology Department, Strasbourg University Hospital, 1 Avenue Molière, Strasbourg 67098, France; ICube, University of Strasbourg/CNRS UMR 7357, 300 boulevard Sébastien Brant, Illkirch-Graffenstaden 67400, France.
| | - Nicolas Collongues
- Center for Clinical Investigation, INSERM U1434, Strasbourg University, 1 Avenue Molière, Strasbourg 67098, France; Neurology Department, Strasbourg University Hospitals, 1 Avenue Molière, Strasbourg 67098, France.
| |
Collapse
|
7
|
Kalaki-Jouybari F, Shirzad M, Javan M, Ghasemi-Kasman M, Pouramir M. Co-administration of Naringin and NLRP3 Inhibitor Improves Myelin Repair and Mitigates Oxidative Stress in Cuprizone-Induced Demyelination Model. Curr Neuropharmacol 2025; 23:475-491. [PMID: 40123459 DOI: 10.2174/1570159x23666241206102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Naringin and MCC950 as an inflammasome inhibitor have exhibited numerous pharmacological activities, including antioxidant and anti-inflammatory effects. The present study has examined the combined impacts of naringin and MCC950 on the levels of oxidative stress, demyelination, and inflammation in the cuprizone (CPZ)-induced demyelination model. METHODS In order to induce demyelination, CPZ (0.2% w/w) was added to the normal diet of mice for 42 days. Subsequently, the male C57BL/6 mice received naringin (oral administration), MCC950 (intraperitoneal injection), or their combination for 14 days. Working memory was tested by the Y maze. FluoroMyelin staining, MOG, and GFAP immunostaining assessed the demyelination extent, myelin intensity, and astrocyte activation, respectively. Oxidant/antioxidant biomarkers were measured using colorimetric techniques. The expression levels of MBP, PDGFRα, Olig2, Nrf2, HO-1, NQO-1, GSK3β, IL1α, and IL18 were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Our results indicated that the co-administration of naringin and MCC950 improved working memory and antioxidant capacity. A significant reduction was found in the extent of demyelination and inflammatory mediatorsin naringin and MCC950-treated mice. In addition, co-administration of naringin and MCC950 elevated the expression levels of pro-myelinating and antioxidant markers. CONCLUSION These findings indicated improvement of the working memory through co-administration of naringin and MCC950, which might be partly mediated by enhancing antioxidant capacity, promoting remyelination, and mitigating inflammation in the CPZ-induced demyelination model.
Collapse
Affiliation(s)
- Fatemeh Kalaki-Jouybari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Pouramir
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Campos-Sánchez JC, Meseguer J, Guardiola FA. Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105274. [PMID: 39341477 DOI: 10.1016/j.dci.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
9
|
Marques SI, Sá SI, Carmo H, Carvalho F, Silva JP. Pharmaceutical-mediated neuroimmune modulation in psychiatric/psychological adverse events. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111114. [PMID: 39111563 DOI: 10.1016/j.pnpbp.2024.111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The therapeutic use of many pharmaceuticals, including small molecules and biological therapies, has been associated with the onset of psychiatric and psychological adverse events (PPAEs), posing substantial concerns to patients' health and safety. These events, which encompass mood (e.g., depression, schizophrenia, suicidal ideation) and cognitive changes (e.g., learning and memory impairment, dementia) often remain undetected until advanced stages of clinical trials or pharmacovigilance, mostly because the mechanisms underlying the onset of PPAEs remain poorly understood. In recent years, the role of neuroimmune modulation (comprising an intricate interplay between various cell types and signaling pathways) in PPAEs has garnered substantial interest. Indeed, understanding these complex interactions would substantially contribute to increase the ability to predict the potential onset of PPAEs during preclinical stages of a new drug's R&D. This review provides a comprehensive summary of the most recent advances in neuroimmune modulation-related mechanisms contributing to the onset of PPAEs and their association with specific pharmaceuticals. Reported data strongly support an association between neuroimmune modulation and the onset of PPAEs. Pharmaceuticals may target specific molecular pathways and pathway elements (e.g., cholinergic and serotonergic systems), which in turn may directly or indirectly impact the inflammatory status and the homeostasis of the brain, regulating inflammation and neuronal function. Also, modulation of the peripheral immune system by pharmaceuticals that do not permeate the blood-brain barrier (e.g., monoclonal antibodies) may alter the neuroimmunomodulatory status of the brain, leading to PPAEs. In summary, this review underscores the diverse pathways through which drugs can influence brain inflammation, shedding light on potential targeted interventions.
Collapse
Affiliation(s)
- Sandra I Marques
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Susana I Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Helena Carmo
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João P Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Filannino FM, Ruggiero M, Panaro MA, Lofrumento DD, Trotta T, Benameur T, Cianciulli A, Calvello R, Zoila F, Porro C. Irisin Attenuates Neuroinflammation Targeting the NLRP3 Inflammasome. Molecules 2024; 29:5623. [PMID: 39683782 DOI: 10.3390/molecules29235623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Neuroinflammation is defined as an immune response involving various cell types, particularly microglia, which monitor the neuroimmune axis. Microglia activate in two distinct ways: M1, which is pro-inflammatory and capable of inducing phagocytosis and releasing pro-inflammatory factors, and M2, which has anti-inflammatory properties. Inflammasomes are large protein complexes that form in response to internal danger signals, activating caspase-1 and leading to the release of pro-inflammatory cytokines such as interleukin 1β. Irisin, a peptide primarily released by muscles during exercise, was examined for its effects on BV2 microglial cells in vitro. Even at low concentrations, irisin was observed to influence the NLRP3 inflammasome, showing potential as a neuroprotective and anti-inflammatory agent after stimulation with lipopolysaccharides (LPSs). Irisin helped maintain microglia in their typical physiological state and reduced their migratory capacity. Irisin also increased Arg-1 protein expression, a marker of M2 polarization, while downregulating NLRP3, Pycard, caspase-1, IL-1β, and CD14. The results of this study indicate that irisin may serve as a crucial mediator of neuroprotection, thus representing an innovative tool for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Federico Zoila
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| |
Collapse
|
11
|
Ross-Munro E, Isikgel E, Fleiss B. Evaluation of the Efficacy of a Full-Spectrum Low-THC Cannabis Plant Extract Using In Vitro Models of Inflammation and Excitotoxicity. Biomolecules 2024; 14:1434. [PMID: 39595610 PMCID: PMC11592195 DOI: 10.3390/biom14111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Evidence has accumulated that Cannabis-derived compounds have the potential to treat neuroinflammatory changes present in neurodevelopmental conditions such as autism spectrum disorder. However, research is needed on the specific brain health benefits of strains of whole Cannabis extract that are ready for commercial production. Here, we explore the anti-inflammatory and neuroprotective effects of NTI-164, a genetically unique high-cannabidiol (CBD), low-Δ9-tetrahydrocannabinol extract, and also CBD alone on BV-2 microglia and SHSY-5Y neurons. Inflammation-induced up-regulation of microglial inflammatory markers was significantly attenuated by NTI-164, but not by CBD. NTI-164 promoted undifferentiated neuron proliferation and differentiated neuron survival under excitotoxic conditions. These effects suggest the potential for NTI-164 as a treatment for neuropathologies.
