1
|
Fu Y, Zeng S, Wang Z, Huang H, Zhao X, Li M. Mechanisms of Copper-Induced Autophagy and Links with Human Diseases. Pharmaceuticals (Basel) 2025; 18:99. [PMID: 39861161 PMCID: PMC11768742 DOI: 10.3390/ph18010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions. Since the success of platinum-based compounds in the clinical treatment of various types of neoplasias, metal-based drugs have shown encouraging perspectives for drug development. Compared to platinum, copper is an essential intracellular trace element that may have better prospects for drug development than platinum. Recently, the potential therapeutic role of copper-induced autophagy in chronic diseases such as Parkinson's, Wilson's, and cardiovascular disease has already been demonstrated. In brief, copper ions, numerous copper complexes, and copper-based nano-preparations could induce autophagy, a lysosome-dependent process that plays an important role in various human diseases. In this review, we not only focus on the current advances in elucidating the mechanisms of copper or copper-based compounds/preparations on the regulation of autophagy but also outline the association between copper-induced autophagy and human diseases.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhenlin Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huiting Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Zhao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Mazi TA, Shibata NM, Sarode GV, Medici V. Hepatic oxylipin profiles in mouse models of Wilson disease: New insights into early hepatic manifestations. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159446. [PMID: 38072238 PMCID: PMC11224028 DOI: 10.1016/j.bbalip.2023.159446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hepatic inflammation is commonly identified in Wilson disease (WD), a genetic disease of hepatic and brain copper accumulation. Copper accumulation is associated with increased oxidative stress and reactive oxygen species generation which may result in non-enzymatic oxidation of membrane-bound polyunsaturated fatty acids (PUFA). PUFA can be oxidized enzymatically via lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 monooxygenases (CYP). Products of PUFA oxidation are collectively known as oxylipins (OXL) and are bioactive lipids that modulate hepatic inflammation. We examined hepatic OXL profiles at early stages of WD in two mouse models, the toxic milk mouse from The Jackson Laboratory (tx-j) and the Atp7b knockout on a C57Bl/6 background (Atp7b-/-B6). Targeted lipidomic analysis performed by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry showed that in both tx-j and Atp7b-/-B6 mice, hepatic OXL profiles were altered with higher thromboxane and prostaglandins levels. The levels of oxidative stress marker, 9-HETE were increased more markedly in tx-j mice. However, both genotypes showed upregulated transcript levels of many genes related to oxidative stress and inflammation. Both genotypes showed higher prostaglandins, thromboxin along with higher PUFA-derived alcohols, diols, and ketones with altered epoxides; the expression of Alox5 was upregulated and many CYP-related genes were dysregulated. Pathway analyses show dysregulation in arachidonic acid and linoleic acid metabolism characterizes mice with WD. Our findings indicate alterations in hepatic PUFA metabolism in early-stage WD and suggest the upregulation of both, non-enzymatic ROS-dependent and enzymatic PUFA oxidation, which could have implications for hepatic manifestations in WD and represent potential targets for future therapies.
Collapse
Affiliation(s)
- Tagreed A Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Gaurav V Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Wungjiranirun M, Sharzehi K. Wilson's Disease. Semin Neurol 2023; 43:626-633. [PMID: 37607588 DOI: 10.1055/s-0043-1771465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Wilson's disease (WD) can present with liver disease, neurological deficits, and psychiatric disorders. Results of genetic prevalence studies suggest that WD might be much more common than previously estimated. Early recognition of WD remains challenging because it is a great imitator and requires a high index of suspicion for correct and timely diagnosis. Early diagnosis of WD is crucial to ensure that patients can be started on adequate treatment. In association with other clinical and biochemical tests, liver biopsy results and molecular genetic testing can also be used for diagnosing WD. Medical therapy is effective for most patients; liver transplant can rescue those with acute liver failure or those with advanced liver disease who fail to respond to or discontinue medical therapy. Although novel therapies, such as gene therapy, are on the horizon, screening and prevention of delayed diagnosis remains paramount.
