1
|
Meena K, Babu R, Pancholi B, Garabadu D. Exploring therapeutic potential of claudin in Flavivirus infection: A review on current advances and future perspectives. Int J Biol Macromol 2025; 309:142936. [PMID: 40203926 DOI: 10.1016/j.ijbiomac.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Flavivirus such as Dengue, Zika, West Nile, Japanese encephalitis, and yellow fever virus, composed of single-stranded positive-sense RNA, predominantly contaminated through arthropods. Flavivirus infection characterises from asymptomatic signs to severe hemorrhagic fever and encephalitis. The host's immune system detects these viruses and provides a defence mechanism to sustain their life and growth. However, flaviviruses through different mechanisms compromise the host's immune defence. The current pharmacotherapeutic strategies against Flavivirus infection target different stages of the Flavivirus life cycle and its proteins. On the contrary, the host's immune defence mechanism is equally important to restrict their growth. It has been suggested that flaviviruses compromise claudins to sustain their life and growth inside the mammalian cells. This review primarily focuses on the effect of Flavivirus on claudins (CLDNs), transmembrane proteins that form tight junctions in mammalian cells. CLDNs are crucial in viral entry and pathogenesis by regulating paracellular permeability, particularly in tissues and the blood-brain barrier. Recent studies indicate that the Dengue and Zika viruses can potentially be treated by targeting specific CLDNs-specifically CLDN 1, CLDN 5, and CLDN 7 to inhibit viral entry and fusion. Additionally, it highlights the current challenges and future prospects in developing claudin-based antiviral agents against Flavivirus infections.
Collapse
Affiliation(s)
- Kiran Meena
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | | | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
2
|
Hong H, Wu Y, Li Y, Han Y, Cao X, Wu VWY, Chan TTH, Zhou J, Cao Q, Lui KO, Wong CK, Dai Z, Tian XY. Endothelial PPARδ Ablation Exacerbates Vascular Hyperpermeability via STAT1/CXCL10 Signaling in Acute Lung Injury. Circ Res 2025; 136:735-751. [PMID: 39996324 DOI: 10.1161/circresaha.124.325855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Vascular hyperpermeability is one of the hallmarks of acute lung injury, contributing to excessive inflammation and respiratory failure. The PPARδ (peroxisome proliferator-activated receptor delta) is an anti-inflammatory transcription factor, although its role in endothelial barrier function remains unclear. Here, we studied the essential role of PPARδ in maintaining vascular endothelial barrier integrity during lung inflammation and investigated the underlying mechanisms. METHODS Endothelial cell (EC)-selective PPARδ knockout mice (PpardEC-KO) and littermate control mice (PpardEC-WT) received lipopolysaccharide injection to induce acute lung injury. Lung inflammation, pulmonary vascular leakage, and mouse mortality were monitored. Single-cell RNA sequencing was performed on sorted mouse lung ECs. RESULTS PpardEC-KO mice exhibited aggravated lung inflammation, characterized by increased leukocyte infiltration, elevated production of proinflammatory cytokines, and higher mortality rates. The enhanced inflammatory responses were associated with increased protein leakage, interstitial edema, and impaired endothelial barrier structure, leading to vascular hyperpermeability in PpardEC-KO mice. Mechanistically, with single-cell RNA sequencing, we identified the emergence of an interferon-activated capillary EC population marked by CXCL10 (C-X-C motif chemokine 10) expression following lipopolysaccharide challenge. PPARδ silencing significantly increased CXCL10 expression in ECs through activating STAT1 (Signal transducer and activator of transcription 1). Notably, CXCL10 treatment induced degradation of tight junction proteins ZO-1 (zonula occludens protein 1) and claudin-5 through the ubiquitin-proteasome system, disrupting membrane junction continuity in ECs. Administration of anti-CXCL10 antibody or CXCL10 receptor antagonist AMG487 suppressed both lipopolysaccharide-induced lung inflammation and vascular leakage in PpardEC-KO mice. CONCLUSIONS These results highlighted a novel anti-inflammatory role of PPARδ in ECs by suppressing CXCL10-mediating vascular hyperpermeability. Targeting the CXCL10 signaling shows therapeutic potential against vascular injury in acute lung injury.
Collapse
Affiliation(s)
- Huiling Hong
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Yalan Wu
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China (Y.W.)
| | - Yangxian Li
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Yumeng Han
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Xiaoyun Cao
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
- Department of Chemical Pathology (X.C., K.O.L., C.-K.W.), The Chinese University of Hong Kong
| | - Vivian Wei Yan Wu
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| | - Thomas Ting Hei Chan
- School of Biomedical Sciences (T.T.H.C., J.Z., Q.C.), The Chinese University of Hong Kong
| | - Jingying Zhou
- School of Biomedical Sciences (T.T.H.C., J.Z., Q.C.), The Chinese University of Hong Kong
| | - Qin Cao
- School of Biomedical Sciences (T.T.H.C., J.Z., Q.C.), The Chinese University of Hong Kong
| | - Kathy O Lui
- Department of Chemical Pathology (X.C., K.O.L., C.-K.W.), The Chinese University of Hong Kong
| | - Chun-Kwok Wong
- Department of Chemical Pathology (X.C., K.O.L., C.-K.W.), The Chinese University of Hong Kong
| | - Zhiyu Dai
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona (Z.D.)
| | - Xiao Yu Tian
- School of Biomedical Sciences, CUHK Shenzhen Research Institute, Heart and Vascular Institute, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine (H.H., Y.W., Y.L., Y.H., X.C., V.W.Y.W., X.Y.T.), The Chinese University of Hong Kong
| |
Collapse
|
3
|
Grygorczuk S, Czupryna P, Martonik D, Adamczuk J, Parfieniuk-Kowerda A, Grzeszczuk A, Pawlak-Zalewska W, Dunaj-Małyszko J, Mielczak K, Parczewski M, Moniuszko-Malinowska A. The Factors Associated with the Blood-Brain Barrier Dysfunction in Tick-Borne Encephalitis. Int J Mol Sci 2025; 26:1503. [PMID: 40003967 PMCID: PMC11855613 DOI: 10.3390/ijms26041503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
The pathogenesis of the central nervous system (CNS) pathology in tick-borne encephalitis (TBE) remains unclear. We attempted to identify mediators of the blood-brain barrier (BBB) disruption in human TBE in paired serum and cerebrospinal fluid (CSF) samples from 100 TBE patients. CSF albumin quotient (Qalb) was calculated as a measure of BBB impairment. Concentrations of cytokines, cytokine antagonists, adhesion molecules, selectins and matrix metalloproteinases (MMP) were measured with a multiplex bead assay. Single nucleotide polymorphisms (SNP) in genes MIF, TNF, TNFRSF1A, TNFRSF1B, IL-10, TLR3 and TLR4 were studied in patient blood DNA extracts and analyzed for associations with Qalb and/or cytokine concentrations. The multivariate regression models of Qalb were built with the soluble mediators as independent variables. The best models obtained included L-selectin, P-selectin, sVCAM, MMP7, MMP8 (or MMP9) and IL-28A as positive and IL-12p70, IL-15, IL-6Rα/IL-6 ratio and TNF-RII/TNFα ratio as negative correlates of Qalb. The genotype did not associate with Qalb, but polymorphism rs4149570 (in TNFRSF1A) associated with TNFα and rs1800629 (TNF) with MIF concentration. We confirm the association of the TNFα-dependent response, L-selectin and MMP8/MMP9 with BBB disruption and identify its novel correlates (IL-12, IL-15, IL-28A, MMP7). We detect no genotype associations with BBB function in TBE.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Anna Grzeszczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Wioletta Pawlak-Zalewska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Justyna Dunaj-Małyszko
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Kaja Mielczak
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| |
Collapse
|
4
|
Li X, Simo L, Zhao Q, Kim E, Ding Y, Geng X. Endothelial Cells and the Blood-Brain Barrier: Critical Determinants of Ineffective Reperfusion in Stroke. Eur J Neurosci 2025; 61:e16663. [PMID: 39935212 PMCID: PMC11814926 DOI: 10.1111/ejn.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 02/13/2025]
Abstract
Ineffective reperfusion remains a critical challenge in neurointerventional treatment following ischemic stroke, with the integrity of the blood-brain barrier (BBB) being a key determinant of patient outcomes. This review explores the distinctive characteristics and roles of brain endothelial cells (ECs) in the context of stroke and ineffective reperfusion. We examine the unique properties of brain ECs compared to their counterparts in other tissues, focusing on their pathophysiological changes, functional impairments and the inflammatory cascades that follow stroke. Differences in gene expression between brain ECs and those in other organs offer deeper insights into their role in neuroprotective therapies. Additionally, drawing parallels between brain ECs and ECs from organs with similar ischemia-reperfusion injury profiles may inspire novel therapeutic approaches. This review highlights the critical importance of understanding the nuanced roles of ECs in BBB regulation, which ultimately impacts reperfusion outcomes.
Collapse
Affiliation(s)
- Xiang Li
- Luhe Institute of NeuroscienceCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Leticia Simo
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Qianhui Zhao
- Luhe Institute of NeuroscienceCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Enoch Gene Kim
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Xiaokun Geng
- Luhe Institute of NeuroscienceCapital Medical UniversityBeijingChina
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
5
|
Song BH, Yun SI, Goldhardt JL, Kim J, Lee YM. Key virulence factors responsible for differences in pathogenicity between clinically proven live-attenuated Japanese encephalitis vaccine SA14-14-2 and its pre-attenuated highly virulent parent SA14. PLoS Pathog 2025; 21:e1012844. [PMID: 39775684 PMCID: PMC11741592 DOI: 10.1371/journal.ppat.1012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/17/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice. Our findings revealed the following: (i) The single envelope (E) protein of SA14-14-2, which contains nine mutations (eight in the ectodomain and one in the stem region), is both necessary and sufficient to render SA14 non-neuroinvasive and non-neurovirulent. (ii) Conversely, the E protein of SA14 alone is necessary for SA14-14-2 to become highly neurovirulent, but it is not sufficient to make it highly neuroinvasive. (iii) The limited neuroinvasiveness of an SA14-14-2 derivative that contains the E gene of SA14 significantly increases (approaching that of the wild-type strain) when two viral nonstructural proteins are replaced by their counterparts from SA14: (a) NS1/1', which has four mutations on the external surface of the core β-ladder domain; and (b) NS2A, which has two mutations in the N-terminal region, including two non-transmembrane α-helices. In line with their roles in viral pathogenicity, the E, NS1/1', and NS2A genes all contribute to the enhanced spread of the virus in cell culture. Collectively, our data reveal for the first time that the E protein of JEV has a dual function: It is the master regulator of viral neurovirulence and also the primary initiator of viral neuroinvasion. After the initial E-mediated neuroinvasion, the NS1/1' and NS2A proteins act as secondary promoters, further amplifying viral neuroinvasiveness.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Joseph L. Goldhardt
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
6
|
Nagata S, Yamasaki R. The Involvement of Glial Cells in Blood-Brain Barrier Damage in Neuroimmune Diseases. Int J Mol Sci 2024; 25:12323. [PMID: 39596390 PMCID: PMC11594741 DOI: 10.3390/ijms252212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The blood-brain barrier and glial cells, particularly astrocytes, interact with each other in neuroimmune diseases. In the inflammatory environment typical of these diseases, alterations in vascular endothelial cell surface molecules and weakened cell connections allow immune cells and autoantibodies to enter the central nervous system. Glial cells influence the adhesion of endothelial cells by changing their morphology and releasing various signaling molecules. Multiple sclerosis has been the most studied disease in relation to vascular endothelial and glial cell interactions, but these cells also significantly affect the onset and severity of other neuroimmune conditions, including demyelinating and inflammatory diseases. In this context, we present an overview of these interactions and highlight how they vary across different neuroimmune diseases.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Ye Q, Jo J, Wang CY, Oh H, Zhan J, Choy TJ, Kim KI, D'Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a CCL2-CCR2 pathway and NO dysregulation. Cell Rep 2024; 43:114193. [PMID: 38709635 PMCID: PMC11210630 DOI: 10.1016/j.celrep.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jiangshan Zhan
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tiffany J Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyoung In Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 77030, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Zhang L, Nan X, Zhou D, Wang X, Zhu S, Li Q, Jia F, Zhu B, Si Y, Cao S, Ye J. Japanese encephalitis virus NS1 and NS1' protein disrupts the blood-brain barrier through macrophage migration inhibitory factor-mediated autophagy. J Virol 2024; 98:e0011624. [PMID: 38591880 PMCID: PMC11092347 DOI: 10.1128/jvi.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.
Collapse
Affiliation(s)
- Luping Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaowei Nan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dengyuan Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xugang Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuo Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiuyan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fan Jia
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Youhui Si
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Ishikawa H, Kuno Y, Yokoo T, Nagashima R, Takaki T, Sasaki H, Kohda C, Iyoda M. In vitro investigation of the effects of Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 exopolysaccharides on tight junction damage caused by influenza virus infection. Lett Appl Microbiol 2024; 77:ovae029. [PMID: 38521981 DOI: 10.1093/lambio/ovae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
It is a problem that influenza virus infection increases susceptibility to secondary bacterial infection in lungs leading to lethal pneumonia. We previously reported that exopolysaccharides (EPS) derived from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (OLL1073R-1) could prevent against influenza virus infection followed by secondary bacterial infection in vitro. Therefore, the present study assessed whether EPS derived OLL1073R-1 protects the alveolar epithelial barrier disfunction caused by influenza virus infection. After A549 cells treated with EPS or without EPS were infected influenza virus A/Puerto Rico/8/34 (IFV) for 12 h, the levels of tight junction genes expression and inflammatory genes expression were measured by reverse transcription polymerase chain reaction. As results, EPS treatment could protect against low-titer IFV infection, but not high-titer IFV infection, followed by suppression of the increased expression of inflammatory cytokine gene levels and recovery of the decrease in the expression level of ZO-1 gene that was caused by low-titer IFV infection, leading to an improvement trend in the barrier function. Our findings showed that EPS derived from OLL1073R-1 could inhibit low-titer IFV infection leading to maintenance of the epithelial barrier function through the suppression of inflammatory cytokine genes expression.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Takehiro Yokoo
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachioji, Tokyo, 192-0919, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Immunology, Department of Biosciences, Kitasato University School of Science, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takashi Takaki
- Division of Electron Microscopy,Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
10
|
Yang L, Xiong J, Liu Y, Liu Y, Wang X, Si Y, Zhu B, Chen H, Cao S, Ye J. Single-cell RNA sequencing reveals the immune features and viral tropism in the central nervous system of mice infected with Japanese encephalitis virus. J Neuroinflammation 2024; 21:76. [PMID: 38532383 DOI: 10.1186/s12974-024-03071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic pathogen that causes lethal encephalitis. The high susceptibility and massive proliferation of JEV in neurons lead to extensive neuronal damage and inflammation within the central nervous system. Despite extensive research on JEV pathogenesis, the effect of JEV on the cellular composition and viral tropism towards distinct neuronal subtypes in the brain is still not well comprehended. To address these issues, we performed single-cell RNA sequencing (scRNA-seq) on cells isolated from the JEV-highly infected regions of mouse brain. We obtained 88,000 single cells and identified 34 clusters representing 10 major cell types. The scRNA-seq results revealed an increasing amount of activated microglia cells and infiltrating immune cells, including monocytes & macrophages, T cells, and natural killer cells, which were associated with the severity of symptoms. Additionally, we observed enhanced communication between individual cells and significant ligand-receptor pairs related to tight junctions, chemokines and antigen-presenting molecules upon JEV infection, suggesting an upregulation of endothelial permeability, inflammation and antiviral response. Moreover, we identified that Baiap2-positive neurons were highly susceptible to JEV. Our findings provide valuable clues for understanding the mechanism of JEV induced neuro-damage and inflammation as well as developing therapies for Japanese encephalitis.