Collapse
Affiliation(s)
- Emily Ross-Munro
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Esra Isikgel
- Fenix Innovation Group Pty Ltd., Melbourne, VIC 3149, Australia;
| | - Bobbi Fleiss
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
12
|
Stanley N, Dhawka L, Jaikumar S, Huang YC, Zannas AS. Leveraging Single-Cell RNA-Seq to Generate Robust Microglia Aging Clocks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.05.616811. [PMID: 39554035 PMCID: PMC11566008 DOI: 10.1101/2024.10.05.616811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
'Biological aging clocks' - composite molecular markers thought to capture an individual's biological age - have been traditionally developed through bulk-level analyses of mixed cells and tissues. However, recent evidence highlights the importance of gaining single-cell-level insights into the aging process. Microglia are key immune cells in the brain shown to adapt functionally in aging and disease. Recent studies have generated single-cell RNA sequencing (scRNA-seq) datasets that transcriptionally profile microglia during aging and development. Leveraging such datasets, we develop and compare computational approaches for generating transcriptome-wide summaries to establish robust microglia aging clocks. Our results reveal that unsupervised, frequency-based featurization approaches strike a balance in accuracy, interpretability, and computational efficiency. We further extrapolate and demonstrate applicability of such microglia clocks to readily available bulk RNA-seq data with environmental inputs. Single-cell-derived clocks can yield insights into the determinants of brain aging, ultimately promoting interventions that beneficially modulate health and disease trajectories.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| | - Luvna Dhawka
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Sneha Jaikumar
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
| | - Yu-Chen Huang
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Anthony S Zannas
- Department of Psychiatry, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Zhang Q, Sun W, Zheng M, Zhang N. Contribution of microglia/macrophage to the pathogenesis of TMEV infection in the central nervous system. Front Microbiol 2024; 15:1452390. [PMID: 39155988 PMCID: PMC11327027 DOI: 10.3389/fmicb.2024.1452390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and an immune response, which is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis (MS). The activation of both innate and adaptive immune responses, involving microglia, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under pathological events, such as CNS viral infection, microglia/macrophage undergo a reactive response, leading to the infiltration of immune cells from the periphery into the brain, disrupting CNS homeostasis and contributing to the pathogenesis of disease. The Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination disease (TMEV-IDD), which serves as a mouse model of MS. This murine model made significant contributions to our understanding of the pathophysiology of MS following subsequent to infection. Microglia/macrophages could be activated into two different states, classic activated state (M1 state) and alternative activated state (M2 state) during TMEV infection. M1 possesses the capacity to initiate inflammatory response and secretes pro-inflammatory cytokines, and M2-liked microglia/macrophages are anti-inflammatory characterized by the secretion of anti-inflammatory cytokines. This review aims to discuss the roles of microglia/macrophages M1/M2-liked polarization during TMEV infection, and explore the potential therapeutic effect of balancing M1/M2-liked polarization of microglia/macrophages on MS.
Collapse
Affiliation(s)
| | | | | | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
15
|
Brockie S, Zhou C, Fehlings MG. Resident immune responses to spinal cord injury: role of astrocytes and microglia. Neural Regen Res 2024; 19:1678-1685. [PMID: 38103231 PMCID: PMC10960308 DOI: 10.4103/1673-5374.389630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury can be traumatic or non-traumatic in origin, with the latter rising in incidence and prevalence with the aging demographics of our society. Moreover, as the global population ages, individuals with co-existent degenerative spinal pathology comprise a growing number of traumatic spinal cord injury cases, especially involving the cervical spinal cord. This makes recovery and treatment approaches particularly challenging as age and comorbidities may limit regenerative capacity. For these reasons, it is critical to better understand the complex milieu of spinal cord injury lesion pathobiology and the ensuing inflammatory response. This review discusses microglia-specific purinergic and cytokine signaling pathways, as well as microglial modulation of synaptic stability and plasticity after injury. Further, we evaluate the role of astrocytes in neurotransmission and calcium signaling, as well as their border-forming response to neural lesions. Both the inflammatory and reparative roles of these cells have eluded our complete understanding and remain key therapeutic targets due to their extensive structural and functional roles in the nervous system. Recent advances have shed light on the roles of glia in neurotransmission and reparative injury responses that will change how interventions are directed. Understanding key processes and existing knowledge gaps will allow future research to effectively target these cells and harness their regenerative potential.
Collapse
Affiliation(s)
- Sydney Brockie
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Cindy Zhou
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Kim M, Oh S, Kim S, Kim IS, Kim J, Han J, Ahn JW, Chung S, Jang JH, Shin JE, Park KI. In vivo neural regeneration via AAV-NeuroD1 gene delivery to astrocytes in neonatal hypoxic-ischemic brain injury. Inflamm Regen 2024; 44:33. [PMID: 39014391 PMCID: PMC11253351 DOI: 10.1186/s41232-024-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) is a significant contributor to neonatal mortality and long-term neurodevelopmental disability, characterized by massive neuronal loss and reactive astrogliosis. Current therapeutic approaches for neonatal HIBI have been limited to general supportive therapy because of the lack of methods to compensate for irreversible neuronal loss. This study aimed to establish a feasible regenerative therapy for neonatal HIBI utilizing in vivo direct neuronal reprogramming technology. METHODS Neonatal HIBI was induced in ICR mice at postnatal day 7 by permanent right common carotid artery occlusion and exposure to hypoxia with 8% oxygen and 92% nitrogen for 90 min. Three days after the injury, NeuroD1 was delivered to reactive astrocytes of the injury site using the astrocyte-tropic adeno-associated viral (AAV) vector AAVShH19. AAVShH19 was engineered with the Cre-FLEX system for long-term tracking of infected cells. RESULTS AAVShH19-mediated ectopic NeuroD1 expression effectively converted astrocytes into GABAergic neurons, and the converted cells exhibited electrophysiological properties and synaptic transmitters. Additionally, we found that NeuroD1-mediated in vivo direct neuronal reprogramming protected injured host neurons and altered the host environment, i.e., decreased the numbers of activated microglia, reactive astrocytes, and toxic A1-type astrocytes, and decreased the expression of pro-inflammatory factors. Furthermore, NeuroD1-treated mice exhibited significantly improved motor functions. CONCLUSIONS This study demonstrates that NeuroD1-mediated in vivo direct neuronal reprogramming technology through AAV gene delivery can be a novel regenerative therapy for neonatal HIBI.