Collapse
Affiliation(s)
- Manida Wungjiranirun
- Division of Gastroenterology, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Kaveh Sharzehi
- Division of Gastroenterology, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
5
|
Mukherjee AG, Gopalakrishnan AV. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med Oncol 2023; 40:248. [PMID: 37480500 DOI: 10.1007/s12032-023-02124-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) protein has garnered significant interest due to its crucial function in safeguarding cells and tissues. The Nrf2 protein is crucial in preserving tissue integrity by safeguarding cells against metabolic, xenobiotic and oxidative stress. Due to its various functions, Nrf2 is a potential pharmacological target for reducing the incidence of diseases such as cancer. However, mutations in Keap1-Nrf2 are not consistently favored in all types of cancer. Instead, they seem to interact with specific driver mutations of tumors and their respective tissue origins. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway mutations are a powerful cancer adaptation that utilizes inherent cytoprotective pathways, encompassing nutrient metabolism and ROS regulation. The augmentation of Nrf2 activity elicits significant alterations in the characteristics of neoplastic cells, such as resistance to radiotherapy and chemotherapy, safeguarding against apoptosis, heightened invasiveness, hindered senescence, impaired autophagy and increased angiogenesis. The altered activity of Nrf2 can arise from diverse genetic and epigenetic modifications that instantly impact Nrf2 regulation. The present study aims to showcase the correlation between the Keap1-Nrf2 pathway and the progression of cancers, emphasizing genetic mutations, metabolic processes, immune regulation, and potential therapeutic strategies. This article delves into the intricacies of Nrf2 pathway anomalies in cancer, the potential ramifications of uncontrolled Nrf2 activity, and therapeutic interventions to modulate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
7
|
Xia F, Fu Y, Xie H, Chen Y, Fang D, Zhang W, Liu P, Li M. Suppression of ATG4B by copper inhibits autophagy and involves in Mallory body formation. Redox Biol 2022; 52:102284. [PMID: 35349929 PMCID: PMC8965161 DOI: 10.1016/j.redox.2022.102284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an evolutionarily conserved self-protecting mechanism implicated in cellular homeostasis. ATG4B plays a vital role in autophagy process via undertaking priming and delipidation of LC3. Chemical inhibitors and regulative modifications such as oxidation of ATG4B have been demonstrated to modulate autophagy function. Whether and how ATG4B could be regulated by metal ions is largely unknown. Copper is an essential trace metal served as static co-factors in redox reactions in physiology process. Excessive accumulation of copper in ATP7B mutant cells leads to pathology progression such as insoluble Mallory body (MB) in Wilson disease (WD). The clearance of MB via autophagy pathway was thought as a promising strategy for WD. Here, we discovered that copper ion instead of other ions could inhibit the activity of ATG4B followed by autophagy suppression. In addition, copper could induce ATG4B oligomers depending on cysteine oxidation which could be abolished in reduced condition. Copper also promotes the formation of insoluble ATG4B aggregates, as well as p62-and ubiquitin-positive aggregates, which is consistent with the components of MB caused by copper overload in WD cell model. Importantly, overexpression of ATG4B could partially reduce the formation of MB and rescue impaired autophagy. Taken together, our results uncovered for the first time a new damage mechanism mediated by copper and implied new insights of the crosstalk between the toxicity of copper and autophagy in the pathogenesis of WD.
Collapse
Affiliation(s)
- Fan Xia
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuanyuan Fu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huazhong Xie
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dongmei Fang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wei Zhang
- Laboratory Animal Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
9
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
10
|
Sarode GV, Neier K, Shibata NM, Shen Y, Goncharov DA, Goncharova EA, Mazi TA, Joshi N, Settles ML, LaSalle JM, Medici V. Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation. Cell Mol Gastroenterol Hepatol 2021; 12:1457-1477. [PMID: 34098115 PMCID: PMC8487080 DOI: 10.1016/j.jcmgh.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson Laboratory (Bar Harbor, ME) C3He-Atp7btx-j/J (tx-j) WD mouse model revealed an epigenetic signature of WD, including changes in histone deacetylase (HDAC) 5. We tested the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD. METHODS We investigated class IIa HDAC4 and HDAC5 and H3K9/H3K27 histone acetylation in tx-j mouse livers compared with C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet, D-penicillamine (copper chelator), and choline (methyl group donor). Experiments with copper-loaded hepatoma G2 cells were conducted to validate in vivo studies. RESULTS In 9-week tx-j mice, HDAC5 levels increased significantly after 8 days of a 60% kcal fat diet compared with chow. In 24-week tx-j mice, HDAC4/5 levels were reduced 5- to 10-fold compared with C3H, likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were affected by disease progression and accompanied by increased acetylation. D-penicillamine and choline partially restored HDAC4/5 and H3K9ac/H3K27ac to C3H levels. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development, which, in turn, were regulated by histone acetylation in tx-j mice compared with C3H mice, with Pparα and Pparγ among the most relevant targets. CONCLUSIONS These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation can regulate gene expression in key metabolic pathways in the pathogenesis of WD.