Collapse
Affiliation(s)
- Ling'en Yang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junyao Xiong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yixin Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yinguang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xugang Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Youhui Si
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Yang R, Chen J, Qu X, Liu H, Wang X, Tan C, Chen H, Wang X. Interleukin-22 Contributes to Blood-Brain Barrier Disruption via STAT3/VEGFA Activation in Escherichia coli Meningitis. ACS Infect Dis 2024; 10:988-999. [PMID: 38317607 PMCID: PMC10928716 DOI: 10.1021/acsinfecdis.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Escherichia coli continues to be the predominant Gram-negative pathogen causing neonatal meningitis worldwide. Inflammatory mediators have been implicated in the pathogenesis of meningitis and are key therapeutic targets. The role of interleukin-22 (IL-22) in various diseases is diverse, with both protective and pathogenic effects. However, little is understood about the mechanisms underlying the damaging effects of IL-22 on the blood-brain barrier (BBB) in E. coli meningitis. We observed that meningitic E. coli infection induced IL-22 expression in the serum and brain of mice. The tight junction proteins (TJPs) components ZO-1, Occludin, and Claudin-5 were degraded in the mouse brain and human brain microvascular endothelial cells (hBMEC) following IL-22 administration. Moreover, the meningitic E. coli-caused increase in BBB permeability in wild-type mice was restored by knocking out IL-22. Mechanistically, IL-22 activated the STAT3-VEGFA signaling cascade in E. coli meningitis, thus eliciting the degradation of TJPs to induce BBB disruption. Our data indicated that IL-22 is an essential host accomplice during E. coli-caused BBB disruption and could be targeted for the therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Jiaqi Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Qu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Hulin Liu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Chen Tan
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
12
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
13
|
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int J Mol Sci 2023; 24:17146. [PMID: 38138976 PMCID: PMC10743219 DOI: 10.3390/ijms242417146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Neurological disorders have been linked to a defective blood-brain barrier (BBB), with dysfunctions triggered by stage-specific disease mechanisms, some of these being generated through interactions in the neurovascular unit (NVU). Advanced knowledge of molecular and signaling mechanisms in the NVU and the emergence of improved experimental models allow BBB permeability prediction and the development of new brain-targeted therapies. As NVU constituents, astrocytes are the most numerous glial cells, characterized by a heterogeneity that occurs as a result of developmental and context-based gene expression profiles and the differential expression of non-coding ribonucleic acids (RNAs). Due to their heterogeneity and dynamic responses to different signals, astrocytes may have a beneficial or detrimental role in the BBB's barrier function, with deep effects on the pathophysiology of (and on the progression of) central nervous system diseases. The implication of astrocytic-derived extracellular vesicles in pathological mechanisms, due to their ability to pass the BBB, must also be considered. The molecular mechanisms of astrocytes' interaction with endothelial cells at the BBB level are considered promising therapeutic targets in different neurological conditions. Nevertheless, a personalized and well-founded approach must be addressed, due to the temporal and spatial heterogeneity of reactive astrogliosis states during disease.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
| | - Mark Slevin
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Laura Barcutean
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Timea Forro
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Tudor Boghitoiu
- Psychiatry II Clinic, County Clinical Hospital, 540072 Targu Mures, Romania;
| | - Rodica Balasa
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
14
|
Song GY, Huang XY, He MJ, Zhou HY, Li RT, Tian Y, Wang Y, Cheng ML, Chen X, Zhang RR, Zhou C, Zhou J, Fang XY, Li XF, Qin CF. A single amino acid substitution in the capsid protein of Zika virus contributes to a neurovirulent phenotype. Nat Commun 2023; 14:6832. [PMID: 37884553 PMCID: PMC10603150 DOI: 10.1038/s41467-023-42676-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Increasing evidence shows the African lineage Zika virus (ZIKV) displays a more severe neurovirulence compared to the Asian ZIKV. However, viral determinants and the underlying mechanisms of enhanced virulence phenotype remain largely unknown. Herein, we identify a panel of amino acid substitutions that are unique to the African lineage of ZIKVs compared to the Asian lineage by phylogenetic analysis and sequence alignment. We then utilize reverse genetic technology to generate recombinant ZIKVs incorporating these lineage-specific substitutions based on an infectious cDNA clone of Asian ZIKV. Through in vitro characterization, we discover a mutant virus with a lysine to arginine substitution at position 101 of capsid (C) protein (termed K101R) displays a larger plaque phenotype, and replicates more efficiently in various cell lines. Moreover, K101R replicates more efficiently in mouse brains and induces stronger inflammatory responses than the wild type (WT) virus in neonatal mice. Finally, a combined analysis reveals the K101R substitution promotes the production of mature C protein without affecting its binding to viral RNA. Our study identifies the role of K101R substitution in the C protein in contributing to the enhanced virulent phenotype of the African lineage ZIKV, which expands our understanding of the complexity of ZIKV proteins.
Collapse
Affiliation(s)
- Guang-Yuan Song
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xing-Yao Huang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Hang-Yu Zhou
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, Jiangsu, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Ying Tian
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Meng-Li Cheng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Chao Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Jia Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Xian-Yang Fang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Cheng-Feng Qin
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China.
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| |
Collapse
|
15
|
Mohapatra S, Chakraborty T, Basu A. Japanese Encephalitis virus infection in astrocytes modulate microglial function: Correlation with inflammation and oxidative stress. Cytokine 2023; 170:156328. [PMID: 37567102 DOI: 10.1016/j.cyto.2023.156328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Japanese Encephalitis Virus (JEV) is a neurotropic virus which has the propensity to infect neuronal and glial cells of the brain. Astrocyte-microglia crosstalk leading to the secretion of various factors plays a major role in controlling encephalitis in brain. This study focused on understanding the role of astrocytic mediators that further shaped the microglial response towards JEV infection. METHODS After establishing JEV infection in C8D1A (mouse astrocyte cell line) and primary astrocyte enriched cultures (PAEC), astrocyte supernatant was used for preparation of conditioned media. Astrocyte supernatant was treated with UV to inactivate JEV and the supernatant was added to N9 culture media in ratio 1:1 for preparation of conditioned media. N9 microglial cells post treatment with astrocyte conditioned media and JEV infection were checked for expression of various inflammatory genes by qRT-PCR, levels of secreted cytokines in N9 cell supernatant were checked by cytometric bead array. N9 cell lysates were checked for expression of proteins - pNF-κβ, IBA-1, NS3 and RIG-I by western blotting. Viral titers were measured in N9 supernatant by plaque assays. Immunocytochemistry experiments were done to quantify the number of infected microglial cells after astrocyte conditioned medium treatment. Expression of different antioxidant enzymes was checked in N9 cells by western blotting, levels of reactive oxygen species (ROS) was detected by fluorimetry using DCFDA dye. RESULTS N9 microglial cells post treatment with JEV-infected astrocyte conditioned media and JEV infection were activated, showed an upsurge in expression of inflammatory genes and cytokines both at the transcript and protein levels. These N9 cells showed a decrease in quantity of viral titers and associated viral proteins in comparison to control cells (not treated with conditioned media but infected with JEV). Also, N9 cells upon conditioned media treatment and JEV infection were more prone to undergo oxidative stress as observed by the decreased expression of antioxidant enzymes SOD-1, TRX-1 and increased secretion of reactive oxygen species (ROS). CONCLUSION Astrocytic mediators like TNF-α, MCP-1 and IL-6 influence microglial response towards JEV infection by promoting inflammation and oxidative stress in them. As a result of increased microglial inflammation and secretion of ROS, viral replication is lessened in conditioned media treated and JEV infected microglial cells as compared to control cells with no conditioned media treatment but only JEV infection.
Collapse
Affiliation(s)
- Stuti Mohapatra
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India.
| |
Collapse
|
16
|
Kushwaha R, Li Y, Makarava N, Pandit NP, Molesworth K, Birukov KG, Baskakov IV. Reactive astrocytes associated with prion disease impair the blood brain barrier. Neurobiol Dis 2023; 185:106264. [PMID: 37597815 PMCID: PMC10494928 DOI: 10.1016/j.nbd.2023.106264] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. RESULTS In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. CONCLUSIONS To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yue Li
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Narayan P Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Konstantin G Birukov
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| |
Collapse
|
17
|
Kaur G, Pant P, Bhagat R, Seth P. Zika virus E protein modulates functions of human brain microvascular endothelial cells and astrocytes: implications on blood-brain barrier properties. Front Cell Neurosci 2023; 17:1173120. [PMID: 37545876 PMCID: PMC10399241 DOI: 10.3389/fncel.2023.1173120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Neurotropic viruses can cross the otherwise dynamically regulated blood-brain barrier (BBB) and affect the brain cells. Zika virus (ZIKV) is an enveloped neurotropic Flavivirus known to cause severe neurological complications, such as encephalitis and fetal microcephaly. In the present study, we employed human brain microvascular endothelial cells (hBMECs) and astrocytes derived from human progenitors to establish a physiologically relevant BBB model. We used this model to investigate the effects of ZIKV envelope (E) protein on properties of cells comprising the BBB. E protein is the principal viral protein involved in interaction with host cell surface receptors, facilitating the viral entry. Our findings show that the presence of ZIKV E protein leads to activation of both hBMECs and astrocytes. In hBMECs, we observed a decrease in the expression of crucial endothelial junction proteins such as ZO-1, Occludin and VE-Cadherin, which are vital in establishment and maintenance of the BBB. Consequently, the ZIKV E protein induced changes in BBB integrity and permeability. We also found upregulation of genes involved in leukocyte recruitment along with increased proinflammatory chemokines and cytokines upon exposure to E protein. Additionally, the E protein also led to astrogliosis, evident from the elevated expression of GFAP and Vimentin. Both cell types comprising the BBB exhibited inflammatory response upon exposure to E protein which may influence viral access into the central nervous system (CNS) and subsequent infection of other CNS cells. Overall, our study provides valuable insights into the transient changes that occur at the site of BBB upon ZIKV infection.