Collapse
Affiliation(s)
- Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seokmin Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Songyeon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il-Sun Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joowon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungho Han
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Ji Woong Ahn
- BnH Research. Co., Ltd. Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Seungsoo Chung
- Department of Physiology, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- GluGene Therapeutics Inc., Seoul, Republic of Korea
| | - Jeong Eun Shin
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| | - Kook In Park
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
17
|
Pethe A, Joshi S, Ali Dar T, Poddar NK. Revisiting the role of phospholipases in alzheimer's: crosstalk with processed food. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39002140 DOI: 10.1080/10408398.2024.2377290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Phospholipases such as phospholipase-A, phospholipase-B, phospholipase-C and phospholipase-D are important functional enzymes of the cell membrane responsible for a variety of functions such as signal transduction, production of lipid mediators, metabolite digestion and playing a pathological role in central nervous system diseases. Phospholipases have shown an association with Alzheimer's disease and these enzymes have found a correlation with several metabolic pathways that can lead to the activation of inflammatory signals via astrocytes and microglial cells. We also highlighted unhealthy practices like smoking and consuming processed foods, rich in nitroso compounds and phosphatidic acid, which contribute to neuronal damage in AD through phospholipases. A few therapeutic approaches such as the use of inhibitors of phospholipase-D,phospholipase A2 as well as autophagy-mediated inhibition have been discussed to control the onset of AD. This paper serves as a crosstalk between phospholipases and their role in neurodegenerative pathways as well as their influence on other biomolecules of lipid membranes, which are acquired through unhealthy diets and possible methods to treat these anomalies occurring due to their metabolic disorder involving phospholipases acting as major signaling molecules.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Siddhi Joshi
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
18
|
Ismail FS, Faustmann TJ, Faustmann PM, Corvace F. Microglia as potential key regulators in viral-induced neuroinflammation. Front Cell Neurosci 2024; 18:1426079. [PMID: 39055547 PMCID: PMC11269195 DOI: 10.3389/fncel.2024.1426079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Pedro M. Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Bar E, Fischer I, Rokach M, Elad-Sfadia G, Shirenova S, Ophir O, Trangle SS, Okun E, Barak B. Neuronal deletion of Gtf2i results in developmental microglial alterations in a mouse model related to Williams syndrome. Glia 2024; 72:1117-1135. [PMID: 38450767 DOI: 10.1002/glia.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.
Collapse
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Valentino RJ, Nair SG, Volkow ND. Neuroscience in addiction research. J Neural Transm (Vienna) 2024; 131:453-459. [PMID: 37947883 DOI: 10.1007/s00702-023-02713-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
The prevention and treatment of addiction (moderate to severe substance use disorder-SUD) have remained challenging because of the dynamic and complex interactions between multiple biological and social determinants that shape SUD. The pharmacological landscape is ever changing and the use of multiple drugs is increasingly common, requiring an unraveling of pharmacological interactions to understand the effects. There are different stages in the trajectory from drug use to addiction that are characterized by distinct cognitive and emotional features. These are directed by different neurobiological processes that require identification and characterization including those that underlie the high co-morbidity with other disorders. Finally, there is substantial individual variability in the susceptibility to develop SUD because there are multiple determinants, including genetics, sex, developmental trajectories and times of drug exposures, and psychosocial and environmental factors including commercial determinants that influence drug availability. Elucidating how these factors interact to determine risk is essential for identifying the biobehavioral basis of addiction and developing prevention and treatment strategies. Basic research is tasked with addressing each of these challenges. The recent proliferation of technological advances that allow for genetic manipulation, visualization of molecular reactions and cellular activity in vivo, multiscale whole brain mapping across the life span, and the mining of massive data sets including multimodality human brain imaging are accelerating our ability to understand how the brain functions and how drugs influence it. Here, we highlight how the application of these tools to the study of addiction promises to illuminate its neurobiological basis and guide strategies for prevention and treatment.
Collapse
Affiliation(s)
- Rita J Valentino
- National Institute On Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| | - Sunila G Nair
- National Institute On Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute On Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
23
|
Sun Q, Gao J, An R, Wang M, Wang Y. Probing molecular pathways: Illuminating the connection between COVID-19 and Alzheimer's disease through the endocannabinoid system dynamics. J Med Virol 2024; 96:e29590. [PMID: 38619024 DOI: 10.1002/jmv.29590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Qingyuan Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyang Gao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ran An
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Menggeer Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
24
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Medeiros D, McMurry K, Pfeiffer M, Newsome K, Testerman T, Graf J, Silver AC, Sacchetti P. Slowing Alzheimer's disease progression through probiotic supplementation. Front Neurosci 2024; 18:1309075. [PMID: 38510467 PMCID: PMC10950931 DOI: 10.3389/fnins.2024.1309075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
The lack of affordable and effective therapeutics against cognitive impairment has promoted research toward alternative approaches to the treatment of neurodegeneration. In recent years, a bidirectional pathway that allows the gut to communicate with the central nervous system has been recognized as the gut-brain axis. Alterations in the gut microbiota, a dynamic population of trillions of microorganisms residing in the gastrointestinal tract, have been implicated in a variety of pathological states, including neurodegenerative disorders such as Alzheimer's disease (AD). However, probiotic treatment as an affordable and accessible adjuvant therapy for the correction of dysbiosis in AD has not been thoroughly explored. Here, we sought to correct the dysbiosis in an AD mouse model with probiotic supplementation, with the intent of exploring its effects on disease progression. Transgenic 3xTg-AD mice were fed a control or a probiotic diet (Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601) for 12 weeks, with the latter leading to a significant increase in the relative abundance of Bacteroidetes. Cognitive functions were evaluated via Barnes Maze trials and improvements in memory performance were detected in probiotic-fed AD mice. Neural tissue analysis of the entorhinal cortex and hippocampus of 10-month-old 3xTg-AD mice demonstrated that astrocytic and microglial densities were reduced in AD mice supplemented with a probiotic diet, with changes more pronounced in probiotic-fed female mice. In addition, elevated numbers of neurons in the hippocampus of probiotic-fed 3xTg-AD mice suggested neuroprotection induced by probiotic supplementation. Our results suggest that probiotic supplementation could be effective in delaying or mitigating early stages of neurodegeneration in the 3xTg-AD animal model. It is vital to explore new possibilities for palliative care for neurodegeneration, and probiotic supplementation could provide an inexpensive and easily implemented adjuvant clinical treatment for AD.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kristina McMurry
