1
|
Gonzalez-Herrero B, Happé F, Nicholson TR, Morgante F, Pagonabarraga J, Deeley Q, Edwards MJ. Functional Neurological Disorder and Autism Spectrum Disorder: A Complex and Potentially Significant Relationship. Brain Behav 2024; 14:e70168. [PMID: 39705515 DOI: 10.1002/brb3.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 12/22/2024] Open
Abstract
INTRODUCTION Functional neurological disorder (FND) and autism spectrum disorder (ASD) are two complex neuropsychiatric conditions that have been historically classified within psychiatric domains, resulting in a lack of extensive research, insufficient clinical recognition, and persistent societal stigma. In recent years, there has been an increasing recognition among professionals and affected individuals of their possible overlap. This review explores the potential clinical and mechanistic overlap between FND and ASD, with particular attention to shared symptoms across sensory, motor, and psychiatric domains. METHODS We conducted a narrative analysis utilizing the PubMed, CINAHL, MEDLINE, and ScienceDirect databases from inception to June 2024. The search employed specific MeSH terms related to ASD and FND. Given the limited data availability, we included all relevant articles that explored the potential connections between FND and ASD, focusing on established findings and theoretical hypotheses areas. RESULTS Scientific evidence indicates that FND and ASD may co-occur more frequently than previously acknowledged and with notable overlaps in their clinical presentations and pathophysiology. Theoretical models that have been applied to FND and ASD, such as the Bayesian brain theory and the tripartite model of autism, may provide valuable insights into the intersection of these conditions. Although much of the current evidence remains speculative, it underscores the need for hypothesis-driven research to investigate these potential connections further. CONCLUSION ASD and FND are heterogeneous conditions that appear to co-occur in a subset of individuals, with overlapping symptomatology and possibly shared underlying mechanisms. This hypothesis-generating review emphasizes the need for further research to better understand these links, ultimately aiming to improve clinical recognition and develop targeted interventions that enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
- Belen Gonzalez-Herrero
- Departamento de Medicina, Universidad Autónoma de Barcelona (UAB), Bellaterra, Spain
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, UK
- Queen's Hospital, Barking, Havering and Redbridge University Hospitals, Romford, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy R Nicholson
- Neuropsychiatry Research & Education Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Francesca Morgante
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, UK
| | - Javier Pagonabarraga
- Departamento de Medicina, Universidad Autónoma de Barcelona (UAB), Bellaterra, Spain
- Instituto de Investigación Biomédica de Sant Pau, Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Quinton Deeley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Autism Unit, South London and Maudsley NHS Foundation Trust, London, UK
| | - Mark J Edwards
- Department of Clinical and Basic Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Sridhar A, Joanne Jao Keehn R, Wilkinson M, Gao Y, Olson M, Mash LE, Alemu K, Manley A, Marinkovic K, Müller RA, Linke A. Increased heterogeneity and task-related reconfiguration of functional connectivity during a lexicosemantic task in autism. Neuroimage Clin 2024; 44:103694. [PMID: 39509989 PMCID: PMC11574795 DOI: 10.1016/j.nicl.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Autism spectrum disorder (ASD) is highly heterogeneous in etiology and clinical presentation. Findings on intrinsic functional connectivity (FC) or task-induced FC in ASD have been inconsistent including both over- and underconnectivity and diverse regional patterns. As FC patterns change across different cognitive demands, a novel and more comprehensive approach to network architecture in ASD is to examine the change in FC patterns between rest and task states, referred to as reconfiguration. This approach is suitable for investigating inefficient network connectivity that may underlie impaired behavioral functioning in clinical disorders. We used functional magnetic resonance imaging (fMRI) to examine FC reconfiguration during lexical processing, which is often affected in ASD, with additional focus on interindividual variability. Thirty adolescents with ASD and a matched group of 23 typically developing (TD) participants completed a lexicosemantic decision task during fMRI, using multiecho-multiband pulse sequences with advanced BOLD signal sensitivity and artifact removal. Regions of interest (ROIs) were selected based on task-related activation across both groups, and FC and reconfiguration were compared between groups. The ASD group showed increased interindividual variability and overall greater reconfiguration than the TD group. An ASD subgroup with typical performance accuracy (at the level of TD participants) showed reduced similarity and typicality of FC during the task. In this ASD subgroup, greater FC reconfiguration was associated with increased language skills. Findings suggest that intrinsic functional networks in ASD may be inefficiently organized for lexicosemantic decisions and may require greater reconfiguration during task processing, with high performance levels in some individuals being achieved through idiosyncratic mechanisms.
Collapse
Affiliation(s)
- Apeksha Sridhar
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Molly Wilkinson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Yangfeifei Gao
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Michael Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Lisa E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Kalekirstos Alemu
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Ashley Manley
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Ksenija Marinkovic
- Spatio-Temporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, CA, United States
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Annika Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States.
| |
Collapse
|
3
|
Zhong YL, Hu RY, Huang X. Aberrant Neurovascular Coupling in Diabetic Retinopathy Using Arterial Spin Labeling (ASL) and Functional Magnetic Resonance Imaging (fMRI) methods. Diabetes Metab Syndr Obes 2024; 17:2809-2822. [PMID: 39081370 PMCID: PMC11288319 DOI: 10.2147/dmso.s465103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
Background Previous imaging studies have demonstrated that diabetic retinopathy (DR) is linked to structural and functional abnormalities in the brain. However, the extent to which DR patients exhibit abnormal neurovascular coupling remains largely unknown. Methods Thirty-one patients with DR and 31 sex- and age-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) to calculate functional connectivity strength (FCS) and arterial spin-labeling imaging (ASL) to calculate cerebral blood flow (CBF). The study compared CBF-FCS coupling across the entire grey matter and CBF/FCS ratios (representing blood supply per unit of connectivity strength) per voxel between the two groups. Additionally, a support vector machine (SVM) method was employed to differentiate between diabetic retinopathy (DR) patients and healthy controls (HC). Results In DRpatients compared to healthy controls, there was a reduction in CBF-FCS coupling across the entire grey matter. Specifically, DR patients exhibited elevated CBF/FCS ratios primarily in the primary visual cortex, including the right calcarine fissure and surrounding cortex. On the other hand, reduced CBF/FCS ratios were mainly observed in premotor and supplementary motor areas, including the left middle frontal gyrus. Conclusion An elevated CBF/FCS ratio suggests that patients with DR may have a reduced volume of gray matter in the brain. A decrease in its ratio indicates a decrease in regional CBF in patients with DR. These findings suggest that neurovascular decoupling in the visual cortex, as well as in the supplementary motor and frontal gyrus, may represent a neuropathological mechanism in diabetic retinopathy.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Rui-Yang Hu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
4
|
Bandyopadhyay S, Peddi S, Sarma M, Samanta D. Decoding Autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fMRI data. J Neurosci Methods 2024; 405:110100. [PMID: 38431227 DOI: 10.1016/j.jneumeth.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND In the realm of neuro-disorders, precise diagnosis and treatment rely heavily on objective imaging-based biomarker identification. This study employs a sparsity approach on resting-state fMRI to discern relevant brain region connectivity for predicting Autism. NEW METHOD The proposed methodology involves four key steps: (1) Utilizing three probabilistic brain atlases to extract functionally homogeneous brain regions from fMRI data. (2) Employing a hybrid approach of Graphical Lasso and Akaike Information Criteria to optimize sparse inverse covariance matrices for representing the brain functional connectivity. (3) Employing statistical techniques to scrutinize functional brain structures in Autism and Control subjects. (4) Implementing both autoencoder-based feature extraction and entire feature-based approach coupled with AI-based learning classifiers to predict Autism. RESULTS The ensemble classifier with the extracted feature set achieves a classification accuracy of 84.7% ± 0.3% using the MSDL atlas. Meanwhile, the 1D-CNN model, employing all features, exhibits superior classification accuracy of 88.6% ± 1.7% with the Smith 2009 (rsn70) atlas. COMPARISON WITH EXISTING METHOD (S) The proposed methodology outperforms the conventional correlation-based functional connectivity approach with a notably high prediction accuracy of more than 88%, whereas considering all direct and noisy indirect region-based functional connectivity, the traditional methods bound the prediction accuracy within 70% to 79%. CONCLUSIONS This study underscores the potential of sparsity-based FC analysis using rs-fMRI data as a prognostic biomarker for detecting Autism.
Collapse
Affiliation(s)
- Soham Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India.
| | - Santhoshkumar Peddi
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Monalisa Sarma
- Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, India
| | - Debasis Samanta
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
5
|
Yoon N, Kim S, Oh MR, Kim M, Lee JM, Kim BN. Intrinsic network abnormalities in children with autism spectrum disorder: an independent component analysis. Brain Imaging Behav 2024; 18:430-443. [PMID: 38324235 DOI: 10.1007/s11682-024-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Aberrant intrinsic brain networks are consistently observed in individuals with autism spectrum disorder. However, studies examining the strength of functional connectivity across brain regions have yielded conflicting results. Therefore, this study aimed to investigate the functional connectivity of the resting brain in children with low-functioning autism, including during the early developmental stages. We explored the functional connectivity of 43 children with autism spectrum disorder and 54 children with typical development aged 2 to 12 years using resting-state functional magnetic resonance imaging data. We used independent component analysis to classify the brain regions into six intrinsic networks and analyzed the functional connectivity within each network. Moreover, we analyzed the relationship between functional connectivity and clinical scores. In children with autism, the under-connectivities were observed within several brain networks, including the cognitive control, default mode, visual, and somatomotor networks. In contrast, we found over-connectivities between the subcortical, visual, and somatomotor networks in children with autism compared with children with typical development. Moderate effect sizes were observed in entire networks (Cohen's d = 0.43-0.77). These network alterations were significantly correlated with clinical scores such as the communication sub-score (r = - 0.442, p = 0.045) and the calibrated severity score (r = - 0.435, p = 0.049) of the Autism Diagnostic Observation Schedule. These opposing results observed based on the brain areas suggest that aberrant neurodevelopment proceeds in various ways depending on the functional brain regions in individuals with autism spectrum disorder.
Collapse
Affiliation(s)
- Narae Yoon
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehakno, Jongno-gu, Seoul, Korea
| | - Sohui Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Mee Rim Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Minji Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Sanhak-kisulkwan Bldg., #319, 222 Wangsipri-ro, Sungdong-gu, Seoul, 133-791, Republic of Korea.
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehakno, Jongno-gu, Seoul, Korea.
| |
Collapse
|
6
|
Brandenburg C, Griswold AJ, Van Booven DJ, Kilander MBC, Frei JA, Nestor MW, Dykxhoorn DM, Pericak-Vance MA, Blatt GJ. Transcriptomic analysis of isolated and pooled human postmortem cerebellar Purkinje cells in autism spectrum disorders. Front Genet 2022; 13:944837. [PMID: 36437953 PMCID: PMC9683032 DOI: 10.3389/fgene.2022.944837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2023] Open
Abstract
At present, the neuronal mechanisms underlying the diagnosis of autism spectrum disorder (ASD) have not been established. However, studies from human postmortem ASD brains have consistently revealed disruptions in cerebellar circuitry, specifically reductions in Purkinje cell (PC) number and size. Alterations in cerebellar circuitry would have important implications for information processing within the cerebellum and affect a wide range of human motor and non-motor behaviors. Laser capture microdissection was performed to obtain pure PC populations from a cohort of postmortem control and ASD cases and transcriptional profiles were compared. The 427 differentially expressed genes were enriched for gene ontology biological processes related to developmental organization/connectivity, extracellular matrix organization, calcium ion response, immune function and PC signaling alterations. Given the complexity of PCs and their far-ranging roles in response to sensory stimuli and motor function regulation, understanding transcriptional differences in this subset of cerebellar cells in ASD may inform on convergent pathways that impact neuronal function.
Collapse
Affiliation(s)
- Cheryl Brandenburg
- Hussman Institute for Autism, Baltimore, MD, United States
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | | | | | | | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | | | - Gene J. Blatt
- Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
7
|
Faridi F, Seyedebrahimi A, Khosrowabadi R. Brain Structural Covariance Network in Asperger Syndrome Differs From Those in Autism Spectrum Disorder and Healthy Controls. Basic Clin Neurosci 2022; 13:815-838. [PMID: 37323949 PMCID: PMC10262285 DOI: 10.32598/bcn.2021.2262.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 11/02/2023] Open
Abstract
Introduction Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder (ASD). Method We compared the regional changes of GM density in ASD, Asperger's Syndrome (AS) individuals and a group of healthy controls (HC). In addition to regional changes itself, the amount of GM density changes in one region as compared to other brain regions was also calculated. We hypothesized that this structural covariance network could differentiate the AS individuals from the ASD and HC groups. Therefore, statistical analysis was performed on the MRI data of 70 male subjects including 26 ASD (age=14-50, IQ=92-132), 16 AS (age=7-58, IQ=93-133) and 28 HC (age=9-39, IQ=95-144). Result The one-way ANOVA on the GM density of 116 anatomically separated regions showed significant differences among the groups. The pattern of structural covariance network indicated that covariation of GM density between the brain regions is altered in ASD. Conclusion This changed structural covariance could be considered as a reason for less efficient segregation and integration of information in the brain that could lead to cognitive dysfunctions in autism. We hope these findings could improve our understanding about the pathobiology of autism and may pave the way towards a more effective intervention paradigm.
Collapse
Affiliation(s)
- Farnaz Faridi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Afrooz Seyedebrahimi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Chen J, Xue K, Yang M, Wang K, Xu Y, Wen B, Cheng J, Han S, Wei Y. Altered Coupling of Cerebral Blood Flow and Functional Connectivity Strength in First-Episode Schizophrenia Patients With Auditory Verbal Hallucinations. Front Neurosci 2022; 16:821078. [PMID: 35546878 PMCID: PMC9083321 DOI: 10.3389/fnins.2022.821078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Auditory verbal hallucinations (AVHs) are a major symptom of schizophrenia and are connected with impairments in auditory and speech-related networks. In schizophrenia with AVHs, alterations in resting-state cerebral blood flow (CBF) and functional connectivity have been described. However, the neurovascular coupling alterations specific to first-episode drug-naïve schizophrenia (FES) patients with AVHs remain unknown. Methods Resting-state functional MRI and arterial spin labeling (ASL) was performed on 46 first-episode drug-naïve schizophrenia (FES) patients with AVHs (AVH), 39 FES drug-naïve schizophrenia patients without AVHs (NAVH), and 48 healthy controls (HC). Then we compared the correlation between the CBF and functional connection strength (FCS) of the entire gray matter between the three groups, as well as the CBF/FCS ratio of each voxel. Correlation analyses were performed on significant results between schizophrenia patients and clinical measures scale. Results The CBF/FCS ratio was reduced in the cognitive and emotional brain regions in both the AVH and NAVH groups, primarily in the crus I/II, vermis VI/VII, and cerebellum VI. In the AVH group compared with the HC group, the CBF/FCS ratio was higher in auditory perception and language-processing areas, primarily the left superior and middle temporal gyrus (STG/MTG). The CBF/FCS ratio in the left STG and left MTG positively correlates with the score of the Auditory Hallucination Rating Scale in AVH patients. Conclusion These findings point to the difference in neurovascular coupling failure between AVH and NAVH patients. The dysfunction of the forward model based on the predictive and computing role of the cerebellum may increase the excitability in the auditory cortex, which may help to understand the neuropathological mechanism of AVHs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Miao D, Zhou X, Wu X, Chen C, Tian L. Distinct profiles of functional connectivity density aberrance in Alzheimer's disease and mild cognitive impairment. Front Psychiatry 2022; 13:1079149. [PMID: 36590612 PMCID: PMC9797864 DOI: 10.3389/fpsyt.2022.1079149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Investigating the neuroimaging changes from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is of great significance. However, the details about the distinct functional characteristics of AD and MCI remain unknown. METHODS In this study, we investigated distinct profiles of functional connectivity density (FCD) differences between AD and MCI compared with the normal population, aiming to depict the progressive brain changes from MCI to AD. As a data-driven method, FCD measures the profiles of FC for the given voxel at different scales. Resting-state functional magnetic resonance imaging (fMRI) images were obtained from patients with AD and MCI and matched healthy controls (HCs). One-way ANCOVA was used to investigate (global, long-range, and local) FCD differences among the three groups followed by post-hoc analysis controlling age, sex, and head motion. RESULTS The three groups exhibited significant global FCD differences in the superior frontal gyrus. The post-hoc results further showed that patients with AD had a significant increase in global FCD values than those with MCI and HCs. Patients with MCI exhibited an increased trend compared with HCs. We further identified brain regions contributing to the observed global FCD differences by conducting seed-based FC analysis. We also identified that the observed global FCD differences were the additive effects of altered FC between the superior frontal gyrus and the posterior default model network. DISCUSSION These results depicted the global information communication capability impairment in AD and MCI providing a new insight into the progressive brain changes from MCI to AD.
Collapse
Affiliation(s)
- Dawei Miao
- School of Automation, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaoguang Zhou
- School of Automation, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaoyuan Wu
- School of Economics and Management, Minjiang University, Fuzhou, China
| | - Chengdong Chen
- School of Economics and Management, Minjiang University, Fuzhou, China
| | - Le Tian
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
10
|
Wei W, Wang T, Abulizi T, Li B, Liu J. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity Strength in Cervical Spondylotic Myelopathy Patients. Front Neurol 2021; 12:713520. [PMID: 34566857 PMCID: PMC8455933 DOI: 10.3389/fneur.2021.713520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Changes in regional neural activity and functional connectivity in cervical spondylotic myelopathy (CSM) patients have been reported. However, resting-state cerebral blood flow (CBF) changes and coupling between CBF and functional connectivity in CSM patients are largely unknown. Methods: Twenty-seven CSM patients and 24 sex/age-matched healthy participants underwent resting-state functional MRI and arterial spin labeling imaging to compare functional connectivity strength (FCS) and CBF between the two groups. The CBF–FCS coupling of the whole gray matter and specific regions of interest was also compared between the groups. Results: Compared with healthy individuals, CBF–FCS coupling was significantly lower in CSM patients. The decrease in CBF–FCS coupling in CSM patients was observed in the superior frontal gyrus, bilateral thalamus, and right calcarine cortex, whereas the increase in CBF–FCS coupling was observed in the middle frontal gyrus. Moreover, low CBF and high FCS were observed in sensorimotor cortices and visual cortices, respectively. Conclusion: In general, neurovascular decoupling at cortical level may be a potential neuropathological mechanism of CSM.
Collapse
Affiliation(s)
- Wuzeng Wei
- Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China.,Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Tuersong Abulizi
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Bing Li
- Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China.,Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Jun Liu
- Department of Joints, Tianjin Hospital, Tianjin University, Tianjin, China.,Clinical College of Orthopedics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Mash LE, Linke AC, Gao Y, Wilkinson M, Olson MA, Jao Keehn RJ, Müller RA. Blood Oxygen Level-Dependent Lag Patterns Differ Between Rest and Task Conditions, but Are Largely Typical in Autism. Brain Connect 2021; 12:234-245. [PMID: 34102876 DOI: 10.1089/brain.2020.0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background/Introduction: Autism spectrum disorder (ASD) is characterized by atypical functional connectivity (FC) within and between distributed brain networks. However, FC findings have often been inconsistent, possibly due to a focus on static FC rather than brain dynamics. Lagged connectivity analyses aim at evaluating temporal latency, and presumably neural propagation, between regions. This approach may, therefore, reveal a more detailed picture of network organization in ASD than traditional FC methods. Methods: The current study evaluated whole-brain lag patterns in adolescents with ASD (n = 28) and their typically developing peers (n = 22). Functional magnetic resonance imaging data were collected during rest and during a lexico-semantic decision task. Optimal lag was calculated for each pair of regions of interest by using cross-covariance, and mean latency projections were calculated for each region. Results: Latency projections did not regionally differ between groups, with the same regions emerging among the "earliest" and "latest." Although many of the longest absolute latencies were preserved across resting-state and task conditions, lag patterns overall were affected by condition, as many regions shifted toward zero-lag during task performance. Lag structure was also strongly associated with literature-derived estimates of arterial transit time. Discussion: Results suggest that lag patterns are broadly typical in ASD but undergo changes during task performance. Moreover, lag patterns appear to reflect a combination of neural and vascular sources, which should be carefully considered when interpreting lagged FC.