Collapse
Affiliation(s)
| | - Kari Neier
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | | | - Yuanjun Shen
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Dmitry A. Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Tagreed A. Mazi
- Department of Nutrition, Davis, California,Department of Community Health Sciences–Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nikhil Joshi
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Matthew L. Settles
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Davis, California,Correspondence Address correspondence to: Valentina Medici, MD, FAASLD, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California–Davis, 4150 V Street, Patient Support Services Building (PSSB) Suite 3500, Sacramento, California 95817. fax: (916) 734-7908.
| |
Collapse
|
11
|
Abstract
Copper accumulation and deficiency are reciprocally connected to lipid metabolism. In Wilson disease (WD), which is caused by a genetic loss of function of the copper-transporting P-type ATPase beta, copper accumulates mainly in the liver and lipid metabolism is dysregulated. The underlying mechanisms linking copper and lipid metabolism in WD are not clear. Copper may impair metabolic machinery by direct binding to protein and lipid structures or by generating reactive oxygen species with consequent damage to cellular organelles vital to energy metabolism. In the liver, copper overload results in mitochondrial impairment, down-regulation of lipid metabolism, and the development of steatosis with an etiology not fully elucidated. Little is known regarding the effect of copper overload on extrahepatic energy homeostasis. This review aims to discuss alterations in hepatic energy metabolism associated with WD, highlights potential mechanisms involved in the development of hepatic and systemic dysregulation of lipid metabolism, and reviews current knowledge on the effects of copper overload on extrahepatic energy metabolism.
Collapse
Affiliation(s)
- Tagreed A. Mazi
- Department of Nutrition, University of California Davis, Davis, CA, USA,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA,Corresponding author. (V. Medici)
| |
Collapse
|
12
|
Harada M, Honma Y, Yoshizumi T, Kumamoto K, Oe S, Harada N, Tanimoto A, Yabuki K, Karasuyama T, Yoneda A, Shibata M. Idiopathic copper toxicosis: is abnormal copper metabolism a primary cause of this disease? Med Mol Morphol 2019; 53:50-55. [DOI: 10.1007/s00795-019-00227-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/21/2019] [Indexed: 01/15/2023]
|
13
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Tassabehji NM, VanLandingham JW, Levenson CW. Copper Alters the Conformation and Transcriptional Activity of the Tumor Suppressor Protein p53 in Human Hep G2 Cells. Exp Biol Med (Maywood) 2016; 230:699-708. [PMID: 16246896 DOI: 10.1177/153537020523001002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The tumor suppressor protein p53 plays a role in the molecular response to DNA damage by acting as a DNA-binding transcription factor that regulates specific target genes to arrest the cell cycle, induce repair mechanisms, and initiate apoptotic cell death. To test the effect of copper on the transcriptional activity of p53, Hep G2 cells were transiently transfected with a luciferase reporter gene downstream from multiple p53 response elements. Co-transfection with the p53 gene resulted in a 6-fold increase in luciferase activity, showing that p53 acts as a transcription factor in this system. However, in the presence of copper, luciferase activity was significantly reduced. Oligonucleotide arrays representing 145 known p53-associated genes were hybridized with biotinylated cDNAs from mRNA extracted from control and copper-treated Hep G2 cells. Among the genes that were differentially regulated were fos, RB1, glutathione peroxidase, TGF-β, and 15-lipoxygenase, a gene known to be activated by mutant p53. Although control Hep G2 cells synthesize wild-type p53, immunocytochemistry identified not only wild type, but also mutant p53 in the presence of copper and other agents that induce oxidative damage. Thus, this report not only identifies genes that may play a role in copper-mediated apoptosis, but also suggests that copper-induced oxidative processes result in the synthesis of mutant p53 with altered transcriptional properties.
Collapse
MESH Headings
- Annexin A5/metabolism
- Apoptosis/drug effects
- Biomarkers, Tumor/metabolism
- Biotinylation
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Caspase 3
- Caspase Inhibitors
- Cell Line, Tumor
- