1
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review From Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2025; 97:461-498. [PMID: 39366539 PMCID: PMC11805629 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK (Ras/extracellular signal-regulated kinase/mitogen-activated protein kinase) signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorder. We systematically review the literature between 2010 and 2023 focusing on the social communication construct of the Research Domain Criteria framework. We provide an integrative summary of the research on facial and nonfacial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic (gamma-aminobutyric acidergic), glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., corticostriatal connectivity) is also implicated in social communication. We highlight less-researched potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified, and a roadmap for future research is provided. By leveraging genetic syndrome research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
3
|
Routier L, Querné L, Fontaine C, Berquin P, Le Moing AG. Distinct attentional and executive profiles in neurofibromatosis type 1: Is there difference with primary attention deficit-hyperactivity disorder? Eur J Paediatr Neurol 2024; 51:93-99. [PMID: 38905883 DOI: 10.1016/j.ejpn.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE Attentional and executive dysfunctions are the most frequent cognitive disorders in neurofibromatosis type 1 (NF1), with a high prevalence of attention deficit-hyperactivity disorder (ADHD). We (i) compared attentional profiles between NF1 children with and without ADHD and children with primary ADHD criteria and (ii) investigated the possible relationship between attentional disorders and "unidentified bright objects" (UBOs) in NF1. METHODS This retrospective study included 47 NF1 children, 25 with ADHD criteria (NF1+adhd group), matched for age, sex, and cognitive level with 47 children with primary ADHD (ADHD group). We collected computer task (sustained-attention, visuomotor-decision, inhibition, and cognitive-flexibility tasks) scores normalized for age and sex, and brain magnetic resonance imaging data. RESULTS (i) Working memory was impaired in all groups. (ii) Omissions (p < 0.002) and response-time variability (p < 0.05) in sustained-attention and visuomotor-decision tasks and errors (p < 0.02) in the cognitive-flexibility task were lower for the NFI+adhd and ADHD groups than for the NF1-no-adhd group. (iii) The NF1+adhd group had slower response times (p ≤ 0.02) for inhibition and visuomotor-decision tasks than the other groups. (iv) We found no relevant association between cognitive performance and UBOs. CONCLUSIONS NF1 children with ADHD have an attentional and executive functions deficit profile similar to that of children with primary ADHD, but with a slower response-time, increasing learning difficulties. The atypical connectivity of fronto-striatal pathways, poorer dopamine homeostasis, and increased GABA inhibition observed in NF1 renders vulnerable the development of the widely distributed neural networks that support attentional, working-memory, and executive functions.
Collapse
Affiliation(s)
- Laura Routier
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France; Pediatric Neurophysiology Unit, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France.
| | - Laurent Querné
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| | - Cécile Fontaine
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France
| | - Patrick Berquin
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| | - Anne-Gaëlle Le Moing
- Pediatric Neurology Department, Amiens-Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens Cedex, France; INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, rue René Laennec, 80054, Amiens, Cedex, France
| |
Collapse
|
4
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Lee YJ, Park BS, Lee DA, Park KM. Structural brain network changes in patients with neurofibromatosis type 1: A retrospective study. Medicine (Baltimore) 2023; 102:e35676. [PMID: 37933055 PMCID: PMC10627666 DOI: 10.1097/md.0000000000035676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023] Open
Abstract
We investigated the changes in structural connectivity (using diffusion tensor imaging [DTI]) and the structural covariance network based on structural volume using graph theory in patients with neurofibromatosis type 1 (NF1) compared to a healthy control group. We included 14 patients with NF1, according to international consensus recommendations, and 16 healthy individuals formed the control group. This was retrospectively observational study followed STROBE guideline. Both groups underwent brain magnetic resonance imaging including DTI and 3-dimensional T1-weighted imaging. We analyzed structural connectivity using DTI and Diffusion Spectrum Imaging Studio software and evaluated the structural covariance network based on the structural volumes using FreeSurfer and Brain Analysis Using Graph Theory software. There were no differences in the global structural connectivity between the 2 groups, but several brain regions showed significant differences in local structural connectivity. Additionally, there were differences between the global structural covariance networks. The characteristic path length was longer and the small-worldness index was lower in patients with NF1. Furthermore, several regions showed significant differences in the local structural covariance networks. We observed changes in structural connectivity and covariance networks in patients with NF1 compared to a healthy control group. We found that global structural efficiency is decreased in the brains of patients with NF1, and widespread changes in the local structural network were found. These results suggest that NF1 is a brain network disease, and our study provides direction for further research to elucidate the biological processes of NF1.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Departments of Internal Medicine, Busan, South Korea
| | - Bong Soo Park
- Departments of Internal Medicine, Busan, South Korea
| | - Dong Ah Lee
- Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kang Min Park
- Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
6
|
Sawyer C, Green J, Lim B, Pobric G, Jung J, Vassallo G, Evans DG, Stagg CJ, Parkes LM, Stivaros S, Muhlert N, Garg S. Neuroanatomical correlates of working memory performance in Neurofibromatosis 1. Cereb Cortex Commun 2022; 3:tgac021. [PMID: 35673329 PMCID: PMC9169056 DOI: 10.1093/texcom/tgac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Neurofibromatosis 1 (NF1) is a single-gene disorder associated with cognitive impairments, particularly with deficits in working memory. Prior research indicates that brain structure is affected in NF1, but it is unclear how these changes relate to aspects of cognition. Methods 29 adolescents aged 11-17 years were compared to age and sex-matched controls. NF1 subjects were assessed using detailed multimodal measurements of working memory at baseline followed by a 3T MR scan. A voxel-based morphometry approach was used to estimate the total and regional gray matter(GM) volumetric differences between the NF1 and control groups. The working memory metrics were subjected to a principal component analysis (PCA) approach. Results The NF1 groups showed increased gray matter volumes in the thalamus, corpus striatum, dorsal midbrain and cerebellum bilaterally in the NF1 group as compared to controls. Principal component analysis on the working memory metrics in the NF1 group yielded three independent factors reflecting high memory load, low memory load and auditory working memory. Correlation analyses revealed that increased volume of posterior cingulate cortex, a key component of the default mode network (DMN) was significantly associated with poorer performance on low working memory load tasks. Conclusion These results are consistent with prior work showing larger subcortical brain volumes in the NF1 cohort. The strong association between posterior cingulate cortex volume and performance on low memory load conditions supports hypotheses of deficient DMN structural development, which in turn may contribute to the cognitive impairments in NF1.