Collapse
Affiliation(s)
- Lisa E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California, USA.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| | - Annika C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California, USA
| | - Yangfeifei Gao
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California, USA.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| | - Molly Wilkinson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California, USA.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| | - Michael A Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California, USA
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California, USA.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| |
Collapse
|
12
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
Ao Y, Ouyang Y, Yang C, Wang Y. Global Signal Topography of the Human Brain: A Novel Framework of Functional Connectivity for Psychological and Pathological Investigations. Front Hum Neurosci 2021; 15:644892. [PMID: 33841119 PMCID: PMC8026854 DOI: 10.3389/fnhum.2021.644892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 11/15/2022] Open
Abstract
The global signal (GS), which was once regarded as a nuisance of functional magnetic resonance imaging, has been proven to convey valuable neural information. This raised the following question: what is a GS represented in local brain regions? In order to answer this question, the GS topography was developed to measure the correlation between global and local signals. It was observed that the GS topography has an intrinsic structure characterized by higher GS correlation in sensory cortices and lower GS correlation in higher-order cortices. The GS topography could be modulated by individual factors, attention-demanding tasks, and conscious states. Furthermore, abnormal GS topography has been uncovered in patients with schizophrenia, major depressive disorder, bipolar disorder, and epilepsy. These findings provide a novel insight into understanding how the GS and local brain signals coactivate to organize information in the human brain under various brain states. Future directions were further discussed, including the local-global confusion embedded in the GS correlation, the integration of spatial information conveyed by the GS, and temporal information recruited by the connection analysis. Overall, a unified psychopathological framework is needed for understanding the GS topography.
Collapse
Affiliation(s)
- Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujie Ouyang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
14
|
Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder. Dev Psychopathol 2021; 32:1273-1286. [PMID: 33161905 DOI: 10.1017/s0954579420000772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anxiety disorders are common in autism spectrum disorder (ASD) and associated with social-communication impairment and repetitive behavior symptoms. The neurobiology of anxiety in ASD is unknown, but amygdala dysfunction has been implicated in both ASD and anxiety disorders. Using resting-state functional magnetic resonance imaging, we compared amygdala-prefrontal and amygdala-striatal connections across three demographically matched groups studied in the Autism Brain Imaging Data Exchange (ABIDE): ASD with a comorbid anxiety disorder (N = 25; ASD + Anxiety), ASD without a comorbid disorder (N = 68; ASD-NoAnx), and typically developing controls (N = 139; TD). Relative to ASD-NoAnx and TD controls, ASD + Anxiety individuals had decreased connectivity between the amygdala and dorsal/rostral anterior cingulate cortex (dACC/rACC). The functional connectivity of these connections was not affected in ASD-NoAnx, and amygdala connectivity with ventral ACC/medial prefrontal cortex (mPFC) circuits was not different in ASD + Anxiety or ASD-NoAnx relative to TD. Decreased amygdala-dorsomedial prefrontal cortex (dmPFC)/rACC connectivity was associated with more severe social impairment in ASD + Anxiety; amygdala-striatal connectivity was associated with restricted, repetitive behavior (RRB) symptom severity in ASD-NoAnx individuals. These findings suggest comorbid anxiety in ASD is associated with disrupted emotion-monitoring processes supported by amygdala-dACC/mPFC pathways, whereas emotion regulation systems involving amygdala-ventromedial prefrontal cortex (vmPFC) are relatively spared. Our results highlight the importance of accounting for comorbid anxiety for parsing ASD neurobiological heterogeneity.
Collapse
|
15
|
Linke AC, Mash LE, Fong CH, Kinnear MK, Kohli JS, Wilkinson M, Tung R, Jao Keehn RJ, Carper RA, Fishman I, Müller RA. Dynamic time warping outperforms Pearson correlation in detecting atypical functional connectivity in autism spectrum disorders. Neuroimage 2020; 223:117383. [PMID: 32949710 PMCID: PMC9851773 DOI: 10.1016/j.neuroimage.2020.117383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 01/21/2023] Open
Abstract
Resting state fMRI (rsfMRI) is frequently used to study brain function, including in clinical populations. Similarity of blood-oxygen-level-dependent (BOLD) fluctuations during rsfMRI between brain regions is thought to reflect intrinsic functional connectivity (FC), potentially due to history of coactivation. To quantify similarity, studies have almost exclusively relied on Pearson correlation, which assumes linearity and can therefore underestimate FC if the hemodynamic response function differs regionally or there is BOLD signal lag between timeseries. Here we show in three cohorts of children, adolescents and adults, with and without autism spectrum disorders (ASDs), that measuring the similarity of BOLD signal fluctuations using non-linear dynamic time warping (DTW) is more robust to global signal regression (GSR), has higher test-retest reliability and is more sensitive to task-related changes in FC. Additionally, when comparing FC between individuals with ASDs and typical controls, more group differences are detected using DTW. DTW estimates are also more related to ASD symptom severity and executive function, while Pearson correlation estimates of FC are more strongly associated with respiration during rsfMRI. Together these findings suggest that non-linear methods such as DTW improve estimation of resting state FC, particularly when studying clinical populations whose hemodynamics or neurovascular coupling may be altered compared to typical controls.
Collapse
Affiliation(s)
- A C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States.
| | - L E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - C H Fong
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - M K Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - J S Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - M Wilkinson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - R Tung
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - R J Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - R A Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - I Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - R-A Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| |
Collapse
|
16
|
Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, Fakhro K, Reddy R, Frenneaux MP, Haris M. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry 2020; 10:229. [PMID: 32661244 PMCID: PMC7359361 DOI: 10.1038/s41398-020-00921-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social impairment and restricted interactive and communicative behaviors. It may occur as an isolated disorder or in the context of other neurological, psychiatric, developmental, and genetic disorders. Due to rapid developments in genomics and imaging technologies, imaging genetics studies of ASD have evolved in the last few years. Increased risk for ASD diagnosis is found to be related to many specific single-nucleotide polymorphisms, and the study of genetic mechanisms and noninvasive imaging has opened various approaches that can help diagnose ASD at the nascent level. Identifying risk genes related to structural and functional changes in the brain of ASD patients provide a better understanding of the disease's neuropsychiatry and can help identify targets for therapeutic intervention that could be useful for the clinical management of ASD patients.
Collapse
Affiliation(s)
- Sheema Hashem
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar
| | | | | | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
17
|
Vargason T, Grivas G, Hollowood-Jones KL, Hahn J. Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements. Semin Pediatr Neurol 2020; 34:100803. [PMID: 32446437 PMCID: PMC7248126 DOI: 10.1016/j.spen.2020.100803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An ever-evolving understanding of autism spectrum disorder (ASD) pathophysiology necessitates that diagnostic standards also evolve from being observation-based to include quantifiable clinical measurements. The multisystem nature of ASD motivates the use of multivariate methods of statistical analysis over common univariate approaches for discovering clinical biomarkers relevant to this goal. In addition to characterization of important behavioral patterns for improving current diagnostic instruments, multivariate analyses to date have allowed for thorough investigation of neuroimaging-based, genetic, and metabolic abnormalities in individuals with ASD. This review highlights current research using multivariate statistical analyses to quantify the value of these behavioral and physiological markers for ASD diagnosis. A detailed discussion of a blood-based diagnostic test for ASD using specific metabolite concentrations is also provided. The advancement of ASD biomarker research promises to provide earlier and more accurate diagnoses of the disorder.
Collapse
Affiliation(s)
- Troy Vargason
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Genevieve Grivas
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Kathryn L Hollowood-Jones
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY.
| |
Collapse
|
18
|
Lawrence KE, Hernandez LM, Bowman HC, Padgaonkar NT, Fuster E, Jack A, Aylward E, Gaab N, Van Horn JD, Bernier RA, Geschwind DH, McPartland JC, Nelson CA, Webb SJ, Pelphrey KA, Green SA, Bookheimer SY, Dapretto M. Sex Differences in Functional Connectivity of the Salience, Default Mode, and Central Executive Networks in Youth with ASD. Cereb Cortex 2020; 30:5107-5120. [PMID: 32350530 DOI: 10.1093/cercor/bhaa105] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with the altered functional connectivity of 3 neurocognitive networks that are hypothesized to be central to the symptomatology of ASD: the salience network (SN), default mode network (DMN), and central executive network (CEN). Due to the considerably higher prevalence of ASD in males, however, previous studies examining these networks in ASD have used primarily male samples. It is thus unknown how these networks may be differentially impacted among females with ASD compared to males with ASD, and how such differences may compare to those observed in neurotypical individuals. Here, we investigated the functional connectivity of the SN, DMN, and CEN in a large, well-matched sample of girls and boys with and without ASD (169 youth, ages 8-17). Girls with ASD displayed greater functional connectivity between the DMN and CEN than boys with ASD, whereas typically developing girls and boys differed in SN functional connectivity only. Together, these results demonstrate that youth with ASD exhibit altered sex differences in these networks relative to what is observed in typical development, and highlight the importance of considering sex-related biological factors and participant sex when characterizing the neural mechanisms underlying ASD.
Collapse
Affiliation(s)
- Katherine E Lawrence
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leanna M Hernandez
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hilary C Bowman
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Namita T Padgaonkar
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Fuster
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allison Jack
- Autism & Neurodevelopmental Disorders Institute, The George Washington University, Washington, DC 20052, USA.,Dept. of Pharmacology & Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Elizabeth Aylward
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98195, USA
| | - Nadine Gaab
- Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Cambridge, MA 02138, USA.,Harvard Graduate School of Education, Cambridge, MA 02138, USA
| | - John D Van Horn
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Daniel H Geschwind
- Department of Neurology and Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James C McPartland
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA.,Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Charles A Nelson
- Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Cambridge, MA 02138, USA
| | - Sara J Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA.,Center on Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, Washington 98195, USA
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA 22904, USA
| | - Shulamite A Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
19
|
Multivariate graph learning for detecting aberrant connectivity of dynamic brain networks in autism. Med Image Anal 2019; 56:11-25. [DOI: 10.1016/j.media.2019.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 01/24/2023]
|
20
|
Jao Keehn RJ, Nair S, Pueschel EB, Linke AC, Fishman I, Müller RA. Atypical Local and Distal Patterns of Occipito-frontal Functional Connectivity are Related to Symptom Severity in Autism. Cereb Cortex 2019; 29:3319-3330. [PMID: 30137241 PMCID: PMC7342606 DOI: 10.1093/cercor/bhy201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASDs) are increasingly prevalent neurodevelopmental disorders characterized by sociocommunicative impairments. Growing consensus indicates that neurobehavioral abnormalities require explanation in terms of interconnected networks. Despite theoretical speculations about increased local and reduced distal connectivity, links between local and distal functional connectivity have not been systematically investigated in ASDs. Specifically, it remains open whether hypothesized local overconnectivity may reflect isolated versus overly integrative processing. Resting state functional MRI data from 57 children and adolescents with ASDs and 51 typically developing (TD) participants were included. In regional homogeneity (ReHo) analyses, pericalcarine visual cortex was found be locally overconnected (ASD > TD). Using this region as seed in whole-brain analyses, we observed overconnectivity in distal regions, specifically middle frontal gyri, for an ASD subgroup identified through k-means clustering. While in this subgroup local occipital to distal frontal overconnectivity was associated with greater symptom severity, a second subgroup showed the opposite pattern of connectivity and symptom severity correlations. Our findings suggest that increased local connectivity in ASDs is region-specific and may be partially associated with more integrative long-distance connectivity. Results also highlight the need to test for subtypes, as differential patterns of brain-behavior links were observed in two distinct subgroups of our ASD cohort.