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Melissa Pfeiffer
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kayla Newsome
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Todd Testerman
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Joerg Graf
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Adam C. Silver
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Paola Sacchetti
- Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
26
|
Aoki T, Endo Y, Nakamura E, Kuschner CE, Kazmi J, Singh P, Yin T, Becker LB, Hayashida K. Therapeutic potential of mitochondrial transplantation in modulating immune responses post-cardiac arrest: a narrative review. J Transl Med 2024; 22:230. [PMID: 38433198 PMCID: PMC10909283 DOI: 10.1186/s12967-024-05003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Mitochondrial transplantation (MTx) has emerged as a novel therapeutic strategy, particularly effective in diseases characterized by mitochondrial dysfunction. This review synthesizes current knowledge on MTx, focusing on its role in modulating immune responses and explores its potential in treating post-cardiac arrest syndrome (PCAS). METHODS We conducted a comprehensive narrative review of animal and human studies that have investigated the effects of MTx in the context of immunomodulation. This included a review of the immune responses following critical condition such as ischemia reperfusion injury, the impact of MTx on these responses, and the therapeutic potential of MTx in various conditions. RESULTS Recent studies indicate that MTx can modulate complex immune responses and reduce ischemia-reperfusion injury post-CA, suggesting MTx as a novel, potentially more effective approach. The review highlights the role of MTx in immune modulation, its potential synergistic effects with existing treatments such as therapeutic hypothermia, and the need for further research to optimize its application in PCAS. The safety and efficacy of autologous versus allogeneic MTx, particularly in the context of immune reactions, are critical areas for future investigation. CONCLUSION MTx represents a promising frontier in the treatment of PCAS, offering a novel approach to modulate immune responses and restore cellular energetics. Future research should focus on long-term effects, combination therapies, and personalized medicine approaches to fully harness the potential of MTx in improving patient outcomes in PCAS.
Collapse
Affiliation(s)
- Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Parmeshar Singh
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA.
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
27
|
Wen X, Dong H, Zou W. The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: a comprehensive review. Front Neurosci 2024; 18:1346184. [PMID: 38449739 PMCID: PMC10915040 DOI: 10.3389/fnins.2024.1346184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Intracerebral hemorrhagic stroke, characterized by acute hemorrhage in the brain, has a significant clinical prevalence and poses a substantial threat to individuals' well-being and productivity. Recent research has elucidated the role of gut microorganisms and their metabolites in influencing brain function through the microbiota-gut-brain axis (MGBA). This article provides a comprehensive review of the current literature on the common metabolites, short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), produced by gut microbiota. These metabolites have demonstrated the potential to traverse the blood-brain barrier (BBB) and directly impact brain tissue. Additionally, these compounds have the potential to modulate the parasympathetic nervous system, thereby facilitating the release of pertinent substances, impeding the buildup of inflammatory agents within the brain, and manifesting anti-inflammatory properties. Furthermore, this scholarly analysis delves into the existing dearth of investigations concerning the influence of gut microorganisms and their metabolites on cerebral functions, while also highlighting prospective avenues for future research.
Collapse
Affiliation(s)
- Xin Wen
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Hao Dong
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
28
|
Al-Khazaleh AK, Zhou X, Bhuyan DJ, Münch GW, Al-Dalabeeh EA, Jaye K, Chang D. The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects. Molecules 2024; 29:410. [PMID: 38257323 PMCID: PMC10821245 DOI: 10.3390/molecules29020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Elaf Adel Al-Dalabeeh
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan;
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| |
Collapse
|
29
|
Jucá PM, de Almeida Duque É, Covre LHH, Mariano KAA, Munhoz CD. Microglia and Systemic Immunity. ADVANCES IN NEUROBIOLOGY 2024; 37:287-302. [PMID: 39207698 DOI: 10.1007/978-3-031-55529-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are specialized immune cells that reside in the central nervous system (CNS) and play a crucial role in maintaining the homeostasis of the brain microenvironment. While traditionally regarded as a part of the innate immune system, recent research has highlighted their role in adaptive immunity. The CNS is no longer considered an immune-privileged organ, and increasing evidence suggests bidirectional communication between the immune system and the CNS. Microglia are sensitive to systemic immune signals and can respond to systemic inflammation by producing various inflammatory cytokines and chemokines. This response is mediated by activating pattern recognition receptors (PRRs), which recognize pathogen- and danger-associated molecular patterns in the systemic circulation. The microglial response to systemic inflammation has been implicated in several neurological conditions, including depression, anxiety, and cognitive impairment. Understanding the complex interplay between microglia and systemic immunity is crucial for developing therapeutic interventions to modulate immune responses in the CNS.
Collapse
Affiliation(s)
- Paloma Marinho Jucá
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Érica de Almeida Duque
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Luiza Helena Halas Covre
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil.
| |
Collapse
|
30
|
Xu X, Wen S, Zhang Y, Cao W, Yue P, Kong J, Liu M, Fan Y, Chen J, Ji Z, Dong Y, Zhou G, Li B, Liu A, Bao F. A key protein from Borrelia burgdorferi could stimulate cytokines in human microglial cells and inhibitory effects of Cucurbitacin IIa. IBRO Neurosci Rep 2023; 15:376-385. [PMID: 38046885 PMCID: PMC10689270 DOI: 10.1016/j.ibneur.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Lyme neuroborreliosis (LNB) is an infectious disease of the nervous system caused by Borrelia burgdorferi (Bb) infection. However, its pathogenesis is not fully understood. We used recombinant BmpA (rBmpA) to stimulate human microglia cell HMC3, then collected the culture supernatant and extracted total RNA from cells, and used the supernatant for cytokine chip, then ELISA and qPCR technology were used to validate the results from cytokine chip. After rBmpA stimulation of microglia, 24 inflammation-related cytokines showed elevated expression. Among them, six cytokines (IL-6, IL-8, CCL2, CCL5, CXCL1, and CXCL10) increased significantly in mRNA transcription, three cytokines (IL-6, IL-8, and CXCL10) concentrations in the cell supernatant increased significantly after the rBmpA stimulation, and CuIIa could inhibit expression of these cytokines. The BmpA can stimulate human microglia to produce large amounts of cytokines, leading to the occurrence of inflammation, which may be closely related to the development of LNB. CuIIa can inhibit BmpA-induced cytokine production in microglia, which may have potential therapeutic effects on LNB.
Collapse
Affiliation(s)
- Xin Xu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Department of Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Zhang
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Wenjing Cao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Peng Yue
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Jing Kong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Meixiao Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yuxin Fan
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Jingjing Chen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Zhenhua Ji
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Dong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Bingxue Li
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Fukai Bao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
31
|
He Y, Zhao J, Dong H, Zhang X, Duan Y, Ma Y, Yu M, Fei J, Huang F. TLR2 deficiency is beneficial at the late phase in MPTP-induced Parkinson' disease mice. Life Sci 2023; 333:122171. [PMID: 37827233 DOI: 10.1016/j.lfs.2023.122171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
AIMS Parkinson's disease (PD) is a progressive neurodegenerative disorder. The etiology of PD is still elusive but neuroinflammation is proved to be an important contributor. Toll-like receptor 2 (TLR2) involves in the release of several inflammatory cytokines. Whether TLR2 serves as a mediator contributing to the damage of DA system in PD remain unclear. MAIN METHODS Tlr2 knockout (Tlr2-/-) and wild-type (WT) mice were treated with a subacute regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At 3, 7 and 14 days after MPTP injection, the behavioral performance, including the Pole test, the Rotarod test, the Rearing test and the Wire hang test was evaluated. Moreover, the PD-like phenotypes, including dopaminergic degeneration, the activation of glial cells and the α-Syn expression were systematically analyzed in the nigrostriatal pathway. Finally, the composition of gut microbiota in the MPTP-treated groups were assessed. KEY FINDINGS TLR2 deficiency had no obvious impact on the dopaminergic injury at 3 and 7 days following MPTP administration. On the contrary, at 14 days post injection, TLR2 deficiency not only significantly attenuated motor deficits in the Pole test and the Rotarod test, and the nigrostriatal dopaminergic degeneration, but also mitigated α-Syn abnormality, astrocyte activation and neuroinflammation through the suppressed TLR2/MyD88/TRAF6/NF-κB signaling pathways. Additionally, the alteration of gut microbiota was also detected in the mutant mice. SIGNIFICANCE These findings highlight the neuroprotective effect of TLR2-pathways at the late phase in the MPTP-induced PD mouse model.
Collapse
Affiliation(s)
- Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
32
|
Hyung S, Park JH, Jung K. Application of optogenetic glial cells to neuron-glial communication. Front Cell Neurosci 2023; 17:1249043. [PMID: 37868193 PMCID: PMC10585272 DOI: 10.3389/fncel.2023.1249043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Optogenetic techniques combine optics and genetics to enable cell-specific targeting and precise spatiotemporal control of excitable cells, and they are increasingly being employed. One of the most significant advantages of the optogenetic approach is that it allows for the modulation of nearby cells or circuits with millisecond precision, enabling researchers to gain a better understanding of the complex nervous system. Furthermore, optogenetic neuron activation permits the regulation of information processing in the brain, including synaptic activity and transmission, and also promotes nerve structure development. However, the optimal conditions remain unclear, and further research is required to identify the types of cells that can most effectively and precisely control nerve function. Recent studies have described optogenetic glial manipulation for coordinating the reciprocal communication between neurons and glia. Optogenetically stimulated glial cells can modulate information processing in the central nervous system and provide structural support for nerve fibers in the peripheral nervous system. These advances promote the effective use of optogenetics, although further experiments are needed. This review describes the critical role of glial cells in the nervous system and reviews the optogenetic applications of several types of glial cells, as well as their significance in neuron-glia interactions. Together, it briefly discusses the therapeutic potential and feasibility of optogenetics.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Park
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Jung
- DAWINBIO Inc., Hanam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
33
|
Hao W, Zhu X, Liu Z, Song Y, Wu S, Lu X, Yang J, Jin C. Aluminum exposure induces central nervous system impairment via activating NLRP3-medicated pyroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115401. [PMID: 37634479 DOI: 10.1016/j.ecoenv.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Aluminum is an environmental toxicant whose long-term exposure is closely associated with nervous system impairment. This study mainly investigated neurological impairment induced by subchronic aluminum exposure via activating NLRP3-medicated pyroptosis pathway. METHODS In vivo, Kunming mice were exposed to AlCl3 (30.3 mg/kg, 101 mg/kg and 303 mg/kg) via drinking water for 3 months, and administered with Rsv (100 mg/kg) by gavage for 1 month. Cognitive impairment was assessed by Morris water maze test, and pathological injury was detected via H&E staining. BBB integrity, pyroptosis and neuroinflammation were evaluated through western blotting and immunofluorescence methods. In vitro, BV2 microglia was treated with AlCl3 (0.5 mM, 1 mM and 2 mM) to sensitize pyroptosis pathway. The protein interaction was verified by co-immunoprecipitation, and neuronal damage was estimated via a conditioned medium co-culture system with BV2 and TH22 cells. RESULTS Our results showed that AlCl3 induced mice memory disorder, BBB destruction, and pathological injury. Besides, aluminum caused glial activation, sensitized DDX3X-NLRP3 pyroptosis pathway, released cytokines IL-1β and IL-18, initiating neuroinflammation. BV2 microglia treated with AlCl3 emerged hyperactivation and pyroptotic death, and Ddx3x knockdown inhibited pyroptosis signaling pathway. DDX3X acted as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome and G3BP1 stress granules. Furthermore, aluminum-activated microglia had an adverse effect on co-cultured neurons and destroyed nervous system homeostasis. CONCLUSION Aluminum exposure could induce pyroptosis and neurotoxicity. DDX3X determined live or die via selectively regulating pro-survival stress granules or pro-death NLRP3 inflammasome. Excessive activation of microglia might damage neurons and aggravate nerve injury.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoying Zhu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ziyue Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yushuai Song
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
34
|
Sesti F, Bortolami A, Kathera-Ibarra EF. Non-conducting functions of potassium channels in cancer and neurological disease. CURRENT TOPICS IN MEMBRANES 2023; 92:199-231. [PMID: 38007268 DOI: 10.1016/bs.ctm.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Cancer and neurodegenerative disease, albeit fundamental differences, share some common pathogenic mechanisms. Accordingly, both conditions are associated with aberrant cell proliferation and migration. Here, we review the causative role played by potassium (K+) channels, a fundamental class of proteins, in cancer and neurodegenerative disease. The concept that emerges from the review of the literature is that K+ channels can promote the development and progression of cancerous and neurodegenerative pathologies by dysregulating cell proliferation and migration. K+ channels appear to control these cellular functions in ways that not necessarily depend on their conducting properties and that involve the ability to directly or indirectly engage growth and survival signaling pathways. As cancer and neurodegenerative disease represent global health concerns, identifying commonalities may help understand the molecular basis for those devastating conditions and may facilitate the design of new drugs or the repurposing of existing drugs.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States.
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| | - Elena Forzisi Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| |
Collapse
|
35
|
Wang S, Hou K, Gui S, Ma Y, Wang S, Zhao S, Zhu X. Insulin-like growth factor 1 in heat stress-induced neuroinflammation: novel perspective about the neuroprotective role of chromium. STRESS BIOLOGY 2023; 3:23. [PMID: 37676529 PMCID: PMC10441889 DOI: 10.1007/s44154-023-00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023]
Abstract
Heat stress (HS) can cause a series of stress responses, resulting in numerous negative effects on the body, such as the diminished food intake, carcass quality and reproductive capacity. In addition to the negative effects on the peripheral system, HS leads to central nervous system (CNS) disorders given its toll on neuroinflammation. This neuroinflammatory process is mainly mediated by microglia and astrocytes, which are involved in the activation of glial cells and the secretion of cytokines. While the regulation of inflammatory signaling has a close relationship with the expression of heat shock protein 70 (Hsp70), HS-induced neuroinflammation is closely related to the activation of the TLR4/NF-κB pathway. Moreover, oxidative stress and endoplasmic reticulum (ER) stress are key players in the development of neuroinflammation. Chromium (Cr) has been widely shown to have neuroprotective effects in both humans and animals, despite the lack of mechanistic evidence. Evidence has shown that Cr supplementation can increase the levels of insulin-like growth factor 1 (IGF-1), a major neurotrophic factor with anti-inflammatory and antioxidant effects. This review highlights recent advances in the attenuating effects and potential mechanisms of Cr-mediated IGF-1 actions on HS-induced neuroinflammation, providing presently existing evidence supporting the neuroprotective role of Cr.
Collapse
Affiliation(s)
- Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kanghui Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Siqi Gui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
36
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
37
|
Zhang Y, Tan J, Yang K, Fan W, Yu B, Shi W. Ambient RNAs removal of cortex-specific snRNA-seq reveals Apoe + microglia/macrophage after deeper cerebral hypoperfusion in mice. J Neuroinflammation 2023; 20:152. [PMID: 37365617 DOI: 10.1186/s12974-023-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Ambient RNAs contamination in single-nuclei RNA sequencing (snRNA-seq) is a challenging problem, but the consequences of ambient RNAs contamination of damaged and/or diseased tissues are poorly understood. Cognitive impairments and white/gray matter injuries are characteristic of deeper cerebral hypoperfusion mouse models induced by bilateral carotid artery stenosis (BCAS), but the molecular mechanisms still need to be further explored. More importantly, the BCAS mice can also offer an excellent model to examine the signatures of ambient RNAs contamination in damaged tissues when performing snRNA-seq. METHODS After the sham and BCAS mice were established, cortex-specific single-nuclei libraries were constructed. Single-nuclei transcriptomes were described informatically by the R package Seurat, and ambient RNA markers of were identified in each library. Then, after removing ambient RNAs in each sample using the in silico approaches, the combination of CellBender and subcluster cleaning, single-nuclei transcriptomes were reconstructed. Next, the comparison of ambient RNA contamination was performed using irGSEA analysis before and after the in silico approaches. Finally, further bioinformatic analyses were performed. RESULTS The ambient RNAs are more predominant in the BCAS group than the sham group. The contamination mainly originated from damaged neuronal nuclei, but could be reduced largely using the in silico approaches. The integrative analysis of cortex-specific snRNA-seq data and the published bulk transcriptome revealed that microglia and other immune cells were the primary effectors. In the sequential microglia/immune subgroups analysis, the subgroup of Apoe+ MG/Mac (microglia/macrophages) was identified. Interestingly, this subgroup mainly participated in the pathways of lipid metabolism, associated with the phagocytosis of cell debris. CONCLUSIONS Taken together, our current study unravels the features of ambient RNAs in snRNA-seq datasets under diseased conditions, and the in silico approaches can effectively eliminate the incorrected cell annotation and following misleading analysis. In the future, snRNA-seq data analysis should be carefully revisited, and ambient RNAs removal needs to be taken into consideration, especially for those diseased tissues. To our best knowledge, our study also offers the first cortex-specific snRNA-seq data of deeper cerebral hypoperfusion, which provides with novel therapeutic targets.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Kai Yang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
38
|
Charlton T, Prowse N, McFee A, Heiratifar N, Fortin T, Paquette C, Hayley S. Brain-derived neurotrophic factor (BDNF) has direct anti-inflammatory effects on microglia. Front Cell Neurosci 2023; 17:1188672. [PMID: 37404293 PMCID: PMC10315457 DOI: 10.3389/fncel.2023.1188672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Microglia are the primary immunocompetent cells that protect the brain from environmental stressors, but can also be driven to release pro-inflammatory cytokines and induce a cytotoxic environment. Brain-derived neurotrophic factor (BDNF) is important for the regulation of plasticity, synapse formation, and general neuronal health. Yet, little is known about how BDNF impacts microglial activity. We hypothesized that BDNF would have a direct modulatory effect on primary cortical (Postnatal Day 1-3: P1-3) microglia and (Embryonic Day 16: E16) neuronal cultures in the context of a bacterial endotoxin. To this end, we found that a BDNF treatment following LPS-induced inflammation had a marked anti-inflammatory effect, reversing the release of both IL-6 and TNF-α in cortical primary microglia. This modulatory effect was transferrable to cortical primary neurons, such that LPS-activated microglial media was able produce an inflammatory effect when added to a separate neuronal culture, and again, BDNF priming attenuated this effect. BDNF also reversed the overall cytotoxic impact of LPS exposure in microglia. We speculate that BDNF can directly play a role in regulating microglia state and hence, influence microglia-neuron interactions.