Collapse
|
18
|
Wang K, Sun C, Dumčius P, Zhang H, Liao H, Wu Z, Tian L, Peng W, Fu Y, Wei J, Cai M, Zhong Y, Li X, Yang X, Cui M. Open source board based acoustofluidic transwells for reversible disruption of the blood-brain barrier for therapeutic delivery. Biomater Res 2023; 27:69. [PMID: 37452381 PMCID: PMC10349484 DOI: 10.1186/s40824-023-00406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/17/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) is a crucial but dynamic structure that functions as a gatekeeper for the central nervous system (CNS). Managing sufficient substances across the BBB is a major challenge, especially in the development of therapeutics for CNS disorders. METHODS To achieve an efficient, fast and safe strategy for BBB opening, an acoustofluidic transwell (AFT) was developed for reversible disruption of the BBB. The proposed AFT was consisted of a transwell insert where the BBB model was established, and a surface acoustic wave (SAW) transducer realized using open-source electronics based on printed circuit board techniques. RESULTS In the AFT device, the SAW produced acousto-mechanical stimulations to the BBB model resulting in decreased transendothelial electrical resistance in a dose dependent manner, indicating the disruption of the BBB. Moreover, SAW stimulation enhanced transendothelial permeability to sodium fluorescein and FITC-dextran with various molecular weight in the AFT device. Further study indicated BBB opening was mainly attributed to the apparent stretching of intercellular spaces. An in vivo study using a zebrafish model demonstrated SAW exposure promoted penetration of sodium fluorescein to the CNS. CONCLUSIONS In summary, AFT effectively disrupts the BBB under the SAW stimulation, which is promising as a new drug delivery methodology for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Hongxin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Hanlin Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Liangfei Tian
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wang Peng
- College of Engineering Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Jun Wei
- iRegene Therapeutics Co., Ltd, Wuhan, 430070, People's Republic of China
| | - Meng Cai
- iRegene Therapeutics Co., Ltd, Wuhan, 430070, People's Republic of China
| | - Yi Zhong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, People's Republic of China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, People's Republic of China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
19
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
20
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
21
|
Kushwaha R, Li Y, Makarava N, Pandit NP, Molesworth K, Birukov KG, Baskakov IV. Reactive astrocytes associated with prion disease impair the blood brain barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533684. [PMID: 36993690 PMCID: PMC10055297 DOI: 10.1101/2023.03.21.533684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Background Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. Results In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. Conclusions To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Yue Li
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Konstantin G. Birukov
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| |
Collapse
|
22
|
Wang K, Zou S, Chen H, Higazy D, Gao X, Zhang Y, Cao S, Cui M. Zika virus replication on endothelial cells and invasion into the central nervous system by inhibiting interferon β translation. Virology 2023; 582:23-34. [PMID: 36996689 DOI: 10.1016/j.virol.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The blood-brain barrier (BBB) is one of the tightest physical barriers to prevent pathogens from invading the central nervous system (CNS). However, the mechanism by which Zika virus (ZIKV) crossing the BBB remains unresolved. We found ZIKV induced high morbidity and mortality in newborn mice, accompanied by inflammatory injury on CNS. ZIKV was found to replicate primarily in the cortex and hippocampus in neonatal mouse brains. An in vitro model revealed that ZIKV had no impact on hBMECs permeability but led to endothelial activation, as shown by the enhancement of adhesion molecules expression and F-actin redistribution. ZIKV replication in hBMECs might be associated with the suppression of IFN-β translation via inhibiting RPS6 phosphorylation. On the other hand, ZIKV infection induced IFN-stimulated genes (ISGs), activated the mitogen-activated protein kinase (MAPK) signaling pathway, and promoted chemokine secretion. This study provides an understanding of virus replication and transmigration across the BBB during ZIKV infection.
Collapse
|
23
|
Differential Infectivity of Human Neural Cell Lines by a Dengue Virus Serotype-3 Genotype-III with a Distinct Nonstructural Protein 2A (NS2A) Amino Acid Substitution Isolated from the Cerebrospinal Fluid of a Dengue Encephalitis Patient. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:2635383. [PMID: 36704099 PMCID: PMC9873433 DOI: 10.1155/2023/2635383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/27/2022] [Accepted: 11/12/2022] [Indexed: 01/19/2023]
Abstract
Dengue encephalitis is considered as a severe but unusual clinical presentation of dengue infection. Limited molecular information is available on the neurotropism of dengue virus (DENV), highlighting the need for further research. During a dengue outbreak in Vietnam in 2013, two DENV-3 strains were isolated, in which one was isolated from cerebrospinal fluid (CSF) samples from a dengue encephalitis patient and another strain was isolated from a patient with classical dengue fever in Hai Phong, Vietnam. DENV serotype-3 (DENV-3) isolated from these samples belonged to genotype III, marking the first report of this genotype in the country at that time. Genetic variation between both strains was elucidated by using a full genome sequencing by next-generation sequencing (NGS). The infectivity of the isolated DENV-3 strains was further characterized using human and mouse neuronal cell lines. Phylogenetic analysis of the isolates demonstrated high homogeneity between the CSF-derived and serum-derived DENV-3, in which the full genome sequences of the CSF-derived DENV-3 presented a Thr-1339-Ile mutation in the nonstructural 2A (NS2A) protein. The CSF-derived DENV-3 isolate grew preferentially in human neuronal cells, with a significant proportion of cells that were positive for nonstructural 1 (NS1), nonstructural 4B (NS4B), and nonstructural 5 (NS5) antigens. These results suggest that NS2A may be a crucial region in the neuropathogenesis of DENV-3 and its growth in human neuronal cells. Taken together, our results demonstrate that a CSF-derived DENV-3 has unique infectivity characteristics for human neuronal cells, which might play a crucial role in the neuropathogenesis of DENV infection.
Collapse
|
24
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
25
|
Pinapati KK, Tandon R, Tripathi P, Srivastava N. Recent advances to overcome the burden of Japanese encephalitis: A zoonotic infection with problematic early detection. Rev Med Virol 2023; 33:e2383. [PMID: 35983697 DOI: 10.1002/rmv.2383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Japanese encephalitis (JE) is a vector-borne neurotropic disease caused by Japanese encephalitis virus (JEV) associated with high mortality rate distributed from Eastern and Southern Asia to Northern Queensland (Australia). The challenges in early detection and lack of point-of-care biomarkers make it the most important Flavivirus causing encephalitis. There is no specific treatment for the disease, although vaccines are licenced. In this review, we focussed on point-of-care biomarkers as early detection tools and developing the effective therapeutic agents that could halt JE. We have also provided molecular details of JEV, disease progression, and its pathogenesis with recent findings which might bring insights to overcome the disease burden.
Collapse
Affiliation(s)
- Kishore Kumar Pinapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttra Pradesh, India
| |
Collapse
|
26
|
Kim H, Leng K, Park J, Sorets AG, Kim S, Shostak A, Embalabala RJ, Mlouk K, Katdare KA, Rose IVL, Sturgeon SM, Neal EH, Ao Y, Wang S, Sofroniew MV, Brunger JM, McMahon DG, Schrag MS, Kampmann M, Lippmann ES. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat Commun 2022; 13:6581. [PMID: 36323693 PMCID: PMC9630454 DOI: 10.1038/s41467-022-34412-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Astrocytes are critical components of the neurovascular unit that support blood-brain barrier (BBB) function. Pathological transformation of astrocytes to reactive states can be protective or harmful to BBB function. Here, using a human induced pluripotent stem cell (iPSC)-derived BBB co-culture model, we show that tumor necrosis factor (TNF) transitions astrocytes to an inflammatory reactive state that causes BBB dysfunction through activation of STAT3 and increased expression of SERPINA3, which encodes alpha 1-antichymotrypsin (α1ACT). To contextualize these findings, we correlated astrocytic STAT3 activation to vascular inflammation in postmortem human tissue. Further, in murine brain organotypic cultures, astrocyte-specific silencing of Serpina3n reduced vascular inflammation after TNF challenge. Last, treatment with recombinant Serpina3n in both ex vivo explant cultures and in vivo was sufficient to induce BBB dysfunction-related molecular changes. Overall, our results define the TNF-STAT3-α1ACT signaling axis as a driver of an inflammatory reactive astrocyte signature that contributes to BBB dysfunction.
Collapse
Affiliation(s)
- Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jinhee Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alexander G Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Suil Kim
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kate Mlouk
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ketaki A Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah M Sturgeon
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yan Ao
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Douglas G McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Matthew S Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Lab-Attenuated Rabies Virus Facilitates Opening of the Blood-Brain Barrier by Inducing Matrix Metallopeptidase 8. J Virol 2022; 96:e0105022. [PMID: 36005758 PMCID: PMC9472762 DOI: 10.1128/jvi.01050-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.
Collapse
|
29
|
Zhang YG, Chen HW, Zhang HX, Wang K, Su J, Chen YR, Wang XR, Fu ZF, Cui M. EGFR Activation Impairs Antiviral Activity of Interferon Signaling in Brain Microvascular Endothelial Cells During Japanese Encephalitis Virus Infection. Front Microbiol 2022; 13:894356. [PMID: 35847084 PMCID: PMC9279666 DOI: 10.3389/fmicb.2022.894356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood–brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR. In JEV-infected hBMECs, a rapid internalization of EGFR that co-localizes with the endosomal marker EEA1 occurred. Using specific inhibitors to block EGFR, reduced production of viral particles was observed. Similar results were also found in an EGFR-KO hBMEC cell line. Even though the process of viral infection in attachment and entry was not noticeably influenced, the induction of IFNs in EGFR-KO hBMECs was significantly increased, which may account for the decreased viral production. Further investigation demonstrated that EGFR downstream cascade ERK, but not STAT3, was involved in the antiviral effect of IFNs, and a lowered viral yield was observed by utilizing the specific inhibitor of ERK. Taken together, the results revealed that JEV induces EGFR activation, leading to a suppression of interferon signaling and promotion of viral replication, which could provide a potential target for future therapies for the JEV infection.