Collapse
Affiliation(s)
- R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Sangeeta Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Psychology, University of Alabama, at Birmingham, Birmingham, AL, USA
| | - Ellyn B Pueschel
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Annika C Linke
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Gao Y, Linke A, Jao Keehn RJ, Punyamurthula S, Jahedi A, Gates K, Fishman I, Müller RA. The language network in autism: Atypical functional connectivity with default mode and visual regions. Autism Res 2019; 12:1344-1355. [PMID: 31317655 DOI: 10.1002/aur.2171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/08/2022]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders associated with atypical brain connectivity. Although language abilities vary widely, they are impaired or atypical in most children with ASDs. Underlying brain mechanisms, however, are not fully understood. The present study examined intrinsic functional connectivity (iFC) of the extended language network in a cohort of 52 children and adolescents with ASDs (ages 8-18 years), using resting-state functional magnetic resonance imaging. We found that, in comparison to typically developing peers (n = 50), children with ASDs showed increased connectivity between some language regions. In addition, seed-to-whole brain analyses revealed increased connectivity of language regions with posterior cingulate cortex (PCC) and visual regions in the ASD group. Post hoc effective connectivity analyses revealed a mediation effect of PCC on the iFC between bilateral inferior frontal and visual regions in an ASD subgroup. This finding qualifies and expands on previous reports of recruitment of visual areas in language processing in ASDs. In addition, increased iFC between PCC and visual regions was linked to lower language scores in this ASD subgroup, suggesting that increased connectivity with visual cortices, mediated by default mode regions, may be detrimental to language abilities. Autism Res 2019, 12: 1344-1355. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We examined the functional connectivity between regions of the language network in children with autism spectrum disorders (ASDs) compared to typically developing peers. We found connectivity to be intact between core language in the ASD group, but also showed abnormally increased connectivity between regions of an extended language network. Additionally, connectivity was increased with regions associated with brain networks responsible for self-reflection and visual processing.
Collapse
Affiliation(s)
- Yangfeifei Gao
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Annika Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ruth Joanne Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Sanjana Punyamurthula
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Afrooz Jahedi
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Computational Science Research Center, San Diego State University, San Diego, California
| | - Kathleen Gates
- Department of Psychology, University of North Carolina, Chapel Hill, North Carolina
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| |
Collapse
|
22
|
Hu S, Wu H, Xu C, Wang A, Wang Y, Shen T, Huang F, Kan H, Li C. Aberrant Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Wilson's Disease. Front Neural Circuits 2019; 13:25. [PMID: 31057370 PMCID: PMC6482267 DOI: 10.3389/fncir.2019.00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Both abnormalities of resting-state cerebral blood flow (CBF) and functional connectivity in Wilson’s disease (WD) have been identified by several studies. Whether the coupling of CBF and functional connectivity is imbalanced in WD remains largely unknown. To assess this possibility, 27 patients with WD and 27 sex- and age-matched healthy controls were recruited to acquire functional MRI and arterial spin labeling imaging data. Functional connectivity strength (FCS) and CBF were calculated based on standard gray mask. Compared to healthy controls, the CBF–FCS correlations of patients with WD were significantly decreased in the basal ganglia and the cerebellum and slightly increased in the prefrontal cortex and thalamus. In contrast, decreased CBF of patients with WD occurred predominately in subcortical and cognitive- and emotion-related brain regions, including the basal ganglia, thalamus, insular, and inferior prefrontal cortex, whereas increased CBF occurred primarily in the temporal cortex. The FCS decrease in WD patients was predominately in the basal ganglia and thalamus, and the increase was primarily in the prefrontal cortex. These findings suggest that aberrant neurovascular coupling in the brain may be a possible neuropathological mechanism underlying WD.
Collapse
Affiliation(s)
- Sheng Hu
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Hongli Wu
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - ChunSheng Xu
- Laboratory of Digital Medical Imaging, Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Anqin Wang
- Laboratory of Digital Medical Imaging, Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yi Wang
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Tongping Shen
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Fangliang Huang
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Hongxing Kan
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanfu Li
- Laboratory of Digital Medical Imaging, Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
23
|
Hong SJ, Vos de Wael R, Bethlehem RAI, Lariviere S, Paquola C, Valk SL, Milham MP, Di Martino A, Margulies DS, Smallwood J, Bernhardt BC. Atypical functional connectome hierarchy in autism. Nat Commun 2019; 10:1022. [PMID: 30833582 PMCID: PMC6399265 DOI: 10.1038/s41467-019-08944-1] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
One paradox of autism is the co-occurrence of deficits in sensory and higher-order socio-cognitive processing. Here, we examined whether these phenotypical patterns may relate to an overarching system-level imbalance-specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Combining connectome gradient and stepwise connectivity analysis based on task-free functional magnetic resonance imaging (fMRI), we demonstrated atypical connectivity transitions between sensory and higher-order default mode regions in a large cohort of individuals with autism relative to typically-developing controls. Further analyses indicated that reduced differentiation related to perturbed stepwise connectivity from sensory towards transmodal areas, as well as atypical long-range rich-club connectivity. Supervised pattern learning revealed that hierarchical features predicted deficits in social cognition and low-level behavioral symptoms, but not communication-related symptoms. Our findings provide new evidence for imbalances in network hierarchy in autism, which offers a parsimonious reference frame to consolidate its diverse features.
Collapse
Affiliation(s)
- Seok-Jun Hong
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada.
- Center for the Developing Brain, Child Mind Institute, 10022, New York, NY, USA.
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, CB28AH, Cambridge, UK
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada
| | - Sofie L Valk
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, 10022, New York, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 10962, Orangeburg, NY, USA
| | | | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | | | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, H3A2B4, Montreal, Canada.
| |
Collapse
|
24
|
Jasmin K, Gotts SJ, Xu Y, Liu S, Riddell CD, Ingeholm JE, Kenworthy L, Wallace GL, Braun AR, Martin A. Overt social interaction and resting state in young adult males with autism: core and contextual neural features. Brain 2019; 142:808-822. [PMID: 30698656 PMCID: PMC6391610 DOI: 10.1093/brain/awz003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Conversation is an important and ubiquitous social behaviour. Individuals with autism spectrum disorder (autism) without intellectual disability often have normal structural language abilities but deficits in social aspects of communication like pragmatics, prosody, and eye contact. Previous studies of resting state activity suggest that intrinsic connections among neural circuits involved with social processing are disrupted in autism, but to date no neuroimaging study has examined neural activity during the most commonplace yet challenging social task: spontaneous conversation. Here we used functional MRI to scan autistic males (n = 19) without intellectual disability and age- and IQ-matched typically developing control subjects (n = 20) while they engaged in a total of 193 face-to-face interactions. Participants completed two kinds of tasks: conversation, which had high social demand, and repetition, which had low social demand. Autistic individuals showed abnormally increased task-driven interregional temporal correlation relative to controls, especially among social processing regions and during high social demand. Furthermore, these increased correlations were associated with parent ratings of participants' social impairments. These results were then compared with previously-acquired resting state data (56 autism, 62 control subjects). While some interregional correlation levels varied by task or rest context, others were strikingly similar across both task and rest, namely increased correlation among the thalamus, dorsal and ventral striatum, somatomotor, temporal and prefrontal cortex in the autistic individuals, relative to the control groups. These results suggest a basic distinction. Autistic cortico-cortical interactions vary by context, tending to increase relative to controls during task and decrease during test. In contrast, striato- and thalamocortical relationships with socially engaged brain regions are increased in both task and rest, and may be core to the condition of autism.
Collapse
Affiliation(s)
- Kyle Jasmin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
- Department of Psychological Sciences, Birkbeck University of London, London, UK
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Yisheng Xu
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Siyuan Liu
- Developmental Neurogenomics Unit, Human Genetics Branch, NIMH, NIH, Bethesda, MD, USA
| | - Cameron D Riddell
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - John E Ingeholm
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Lauren Kenworthy
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
- Children’s National Medical Center, Washington DC, USA
| | - Gregory L Wallace
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
- Department of Speech, Language, and Hearing Sciences, George Washington University, Washington, DC, USA
| | - Allen R Braun
- Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
25
|
Functional brain connectivity in electrical status epilepticus in sleep. Epileptic Disord 2019; 21:55-64. [PMID: 30767900 PMCID: PMC7433393 DOI: 10.1684/epd.2019.1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrical status epilepticus in sleep (ESES) is an age-related, self-limited epileptic encephalopathy. The syndrome is characterized by cognitive and behavioral abnormalities and a specific EEG pattern of continuous spikes and waves during slow-wave sleep. While spikes and sharp waves are known to result in transient cognitive impairment during learning and memory tasks performed during the waking state, the effect of epileptiform discharges during sleep on cognition and behavior is unclear. There is increasing evidence that abnormalities of coherence, a measure of the consistency of the phase difference between two EEG signals when compared over time, is an important feature of brain oscillations and plays a role in cognition and behavior. The objective of this study was to determine whether coherence of EEG activity is altered during slow-wave sleep in children with ESES when compared to typically developing children. We examined coherence during epochs of ESES versus epochs when ESES was not present. In addition, we compared coherence during slow-wave sleep between typically developing children and children with ESES. ESES was associated with remarkably high coherences at all bandwidths and most electrode pairs. While the high coherence was largely attributed to the spikes and spike-and-wave discharge, activity between spikes and spike-and-wave discharge also demonstrated high coherence. This study indicates that EEG coherence during ESES is relatively high. Whether these increases in coherence correlate with the cognitive and behavioral abnormalities seen in children with this EEG pattern remains to be determined.
Collapse
|
26
|
Bhaumik R, Pradhan A, Das S, Bhaumik DK. Predicting Autism Spectrum Disorder Using Domain-Adaptive Cross-Site Evaluation. Neuroinformatics 2019; 16:197-205. [PMID: 29455363 DOI: 10.1007/s12021-018-9366-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The advances in neuroimaging methods reveal that resting-state functional fMRI (rs-fMRI) connectivity measures can be potential diagnostic biomarkers for autism spectrum disorder (ASD). Recent data sharing projects help us replicating the robustness of these biomarkers in different acquisition conditions or preprocessing steps across larger numbers of individuals or sites. It is necessary to validate the previous results by using data from multiple sites by diminishing the site variations. We investigated partial least square regression (PLS), a domain adaptive method to adjust the effects of multicenter acquisition. A sparse Multivariate Pattern Analysis (MVVPA) framework in a leave one site out cross validation (LOSOCV) setting has been proposed to discriminate ASD from healthy controls using data from six sites in the Autism Brain Imaging Data Exchange (ABIDE). Classification features were obtained using 42 bilateral Brodmann areas without presupposing any prior hypothesis. Our results showed that using PLS, SVM showed poorer accuracies with highest accuracy achieved (62%) than without PLS but not significantly. The regions occurred in two or more informative connections are Dorsolateral Prefrontal Cortex, Somatosensory Association Cortex, Primary Auditory Cortex, Inferior Temporal Gyrus and Temporopolar area. These interrupted regions are involved in executive function, speech, visual perception, sense and language which are associated with ASD. Our findings may support early clinical diagnosis or risk determination by identifying neurobiological markers to distinguish between ASD and healthy controls.
Collapse
Affiliation(s)
- Runa Bhaumik
- Department of Psychiatry, Bio-Statistical Research Center, The University of Illinois at Chicago, Chicago, IL, USA.
| | - Ashish Pradhan
- Department of Psychiatry, Bio-Statistical Research Center, The University of Illinois at Chicago, Chicago, IL, USA
| | - Soptik Das
- Department of Psychiatry, Bio-Statistical Research Center, The University of Illinois at Chicago, Chicago, IL, USA
| | - Dulal K Bhaumik
- Department of Psychiatry, Bio-Statistical Research Center, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Morgan BR, Ibrahim GM, Vogan VM, Leung RC, Lee W, Taylor MJ. Characterization of Autism Spectrum Disorder across the Age Span by Intrinsic Network Patterns. Brain Topogr 2019; 32:461-471. [PMID: 30659389 DOI: 10.1007/s10548-019-00697-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/06/2019] [Indexed: 01/12/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by abnormal functional organization of brain networks, which may underlie the cognitive and social impairments observed in affected individuals. The present study characterizes unique intrinsic connectivity within- and between- neural networks in children through to adults with ASD, relative to controls. Resting state fMRI data were analyzed in 204 subjects, 102 with ASD and 102 age- and sex-matched controls (ages 7-40 years), acquired on a single scanner. ASD was assessed using the autism diagnostic observation schedule (ADOS). BOLD correlations were calculated between 47 regions of interest, spanning seven resting state brain networks. Partial least squares (PLS) analyses evaluated the association between connectivity patterns and ASD diagnosis as well as ASD severity scores. PLS demonstrated dissociable connectivity patterns in those with ASD, relative to controls. Similar patterns were observed in the whole cohort and in a subgroup analysis of subjects under 18 years of age. Greater inter-network connectivity was seen in ASD with greater intra-network connectivity in controls. In conclusion, stronger inter-network and weaker intra-network resting state-fMRI BOLD correlations characterize ASD and may differentiate control and ASD cohorts. These findings are relevant to understanding ASD as a disruption of network topology.
Collapse
Affiliation(s)
- Benjamin R Morgan
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Vanessa M Vogan
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
| | - Rachel C Leung
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Departments of Medical Imaging and Psychology, University of Toronto, Toronto, ON, Canada
| | - Wayne Lee
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Departments of Medical Imaging and Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Maximo JO, Kana RK. Aberrant "deep connectivity" in autism: A cortico-subcortical functional connectivity magnetic resonance imaging study. Autism Res 2019; 12:384-400. [PMID: 30624021 DOI: 10.1002/aur.2058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
The number of studies examining functional brain networks in Autism Spectrum Disorder (ASD) has risen over the last decade and has characterized ASD as a disorder of altered brain connectivity. However, these studies have focused largely on cortical structures, and only a few studies have examined cortico-subcortical connectivity in regions like thalamus and basal ganglia in ASD. The goal of this study was to characterize the functional connectivity between cortex and subcortical regions in ASD using the Autism Brain Imaging Data Exchange (ABIDE-II). Resting-state functional magnetic resonance imaging data were used from 168 typically developing (TD) and 138 ASD participants across different sites from the ABIDE II dataset. Functional connectivity of basal ganglia and thalamus to unimodal and supramodal networks was examined in this study. Overconnectivity (ASD > TD) was found between unimodal (except for medial visual network) and subcortical regions, and underconnectivity (TD > ASD) was found between supramodal (except for default mode and dorsal attention networks) and subcortical regions; positive correlations between ASD phenotype and unimodal-subcortical connectivity were found and negative ones with supramodal-subcortical connectivity. These findings suggest that brain networks heavily involved in sensory processing had higher connectivity with subcortical regions, whereas those involved in higher-order thinking showed decreased connectivity in ASD. In addition, brain-behavior correlations indicated a relationship between ASD phenotype and connectivity. Thus, differences in cortico-subcortical connectivity may have a significant impact on basic and higher-order cognitive processes in ASD. Autism Res 2019, 12: 384-400 © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study focused on examining the functional connectivity (synchronization of brain activity across regions) of two types of brain networks (unimodal and supramodal) with subcortical areas (thalamus and basal ganglia) in children, adolescents, and adults with autism spectrum disorder (ASD) and how this relates to ASD phenotype. ASD participants showed overconnectivity in unimodal networks and underconnectivity in supramodal networks. These findings provide new insights into cortico-subcortical connections between basic sensory and high-order cognitive processes.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychology, University of Alabama at Birmingham, Alabama
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Alabama
| |
Collapse
|
29
|
Iidaka T, Kogata T, Mano Y, Komeda H. Thalamocortical Hyperconnectivity and Amygdala-Cortical Hypoconnectivity in Male Patients With Autism Spectrum Disorder. Front Psychiatry 2019; 10:252. [PMID: 31057443 PMCID: PMC6482335 DOI: 10.3389/fpsyt.2019.00252] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Analyses of resting-state functional magnetic resonance imaging (rs-fMRI) have been performed to investigate pathophysiological changes in the brains of patients with autism spectrum disorder (ASD) relative to typically developing controls (CTLs). However, the results of these previous studies, which have reported mixed patterns of hypo- and hyperconnectivity, are controversial, likely due to the small sample sizes and limited age range of included participants. Methods: To overcome this issue, we analyzed multisite neuroimaging data from a large sample (n = 626) of male participants aged between 5 and 29 years (mean age = 13 years). The rs-fMRI data were preprocessed using SPM12 and DPARSF software, and signal changes in 90 brain regions were extracted. Multiple linear regression was used to exclude the effect of site differences in connectivity data. Subcortical-cortical connectivity was computed using connectivities in the hippocampus, amygdala, caudate nucleus, putamen, pallidum, and thalamus. Eighty-eight connectivities in each structure were compared between patients with ASD and CTLs using multiple linear regression with group, age, and age × group interactions, head movement parameters, and overall connectivity as variables. Results: After correcting for multiple comparisons, patients in the ASD group exhibited significant increases in connectivity between the thalamus and 19 cortical regions distributed throughout the fronto-parietal lobes, including the temporo-parietal junction and posterior cingulate cortices. In addition, there were significant decreases in connectivity between the amygdala and six cortical regions. The mean effect size of hyperconnectivity (0.25) was greater than that for hypoconnectivity (0.08). No other subcortical structures showed significant group differences. A group-by-age interaction was observed for connectivity between the thalamus and motor-somatosensory areas. Conclusions: These results demonstrate that pathophysiological changes associated with ASD are more likely related to thalamocortical hyperconnectivity than to amygdala-cortical hypoconnectivity. Future studies should examine full sets of clinical and behavioral symptoms in combination with functional connectivity to explore possible biomarkers for ASD.
Collapse
Affiliation(s)
- Tetsuya Iidaka
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomohiro Kogata
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yoko Mano
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hidetsugu Komeda
- Department of Education, Psychology, and Human Studies, Aoyama Gakuin University, Tokyo, Japan
| |
Collapse
|
30
|
Gabrielsen TP, Anderson JS, Stephenson KG, Beck J, King JB, Kellems R, Top DN, Russell NCC, Anderberg E, Lundwall RA, Hansen B, South M. Functional MRI connectivity of children with autism and low verbal and cognitive performance. Mol Autism 2018; 9:67. [PMID: 30603063 PMCID: PMC6307191 DOI: 10.1186/s13229-018-0248-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/23/2018] [Indexed: 02/19/2023] Open
Abstract
Background Functional neuroimaging research in autism spectrum disorder has reported patterns of decreased long-range, within-network, and interhemispheric connectivity. Research has also reported increased corticostriatal connectivity and between-network connectivity for default and attentional networks. Past studies have excluded individuals with autism and low verbal and cognitive performance (LVCP), so connectivity in individuals more significantly affected with autism has not yet been studied. This represents a critical gap in our understanding of brain function across the autism spectrum. Methods Using behavioral support procedures adapted from Nordahl, et al. (J Neurodev Disord 8:20–20, 2016), we completed non-sedated structural and functional MRI scans of 56 children ages 7–17, including LVCP children (n = 17, mean IQ = 54), children with autism and higher performance (HVCP, n = 20, mean IQ = 106), and neurotypical children (NT, n = 19, mean IQ = 111). Preparation included detailed intake questionnaires, video modeling, behavioral and anxiety reduction techniques, active noise-canceling headphones, and in-scan presentation of the Inscapes movie paradigm from Vanderwal et al. (Neuroimage 122:222–32, 2015). A high temporal resolution multiband echoplanar fMRI protocol analyzed motion-free time series data, extracted from concatenated volumes to mitigate the influence of motion artifact. All participants had > 200 volumes of motion-free fMRI scanning. Analyses were corrected for multiple comparisons. Results LVCP showed decreased within-network connectivity in default, salience, auditory, and frontoparietal networks (LVCP < HVCP) and decreased interhemispheric connectivity (LVCP < HVCP=NT). Between-network connectivity was higher for LVCP than NT between default and dorsal attention and frontoparietal networks. Lower IQ was associated with decreased connectivity within the default network and increased connectivity between default and dorsal attention networks. Conclusions This study demonstrates that with moderate levels of support, including readily available techniques, information about brain similarities and differences in LVCP individuals can be further studied. This initial study suggested decreased network segmentation and integration in LVCP individuals. Further imaging studies of LVCP individuals with larger samples will add to understanding of origins and effects of autism on brain function and behavior. Electronic supplementary material The online version of this article (10.1186/s13229-018-0248-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Terisa P Gabrielsen
- 1Department of Counseling, Psychology and Special Education, Brigham Young University McKay School of Education, Provo, USA
| | - Jeff S Anderson
- 2Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, USA
| | | | - Jonathan Beck
- 3Department of Psychology, Brigham Young University, Provo, USA
| | - Jace B King
- 4Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, USA
| | - Ryan Kellems
- 1Department of Counseling, Psychology and Special Education, Brigham Young University McKay School of Education, Provo, USA
| | - David N Top
- 3Department of Psychology, Brigham Young University, Provo, USA
| | | | - Emily Anderberg
- 3Department of Psychology, Brigham Young University, Provo, USA
| | - Rebecca A Lundwall
- 3Department of Psychology, Brigham Young University, Provo, USA.,5Brigham Young University Neuroscience Center and MRI Research Facility, Provo, USA
| | - Blake Hansen
- 1Department of Counseling, Psychology and Special Education, Brigham Young University McKay School of Education, Provo, USA
| | - Mikle South
- 3Department of Psychology, Brigham Young University, Provo, USA.,5Brigham Young University Neuroscience Center and MRI Research Facility, Provo, USA
| |
Collapse
|
31
|
Black MH, Almabruk T, Albrecht MA, Chen NT, Lipp OV, Tan T, Bolte S, Girdler S. Altered Connectivity in Autistic Adults during Complex Facial Emotion Recognition: A Study of EEG Imaginary Coherence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2752-2755. [PMID: 30440971 DOI: 10.1109/embc.2018.8512802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Difficulties in Facial Emotion Recognition (FER) are commonly associated with individuals diagnosed with Autism Spectrum Disorder (ASD). However, the mechanisms underlying these impairments remain inconclusive. While atypical cortical connectivity has been observed in autistic individuals, there is a paucity of investigation during cognitive tasks such as FER. It is possible that atypical cortical connectivity may underlie FER impairments in this population. Electroencephalography (EEG) Imaginary Coherence was examined in 22 autistic adults and 23 typically developing (TD) matched controls during a complex, dynamic FER task. Autistic adults demonstrated reduced coherence between both short and long range inter-hemispheric electrodes. By contrast, short range intra-hemispheric connectivity was increased in frontal and occipital regions during FER. These findings suggest altered network functioning in ASD.