Collapse
|
39
|
Brown FN, Iwasawa E, Shula C, Fugate EM, Lindquist DM, Mangano FT, Goto J. Early postnatal microglial ablation in the Ccdc39 mouse model reveals adverse effects on brain development and in neonatal hydrocephalus. Fluids Barriers CNS 2023; 20:42. [PMID: 37296418 DOI: 10.1186/s12987-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Neonatal hydrocephalus is a congenital abnormality resulting in an inflammatory response and microglial cell activation both clinically and in animal models. Previously, we reported a mutation in a motile cilia gene, Ccdc39 that develops neonatal progressive hydrocephalus (prh) with inflammatory microglia. We discovered significantly increased amoeboid-shaped activated microglia in periventricular white matter edema, reduced mature homeostatic microglia in grey matter, and reduced myelination in the prh model. Recently, the role of microglia in animal models of adult brain disorders was examined using cell type-specific ablation by colony-stimulating factor-1 receptor (CSF1R) inhibitor, however, little information exists regarding the role of microglia in neonatal brain disorders such as hydrocephalus. Therefore, we aim to see if ablating pro-inflammatory microglia, and thus suppressing the inflammatory response, in a neonatal hydrocephalic mouse line could have beneficial effects. METHODS In this study, Plexxikon 5622 (PLX5622), a CSF1R inhibitor, was subcutaneously administered to wild-type (WT) and prh mutant mice daily from postnatal day (P) 3 to P7. MRI-estimated brain volume was compared with untreated WT and prh mutants P7-9 and immunohistochemistry of the brain sections was performed at P8 and P18-21. RESULTS PLX5622 injections successfully ablated IBA1-positive microglia in both the WT and prh mutants at P8. Of the microglia that are resistant to PLX5622 treatment, there was a higher percentage of amoeboid-shaped microglia, identified by morphology with retracted processes. In PLX-treated prh mutants, there was increased ventriculomegaly and no change in the total brain volume was observed. Also, the PLX5622 treatment significantly reduced myelination in WT mice at P8, although this was recovered after full microglia repopulation by P20. Microglia repopulation in the mutants worsened hypomyelination at P20. CONCLUSIONS Microglia ablation in the neonatal hydrocephalic brain does not improve white matter edema, and actually worsens ventricular enlargement and hypomyelination, suggesting critical functions of homeostatic ramified microglia to better improve brain development with neonatal hydrocephalus. Future studies with detailed examination of microglial development and status may provide a clarification of the need for microglia in neonatal brain development.
Collapse
Affiliation(s)
- Farrah N Brown
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth M Fugate
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Diana M Lindquist
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
40
|
Zbesko JC, Stokes J, Becktel DA, Doyle KP. Targeting foam cell formation to improve recovery from ischemic stroke. Neurobiol Dis 2023; 181:106130. [PMID: 37068641 PMCID: PMC10993857 DOI: 10.1016/j.nbd.2023.106130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, United States
| | | | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, United States; Departments of Neurology, Neurosurgery, Psychology, Arizona Center on Aging, and the BIO5 Institute, University of Arizona, United States.
| |
Collapse
|
41
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
42
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
43
|
Yan X, Li Q, Wu S, Liang J, Li Y, Zhang T, Chen D, Pan X. Acrylamide induces the activation of BV2 microglial cells through TLR2/4-mediated LRRK2-NFATc2 signaling cascade. Food Chem Toxicol 2023; 176:113775. [PMID: 37037409 DOI: 10.1016/j.fct.2023.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Acrylamide (ACR), a potential neurotoxin, is generated from the Maillard reaction between reducing sugars and free amino acids during food processing. Our work focuses on clarifying the role of the leucine-rich repeat kinase 2 (LRRK2) and nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) in the polarization of BV2 cells to the M1 proinflammatory type induced by ACR. Specifically, ACR promoted the phosphorylation of LRRK2 and NFATc2 in BV2 microglia. Furthermore, selectively phosphorylated LRRK2 by ACR induced nuclear translocation of NFATc2 to trigger a neuroinflammatory cascade. Knock-down of LRRK2 by silencing significantly diminished ACR-induced microglial neurotoxic effect with the decline of IL-1β, IL-6, and iNOS levels and the decrease of NFATc2 expression in BV2 cells. After pretreated with Toll-Like Receptor 2 (TLR2) and TLR4 inhibitors separately, both the activation of LRRK2 and the release of pro-inflammatory factors were inhibited in BV2 cells. Gallic acid (GA) is ubiquitous in most parts of the medicinal plant. GA alleviated the increased CD11b expression, IL-6 and iNOS levels induced by ACR in BV2 microglia. In conclusion, this study shows that ACR leads to the cascade activation of LRRK2-NFATc2 mediated by TLR2 and TLR4 to induce microglial toxicity.
Collapse
Affiliation(s)
- Xiaoyu Yan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qiuju Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shuangyue Wu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jie Liang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuanyuan Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tingting Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Dayi Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China.
| |
Collapse
|
44
|
A Novel Early Life Stress Model Affects Brain Development and Behavior in Mice. Int J Mol Sci 2023; 24:ijms24054688. [PMID: 36902120 PMCID: PMC10002977 DOI: 10.3390/ijms24054688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Early life stress (ELS) in developing children has been linked to physical and psychological sequelae in adulthood. In the present study, we investigated the effects of ELS on brain and behavioral development by establishing a novel ELS model that combined the maternal separation paradigm and mesh platform condition. We found that the novel ELS model caused anxiety- and depression-like behaviors and induced social deficits and memory impairment in the offspring of mice. In particular, the novel ELS model induced more enhanced depression-like behavior and memory impairment than the maternal separation model, which is the established ELS model. Furthermore, the novel ELS caused upregulation of arginine vasopressin expression and downregulation of GABAergic interneuron markers, such as parvalbumin (PV), vasoactive intestinal peptide, and calbindin-D28k (CaBP-28k), in the brains of the mice. Finally, the offspring in the novel ELS model showed a decreased number of cortical PV-, CaBP-28k-positive cells and an increased number of cortical ionized calcium-binding adaptors-positive cells in their brains compared to mice in the established ELS model. Collectively, these results indicated that the novel ELS model induced more negative effects on brain and behavioral development than the established ELS model.