Collapse
Affiliation(s)
- Cameron Sawyer
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jonathan Green
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Child & Adolescent Mental Health Department, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, Oxford Road, M13 9WL, United Kingdom
| | - Ben Lim
- Child & Adolescent Mental Health Department, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, Oxford Road, M13 9WL, United Kingdom
| | - Gorana Pobric
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - JeYoung Jung
- School of Psychology, Precision Imaging Beacon, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Grace Vassallo
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, United Kingdom
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, United Kingdom
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences & MRC Brain Network Dynamics Unit, University of Oxford, OX3 9DU, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Northern care Alliance NHS Foundation Trust, Stott Lane, Manchester M6 8HD, United Kingdom
| | - Stavros Stivaros
- Geoffrey Jefferson Brain Research Centre, Northern care Alliance NHS Foundation Trust, Stott Lane, Manchester M6 8HD, United Kingdom
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Oxford Road, M13 9PL, United Kingdom
| | - Nils Muhlert
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shruti Garg
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Child & Adolescent Mental Health Department, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, Oxford Road, M13 9WL, United Kingdom
| |
Collapse
|
7
|
Bruno JL, Shrestha SB, Reiss AL, Saggar M, Green T. Altered canonical and striatal-frontal resting state functional connectivity in children with pathogenic variants in the Ras/mitogen-activated protein kinase pathway. Mol Psychiatry 2022; 27:1542-1551. [PMID: 35087195 PMCID: PMC9106817 DOI: 10.1038/s41380-021-01422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022]
Abstract
Mounting evidence supports the role of the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway in neurodevelopmental disorders. Here, the authors used a genetics-first approach to examine how Ras/MAPK pathogenic variants affect the functional organization of the brain and cognitive phenotypes including weaknesses in attention and inhibition. Functional MRI was used to examine resting state functional connectivity (RSFC) in association with Ras/MAPK pathogenic variants in children with Noonan syndrome (NS). Participants (age 4-12 years) included 39 children with NS (mean age 8.44, SD = 2.20, 25 females) and 49 typically developing (TD) children (mean age 9.02, SD = 9.02, 33 females). Twenty-eight children in the NS group and 46 in the TD group had usable MRI data and were included in final analyses. The results indicated significant hyperconnectivity for the NS group within canonical visual, ventral attention, left frontoparietal and limbic networks (p < 0.05 FWE). Higher connectivity within canonical left frontoparietal and limbic networks positively correlated with cognitive function within the NS but not the TD group. Further, the NS group demonstrated significant group differences in seed-based striatal-frontal connectivity (Z > 2.6, p < 0.05 FWE). Hyperconnectivity within canonical brain networks may represent an intermediary phenotype between Ras/MAPK pathogenic variants and cognitive phenotypes, including weaknesses in attention and inhibition. Altered striatal-frontal connectivity corresponds with smaller striatal volume and altered white matter connectivity previously documented in children with NS. These results may indicate delayed maturation and compensatory mechanisms and they are important for understanding the pathophysiology underlying cognitive phenotypes in NS and in the broader population of children with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jennifer L Bruno
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sharon B Shrestha
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics and Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manish Saggar
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Sieberg CB, Lebel A, Silliman E, Holmes S, Borsook D, Elman I. Left to themselves: Time to target chronic pain in childhood rare diseases. Neurosci Biobehav Rev 2021; 126:276-288. [PMID: 33774086 PMCID: PMC8738995 DOI: 10.1016/j.neubiorev.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chronic pain is prevalent among patients with rare diseases (RDs). However, little is understood about how biopsychosocial mechanisms may be integrated in the unique set of clinical features and therapeutic challenges inherent in their pain conditions. METHODS This review presents examples of major categories of RDs with particular pain conditions. In addition, we provide translational evidence on clinical and scientific rationale for psychosocially- and neurodevelopmentally-informed treatment of pain in RD patients. RESULTS Neurobiological and functional overlap between various RD syndromes and pain states suggests amalgamation and mutual modulation of the respective conditions. Emotional sequelae could be construed as an emotional homologue of physical pain mediated via overlapping brain circuitry. Given their clearly defined genetic and molecular etiologies, RDs may serve as heuristic models for unraveling pathophysiological processes inherent in chronic pain. CONCLUSIONS Systematic evaluation of chronic pain in patients with RD contributes to sophisticated insight into both pain and their psychosocial correlates, which could transform treatment.
Collapse
Affiliation(s)
- Christine B Sieberg
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, 02115, USA; Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Alyssa Lebel
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Erin Silliman
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, 02115, USA; Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Scott Holmes
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Borsook
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Russo C, Russo C, Cascone D, Mazio F, Santoro C, Covelli EM, Cinalli G. Non-Oncological Neuroradiological Manifestations in NF1 and Their Clinical Implications. Cancers (Basel) 2021; 13:cancers13081831. [PMID: 33921292 PMCID: PMC8070534 DOI: 10.3390/cancers13081831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Central nervous system involvement (CNS) is a common finding in Neurofibromatosis type 1 (NF1). Beside tumor-related manifestations, NF1 is also characterized by a wide spectrum of CNS alterations with variable impacts on functioning and life quality. Here, we propose an overview of non-oncological neuroradiological findings in NF1, with an insight on pathophysiological and embryological clues for a better understanding of the development of these specific alterations. Abstract Neurofibromatosis type 1 (NF1), the most frequent phakomatosis and one of the most common inherited tumor predisposition syndromes, is characterized by several manifestations that pervasively involve central and peripheral nervous system structures. The disorder is due to mutations in the NF1 gene, which encodes for the ubiquitous tumor suppressor protein neurofibromin; neurofibromin is highly expressed in neural crest derived tissues, where it plays a crucial role in regulating cell proliferation, differentiation, and structural organization. This review article aims to provide an overview on NF1 non-neoplastic manifestations of neuroradiological interest, involving both the central nervous system and spine. We also briefly review the most recent MRI functional findings in NF1.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-333-7050711
| | - Carmela Russo
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Daniele Cascone
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Federica Mazio
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Claudia Santoro
- Neurofibromatosis Referral Center, Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental and Physical Health, and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy;
| |
Collapse
|
10
|
Tian T, Li J, Zhang G, Wang J, Liu D, Wan C, Fang J, Wu D, Zhou Y, Zhu W. Effects of childhood trauma experience and COMT Val158Met polymorphism on brain connectivity in a multimodal MRI study. Brain Behav 2020; 10:e01858. [PMID: 32997444 PMCID: PMC7749512 DOI: 10.1002/brb3.1858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023] Open
Abstract
Childhood adversity may act as a stressor to produce a cascade of neurobiological effects that irreversibly alter neural development, setting the stage for developing psychopathology in adulthood. The catechol-O-methyltransferase (COMT) Val158Met polymorphism has received much attention as a candidate gene associated with environmental adversity, modifying risk for psychopathology. In this study, we aim to see how gene × brain × environment models give a more integrative understanding of brain modifications that contribute to predicting psychopathology related to childhood adversity. A large nonclinical sample of young adults completed Childhood Trauma Questionnaire (CTQ), behavioral scores, multimodal magnetic resonance imaging (MRI) scans, and genotyping. We utilized graph-based connectivity analysis in morphometric similarity mapping and resting-state functional MRI to investigate brain alterations. Relationships among COMT genotypes, CTQ score, imaging phenotypes, and behavioral scores were identified by multiple regression and mediation effect analysis. Significant main effect of CTQ score was found in anatomic connectivity of orbitofrontal cortex that was an outstanding mediator supporting the relationship between CTQ score and anxiety/harm-avoiding personality. We also noted the main effect of childhood trauma on reorganization of functional connectivity within the language network. Additionally, we found genotype × CTQ score interactions on functional connectivity of the right frontoparietal network as well as anatomic connectivity of motor and limbic regions. Our data demonstrate childhood adversity and COMT genotypes are associated with abnormal brain connectivity, structurally and functionally. Early identification of individuals at risk, assessment of brain abnormality, and cognitive interventions may help to prevent or limit negative outcomes.