Collapse
|
32
|
Müller RA, Fishman I. Brain Connectivity and Neuroimaging of Social Networks in Autism. Trends Cogn Sci 2018; 22:1103-1116. [PMID: 30391214 DOI: 10.1016/j.tics.2018.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 01/16/2023]
Abstract
Impairments in social communication (SC) predominate among the core diagnostic features of autism spectrum disorders (ASDs). Neuroimaging has revealed numerous findings of atypical activity and connectivity of 'social brain' networks, yet no consensus view on crucial developmental causes of SC deficits has emerged. Aside from methodological challenges, the deeper problem concerns the clinical label of ASD. While genetic studies have not comprehensively explained the causes of nonsyndromic ASDs, they highlight that the clinical label encompasses many etiologically different disorders. The question of how potential causes and etiologies converge onto a comparatively narrow set of SC deficits remains. Only neuroimaging designs searching for subtypes within ASD cohorts (rather than conventional group level designs) can provide translationally informative answers.
Collapse
Affiliation(s)
- Ralph-Axel Müller
- Brain Development Imaging Laboratories, SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA, USA.
| | - Inna Fishman
- Brain Development Imaging Laboratories, SDSU Center for Autism and Developmental Disorders, San Diego State University, San Diego, CA, USA
| |
Collapse
|
33
|
Lawrence KE, Hernandez LM, Bookheimer SY, Dapretto M. Atypical longitudinal development of functional connectivity in adolescents with autism spectrum disorder. Autism Res 2018; 12:53-65. [PMID: 30375176 DOI: 10.1002/aur.1971] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) is consistently associated with alterations in brain connectivity, but there are conflicting results as to where and when individuals with ASD display increased or reduced functional connectivity. Such inconsistent findings may be driven by atypical neurodevelopmental trajectories in ASD during adolescence, but no longitudinal studies to date have investigated this hypothesis. We thus examined the functional connectivity of three neurocognitive resting-state networks-the default mode network (DMN), salience network, and central executive network (CEN)-in a longitudinal sample of youth with ASD (n = 16) and without ASD (n = 22) studied during early/mid- and late adolescence. Functional connectivity between the CEN and the DMN displayed significantly altered developmental trajectories in ASD: typically developing (TD) controls-but not youth with ASD-exhibited an increase in negative functional connectivity between these two networks with age. This significant interaction was due to the ASD group displaying less negative functional connectivity than the TD group during late adolescence only, with no significant group differences in early/mid-adolescence. These preliminary findings suggest a localized age-dependency of functional connectivity alterations in ASD and underscore the importance of considering age when examining brain connectivity. Autism Research 2019, 12: 53-65. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain connectivity may develop differently during adolescence in youth with autism spectrum disorder (ASD). We looked at changes in brain connectivity over time within individuals and found that, for some brain regions, adolescents with ASD did not show the same changes in brain connectivity that typically developing adolescents did. This suggests it is important to consider age when studying brain connectivity in ASD.
Collapse
Affiliation(s)
- Katherine E Lawrence
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA.,Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Leanna M Hernandez
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA.,Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Susan Y Bookheimer
- Center for Cognitive Neuroscience, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
34
|
Fishman I, Linke AC, Hau J, Carper RA, Müller RA. Atypical Functional Connectivity of Amygdala Related to Reduced Symptom Severity in Children With Autism. J Am Acad Child Adolesc Psychiatry 2018; 57:764-774.e3. [PMID: 30274651 PMCID: PMC6230473 DOI: 10.1016/j.jaac.2018.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Converging evidence indicates that brain abnormalities in autism spectrum disorders (ASDs) involve atypical network connectivity. Given the central role of social deficits in the ASD phenotype, this investigation examined functional connectivity of the amygdala-a brain structure critically involved in processing of social information-in children and adolescents with ASDs, as well as age-dependent changes and links with clinical symptoms. METHOD Resting-state functional magnetic resonance imaging (rs-fMRI) data from 55 participants with ASDs and 50 typically developing (TD) controls, aged 7 to 17 years, were included. Groups were matched for age, gender, IQ, and head motion. Functional connectivity MRI (fcMRI) analysis was applied to examine intrinsic functional connectivity (iFC) of the amygdala, including cross-sectional tests of age-related changes. RESULTS Direct between-group comparisons revealed reduced functional connectivity between bilateral amygdalae and left inferior occipital cortex, accompanied by greater connectivity between right amygdala and right sensorimotor cortex in the ASD group. This atypical pattern of amygdala connectivity was associated with decreased symptom severity and better overall functioning, as specifically seen in an ASD subgroup with the most atypical amygdala iFC but the least impaired social functioning. Age-related strengthening of amygdala-prefrontal connectivity, as observed in the TD group, was not detected in children with ASDs. CONCLUSION Findings support aberrant network sculpting in ASDs, specifically atypical integration between amygdala and primary sensorimotor circuits. Paradoxical links between atypical iFC and behavioral measures suggest that abnormal amygdala functional connections may be compensatory in some individuals with ASDs.
Collapse
|
35
|
Nair S, Jao Keehn RJ, Berkebile MM, Maximo JO, Witkowska N, Müller RA. Local resting state functional connectivity in autism: site and cohort variability and the effect of eye status. Brain Imaging Behav 2018; 12:168-179. [PMID: 28197860 DOI: 10.1007/s11682-017-9678-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with prominent impairments in sociocommunicative abilities, which have been linked to anomalous brain network organization. Despite ample evidence of atypical long-distance connectivity, the literature on local connectivity remains small and divergent. We used resting-state functional MRI regional homogeneity (ReHo) as a local connectivity measure in comparative analyses across several well-matched low-motion subsamples from the Autism Brain Imaging Data Exchange and in-house data, with a grand total of 147 ASD and 184 typically developing (TD) participants, ages 7-18 years. We tested for group differences in each subsample, with additional focus on the difference between eyes-open and eyes-closed resting states. Despite selection of highest quality data and tight demographic and motion matching between groups and across samples, few effects in exactly identical loci (voxels) were found across samples. However, there was gross consistency across all eyes-open samples of local overconnectivity (ASD > TD) in posterior, visual regions. There was also gross consistency of local underconnectivity (ASD < TD) in cingulate gyrus, although exact loci varied between mid/posterior and anterior sections. While all eyes-open datasets showed the described gross similarities, the pattern of group differences for participants scanned with eyes closed was different, with local overconnectivity in ASD in posterior cingulate gyrus, but underconnectivity in some visual regions. Our findings suggest that fMRI local connectivity measures may be relatively susceptible to site and cohort variability and that some previous inconsistencies in the ASD ReHo literature may be reconciled by more careful consideration of eye status.
Collapse
Affiliation(s)
- Sangeeta Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - Michael M Berkebile
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - José Omar Maximo
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA.,Department of Psychology, University of Alabama, Birmingham, AL, USA
| | - Natalia Witkowska
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA, 92120, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
36
|
Shou G, Mosconi MW, Wang J, Ethridge LE, Sweeney JA, Ding L. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism. J Neural Eng 2018; 14:046010. [PMID: 28540866 DOI: 10.1088/1741-2552/aa6b6b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. APPROACH Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. MAIN RESULTS Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. SIGNIFICANCE Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.
Collapse
Affiliation(s)
- Guofa Shou
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, United States of America
| | | | | | | | | | | |
Collapse
|
37
|
Mash LE, Reiter MA, Linke AC, Townsend J, Müller RA. Multimodal approaches to functional connectivity in autism spectrum disorders: An integrative perspective. Dev Neurobiol 2018; 78:456-473. [PMID: 29266810 PMCID: PMC5897150 DOI: 10.1002/dneu.22570] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
Abstract
Atypical functional connectivity has been implicated in autism spectrum disorders (ASDs). However, the literature to date has been largely inconsistent, with mixed and conflicting reports of hypo- and hyper-connectivity. These discrepancies are partly due to differences between various neuroimaging modalities. Functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) measure distinct indices of functional connectivity (e.g., blood-oxygenation level-dependent [BOLD] signal vs. electrical activity). Furthermore, each method has unique benefits and disadvantages with respect to spatial and temporal resolution, vulnerability to specific artifacts, and practical implementation. Thus far, functional connectivity research on ASDs has remained almost exclusively unimodal; therefore, interpreting findings across modalities remains a challenge. Multimodal integration of fMRI, EEG, and MEG data is critical in resolving discrepancies in the literature, and working toward a unifying framework for interpreting past and future findings. This review aims to provide a theoretical foundation for future multimodal research on ASDs. First, we will discuss the merits and shortcomings of several popular theories in ASD functional connectivity research, using examples from the literature to date. Next, the neurophysiological relationships between imaging modalities, including their relationship with invasive neural recordings, will be reviewed. Finally, methodological approaches to multimodal data integration will be presented, and their future application to ASDs will be discussed. Analyses relating transient patterns of neural activity ("states") are particularly promising. This strategy provides a comparable measure across modalities, captures complex spatiotemporal patterns, and is a natural extension of recent dynamic fMRI research in ASDs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 456-473, 2018.