Collapse
Affiliation(s)
- Ya-Ge Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hao-Wei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hong-Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Jie Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yan-Ru Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zhen-Fang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- *Correspondence: Min Cui
| |
Collapse
|
30
|
Ruan T, Sun Y, Zhang J, Sun J, Liu W, Prinz RA, Peng D, Liu X, Xu X. H5N1 infection impairs the alveolar epithelial barrier through intercellular junction proteins via Itch-mediated proteasomal degradation. Commun Biol 2022; 5:186. [PMID: 35233032 PMCID: PMC8888635 DOI: 10.1038/s42003-022-03131-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
The H5N1 subtype of the avian influenza virus causes sporadic but fatal infections in humans. H5N1 virus infection leads to the disruption of the alveolar epithelial barrier, a pathologic change that often progresses into acute respiratory distress syndrome (ARDS) and pneumonia. The mechanisms underlying this remain poorly understood. Here we report that H5N1 viruses downregulate the expression of intercellular junction proteins (E-cadherin, occludin, claudin-1, and ZO-1) in several cell lines and the lungs of H5N1 virus-infected mice. H5N1 virus infection activates TGF-β-activated kinase 1 (TAK1), which then activates p38 and ERK to induce E3 ubiquitin ligase Itch expression and to promote occludin ubiquitination and degradation. Inhibition of the TAK1-Itch pathway restores the intercellular junction structure and function in vitro and in the lungs of H5N1 virus-infected mice. Our study suggests that H5N1 virus infection impairs the alveolar epithelial barrier by downregulating the expression of intercellular junction proteins at the posttranslational level.
Collapse
Affiliation(s)
- Tao Ruan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yuling Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jingting Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, 60201, USA
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
31
|
Li X, Li J, Wu G, Wang M, Jing Z. Detection of Japanese Encephalitis by Metagenomic Next-Generation Sequencing of Cerebrospinal Fluid: A Case Report and Literature Review. Front Cell Neurosci 2022; 16:856512. [PMID: 35250491 PMCID: PMC8892252 DOI: 10.3389/fncel.2022.856512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
Japanese encephalitis (JE) is an acute viral central nervous system disease, although less than 1% of patients infected with Japanese encephalitis virus (JEV) result in JE, which has an extremely poor prognosis. The Routine detection methods for JEV are time-consuming or limited by hospital conditions, therefore, need the quicker and sensitive techniques to detect JEV. Here, we reported a 14-year-old female who was admitted to our hospital with a severe fever, progressively headache and unconsciousness. Based on the clinical presentation, Preliminary diagnosis on admission indicated central nervous system infection of suspected viral meningoencephalitis or autoimmune encephalitis. The patient's symptoms were unrelieved after being treated with empiric antiviral therapy. Magnetic resonance imaging (MRI) showed that the lesions were located in the bilateral thalamus, head of caudate nucleus, and right lenticular nucleus, so we had to consider the possibility of Flaviviruses infection. We sent the cerebrospinal fluid (CSF) for metagenomic next-generation sequencing (mNGS) immediately, subsequent result suggested the infection caused by JEV. Two days later the results of the serum agglutination test confirmed that virus immunoglobulin M antibody positive. After a week treatment with intravenous immunoglobulin (IVIG), meanwhile, the lumbar puncture was used to check the pressure and various indicators of the CSF again to evaluate the treatment effect, An decrease in the number of WBC indicates, protein and unique RNA reads that the previous experimental treatment was effective, accompany by temperature and consciousness of the patient was normalized. Two weeks after admission, the patient was transferred to the rehabilitation hospital, MR showed the lesions had disappeared completely after 2 months of follow-up. We believed that mNGS may be an effective method for rapid identification of JE.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Guode Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Manxia Wang
| | - Zhang Jing
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
32
|
Ashraf U, Ding Z, Deng S, Ye J, Cao S, Chen Z. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence 2021; 12:968-980. [PMID: 33724154 PMCID: PMC7971234 DOI: 10.1080/21505594.2021.1899674] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Thousands of human deaths occur annually due to Japanese encephalitis (JE), caused by Japanese encephalitis virus. During the virus infection of the central nervous system, reactive gliosis, uncontrolled inflammatory response, and neuronal cell death are considered as the characteristic features of JE. To date, no specific treatment has been approved to overcome JE, indicating a need for the development of novel therapies. In this article, we focused on basic biological mechanisms in glial (microglia and astrocytes) and neuronal cells that contribute to the onset of neuroinflammation and neuronal cell damage during Japanese encephalitis virus infection. We also provided comprehensive knowledge about anti-JE therapies tested in clinical or pre-clinical settings, and discussed recent therapeutic strategies that could be employed for JE treatment. The improved understanding of JE pathogenesis might lay a foundation for the development of novel therapies to halt JE.Abbreviations AKT: a serine/threonine-specific protein kinase; AP1: activator protein 1; ASC: apoptosis-associated speck-like protein containing a CARD; ASK1: apoptosis signal-regulated kinase 1; ATF3/4/6: activating transcription factor 3/4/6; ATG5/7: autophagy-related 5/7; BBB: blood-brain barrier; Bcl-3/6: B-cell lymphoma 3/6 protein; CCL: C-C motif chemokine ligand; CCR2: C-C motif chemokine receptor 2; CHOP: C/EBP homologous protein; circRNA: circular RNA; CNS: central nervous system; CXCL: C-X-C motif chemokine ligand; dsRNA: double-stranded RNA; EDEM1: endoplasmic reticulum degradation enhancer mannosidase alpha-like 1; eIF2-ɑ: eukaryotic initiation factor 2 alpha; ER: endoplasmic reticulum; ERK: extracellular signal-regulated kinase; GRP78: 78-kDa glucose-regulated protein; ICAM: intercellular adhesion molecule; IFN: interferon; IL: interleukin; iNOS: inducible nitric oxide synthase; IRAK1/2: interleukin-1 receptor-associated kinase 1/2; IRE-1: inositol-requiring enzyme 1; IRF: interferon regulatory factor; ISG15: interferon-stimulated gene 15; JE: Japanese encephalitis; JEV: Japanese encephalitis virus; JNK: c-Jun N-terminal kinase; LAMP2: lysosome-associated membrane protein type 2; LC3-I/II: microtubule-associated protein 1 light chain 3-I/II; lncRNA: long non-coding RNA; MAPK: mitogen-activated protein kinase; miR/miRNA: microRNA; MK2: mitogen-activated protein kinase-activated protein kinase 2; MKK4: mitogen-activated protein kinase kinase 4; MLKL: mixed-linage kinase domain-like protein; MMP: matrix metalloproteinase; MyD88: myeloid differentiation factor 88; Nedd4: neural precursor cell-expressed developmentally downregulated 4; NF-κB: nuclear factor kappa B; NKRF: nuclear factor kappa B repressing factor; NLRP3: NLR family pyrin domain containing 3; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; NS2B/3/4: JEV non-structural protein 2B/3/4; P: phosphorylation. p38: mitogen-activated protein kinase p38; PKA: protein kinase A; PAK4: p21-activated kinase 4; PDFGR: platelet-derived growth factor receptor; PERK: protein kinase R-like endoplasmic reticulum kinase; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; Rab7: Ras-related GTPase 7; Raf: proto-oncogene tyrosine-protein kinase Raf; Ras: a GTPase; RIDD: regulated IRE-1-dependent decay; RIG-I: retinoic acid-inducible gene I; RIPK1/3: receptor-interacting protein kinase 1/3; RNF11/125: RING finger protein 11/125; ROS: reactive oxygen species; SHIP1: SH2-containing inositol 5' phosphatase 1; SOCS5: suppressor of cytokine signaling 5; Src: proto-oncogene tyrosine-protein kinase Src; ssRNA = single-stranded RNA; STAT: signal transducer and activator of transcription; TLR: toll-like receptor; TNFAIP3: tumor necrosis factor alpha-induced protein 3; TNFAR: tumor necrosis factor alpha receptor; TNF-α: tumor necrosis factor-alpha; TRAF6: tumor necrosis factor receptor-associated factor 6; TRIF: TIR-domain-containing adapter-inducing interferon-β; TRIM25: tripartite motif-containing 25; VCAM: vascular cell adhesion molecule; ZO-1: zonula occludens-1.
Collapse
Affiliation(s)
- Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Shunzhou Deng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
33
|
Targeting tight junctions to fight against viral neuroinvasion. Trends Mol Med 2021; 28:12-24. [PMID: 34810086 DOI: 10.1016/j.molmed.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
The clinical impact of viral neuroinvasion on the central nervous system (CNS) ranges from barely detectable to deadly, including acute and chronic outcomes. Developing innovative therapeutic strategies is important to mitigate virus-induced neurological and psychiatric disorders. A key gatekeeper to the CNS is the neurovascular unit (NVU), a major obstacle to viral neuroinvasion and antiviral therapies. The NVU isolates the brain from the blood through firm sealing operated by the tight junctions (TJs) of endothelial cells. Here, we make the thought-provoking assumption that TJs can be targets to prevent or treat viral neuroinvasion and resulting disorders. This review aims at defining the conceptual diverse mode of actions of such approaches, evaluates their feasibility, and discusses future challenges in the field.
Collapse
|
34
|
Zoladek J, Legros V, Jeannin P, Chazal M, Pardigon N, Ceccaldi PE, Gessain A, Jouvenet N, Afonso PV. Zika Virus Requires the Expression of Claudin-7 for Optimal Replication in Human Endothelial Cells. Front Microbiol 2021; 12:746589. [PMID: 34616388 PMCID: PMC8488266 DOI: 10.3389/fmicb.2021.746589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023] Open
Abstract
Zika virus (ZIKV) infection has been associated with a series of neurological pathologies. In patients with ZIKV-induced neurological disorders, the virus is detectable in the central nervous system. Thus, ZIKV is capable of neuroinvasion, presumably through infection of the endothelial cells that constitute the blood-brain barrier (BBB). We demonstrate that susceptibility of BBB endothelial cells to ZIKV infection is modulated by the expression of tight-junction protein claudin-7 (CLDN7). Downregulation of CLDN7 reduced viral RNA yield, viral protein production, and release of infectious viral particles in several endothelial cell types, but not in epithelial cells, indicating that CLDN7 implication in viral infection is cell-type specific. The proviral activity of CLDN7 in endothelial cells is ZIKV-specific since related flaviviruses were not affected by CLDN7 downregulation. Together, our data suggest that CLDN7 facilitates ZIKV infection in endothelial cells at a post-internalization stage and prior to RNA production. Our work contributes to a better understanding of the mechanisms exploited by ZIKV to efficiently infect and replicate in endothelial cells and thus of its ability to cross the BBB.
Collapse
Affiliation(s)
- Jim Zoladek
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Vincent Legros
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France.,VetAgro Sup, Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Patricia Jeannin
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Maxime Chazal
- Unité Signalisation Antivirale, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Nathalie Pardigon
- Groupe Arbovirus, Unité Environnement et Risques Infectieux, Institut Pasteur, Paris, France
| | - Pierre-Emmanuel Ceccaldi
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Antoine Gessain
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| | - Nolwenn Jouvenet
- Unité Signalisation Antivirale, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Philippe V Afonso
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Université de Paris, Paris, France
| |
Collapse
|
35
|
VIP Stabilizes the Cytoskeleton of Schlemm's Canal Endothelia via Reducing Caspase-3 Mediated ZO-1 Endolysosomal Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9397960. [PMID: 34552687 PMCID: PMC8452417 DOI: 10.1155/2021/9397960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Objectives In glaucomatous eyes, the main aqueous humor (AH) outflow pathway is damaged by accumulated oxidative stress arising from the microenvironment, vascular dysregulation, and aging, which results in increased outflow resistance and ocular hypertension. Schlemm's canal (SC) serves as the final filtration barrier of the main AH outflow pathway. The present study is aimed at investigating the possible regulation of vasoactive intestinal peptide (VIP) on the cytoskeleton by stabilizing ZO-1 in SC. Methods Model of chronic ocular hypertension (COH) induced by episcleral venous cauterization was treated with topical VIP. The ultrastructure of junctions, ZO-1 levels, and permeability of the SC inner wall to FITC-dextran (70 kDa) were detected in the COH models. The F-actin distribution, F/G-actin ratio, and ZO-1 degradation pathway in human umbilical vein endothelial cells (HUVECs) and HEK 293 cells were investigated. Results ZO-1 in the outer wall of the SC was less than that in the inner wall. COH elicited junction disruption, ZO-1 reduction, and increased permeability of the SC inner wall to FITC-dextran in rats. ZO-1 plays an essential role in maintaining the F/G-actin ratio and F-actin distribution. VIP treatment attenuated the downregulation of ZO-1 associated with COH or H2O2-induced oxidative damage. In H2O2-stimulated HUVECs, the caspase-3 inhibitor prevents ZO-1 disruption. Caspase-3 activation promoted endolysosomal degradation of ZO-1. Furthermore, a decrease in caspase-3 activation and cytoskeleton redistribution was demonstrated in VIP + H2O2-treated cells. The knockdown of ZO-1 or the overexpression of caspase-3 blocked the effect of VIP on the cytoskeleton. Conclusion This study provides insights into the role of VIP in stabilizing the interaction between the actin cytoskeleton and cell junctions and may provide a promising targeted strategy for glaucoma treatment.
Collapse
|
36
|
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021; 81:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
37
|
Khou C, Díaz-Salinas MA, da Costa A, Préhaud C, Jeannin P, Afonso PV, Vignuzzi M, Lafon M, Pardigon N. Comparative analysis of neuroinvasion by Japanese encephalitis virulent and vaccine viral strains in an in vitro model of human blood-brain barrier. PLoS One 2021; 16:e0252595. [PMID: 34086776 PMCID: PMC8177624 DOI: 10.1371/journal.pone.0252595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in South East Asia. It has been suggested that, as a consequence of the inflammatory process during JEV infection, there is disruption of the blood-brain barrier (BBB) tight junctions that in turn allows the virus access to the central nervous system (CNS). However, what happens at early times of JEV contact with the BBB is poorly understood. In the present work, we evaluated the ability of both a virulent and a vaccine strain of JEV (JEV RP9 and SA14-14-2, respectively) to cross an in vitro human BBB model. Using this system, we demonstrated that both JEV RP9 and SA14-14-2 are able to cross the BBB without disrupting it at early times post viral addition. Furthermore, we find that almost 10 times more RP9 infectious particles than SA14-14 cross the model BBB, indicating this BBB model discriminates between the virulent RP9 and the vaccine SA14-14-2 strains of JEV. Beyond contributing to the understanding of early events in JEV neuroinvasion, we demonstrate this in vitro BBB model can be used as a system to study the viral determinants of JEV neuroinvasiveness and the molecular mechanisms by which this flavivirus crosses the BBB during early times of neuroinvasion.
Collapse
Affiliation(s)
- Cécile Khou
- Unité de Recherche et d’Expertise Environnement et Risques Infectieux, Groupe Arbovirus, Institut Pasteur, Paris, France
| | - Marco Aurelio Díaz-Salinas
- Unité de Recherche et d’Expertise Environnement et Risques Infectieux, Groupe Arbovirus, Institut Pasteur, Paris, France
| | - Anaelle da Costa
- Unité de Neuro-Immunologie Virale, Institut Pasteur, Paris, France
| | | | - Patricia Jeannin
- Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Philippe V. Afonso
- Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Marco Vignuzzi
- Unité des Populations Virales et Pathogenèse, Institut Pasteur, Paris, France
| | - Monique Lafon
- Unité de Neuro-Immunologie Virale, Institut Pasteur, Paris, France
| | - Nathalie Pardigon
- Unité de Recherche et d’Expertise Environnement et Risques Infectieux, Groupe Arbovirus, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Lin SY, Wang YY, Chang CY, Wu CC, Chen WY, Liao SL, Chen CJ. TNF-α Receptor Inhibitor Alleviates Metabolic and Inflammatory Changes in a Rat Model of Ischemic Stroke. Antioxidants (Basel) 2021; 10:851. [PMID: 34073455 PMCID: PMC8228519 DOI: 10.3390/antiox10060851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia and inflammation, with their augmented interplay, are involved in cases of stroke with poor outcomes. Interrupting this vicious cycle thus has the potential to prevent stroke disease progression. Tumor necrosis factor-α (TNF-α) is an emerging molecule, which has inflammatory and metabolic roles. Studies have shown that TNF-α receptor inhibitor R-7050 possesses neuroprotective, antihyperglycemic, and anti-inflammatory effects. Using a rat model of permanent cerebral ischemia, pretreatment with R-7050 offered protection against poststroke neurological deficits, brain infarction, edema, oxidative stress, and caspase 3 activation. In the injured cortical tissues, R-7050 reversed the activation of TNF receptor-I (TNFRI), NF-κB, and interleukin-6 (IL-6), as well as the reduction of zonula occludens-1 (ZO-1). In the in vitro study on bEnd.3 endothelial cells, R-7050 reduced the decline of ZO-1 levels after TNF-α-exposure. R-7050 also reduced the metabolic alterations occurring after ischemic stroke, such as hyperglycemia and increased plasma corticosterone, free fatty acids, C reactive protein, and fibroblast growth factor-15 concentrations. In the gastrocnemius muscles of rats with stroke, R-7050 improved activated TNFRI/NF-κB, oxidative stress, and IL-6 pathways, as well as impaired insulin signaling. Overall, our findings highlight a feasible way to combat stroke disease based on an anti-TNF therapy that involves anti-inflammatory and metabolic mechanisms.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
39
|
RNA Interference Screening Reveals Requirement for Platelet-Derived Growth Factor Receptor Beta in Japanese Encephalitis Virus Infection. Antimicrob Agents Chemother 2021; 65:AAC.00113-21. [PMID: 33753340 PMCID: PMC8316074 DOI: 10.1128/aac.00113-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Mosquito-borne Japanese encephalitis virus (JEV) causes serious illness worldwide and is associated with high morbidity and mortality. To identify potential host therapeutic targets, a high-throughput receptor tyrosine kinase small interfering RNA library screening was performed with recombinant JEV particles. Platelet-derived growth factor receptor beta (PDGFRβ) was identified as a hit after two rounds of screening. Knockdown of PDGFRβ blocked JEV infection and transcomplementation of PDGFRβ could partly restore its infectivity. The PDGFRβ inhibitor imatinib, which has been approved for the treatment of malignant metastatic cancer, protected mice against JEV-induced lethality by decreasing the viral load in the brain while abrogating the histopathological changes associated with JEV infection. These findings demonstrated that PDGFRβ is important in viral infection and provided evidence for the potential to develop imatinib as a therapeutic intervention against JEV infection.