Collapse
Affiliation(s)
- Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhua Wan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jicheng Fang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Johnson EM, Ishak AD, Naylor PE, Stevenson DA, Reiss AL, Green T. PTPN11 Gain-of-Function Mutations Affect the Developing Human Brain, Memory, and Attention. Cereb Cortex 2020; 29:2915-2923. [PMID: 30059958 DOI: 10.1093/cercor/bhy158] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/28/2023] Open
Abstract
The Ras-MAPK pathway has an established role in neural development and synaptic signaling. Mutations in this pathway are associated with a collection of neurodevelopmental syndromes, Rasopathies; among these, Noonan syndrome (NS) is the most common (1:2000). Prior research has focused on identifying genetic mutations and cellular mechanisms of the disorder, however, effects of NS on the human brain remain unknown. Here, imaging and cognitive data were collected from 12 children with PTPN11-related NS, ages 4.0-11.0 years (8.98 ± 2.33) and 12 age- and sex-matched typically developing controls (8.79 ± 2.17). We observe reduced gray matter volume in bilateral corpus striatum (Cohen's d = -1.0:-1.3), reduced surface area in temporal regions (d = -1.8:-2.2), increased cortical thickness in frontal regions (d = 1.2-1.3), and reduced cortical thickness in limbic regions (d = -1.6), including limbic structures integral to the circuitry of the hippocampus. Further, we find high levels of inattention, hyperactivity, and memory deficits in children with NS. Taken together, these results identify effects of NS on specific brain regions associated with ADHD and learning in children. While our research lays the groundwork for elucidating the neural and behavioral mechanisms of NS, it also adds an essential tier to understanding the Ras-MAPK pathway's role in human brain development.
Collapse
Affiliation(s)
- Emily M Johnson
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Department of Radiology/Molecular Imaging Program, Stanford University, Stanford, CA, USA
| | - Alexandra D Ishak
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Paige E Naylor
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - David A Stevenson
- Department of Pediatrics-Medical Genetics, Stanford University, Stanford, CA, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Department of Radiology and Pediatrics, Stanford University, Stanford, CA, USA
| | - Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Brain-wide structural and functional disruption in mice with oligodendrocyte-specific Nf1 deletion is rescued by inhibition of nitric oxide synthase. Proc Natl Acad Sci U S A 2020; 117:22506-22513. [PMID: 32839340 PMCID: PMC7486714 DOI: 10.1073/pnas.2008391117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study assessed the effects of myelin decompaction on motor behavior and brain-wide structural and functional connectivity, and the effect of nitric oxide synthase inhibition by N-nitro-l-arginine methyl ester (L-NAME) on these imaging measures. We report that inducible oligodendrocyte-specific inactivation of the Nf1 gene, which causes myelin decompaction, results in reduced initial motor coordination. Using diffusion-based magnetic resonance imaging (MRI), we show reduced myelin integrity, and using functional MRI, we show reduced functional connectivity in awake passive mice. L-NAME administration results in rescue of the pathology at the mesoscopic level, as measured using imaging procedures that can be directly applied to humans to study treatment efficacy in clinical trials. Neurofibromin gene (NF1) mutation causes neurofibromatosis type 1 (NF1), a disorder in which brain white matter deficits identified by neuroimaging are common, yet of unknown cellular etiology. In mice, Nf1 loss in adult oligodendrocytes causes myelin decompaction and increases oligodendrocyte nitric oxide (NO) levels. Nitric oxide synthase (NOS) inhibitors rescue this pathology. Whether oligodendrocyte pathology is sufficient to affect brain-wide structure and account for NF1 imaging findings is unknown. Here we show that Nf1 gene inactivation in adult oligodendrocytes (Plp-Nf1fl/+ mice) results in a motor coordination deficit. Magnetic resonance imaging in awake mice showed that fractional anisotropy is reduced in Plp-Nf1fl/+ corpus callosum and that interhemispheric functional connectivity in the motor cortex is also reduced, consistent with disrupted myelin integrity. Furthermore, NOS-specific inhibition rescued both measures. These results suggest that oligodendrocyte defects account for aspects of brain dysfunction in NF1 that can be identified by neuroimaging and ameliorated by NOS inhibition.