Collapse
|
45
|
He Z, Li X, Zhang H, Liu X, Han S, Abdurahman A, Shen L, Du X, Li N, Yang X, Liu Q. A novel vanadium complex VO(p-dmada) inhibits neuroinflammation induced by lipopolysaccharide. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
46
|
Neuroprotection by Skimmianine in Lipopolysaccharide-Activated BV-2 Microglia. Molecules 2023; 28:molecules28031317. [PMID: 36770987 PMCID: PMC9920223 DOI: 10.3390/molecules28031317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Skimmianine is a furoquinoline alkaloid which is found in the Zanthoxylum genus and also in other plants of the Rutaceae family. This study evaluated the effects of skimmianine on the production of pro-inflammatory mediators in LPS-activated BV-2 microglia. Cultured BV-2 cells were treated with skimmianine (10, 20 and 30 μM), followed by stimulation with LPS (100 ng/mL). Levels of TNFα and IL-6 in cell supernatants were measured using ELISA, while NO and PGE2 levels were evaluated with Griess assay and EIA, respectively. Western blotting was used to determine the protein expression of iNOS, COX-2, phospho-p65 and phospho-IκBα. Results showed that Skimmianine reduced LPS-induced elevated the secretion of TNFα, IL-6, NO, and PGE2, as well as the increased protein expression of iNOS and COX-2. Experiments to elucidate the mechanisms of the anti-neuroinflammatory activity of skimmianine revealed the significant inhibition of LPS-induced increased NF-κB-mediated luciferase activity. Pre-treatment with skimmianine also reduced LPS-induced the increased phosphorylation of NF-κB/p65 and IκBα proteins. Furthermore, skimmianine interfered with the binding capacity of NF-κB to consensus sites. Skimmianine pre-treatment protected HT-22 cells from toxicity induced by microglia-conditioned media, as well as increasing MAP-2 expression. The results of this study suggest that skimmianine inhibits neuroinflammation in LPS-activated microglia by targeting the NF-κB activation pathway. Skimmianine also produced neuroprotection against neurotoxicity induced by microglia-conditioned media.
Collapse
|
47
|
Choi S, Hill D, Young J, Cordeiro MF. Image processing and supervised machine learning for retinal microglia characterization in senescence. Methods Cell Biol 2023; 181:109-125. [PMID: 38302234 DOI: 10.1016/bs.mcb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The process of senescence impairs the function of cells and can ultimately be a key factor in the development of disease. With an aging population, senescence-related diseases are increasing in prevalence. Therefore, understanding the mechanisms of cellular senescence within the central nervous system (CNS), including the retina, may yield new therapeutic pathways to slow or even prevent the development of neuro- and retinal degenerative diseases. One method of probing the changing functions of senescent retinal cells is to observe retinal microglial cells. Their morphological structure may change in response to their surrounding cellular environment. In this chapter, we show how microglial cells in the retina, which are implicated in aging and diseases of the CNS, can be identified, quantified, and classified into five distinct morphotypes using image processing and supervised machine learning algorithms. The process involves dissecting, staining, and mounting mouse retinas, before image capture via fluorescence microscopy. The resulting images can then be classified by morphotype using a support vector machine (SVM) we have recently described showing high accuracy. This SVM model uses shape metrics found to correspond with qualitative descriptions of the shape of each morphotype taken from existing literature. We encourage more objective and widespread use of methods of quantification such as this. We believe automatic delineation of the population of microglial cells in the retina, could potentially lead to their use as retinal imaging biomarkers for disease prediction in the future.
Collapse
Affiliation(s)
- Soyoung Choi
- UCL Institute of Ophthalmology, London, United Kingdom; Novai Ltd, Reading, United Kingdom
| | - Daniel Hill
- UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London, United Kingdom; Novai Ltd, Reading, United Kingdom; Imperial College Ophthalmology Research Group, Imperial College London, London, United Kingdom.
| |
Collapse
|
48
|
Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the Pathophysiology of Alzheimer's Disease and Potential Therapeutic Targets: A Current Perspective. J Alzheimers Dis 2023; 91:507-530. [PMID: 36502321 DOI: 10.3233/jad-220666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
Collapse
Affiliation(s)
- Kesevan Rajah Kumaran
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacology, Bauchi State University Gadau, Bauchi State, Nigeria
| | - Enoch Perimal
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
49
|
Mado H, Adamczyk-Sowa M, Sowa P. Role of Microglial Cells in the Pathophysiology of MS: Synergistic or Antagonistic? Int J Mol Sci 2023; 24:ijms24031861. [PMID: 36768183 PMCID: PMC9916250 DOI: 10.3390/ijms24031861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Many studies indicate an important role of microglia and their cytokines in the pathophysiology of multiple sclerosis (MS). Microglia are the macrophages of the central nervous system (CNS). They have many functions, such as being "controllers" of the CNS homeostasis in pathological and healthy conditions, playing a key role in the active immune defense of the CNS. Macroglia exhibit a dual role, depending on the phenotype they adopt. First, they can exhibit neurotoxic effects, which are harmful in the case of MS. However, they also show neuroprotective and regenerative effects in this disease. Many of the effects of microglia are mediated through the cytokines they secrete, which have either positive or negative properties. Neurotoxic and pro-inflammatory effects can be mediated by microglia via lipopolysaccharide and gamma interferon. On the other hand, the mediators of anti-inflammatory and protective effects secreted by microglia can be, for example, interleukin-4 and -13. Further investigation into the role of microglia in MS pathophysiology may perhaps lead to the discovery of new therapies for MS, as recent research in this area has been very promising.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-695948463; Fax: +48-323704597
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
50
|
Zhu T, Guo J, Wu Y, Lei T, Zhu J, Chen H, Kala S, Wong KF, Cheung CP, Huang X, Zhao X, Yang M, Sun L. The mechanosensitive ion channel Piezo1 modulates the migration and immune response of microglia. iScience 2023; 26:105993. [PMID: 36798430 PMCID: PMC9926228 DOI: 10.1016/j.isci.2023.105993] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Microglia are the brain's resident immune cells, performing surveillance to promote homeostasis and healthy functioning. While microglial chemical signaling is well-studied, mechanical cues regulating their function are less well-understood. Here, we investigate the role of the mechanosensitive ion channel Piezo1 in microglia migration, pro-inflammatory cytokine production, and stiffness sensing. In Piezo1 knockout transgenic mice, we demonstrated the functional expression of Piezo1 in microglia and identified genes whose expression was consequently affected. Functional assays revealed that Piezo1 deficiency in microglia enhanced migration toward amyloid β-protein, and decreased levels of pro-inflammatory cytokines produced upon stimulation by lipopolysaccharide, both in vitro and in vivo. The phenomenon could be mimicked or reversed chemically using a Piezo1-specific agonist or antagonist. Finally, we also showed that Piezo1 mediated the effect of substrate stiffness-induced migration and cytokine expression. Altogether, we show that Piezo1 is an important molecular mediator for microglia, its activation modulating microglial migration and immune responses.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jinghui Guo
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Yong Wu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Ting Lei
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jiejun Zhu
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Hui Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shashwati Kala
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Kin Fung Wong
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Chi Pong Cheung
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xiaohui Huang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Xinyi Zhao
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Minyi Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Lei Sun
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China,Corresponding author
| |
Collapse
|