Collapse
|
40
|
Bakoa F, Préhaud C, Beauclair G, Chazal M, Mantel N, Lafon M, Jouvenet N. Genomic diversity contributes to the neuroinvasiveness of the Yellow fever French neurotropic vaccine. NPJ Vaccines 2021; 6:64. [PMID: 33903598 PMCID: PMC8076279 DOI: 10.1038/s41541-021-00318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Mass vaccination with the live attenuated vaccine YF-17D is the current way to prevent infection with Yellow fever virus (YFV). However, 0.000012-0.00002% of vaccinated patients develop post-vaccination neurological syndrome (YEL-AND). Understanding the factors responsible for neuroinvasion, neurotropism, and neurovirulence of the vaccine is critical for improving its biosafety. The YF-FNV vaccine strain, known to be associated with a higher frequency of YEL-AND (0.3-0.4%) than YF-17D, is an excellent model to study vaccine neuroinvasiveness. We determined that neuroinvasiveness of YF-FNV occured both via infection and passage through human brain endothelial cells. Plaque purification and next generation sequencing (NGS) identified several neuroinvasive variants. Their neuroinvasiveness was not higher than that of YF-FNV. However, rebuilding the YF-FNV population diversity from a set of isolated YF-FNV-N variants restored the original neuroinvasive phenotype of YF-FNV. Therefore, we conclude that viral population diversity is a critical factor for YFV vaccine neuroinvasiveness.
Collapse
Affiliation(s)
- Florian Bakoa
- Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France
- Research and External Innovation Department, Sanofi Pasteur, Marcy L'Etoile, France
- Sorbonne Université, Collège doctoral, Paris, France
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
| | | | - Guillaume Beauclair
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
- Institut de Biologie Intégrative de la Cellule, UMR9198, Équipe Autophagie et Immunité Antivirale, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Maxime Chazal
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Nathalie Mantel
- Research and External Innovation Department, Sanofi Pasteur, Marcy L'Etoile, France
| | - Monique Lafon
- Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France.
| | - Nolwenn Jouvenet
- Unité de Signalisation Antivirale, CNRS UMR 3569, Institut Pasteur, Paris, France.
| |
Collapse
|
41
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
42
|
Liu YG, Chen Y, Wang X, Zhao P, Zhu Y, Qi Z. Ezrin is essential for the entry of Japanese encephalitis virus into the human brain microvascular endothelial cells. Emerg Microbes Infect 2021; 9:1330-1341. [PMID: 32538298 PMCID: PMC7473060 DOI: 10.1080/22221751.2020.1757388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Japanese encephalitis virus (JEV) remains the predominant cause of viral encephalitis worldwide. It reaches the central nervous system upon crossing the blood-brain barrier through pathogenic mechanisms that are not completely understood. Here, using a high-throughput siRNA screening assay combined with verification experiments, we found that JEV enters the primary human brain microvascular endothelial cells (HBMEC) through a caveolae-mediated endocytic pathway. The role of ezrin, an essential host factor for JEV entry based on our screening, in caveolae-mediated JEV internalization was investigated. We observed that JEV internalization in HBMEC is largely dependent on ezrin-mediated actin cytoskeleton polymerization. Moreover, Src, a protein predicted by a STRING database search, was found to be required in JEV entry. By a variety of pharmacological inhibition and immunoprecipitation assays, we found that Src, ezrin, and caveolin-1 were sequentially activated and formed a complex during JEV infection. A combination of in vitro kinase assay and subcellular analysis demonstrated that ezrin is essential for Src-caveolin-1 interactions. In vivo, both Src and ezrin inhibitors protected ICR suckling mice against JEV-induced mortality and diminished mouse brain viral load. Therefore, JEV entry into HBMEC requires the activation of the Src-ezrin-caveolin-1 signalling axis, which provides potential targets for restricting JEV infection.
Collapse
Affiliation(s)
- Yan-Gang Liu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| | - Yang Chen
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China.,College of Basic Medicine, Naval Medical University (Second Military Medical University Shanghai), Shanghai, People's Republic of China
| | - Xiaohang Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China.,College of Basic Medicine, Naval Medical University (Second Military Medical University Shanghai), Shanghai, People's Republic of China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| | - Yongzhe Zhu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| | - Zhongtian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University (Second Military Medical University), Shanghai, People's Republic of China
| |
Collapse
|
43
|
Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, Cadar D, Savini G, Teodori L, Monaco F, Schmidt-Chanasit J, Saiz JC, Gonzales G, Lecollinet S, Beck C, Gosselet F, Van de Perre P, Foulongne V, Salinas S, Simonin Y. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation 2021; 18:11. [PMID: 33407600 PMCID: PMC7789689 DOI: 10.1186/s12974-020-02060-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Usutu virus (USUV) is an emerging neurotropic arthropod-borne virus recently involved in massive die offs of wild birds predominantly reported in Europe. Although primarily asymptomatic or presenting mild clinical signs, humans infected by USUV can develop neuroinvasive pathologies (including encephalitis and meningoencephalitis). Similar to other flaviviruses, such as West Nile virus, USUV is capable of reaching the central nervous system. However, the neuropathogenesis of USUV is still poorly understood, and the virulence of the specific USUV lineages is currently unknown. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages circulating at the same time and in the same location. METHODS The aim of this work was to determine the neurovirulence of isolates from the six main lineages circulating in Europe using mouse model and several neuronal cell lines (neurons, microglia, pericytes, brain endothelial cells, astrocytes, and in vitro Blood-Brain Barrier model). RESULTS Our results indicate that all strains are neurotropic but have different virulence profiles. The Europe 2 strain, previously described as being involved in several clinical cases, induced the shortest survival time and highest mortality in vivo and appeared to be more virulent and persistent in microglial, astrocytes, and brain endothelial cells, while also inducing an atypical cytopathic effect. Moreover, an amino acid substitution (D3425E) was specifically identified in the RNA-dependent RNA polymerase domain of the NS5 protein of this lineage. CONCLUSIONS Altogether, these data show a broad neurotropism for USUV in the central nervous system with lineage-dependent virulence. Our results will help to better understand the biological and epidemiological diversity of USUV infection.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Orianne Constant
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Montpellier University, Montpellier, France
| | - Marie France Martin
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Lina Lapeyre
- Université de Montpellier, CNRS, Viral Trafficking, Restriction and Innate Signaling, Montpellier, France
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Liana Teodori
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Federica Monaco
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", 46100, Teramo, Italy
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148, Hamburg, Germany
| | | | - Gaëlle Gonzales
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Cécile Beck
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (BBB Lab), University of Artois, UR2465, F-62300, Lens, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France.
| |
Collapse
|
44
|
Abstract
The blood-brain barrier (BBB), which protects the CNS from pathogens, is composed of specialized brain microvascular endothelial cells (BMECs) joined by tight junctions and ensheathed by pericytes and astrocyte endfeet. The stability of the BBB structure and function is of great significance for the maintenance of brain homeostasis. When a neurotropic virus invades the CNS via a hematogenous or non-hematogenous route, it may cause structural and functional disorders of the BBB, and also activate the BBB anti-inflammatory or pro-inflammatory innate immune response. This article focuses on the structural and functional changes that occur in the three main components of the BBB (endothelial cells, astrocytes, and pericytes) in response to infection with neurotropic viruses transmitted by hematogenous routes, and also briefly describes the supportive effect of three cells on the BBB under normal physiological conditions. For example, all three types of cells express several PRRs, which can quickly sense the virus and make corresponding immune responses. The pro-inflammatory immune response will exacerbate the destruction of the BBB, while the anti-inflammatory immune response, based on type I IFN, consolidates the stability of the BBB. Exploring the details of the interaction between the host and the pathogen at the BBB during neurotropic virus infection will help to propose new treatments for viral encephalitis. Enhancing the defense function of the BBB, maintaining the integrity of the BBB, and suppressing the pro-inflammatory immune response of the BBB provide more ideas for limiting the neuroinvasion of neurotropic viruses. In the future, these new treatments are expected to cooperate with traditional antiviral methods to improve the therapeutic effect of viral encephalitis.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| |
Collapse
|
45
|
Clé M, Eldin P, Briant L, Lannuzel A, Simonin Y, Van de Perre P, Cabié A, Salinas S. Neurocognitive impacts of arbovirus infections. J Neuroinflammation 2020; 17:233. [PMID: 32778106 PMCID: PMC7418199 DOI: 10.1186/s12974-020-01904-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses or arbovirus, are most commonly associated with acute infections, resulting on various symptoms ranging from mild fever to more severe disorders such as hemorrhagic fever. Moreover, some arboviral infections can be associated with important neuroinflammation that can trigger neurological disorders including encephalitis, paralysis, ophthalmological impairments, or developmental defects, which in some cases, can lead to long-term defects of the central nervous system (CNS). This is well illustrated in Zika virus-associated congenital brain malformations but also in West Nile virus-induced synaptic dysfunctions that can last well beyond infection and lead to cognitive deficits. Here, we summarize clinical and mechanistic data reporting on cognitive disturbances triggered by arboviral infections, which may highlight growing public health issues spanning the five continents.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Patrick Eldin
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Laurence Briant
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Annie Lannuzel
- Neurology Unit, INSERM CIC 1424, Guadeloupe University Hospital, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
- INSERM U1127, CNRS, UMR7225, Brain and Spine Institute, Sorbonne University Medical School, Paris, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - André Cabié
- INSERM CIC 1424, Infectious Disease and Tropical Medicine Unit, Martinique University Hospital, Université des Antilles EA4537, Martinique, France.
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France.
| |
Collapse
|
46
|
Sun Z, Li W, Xu J, Ren K, Gao F, Jiang Z, Ji F, Pan D. Proteomic Analysis of Cerebrospinal Fluid in Children with Acute Enterovirus-Associated Meningoencephalitis Identifies Dysregulated Host Processes and Potential Biomarkers. J Proteome Res 2020; 19:3487-3498. [PMID: 32678604 DOI: 10.1021/acs.jproteome.0c00307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enteroviruses (EVs) are major causes of viral meningoencephalitis in children. To better understand the pathogenesis and identify potential biomarkers, cerebrospinal fluid proteome in children (n = 52) suffering from EV meningoencephalitis was compared to that in EV-negative control subjects (n = 53) using the BoxCar acquisition technique. Among 1697 proteins identified, 1193 with robust assay readouts were used for quantitative analyses. Differential expression analyses identified 154 upregulated and 227 downregulated proteins in the EV-positive group. Functional analyses showed that the upregulated proteins are mainly related to activities of lymphocytes and cytokines, inflammation, and responses to stress and viral invasion, while the downregulated proteins are mainly related to neuronal integrity and activity as well as neurogenesis. According to receiver operating characteristic analysis results, Rho-GDP-dissociation inhibitor 2 exhibited the highest sensitivity (96.2%) and specificity (100%) for discriminating EV-positive from EV-negative patients. The chemokine CXCL10 was most upregulated (>300-fold) with also high sensitivity (92.3%) and specificity (94.3%) for indicating EV positivity. Thus, this study uncovered perturbations of multiple host processes due to EV meningoencephalitis, especially the general trend of enhanced immune responses but impaired neuronal functions. The identified dysregulated proteins may also prompt biomarker development.
Collapse
Affiliation(s)
- Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jialu Xu
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Feng Gao
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dongli Pan
- Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
47
|
Deng Z, Zhou L, Wang Y, Liao S, Huang Y, Shan Y, Tan S, Zeng Q, Peng L, Huang H, Lu Z. Astrocyte-derived VEGF increases cerebral microvascular permeability under high salt conditions. Aging (Albany NY) 2020; 12:11781-11793. [PMID: 32568100 PMCID: PMC7343440 DOI: 10.18632/aging.103348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Excess salt (NaCl) intake is closely related to a variety of central nervous system (CNS) diseases characterized by increased cerebral microvascular permeability. However, the link between a high salt diet (HSD) and the breakdown of tight junctions (TJs) remains unclear. In the present study, we found that high salt does not directly influence the barrier between endothelial cells, but it suppresses expression of TJ proteins when endothelial cells are co-cultured with astrocytes. This effect is independent of blood pressure, but depends on the astrocyte activation via the NFκB/MMP-9 signaling pathway, resulting in a marked increase in VEGF expression. VEGF, in turn, induces disruption of TJs by inducing phosphorylation and activation of ERK and eNOS. Correspondingly, the HSD-induced disruption of TJ proteins is attenuated by blocking VEGF using the specific monoclonal antibody Bevacizumab. These results reveal a new axis linking a HSD to increased cerebral microvascular permeability through a VEGF-initiated inflammatory response, which may be a potential target for preventing the deleterious effects of HSD on the CNS.
Collapse
Affiliation(s)
- Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.,Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Siyuan Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yinong Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yilong Shan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Sha Tan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Zeng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
48
|
He Q, Liu H, Huang C, Wang R, Luo M, Lu W. Herpes Simplex Virus 1-Induced Blood-Brain Barrier Damage Involves Apoptosis Associated With GM130-Mediated Golgi Stress. Front Mol Neurosci 2020; 13:2. [PMID: 32038167 PMCID: PMC6992570 DOI: 10.3389/fnmol.2020.00002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex encephalitis (HSE) caused by herpes simplex virus 1 (HSV-1) infection can lead to a high mortality rate and severe neurological sequelae. The destruction of the blood-brain barrier (BBB) is an important pathological mechanism for the development of HSE. However, the specific mechanism underlying the BBB destruction remains unclear. Our previous study found that the Golgi apparatus (GA) plays a crucial role in maintaining the integrity of the BBB. Therefore, this present study aimed to investigate the role of the GA in the destruction of the BBB and its underlying mechanisms. Mouse brain endothelial cells (Bend.3) were cultured to establish a BBB model in vitro, and then infected with HSV-1. The results showed that HSV-1 infection caused downregulation of the Golgi-associated protein GM130, accompanied by Golgi fragmentation, cell apoptosis, and downregulation of tight junction proteins occludin and claudin 5. Knockdown of GM130 with small interfering RNA in uninfected Bend.3 cells triggered Golgi fragmentation, apoptosis, and downregulation of occludin and claudin 5. However, overexpression of GM130 in HSV-1 infected Bend.3 cells by transient transfection partially attenuated the aforementioned damage caused by HSV-1 infection. When the pan-caspase inhibitor Z-VAD-fmk was used after HSV-1 infection to inhibit apoptosis, the protein levels of GM130, occludin and claudin 5 were partially restored. Taken together, these observations indicate that HSV-1 infection of Bend.3 cells triggers a GM130-mediated Golgi stress response that is involved in apoptosis, which in turn results in downregulation of occludin and claudin 5 protein levels. Meanwhile, GM130 downregulation is partially due to apoptosis triggered by HSV-1 infection. Our findings reveal an association between the GA and the BBB during HSV-1 infection and identify potentially novel targets for protecting the BBB and therapeutic approaches for patients with HSE.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuxin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Renchun Wang
- The Second Clinical Medicine School, Lanzhou University, Lanzhou, China
| | - Minhua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Lipopolysaccharide-Induced Matrix Metalloproteinase-9 Expression Associated with Cell Migration in Rat Brain Astrocytes. Int J Mol Sci 2019; 21:ijms21010259. [PMID: 31905967 PMCID: PMC6982104 DOI: 10.3390/ijms21010259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is a landmark of neuroinflammatory and neurodegenerative diseases. Matrix metalloproteinase (MMP)-9, one member of MMPs, has been shown to contribute to the pathology of these brain diseases. Several experimental models have demonstrated that lipopolysaccharide (LPS) exerts a pathological role through Toll-like receptors (TLRs) in neuroinflammation and neurodegeneration. However, the mechanisms underlying LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1) are not completely understood. Here, we applied pharmacological inhibitors and siRNA transfection to assess the levels of MMP-9 protein, mRNA, and promoter activity, as well as protein kinase phosphorylation in RBA-1 cells triggered by LPS. We found that LPS-induced expression of pro-form MMP-9 and cell migration were mediated through TLR4, proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), p38 mitogen-activated protein kinase (MAPK), and Jun amino-terminal kinase (JNK)1/2 signaling molecules in RBA-1 cells. In addition, LPS-stimulated binding of c-Jun to the MMP-9 promoter was confirmed by chromatin immunoprecipitation (ChIP) assay, which was blocked by pretreatment with c-Src inhibitor II, PF431396, AG1296, LY294002, Akt inhibitor VIII, p38 MAP kinase inhibitor VIII, SP600125, and tanshinone IIA. These results suggest that in RBA-1 cells, LPS activates a TLR4/c-Src/Pyk2/PDGFR/PI3K/Akt/p38 MAPK and JNK1/2 pathway, which in turn triggers activator protein 1 (AP-1) activation and ultimately induces MMP-9 expression and cell migration.
Collapse
|
50
|
Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M. Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood-Brain Barrier Integrity. Front Pharmacol 2019; 10:1346. [PMID: 31824311 PMCID: PMC6881379 DOI: 10.3389/fphar.2019.01346] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes are essential for proper regulation of the central nervous system (CNS). Importantly, these cells are highly secretory in nature. Indeed they can release hundreds of molecules which play pivotal physiological roles in nervous tissues and whose abnormal regulation has been associated with several CNS disorders. In agreement with these findings, recent studies have provided exciting insights into the key contribution of astrocyte-derived signals in the pleiotropic functions of these cells in brain health and diseases. In the future, deeper analysis of the astrocyte secretome is likely to further increase our current knowledge on the full potential of these cells and their secreted molecules not only as active participants in pathophysiological events, but as pharmacological targets or even as therapeutics for neurological and psychiatric diseases. Herein we will highlight recent findings in our and other laboratories on selected molecules that are actively secreted by astrocytes and contribute in two distinct functions with pathophysiological relevance for the astroglial population: i) regulation of neural stem cells (NSCs) and their progeny within adult neurogenic niches; ii) modulation of the blood–brain barrier (BBB) integrity and function.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|