Collapse
|
13
|
Huang J, Wang M, Xu X, Jie B, Zhang D. A novel node-level structure embedding and alignment representation of structural networks for brain disease analysis. Med Image Anal 2020; 65:101755. [PMID: 32592983 DOI: 10.1016/j.media.2020.101755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Brain networks based on various neuroimaging technologies, such as diffusion tensor image (DTI) and functional magnetic resonance imaging (fMRI), have been widely applied to brain disease analysis. Currently, there are several node-level structural measures (e.g., local clustering coefficients and node degrees) for representing and analyzing brain networks since they usually can reflect the topological structure of brain regions. However, these measures typically describe specific types of structural information, ignoring important network properties (i.e., small structural changes) that could further improve the performance of brain network analysis. To overcome this problem, in this paper, we first define a novel node-level structure embedding and alignment (nSEA) representation to accurately characterize the node-level structural information of the brain network. Different from existing measures that characterize a specific type of structural properties with a single value, our proposed nSEA method can learn a vector representation for each node, thus contain richer structure information to capture small structural changes. Furthermore, we develop an nSEA representation based learning (nSEAL) framework for brain disease analysis. Specifically, we first perform structural embedding to calculate node vector representations for each brain network and then align vector representations of all brain networks into the common space for two group-level network analyses, including a statistical analysis and brain disease classifications. Experiment results on a real schizophrenia dataset demonstrate that our proposed method not only discover disease-related brain regions that could help to better understand the pathology of brain diseases, but also improve the classification performance of brain diseases, compared with state-of-the-art methods.
Collapse
Affiliation(s)
- Jiashuang Huang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 210029, China.
| | - Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 210029, China.
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University Nanjing, 210029, China.
| | - Biao Jie
- Department of Computer Science and Technology, Anhui Normal University, Wuhu 241000, China.
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 210029, China.
| |
Collapse
|
14
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Baudou E, Nemmi F, Biotteau M, Maziero S, Peran P, Chaix Y. Can the Cognitive Phenotype in Neurofibromatosis Type 1 (NF1) Be Explained by Neuroimaging? A Review. Front Neurol 2020; 10:1373. [PMID: 31993017 PMCID: PMC6971173 DOI: 10.3389/fneur.2019.01373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most frequent monogenetic disorders. It can be associated with cognitive dysfunctions in several domains such as executive functioning, language, visual perception, motor skills, social skills, memory and/or attention. Neuroimaging is becoming more and more important for a clearer understanding of the neural basis of these deficits. In recent years, several studies have used different imaging techniques to examine structural, morphological and functional alterations in NF1 disease. They have shown that NF1 patients have specific brain characteristics such as Unidentified Bright Objects (UBOs), macrocephaly, a higher volume of subcortical structures, microstructure integrity alterations, or connectivity alterations. In this review, which focuses on the studies published after the last 2 reviews of this topic (in 2010 and 2011), we report on recent structural, morphological and functional neuroimaging studies in NF1 subjects, with special focus on those that examine the neural basis of the NF1 cognitive phenotype. Although UBOs are one of the most obvious and visible elements in brain imaging, correlation studies have failed to establish a robust and reproducible link between major cognitive deficits in NF1 and their presence, number or localization. In the same vein, the results among structural studies are not consistent. Functional magnetic resonance imaging (fMRI) studies appear to be more sensitive, especially for understanding the executive function deficit that seems to be associated with a dysfunction in the right inferior frontal areas and the middle frontal areas. Similarly, fMRI studies have found that visuospatial deficits could be associated with a dysfunction in the visual cortex and especially in the magnocellular pathway involved in the processing of low spatial frequency and high temporal frequency. Connectivity studies have shown a reduction in anterior-posterior “long-range” connectivity and a deficit in deactivation in default mode network (DMN) during cognitive tasks. In conclusion, despite the contribution of new imaging techniques and despite relative advancement, the cognitive phenotype of NF1 patients is not totally understood.
Collapse
Affiliation(s)
- Eloïse Baudou
- Children's Hospital, Purpan University Hospital, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Maëlle Biotteau
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Stéphanie Maziero
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- Children's Hospital, Purpan University Hospital, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
16
|
Haebich KM, Pride NA, Walsh KS, Chisholm A, Rouel M, Maier A, Anderson V, Barton B, Silk T, Korgaonkar M, Seal M, Lami F, Lorenzo J, Williams K, Dabscheck G, Rae CD, Kean M, North KN, Payne JM. Understanding autism spectrum disorder and social functioning in children with neurofibromatosis type 1: protocol for a cross-sectional multimodal study. BMJ Open 2019; 9:e030601. [PMID: 31558455 PMCID: PMC6773330 DOI: 10.1136/bmjopen-2019-030601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Children with the single-gene disorder neurofibromatosis type 1 (NF1) appear to be at an increased risk for autism spectrum disorder (ASD) and exhibit a unique social-cognitive phenotype compared with children with idiopathic ASD. A complete framework is required to better understand autism in NF1, from neurobiological levels through to behavioural and functional outcomes. The primary aims of this study are to establish the frequency of ASD in children with NF1, examine the social cognitive phenotype, investigate the neuropsychological processes contributing to ASD symptoms and poor social functioning in children with NF1, and to investigate novel structural and functional neurobiological markers of ASD and social dysfunction in NF1. The secondary aim of this study is to compare the neuropsychological and neurobiological features of ASD in children with NF1 to a matched group of patients with idiopathic ASD. METHODS AND ANALYSIS This is an international, multisite, prospective, cross-sectional cohort study of children with NF1, idiopathic ASD and typically developing (TD) controls. Participants will be 200 children with NF1 (3-15 years of age), 70 TD participants (3-15 years) and 35 children with idiopathic ASD (7-15 years). Idiopathic ASD and NF1 cases will be matched on age, sex and intelligence. All participants will complete cognitive testing and parents will rate their child's behaviour on standardised questionnaires. Neuroimaging will be completed by a subset of participants aged 7 years and older. Children with NF1 that screen at risk for ASD on the parent-rated Social Responsiveness Scale 2nd Edition will be invited back to complete the Autism Diagnostic Observation Scale 2nd Edition and Autism Diagnostic Interview-Revised to determine whether they fulfil ASD diagnostic criteria. ETHICS AND DISSEMINATION This study has hospital ethics approval and the results will be disseminated through peer-reviewed publications and international conferences.