Collapse
Affiliation(s)
- Lisa E. Mash
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| | - Maya A. Reiter
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| | - Annika C. Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| | - Jeanne Townsend
- University of California, San Diego, Department of Neurosciences
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| |
Collapse
|
38
|
Bolton TAW, Jochaut D, Giraud AL, Van De Ville D. Brain dynamics in ASD during movie-watching show idiosyncratic functional integration and segregation. Hum Brain Mapp 2018; 39:2391-2404. [PMID: 29504186 PMCID: PMC5969252 DOI: 10.1002/hbm.24009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 01/24/2023] Open
Abstract
To refine our understanding of autism spectrum disorders (ASD), studies of the brain in dynamic, multimodal and ecological experimental settings are required. One way to achieve this is to compare the neural responses of ASD and typically developing (TD) individuals when viewing a naturalistic movie, but the temporal complexity of the stimulus hampers this task, and the presence of intrinsic functional connectivity (FC) may overshadow movie‐driven fluctuations. Here, we detected inter‐subject functional correlation (ISFC) transients to disentangle movie‐induced functional changes from underlying resting‐state activity while probing FC dynamically. When considering the number of significant ISFC excursions triggered by the movie across the brain, connections between remote functional modules were more heterogeneously engaged in the ASD population. Dynamically tracking the temporal profiles of those ISFC changes and tying them to specific movie subparts, this idiosyncrasy in ASD responses was then shown to involve functional integration and segregation mechanisms such as response inhibition, background suppression, or multisensory integration, while low‐level visual processing was spared. Through the application of a new framework for the study of dynamic experimental paradigms, our results reveal a temporally localized idiosyncrasy in ASD responses, specific to short‐lived episodes of long‐range functional interplays.
Collapse
Affiliation(s)
- Thomas A W Bolton
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Delphine Jochaut
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Sato JR, Calebe Vidal M, de Siqueira Santos S, Brauer Massirer K, Fujita A. Complex Network Measures in Autism Spectrum Disorders. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:581-587. [PMID: 26353378 DOI: 10.1109/tcbb.2015.2476787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent studies have suggested abnormal brain network organization in subjects with Autism Spectrum Disorders (ASD). Here we applied spectral clustering algorithm, diverse centrality measures (betweenness (BC), clustering (CC), eigenvector (EC), and degree (DC)), and also the network entropy (NE) to identify brain sub-systems associated with ASD. We have found that BC increases in the following ASD clusters: in the somatomotor, default-mode, cerebellar, and fronto-parietal. On the other hand, CC, EC, and DC decrease in the somatomotor, default-mode, and cerebellar clusters. Additionally, NE decreases in ASD in the cerebellar cluster. These findings reinforce the hypothesis of under-connectivity in ASD and suggest that the difference in the network organization is more prominent in the cerebellar system. The cerebellar cluster presents reduced NE in ASD, which relates to a more regular organization of the networks. These results might be important to improve current understanding about the etiological processes and the development of potential tools supporting diagnosis and therapeutic interventions.
Collapse
|
40
|
Picci G, Gotts SJ, Scherf KS. A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism. Dev Sci 2018; 19:524-49. [PMID: 27412228 DOI: 10.1111/desc.12467] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/28/2016] [Indexed: 11/29/2022]
Abstract
In 2004, two papers proposed that pervasive functional under-connectivity (Just et al., ) or a trade-off between excessive local connectivity at the cost of distal under-connectivity (Belmonte et al., ) characterizes atypical brain organization in autism. Here, we take stock of the most recent and rigorous functional and structural connectivity findings with a careful eye toward evaluating the extent to which they support these original hypotheses. Indeed, the empirical data do not support them. From rsfMRI studies in adolescents and adults, there is an emerging consensus regarding long-range functional connections indicating cortico-cortical under-connectivity, specifically involving the temporal lobes, combined with subcortical-cortical over-connectivity. In contrast, there is little to no consensus regarding local functional connectivity or findings from task-based functional connectivity studies. The structural connectivity data suggest that white matter tracts are pervasively weak, particularly in the temporal lobe. Together, these findings are revealing how deeply complex the story is regarding atypical neural network organization in autism. In other words, distance and strength of connectivity as individual factors or as interacting factors do not consistently explain the patterns of atypical neural connectivity in autism. Therefore, we make several methodological recommendations and highlight developmental considerations that will help researchers in the field cultivate new hypotheses about the nature and mechanisms of potentially aberrant functional and structural connectivity in autism.
Collapse
Affiliation(s)
- Giorgia Picci
- Department of Psychology, Pennsylvania State University, USA
| | - Stephen J Gotts
- Department of Psychology, Pennsylvania State University, USA
| | | |
Collapse
|
41
|
Maximo JO, Murdaugh DL, O'Kelley S, Kana RK. Changes in intrinsic local connectivity after reading intervention in children with autism. BRAIN AND LANGUAGE 2017; 175:11-17. [PMID: 28869842 DOI: 10.1016/j.bandl.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/30/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
Most of the existing behavioral and cognitive intervention programs in autism spectrum disorders (ASD) have not been tested at the neurobiological level, thus falling short of finding quantifiable neurobiological changes underlying behavioral improvement. The current study takes a translational neuroimaging approach to test the impact of a structured visual imagery-based reading intervention on improving reading comprehension and assessing its underlying local neural circuitry. Behavioral and resting state functional MRI (rs-fMRI) data were collected from children with ASD who were randomly assigned to an Experimental group (ASD-EXP; n=14) and a Wait-list control group (ASD-WLC; n=14). Participants went through an established reading intervention training program (Visualizing and Verbalizing for language comprehension and thinking or V/V; 4-h per day, 10-weeks, 200h of face-to-face instruction). Local functional connectivity was examined using a connection density approach from graph theory focusing on brain areas considered part of the Reading Network. The main results are as follows: (I) the ASD-EXP group showed significant improvement, compared to the ASD-WLC group, in their reading comprehension ability evidenced from change in comprehension scores; (II) the ASD-EXP group showed increased local brain connectivity in Reading Network regions compared to the ASD-WLC group post-intervention; (III) intervention-related changes in local brain connectivity were observed in the ASD-EXP from pre to post-intervention; and (IV) improvement in language comprehension significantly predicted changes in local connectivity. The findings of this study provide novel insights into brain plasticity in children with developmental disorders using targeted intervention programs.
Collapse
Affiliation(s)
- Jose O Maximo
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donna L Murdaugh
- University of Alabama at Birmingham, Birmingham, AL, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sarah O'Kelley
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh K Kana
- University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
42
|
Zhu J, Zhuo C, Xu L, Liu F, Qin W, Yu C. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Schizophrenia. Schizophr Bull 2017; 43:1363-1374. [PMID: 28521048 PMCID: PMC5737873 DOI: 10.1093/schbul/sbx051] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. METHODS 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. RESULTS Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. CONCLUSION These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuanjun Zhuo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China,Department of Psychiatry Functional Neuroimaging Laboratory, Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China,Tianjin Anning Hospital, Tianjin, China
| | - Lixue Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China,To whom correspondence should be addressed; Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; tel: +86-22-63062026, fax: +86-22-63062290, e-mail:
| |
Collapse
|
43
|
An altered scaffold for information processing: Cognitive control development in adolescents with autism. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:464-475. [PMID: 28924621 DOI: 10.1016/j.bpsc.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We investigated how cognitive neuroscientific studies during the last decade have advanced understanding of cognitive control from adolescence to young adulthood in individuals with autism spectrum disorder (ASD). To do so, we conducted a selective review of the larger structural, resting state, and diffusion imaging studies of brain regions and networks related to cognitive control that have been conducted since 2007 in individuals with ASD and typical development (TYP) ages 10 to 30 years that examined how these regions and networks support behavioral and task-based fMRI performance on tasks assessing cognitive control during this period. Longitudinal structural studies reveal overgrowth of the anterior cingulate (ACC) and slower white matter development in the parietal cortex in adolescents with ASD versus TYP. Cross-sectional studies of the salience, executive control and default mode resting state functional connectivity networks, which mediate cognitive control, demonstrate patterns of connectivity that differ from TYP through adolescence. Finally, white matter tracts underlying these control-related brain regions continue to show reduced diffusion properties compared to TYP. It is thus not surprising that cognitive control tasks performance improves less during adolescence in ASD versus TYP. This review illustrates that a cognitive neuroscientific approach produces insights about the mechanisms of persistent cognitive control deficits in individuals with ASD from adolescence into young adulthood not apparent with neuropsychological methods alone, and draws attention to the great need for longitudinal studies of this period in those with ASD. Further investigation of ACC and fronto-parietal neural circuits may help specify pathophysiology and treatment options.
Collapse
|
44
|
Yerys BE, Herrington JD, Satterthwaite TD, Guy L, Schultz RT, Bassett DS. Globally weaker and topologically different: resting-state connectivity in youth with autism. Mol Autism 2017; 8:39. [PMID: 28770039 PMCID: PMC5530457 DOI: 10.1186/s13229-017-0156-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
Background There is a lack of agreement about functional connectivity differences in individuals with autism spectrum disorder (ASD). Studies using absolute strength have found reduced connectivity, while those using relative strength––a measure of system topology––reveal mostly enhanced connectivity. We hypothesized that mixed findings may be driven by the metric of functional connectivity. Methods Resting-state echo planar 3 T functional magnetic resonance imaging scans were acquired on a Siemens Verio Scanner from 6 to 17-year-old youth with ASD (n = 81) and a matched typically developing control group (n = 82). All functional time series data were preprocessed using a confound regression procedure that has been previously validated in large-scale developmental datasets. It has also been shown to be highly effective at reducing the influence of motion artifact on connectivity data. We extracted time series data from a 333-node parcellation scheme, which was previously mapped to 13 functional systems. A Pearson’s correlation was calculated and transformed to Fisher’s z between every pair of nodes to create a weighted 333 × 333 adjacency matrix. Mean absolute functional connectivity strength was the mean Fisher’s z of the matrix. Relative functional connectivity was corrected for individual differences in mean absolute functional connectivity (i.e., each connection in the matrix was divided by their mean z), and functional connectivity was evaluated within and across each of the functional networks in the parcellation scheme. Results Absolute functional connectivity strength was lower in ASD, and lower functional connectivity was correlated with greater ASD symptom severity. Relative functional connectivity was higher for the ASD group in the ventral attention and retrosplenial-temporal systems, with lower cross-system functional connectivity between the ventral attention and somatomotor-mouth systems. Functional connectivity within the ventral attention and retro-splenial systems correlated significantly with ASD symptom severity. Conclusions Within a context of globally weaker functional connectivity, youth with ASD have an atypical topology of brain systems that support social perception and communication. This study clarifies the mixed results reported previously and demonstrates that the functional connectivity metric influences the observed direction of functional connectivity differences for individuals with ASD. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0156-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin E Yerys
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - John D Herrington
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - Lisa Guy
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Robert T Schultz
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA.,Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Danielle S Bassett
- Departments of Bioengineering and Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
45
|
Bauer CM, Hirsch GV, Zajac L, Koo BB, Collignon O, Merabet LB. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness. PLoS One 2017; 12:e0173064. [PMID: 28328939 PMCID: PMC5362049 DOI: 10.1371/journal.pone.0173064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness.
Collapse
Affiliation(s)
- Corinna M. Bauer
- Laboratory for Visual Neuroplasticity. Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Gabriella V. Hirsch
- Laboratory for Visual Neuroplasticity. Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Lauren Zajac
- Center for Biomedical Imaging. Boston University School of Medicine, Boston, MA, United States of America
| | - Bang-Bon Koo
- Center for Biomedical Imaging. Boston University School of Medicine, Boston, MA, United States of America
| | - Olivier Collignon
- Crossmodal Perception and Plasticity Laboratory. University of Trento, Trento, Italy
| | - Lotfi B. Merabet
- Laboratory for Visual Neuroplasticity. Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
46
|
Hull JV, Dokovna LB, Jacokes ZJ, Torgerson CM, Irimia A, Van Horn JD. Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review. Front Psychiatry 2017; 7:205. [PMID: 28101064 PMCID: PMC5209637 DOI: 10.3389/fpsyt.2016.00205] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
Ongoing debate exists within the resting-state functional MRI (fMRI) literature over how intrinsic connectivity is altered in the autistic brain, with reports of general over-connectivity, under-connectivity, and/or a combination of both. Classifying autism using brain connectivity is complicated by the heterogeneous nature of the condition, allowing for the possibility of widely variable connectivity patterns among individuals with the disorder. Further differences in reported results may be attributable to the age and sex of participants included, designs of the resting-state scan, and to the analysis technique used to evaluate the data. This review systematically examines the resting-state fMRI autism literature to date and compares studies in an attempt to draw overall conclusions that are presently challenging. We also propose future direction for rs-fMRI use to categorize individuals with autism spectrum disorder, serve as a possible diagnostic tool, and best utilize data-sharing initiatives.
Collapse
Affiliation(s)
- Jocelyn V. Hull
- Laboratory of Neuro Imaging (LONI), The Institute for Neuroimaging and Informatics (INI), Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Lisa B. Dokovna
- Laboratory of Neuro Imaging (LONI), The Institute for Neuroimaging and Informatics (INI), Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Zachary J. Jacokes
- Laboratory of Neuro Imaging (LONI), The Institute for Neuroimaging and Informatics (INI), Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Carinna M. Torgerson
- Laboratory of Neuro Imaging (LONI), The Institute for Neuroimaging and Informatics (INI), Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | | | - John Darrell Van Horn
- Laboratory of Neuro Imaging (LONI), The Institute for Neuroimaging and Informatics (INI), Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Keown CL, Datko MC, Chen CP, Maximo JO, Jahedi A, Müller RA. Network organization is globally atypical in autism: A graph theory study of intrinsic functional connectivity. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:66-75. [PMID: 28944305 DOI: 10.1016/j.bpsc.2016.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite abundant evidence of brain network anomalies in autism spectrum disorder (ASD), findings have varied from broad functional underconnectivity to broad overconnectivity. Rather than pursuing overly simplifying general hypotheses ('under' vs. 'over'), we tested the hypothesis of atypical network distribution in ASD (i.e., participation of unusual loci in distributed functional networks). METHODS We used a selective high-quality data subset from the ABIDE datashare (including 111 ASD and 174 typically developing [TD] participants) and several graph theory metrics. Resting state functional MRI data were preprocessed and analyzed for detection of low-frequency intrinsic signal correlations. Groups were tightly matched for available demographics and head motion. RESULTS As hypothesized, the Rand Index (reflecting how similar network organization was to a normative set of networks) was significantly lower in ASD than TD participants. This was accounted for by globally reduced cohesion and density, but increased dispersion of networks. While differences in hub architecture did not survive correction, rich club connectivity (among the hubs) was increased in the ASD group. CONCLUSIONS Our findings support the model of reduced network integration (connectivity with networks) and differentiation (or segregation; based on connectivity outside network boundaries) in ASD. While the findings applied at the global level, they were not equally robust across all networks and in one case (greater cohesion within ventral attention network in ASD) even reversed.
Collapse
Affiliation(s)
- Christopher L Keown
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States.,Department of Cognitive Science, University of California, San Diego, CA
| | - Michael C Datko
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States.,Department of Cognitive Science, University of California, San Diego, CA
| | - Colleen P Chen
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States.,Computational Science Research Center, San Diego State University, San Diego, CA
| | - José Omar Maximo
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Afrooz Jahedi
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States.,Department of Mathematics and Statistics, San Diego State University, San Diego, CA, United States
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
48
|
Pelland M, Orban P, Dansereau C, Lepore F, Bellec P, Collignon O. State-dependent modulation of functional connectivity in early blind individuals. Neuroimage 2016; 147:532-541. [PMID: 28011254 DOI: 10.1016/j.neuroimage.2016.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/13/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022] Open
Abstract
Resting-state functional connectivity (RSFC) studies have provided strong evidences that visual deprivation influences the brain's functional architecture. In particular, reduced RSFC coupling between occipital (visual) and temporal (auditory) regions has been reliably observed in early blind individuals (EB) at rest. In contrast, task-dependent activation studies have repeatedly demonstrated enhanced co-activation and connectivity of occipital and temporal regions during auditory processing in EB. To investigate this apparent discrepancy, the functional coupling between temporal and occipital networks at rest was directly compared to that of an auditory task in both EB and sighted controls (SC). Functional brain clusters shared across groups and cognitive states (rest and auditory task) were defined. In EBs, we observed higher occipito-temporal correlations in activity during the task than at rest. The reverse pattern was observed in SC. We also observed higher temporal variability of occipito-temporal RSFC in EB suggesting that occipital regions in this population may play the role of a multiple demand system. Our study reveals how the connectivity profile of sighted and early blind people is differentially influenced by their cognitive state, bridging the gap between previous task-dependent and RSFC studies. Our results also highlight how inferring group-differences in functional brain architecture solely based on resting-state acquisition has to be considered with caution.
Collapse
Affiliation(s)
- Maxime Pelland
- Departement of Psychology, University of Montreal, Montreal, Quebec, Canada; Centre de Recherche en Neuropsychologie et Cognition, University of Montreal, Montreal, QC, Canada.
| | - Pierre Orban
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada; Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - Christian Dansereau
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada; Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec, Canada
| | - Franco Lepore
- Departement of Psychology, University of Montreal, Montreal, Quebec, Canada; Centre de Recherche en Neuropsychologie et Cognition, University of Montreal, Montreal, QC, Canada
| | - Pierre Bellec
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada; Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec, Canada
| | - Olivier Collignon
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université catholique de Louvain, Belgium; CIMeC - Center for Mind/Brain Sciences, University of Trento, via delle Regole 101, Mattarello, TN, Italy.
| |
Collapse
|
49
|
Abstract
Social neuroscience studies have shown that the ventral striatum (VS), a highly reward-sensitive brain area, is activated when participants win competitive tasks. However, in these settings winning often entails both avoiding punishment and punishing the opponent. It is thus unclear whether the rewarding properties of winning are mainly associated to punishment avoidance, or if punishing the opponent can be additionally gratifying. In the present paper we explored the neurophysiological correlates of each outcome, aiming to better understand the development of aggression episodes. We previously introduced a competitive reaction time task that separates both effects: in half of the won trials, participants can physically punish their opponent (active trials), whereas in the other half they can only avoid a punishment (passive trials). We performed functional connectivity analysis seeded in the VS to test for differential network interactions in active compared to passive trials. The VS showed greater connectivity with areas involved in reward valuation (orbitofrontal cortex), arousal (dorsal thalamus and posterior insula), attention (inferior occipital gyrus), and motor control (supplementary motor area) in active compared to passive trials, whereas connectivity between the VS and the inferior frontal gyrus decreased. Interindividual variability in connectivity strength between VS and posterior insula was related to aggressive behavior, whereas connectivity between VS and supplementary motor area was related to faster reaction times in active trials. Our results suggest that punishing a provoking opponent when winning might adaptively favor a "competitive state" in the course of an aggressive interaction.
Collapse
|
50
|
Abbott AE, Nair A, Keown CL, Datko M, Jahedi A, Fishman I, Müller RA. Patterns of Atypical Functional Connectivity and Behavioral Links in Autism Differ Between Default, Salience, and Executive Networks. Cereb Cortex 2016; 26:4034-45. [PMID: 26351318 PMCID: PMC5027998 DOI: 10.1093/cercor/bhv191] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by atypical brain network organization, but findings have been inconsistent. While methodological and maturational factors have been considered, the network specificity of connectivity abnormalities remains incompletely understood. We investigated intrinsic functional connectivity (iFC) for four "core" functional networks-default-mode (DMN), salience (SN), and left (lECN) and right executive control (rECN). Resting-state functional MRI data from 75 children and adolescents (37 ASD, 38 typically developing [TD]) were included. Functional connectivity within and between networks was analyzed for regions of interest (ROIs) and whole brain, compared between groups, and correlated with behavioral scores. ROI analyses showed overconnectivity (ASD > TD), especially between DMN and ECN. Whole-brain results were mixed. While predominant overconnectivity was found for DMN (posterior cingulate seed) and rECN (right inferior parietal seed), predominant underconnectivity was found for SN (right anterior insula seed) and lECN (left inferior parietal seed). In the ASD group, reduced SN integrity was associated with sensory and sociocommunicative symptoms. In conclusion, atypical connectivity in ASD is network-specific, ranging from extensive overconnectivity (DMN, rECN) to extensive underconnectivity (SN, lECN). Links between iFC and behavior differed between groups. Core symptomatology in the ASD group was predominantly related to connectivity within the salience network.
Collapse
Affiliation(s)
- Angela E. Abbott
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Aarti Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, CA, USA
| | - Christopher L. Keown
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Michael Datko
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Afrooz Jahedi
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, CA, USA
| |
Collapse
|