Collapse
Affiliation(s)
- Kristina M Haebich
- Brain and Mind, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Natalie A Pride
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney Medical School, Westmead, NSW, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, DC, United States
- Departments of Pediatrics and Psychiatry, The George Washington University School of Medicine, Washington, DC, United States
| | - Anita Chisholm
- Brain and Mind, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Melissa Rouel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alice Maier
- Brain and Mind, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Vicki Anderson
- Brain and Mind, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Belinda Barton
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney Medical School, Westmead, NSW, Australia
- Children's Hospital Education Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Tim Silk
- School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Francesca Lami
- Brain and Mind, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jennifer Lorenzo
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Gabriel Dabscheck
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
| | - Michael Kean
- Imaging Department, Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Kathryn N North
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jonathan M Payne
- Brain and Mind, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Shofty B, Bergmann E, Zur G, Asleh J, Bosak N, Kavushansky A, Castellanos FX, Ben-Sira L, Packer RJ, Vezina GL, Constantini S, Acosta MT, Kahn I. Autism-associated Nf1 deficiency disrupts corticocortical and corticostriatal functional connectivity in human and mouse. Neurobiol Dis 2019; 130:104479. [PMID: 31128207 PMCID: PMC6689441 DOI: 10.1016/j.nbd.2019.104479] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022] Open
Abstract
Children with the autosomal dominant single gene disorder, neurofibromatosis type 1 (NF1), display multiple structural and functional changes in the central nervous system, resulting in neuropsychological cognitive abnormalities. Here we assessed the pathological functional organization that may underlie the behavioral impairments in NF1 using resting-state functional connectivity MRI. Coherent spontaneous fluctuations in the fMRI signal across the entire brain were used to interrogate the pattern of functional organization of corticocortical and corticostriatal networks in both NF1 pediatric patients and mice with a heterozygous mutation in the Nf1 gene (Nf1+/-). Children with NF1 demonstrated abnormal organization of cortical association networks and altered posterior-anterior functional connectivity in the default network. Examining the contribution of the striatum revealed that corticostriatal functional connectivity was altered. NF1 children demonstrated reduced functional connectivity between striatum and the frontoparietal network and increased striatal functional connectivity with the limbic network. Awake passive mouse functional connectivity MRI in Nf1+/- mice similarly revealed reduced posterior-anterior connectivity along the cingulate cortex as well as disrupted corticostriatal connectivity. The striatum of Nf1+/- mice showed increased functional connectivity to somatomotor and frontal cortices and decreased functional connectivity to the auditory cortex. Collectively, these results demonstrate similar alterations across species, suggesting that NF1 pathogenesis is linked to striatal dysfunction and disrupted corticocortical connectivity in the default network.
Collapse
Affiliation(s)
- Ben Shofty
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel; The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Zur
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jad Asleh
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noam Bosak
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Liat Ben-Sira
- The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Roger J Packer
- The Gilbert Family Neurofibromatosis Institute, Children's National Health System, Department of Neurology and Pediatrics, George Washington University, Washington, DC, USA
| | - Gilbert L Vezina
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC, USA
| | - Shlomi Constantini
- The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Maria T Acosta
- The Gilbert Family Neurofibromatosis Institute, Children's National Health System, Department of Neurology and Pediatrics, George Washington University, Washington, DC, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
18
|
Nemmi F, Cignetti F, Assaiante C, Maziero S, Audic F, Péran P, Chaix Y. Discriminating between neurofibromatosis-1 and typically developing children by means of multimodal MRI and multivariate analyses. Hum Brain Mapp 2019; 40:3508-3521. [PMID: 31077476 DOI: 10.1002/hbm.24612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 11/08/2022] Open
Abstract
Neurofibromatosis Type 1 leads to brain anomalies involving both gray and white matter. The extent and granularity of these anomalies, together with their possible impact on brain activity, is still unknown. In this multicentric cross-sectional study we submitted a sample of 42 typically developing and 38 neurofibromatosis-1 children to a multimodal MRI assessment including T1, diffusion weighted and resting state functional sequences. We used a pipeline involving several features selection steps coupled with multivariate statistical analysis (supporting vector machine) to discriminate between the two groups while having interpretable models. We used MRI indexes measuring macro (gray matter volume) and microstructural (fractional anisotropy, mean diffusivity) characteristics of the brain, as well as indexes of brain activity (fractional amplitude of low frequency fluctuations) and connectivity (local and global correlation) at rest. We found that structural indexes could discriminate between the two groups, with the mean diffusivity leading to performance as high as the combination of all structural indexes combined (accuracy = 0.86), while functional indexes had worse performances. The MRI signature of NF1 brain pathology is a combination of gray and white matter abnormalities, as measured with gray matter volume, fractional anisotropy, and mean diffusivity.
Collapse
Affiliation(s)
- Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Fabien Cignetti
- CNRS, LNC, Aix Marseille Université, Marseille, France.,CNRS, Fédération 3C, Aix Marseille Université, Marseille, France.,CNRS, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Christine Assaiante
- CNRS, LNC, Aix Marseille Université, Marseille, France.,CNRS, Fédération 3C, Aix Marseille Université, Marseille, France
| | - Stephanie Maziero
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,URI Octogone-Lordat (EA 4156), Université de Toulouse, Toulouse, France
| | - Fredrique Audic
- Service de Neurologie Pédiatrique, CHU Timone-Enfants, Marseille, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
19
|
Mennigen E, Schuette P, Vajdi A, Pacheco L, Rosser T, Bearden CE. Reduced higher dimensional temporal dynamism in neurofibromatosis type 1. Neuroimage Clin 2019; 22:101692. [PMID: 30710873 PMCID: PMC6354288 DOI: 10.1016/j.nicl.2019.101692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/11/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common single gene disorder resulting in multi-organ involvement. In addition to physical manifestations such as characteristic pigmentary changes, nerve sheath tumors, and skeletal abnormalities, NF1 is also associated with increased rates of learning disabilities, attention deficit hyperactivity disorder, and autism spectrum disorder. While there are established NF1-related structural brain anomalies, including brain overgrowth and white matter disruptions, little is known regarding patterns of functional connectivity in NF1. Here, we sought to investigate functional network connectivity (FNC) in a well-characterized sample of NF1 participants (n = 30) vs. age- and sex-matched healthy controls (n = 30). We conducted a comprehensive investigation of both static as well as dynamic FNC and meta-state analysis, a novel approach to examine higher-dimensional temporal dynamism of whole-brain connectivity. We found that static FNC of the cognitive control domain is altered in NF1 participants. Specifically, connectivity between anterior cognitive control areas and the cerebellum is decreased, whereas connectivity within the cognitive control domain is increased in NF1 participants relative to healthy controls. These alterations are independent of IQ. Dynamic FNC analysis revealed that NF1 participants spent more time in a state characterized by whole-brain hypoconnectivity relative to healthy controls. However, connectivity strength of dynamic states did not differ between NF1 participants and healthy controls. NF1 participants exhibited also reduced higher-dimensional dynamism of whole-brain connectivity, suggesting that temporal fluctuations of FNC are reduced. Given that similar findings have been observed in individuals with schizophrenia, higher occurrence of hypoconnected dynamic states and reduced temporal dynamism may be more general indicators of global brain dysfunction and not specific to either disorder.
Collapse
Affiliation(s)
- Eva Mennigen
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Peter Schuette
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Laura Pacheco
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Tena Rosser
- Children's Hospital Los Angeles, Los Angeles, CA, USA; University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Stivaros S, Garg S, Tziraki M, Cai Y, Thomas O, Mellor J, Morris AA, Jim C, Szumanska-Ryt K, Parkes LM, Haroon HA, Montaldi D, Webb N, Keane J, Castellanos FX, Silva AJ, Huson S, Williams S, Gareth Evans D, Emsley R, Green J. Randomised controlled trial of simvastatin treatment for autism in young children with neurofibromatosis type 1 (SANTA). Mol Autism 2018; 9:12. [PMID: 29484149 PMCID: PMC5824534 DOI: 10.1186/s13229-018-0190-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1) is a monogenic model for syndromic autism. Statins rescue the social and cognitive phenotype in animal knockout models, but translational trials with subjects > 8 years using cognition/behaviour outcomes have shown mixed results. This trial breaks new ground by studying statin effects for the first time in younger children with NF1 and co-morbid autism and by using multiparametric imaging outcomes. Methods A single-site triple-blind RCT of simvastatin vs. placebo was done. Assessment (baseline and 12-week endpoint) included peripheral MAPK assay, awake magnetic resonance imaging spectroscopy (MRS; GABA and glutamate+glutamine (Glx)), arterial spin labelling (ASL), apparent diffusion coefficient (ADC), resting state functional MRI, and autism behavioural outcomes (Aberrant Behaviour Checklist and Clinical Global Impression). Results Thirty subjects had a mean age of 8.1 years (SD 1.8). Simvastatin was well tolerated. The amount of imaging data varied by test. Simvastatin treatment was associated with (i) increased frontal white matter MRS GABA (t(12) = - 2.12, p = .055), GABA/Glx ratio (t(12) = - 2.78, p = .016), and reduced grey nuclei Glx (ANCOVA p < 0.05, Mann-Whitney p < 0.01); (ii) increased ASL perfusion in ventral diencephalon (Mann-Whitney p < 0.01); and (iii) decreased ADC in cingulate gyrus (Mann-Whitney p < 0.01). Machine-learning classification of imaging outcomes achieved 79% (p < .05) accuracy differentiating groups at endpoint against chance level (64%, p = 0.25) at baseline. Three of 12 (25%) simvastatin cases compared to none in placebo met 'clinical responder' criteria for behavioural outcome. Conclusions We show feasibility of peripheral MAPK assay and autism symptom measurement, but the study was not powered to test effectiveness. Multiparametric imaging suggests possible simvastatin effects in brain areas previously associated with NF1 pathophysiology and the social brain network. Trial registration EU Clinical Trial Register (EudraCT) 2012-005742-38 (www.clinicaltrialsregister.eu).
Collapse
Affiliation(s)
- Stavros Stivaros
- Academic Unit of Paediatric Radiology, Royal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Foundation Trust, Room 3.311, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL UK
| | - Maria Tziraki
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Cai
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, Brain Research Institute, University of California, California, LA 90095 USA
| | - Owen Thomas
- Academic Unit of Radiology, Salford Royal Foundation NHS Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Joseph Mellor
- Computer Science, University of Manchester, Manchester, UK
| | - Andrew A. Morris
- Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carly Jim
- Manchester Metropolitan University, Manchester, UK
| | - Karolina Szumanska-Ryt
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Hamied A. Haroon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Daniela Montaldi
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicholas Webb
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - John Keane
- Computer Science, University of Manchester, Manchester, UK
| | - Francisco X. Castellanos
- Hassenfeld Children’s Hospital at NYU Langone, Nathan S. Kline Institute for Psychiatric Research, New York, USA
| | - Alcino J. Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, Brain Research Institute, University of California, California, LA 90095 USA
| | - Sue Huson
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - Stephen Williams
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Academic Health Sciences Centre, Manchester, UK
| | - Richard Emsley
- Centre for Biostatistics, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Foundation Trust, Room 3.311, Jean McFarlane Building, Oxford Road, Manchester, M13 9PL UK
| |
Collapse
|
21
|
Koini M, Rombouts SARB, Veer IM, Van Buchem MA, Huijbregts SCJ. White matter microstructure of patients with neurofibromatosis type 1 and its relation to inhibitory control. Brain Imaging Behav 2017; 11:1731-1740. [PMID: 27796732 PMCID: PMC5707233 DOI: 10.1007/s11682-016-9641-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is commonly associated with deficits in executive functions such as working memory and inhibitory control. A valid biomarker to describe the pathological basis of these deficits in NF1 is not available. The aim of this study was to investigate whether any abnormalities in white matter integrity of the executive function related anterior thalamic radiation (ATR), cingulate bundle (CB), and superior longitudinal fasciculus (SLF) may be regarded as a pathological basis for inhibitory control deficits in adolescents with NF1. Sixteen NF1 patients and 32 healthy controls underwent 3 T DTI MRI scanning. Whole brain-, ATR-, CB-, and SLF-white matter integrity were studied using fractional anisotropy, mean (MD), radial, and axial (DA) diffusivity. Correlation analyses between white matter metrics and inhibitory control (as measured with a computerized task) were performed. Also, verbal and performance abilities (IQ-estimates) were assessed and correlated with white matter metrics. Patients showed significant whole brain- and local microstructural pathology when compared to healthy controls in all measures. In NF1-patients, whole-brain (MD: r = .646 and DA: r = .673) and ATR- (r-range: -.405-.771), but not the CB- (r-range: -.307-.472) and SLF- (r-range: -.187-.406) white matter integrity, were correlated with inhibitory control. Verbal and performance abilities were not associated with white matter pathology. In NF1, white matter abnormalities are observed throughout the brain, but damage to the ATR seems specifically, or at least most strongly related to inhibitory control. Future studies should examine whether reduced white matter integrity in other brain regions or tracts is (more strongly) associated with different aspects of the cognitive-behavioral phenotype associated with NF1.
Collapse
Affiliation(s)
- M Koini
- Institute of Psychology, Leiden University, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, A-8036, Graz, Austria.
| | - S A R B Rombouts
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - I M Veer
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - M A Van Buchem
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - S C J Huijbregts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
- Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands
| |
Collapse
|
22
|
Yoncheva YN, Hardy KK, Lurie DJ, Somandepalli K, Yang L, Vezina G, Kadom N, Packer RJ, Milham MP, Castellanos FX, Acosta MT. Computerized cognitive training for children with neurofibromatosis type 1: A pilot resting-state fMRI study. Psychiatry Res 2017; 266:53-58. [PMID: 28605662 PMCID: PMC5582983 DOI: 10.1016/j.pscychresns.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 12/19/2022]
Abstract
In this pilot study, we examined training effects of a computerized working memory program on resting state functional magnetic resonance imaging (fMRI) measures in children with neurofibromatosis type 1 (NF1). We contrasted pre- with post-training resting state fMRI and cognitive measures from 16 participants (nine males; 11.1 ± 2.3 years) with NF1 and documented working memory difficulties. Using non-parametric permutation test inference, we found significant regionally specific differences (family-wise error corrected) in two of four voxel-wise resting state measures: fractional amplitude of low frequency fluctuations (indexing peak-to-trough intensity of spontaneous oscillations) and regional homogeneity (indexing local intrinsic synchrony). Some cognitive task improvement was observed as well. These preliminary findings suggest that regionally specific changes in resting state fMRI indices may be associated with treatment-related cognitive amelioration in NF1. Nevertheless, current results must be interpreted with caution pending independent controlled replication.
Collapse
Affiliation(s)
- Yuliya N Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Kristina K Hardy
- Department of Pediatrics and Neurology, George Washington University, School of Medicine, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Daniel J Lurie
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lanbo Yang
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Gilbert Vezina
- Children's National Health System, Washington, DC, USA; Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC, USA
| | - Nadja Kadom
- Department of Radiology and Imaging Sciences, Children's Healthcare of Atlanta (Egleston), Atlanta, GA, USA
| | - Roger J Packer
- Department of Pediatrics and Neurology, George Washington University, School of Medicine, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Michael P Milham
- Child Mind Institute, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria T Acosta
- Department of Pediatrics and Neurology, George Washington University, School of Medicine, Washington, DC, USA; Children's National Health System, Washington, DC, USA.
| |
Collapse
|
23
|
Jonas RK, Roh E, Montojo CA, Pacheco LA, Rosser T, Silva AJ, Bearden CE. Risky Decision Making in Neurofibromatosis Type 1: An Exploratory Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:170-179. [PMID: 28736755 DOI: 10.1016/j.bpsc.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a monogenic disorder affecting cognitive function. About one third of children with NF1 have attentional disorders, and the cognitive phenotype is characterized by impairment in prefrontally-mediated functions. Mouse models of NF1 show irregularities in GABA release and striatal dopamine metabolism. We hypothesized that youth with NF1 would show abnormal behavior and neural activity on a task of risk-taking reliant on prefrontal-striatal circuits. METHODS Youth with NF1 (N=29) and demographically comparable healthy controls (N=22), ages 8-19, were administered a developmentally sensitive gambling task, in which they chose between low-risk gambles with a high probability of obtaining a small reward, and high-risk gambles with a low probability of obtaining a large reward. We used functional magnetic resonance imaging (fMRI) to investigate neural activity associated with risky decision making, as well as age-associated changes in these behavioral and neural processes. RESULTS Behaviorally, youth with NF1 tended to make fewer risky decisions than controls. Neuroimaging analyses revealed significantly reduced neural activity across multiple brain regions involved in higher-order semantic processing and motivation (i.e., anterior cingulate, paracingulate, supramarginal, and angular gyri) in patients with NF1 relative to controls during the task. We also observed atypical age-associated changes in neural activity in patients with NF1, such that during risk taking, neural activity tended to decrease with age in controls, whereas it tended to increase with age in patients with NF1. CONCLUSIONS Findings suggest that developmental trajectories of neural activity during risky decision-making may be disrupted in youth with NF1.
Collapse
Affiliation(s)
- Rachel K Jonas
- Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles
| | - EunJi Roh
- Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles
| | - Caroline A Montojo
- Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles
| | - Laura A Pacheco
- Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles
| | - Tena Rosser
- Children's Hospital of Los Angeles, Los Angeles, CA
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry & Biobehavioral Sciences, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles
| |
Collapse
|
24
|
Green T, Naylor PE, Davies W. Attention deficit hyperactivity disorder (ADHD) in phenotypically similar neurogenetic conditions: Turner syndrome and the RASopathies. J Neurodev Disord 2017; 9:25. [PMID: 28694877 PMCID: PMC5502326 DOI: 10.1186/s11689-017-9205-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background ADHD (attention deficit hyperactivity disorder) is a common neurodevelopmental disorder. There has been extensive clinical and basic research in the field of ADHD over the past 20 years, but the mechanisms underlying ADHD risk are multifactorial, complex and heterogeneous and, as yet, are poorly defined. In this review, we argue that one approach to address this challenge is to study well-defined disorders to provide insights into potential biological pathways that may be involved in idiopathic ADHD. Main body To address this premise, we selected two neurogenetic conditions that are associated with significantly increased ADHD risk: Turner syndrome and the RASopathies (of which Noonan syndrome and neurofibromatosis type 1 are the best-defined with regard to ADHD-related phenotypes). These syndromes were chosen for two main reasons: first, because intellectual functioning is relatively preserved, and second, because they are strikingly phenotypically similar but are etiologically distinct. We review the cognitive, behavioural, neural and cellular phenotypes associated with these conditions and examine their relevance as a model for idiopathic ADHD. Conclusion We conclude by discussing current and future opportunities in the clinical and basic research of these conditions, which, in turn, may shed light upon the biological pathways underlying idiopathic ADHD.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, USA
| | - Paige E Naylor
- Department of Clinical Psychology, Palo Alto University, Palo Alto, CA USA
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,School of Psychology, Cardiff University, Tower Building, 70, Park Place, Cardiff, CF10 3AT UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
25
|
Ibrahim AFA, Montojo CA, Haut KM, Karlsgodt KH, Hansen L, Congdon E, Rosser T, Bilder RM, Silva AJ, Bearden CE. Spatial working memory in neurofibromatosis 1: Altered neural activity and functional connectivity. NEUROIMAGE-CLINICAL 2017; 15:801-811. [PMID: 28725547 PMCID: PMC5501884 DOI: 10.1016/j.nicl.2017.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 12/25/2022]
Abstract
Background Neurofibromatosis Type 1 (NF1) is a genetic disorder that disrupts central nervous system development and neuronal function. Cognitively, NF1 is characterized by difficulties with executive control and visuospatial abilities. Little is known about the neural substrates underlying these deficits. The current study utilized Blood-Oxygen-Level-Dependent (BOLD) functional MRI (fMRI) to explore the neural correlates of spatial working memory (WM) deficits in patients with NF1. Methods BOLD images were acquired from 23 adults with NF1 (age M = 32.69; 61% male) and 25 matched healthy controls (age M = 33.08; 64% male) during an in-scanner visuo-spatial WM task. Whole brain functional and psycho-physiological interaction analyses were utilized to investigate neural activity and functional connectivity, respectively, during visuo-spatial WM performance. Participants also completed behavioral measures of spatial reasoning and verbal WM. Results Relative to healthy controls, participants with NF1 showed reduced recruitment of key components of WM circuitry, the left dorsolateral prefrontal cortex and right parietal cortex. In addition, healthy controls exhibited greater simultaneous deactivation between the posterior cingulate cortex (PCC) and temporal regions than NF1 patients. In contrast, NF1 patients showed greater PCC and bilateral parietal connectivity with visual cortices as well as between the PCC and the cerebellum. In NF1 participants, increased functional coupling of the PCC with frontal and parietal regions was associated with better spatial reasoning and WM performance, respectively; these relationships were not observed in controls. Conclusions Dysfunctional engagement of WM circuitry, and aberrant functional connectivity of ‘task-negative’ regions in NF1 patients may underlie spatial WM difficulties characteristic of the disorder. NF1 is a monogenic disorder associated with executive function deficits. Hypoactivity of working memory circuitry in NF1 patients relative to controls Increased PCC connectivity with visual cortex/cerebellum in NF1 patients during task Greater simultaneous deactivation between default mode regions in controls Greater PCC-frontal coupling associated with better behavioral performance in NF1
Collapse
Affiliation(s)
- Amira F A Ibrahim
- Department of Psychology, University of Michigan, Ann Arbor, United States
| | | | - Kristen M Haut
- Department of Psychiatry, Rush University Medical Center, United States
| | - Katherine H Karlsgodt
- Department of Psychology, University of California, Los Angeles, United States; Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Laura Hansen
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Eliza Congdon
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Tena Rosser
- Department of Neurology, Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Robert M Bilder
- Department of Psychology, University of California, Los Angeles, United States; Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States
| | - Alcino J Silva
- Department of Psychology, University of California, Los Angeles, United States; Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States; Department of Neurobiology, University of California, Los Angeles, United States; Integrative Center for Learning and Memory, University of California, Los Angeles, United States
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, United States; Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, United States; Integrative Center for Learning and Memory, University of California, Los Angeles, United States.
| |
Collapse
|
26
|
Impaired engagement of the ventral attention system in neurofibromatosis type 1. Brain Imaging Behav 2017; 12:499-508. [DOI: 10.1007/s11682-017-9717-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Huijbregts SC, Loitfelder M, Rombouts SA, Swaab H, Verbist BM, Arkink EB, Van Buchem MA, Veer IM. Cerebral volumetric abnormalities in Neurofibromatosis type 1: associations with parent ratings of social and attention problems, executive dysfunction, and autistic mannerisms. J Neurodev Disord 2015; 7:32. [PMID: 26473019 PMCID: PMC4607002 DOI: 10.1186/s11689-015-9128-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a single-gene neurodevelopmental disorder, in which social and cognitive problems are highly prevalent. Several commonly observed central nervous system (CNS) abnormalities in NF1 might underlie these social and cognitive problems. Cerebral volumetric abnormalities are among the most consistently observed CNS abnormalities in NF1. This study investigated whether differences were present between NF1 patients and healthy controls (HC) in volumetric measures of cortical and subcortical brain regions and whether differential associations existed for NF1 patients and HC between the volumetric measures and parent ratings of social skills, attention problems, social problems, autistic mannerisms, and executive dysfunction. Methods Fifteen NF1 patients (mean age 12.9 years, SD 2.6) and 18 healthy controls (HC, mean age 13.8 years, SD 3.6) underwent 3 T MRI scanning. Segmentation of cortical gray and white matter, as well as volumetry of subcortical nuclei, was carried out. Voxel-based morphometry was performed to assess cortical gray matter density. Correlations were calculated, for NF1-patients and HC separately, between MRI parameters and scores on selected dimensions of the following behavior rating scales: the Social Skills Rating System, the Child Behavior Checklist, the Social Responsiveness Scale, the Behavior Rating Inventory of Executive Functioning, and the Dysexecutive Questionnaire. Results After correction for age, sex, and intracranial volume, larger volumes of all subcortical regions were found in NF1 patients compared to controls. Patients further showed decreased gray matter density in midline regions of the frontal and parietal lobes and larger total white matter volume. Significantly more social and attention problems, more autistic mannerisms, and poorer executive functioning were reported for NF1 patients compared to HC. In NF1 patients, larger left putamen volume and larger total white matter volume were associated with more social problems and poorer executive functioning, larger right amygdala volume with poorer executive functioning and autistic mannerisms, and smaller precentral gyrus gray matter density was associated with more social problems. In controls, only significant negative correlations were observed: larger volumes (and greater gray matter density) were associated with better outcomes. Conclusions Widespread volumetric differences between patients and controls were found in cortical and subcortical brain regions. In NF1 patients but not HC, larger volumes were associated with poorer behavior ratings.
Collapse
Affiliation(s)
- Stephan Cj Huijbregts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, P.O. Box 9555, 2300 RB Leiden, The Netherlands
| | - Marisa Loitfelder
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands.,Department of Neurology, Medical University of Graz, Graz, Austria
| | - Serge A Rombouts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Hanna Swaab
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, The Netherlands
| | - Berit M Verbist
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Enrico B Arkink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark A Van Buchem
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilya M Veer
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|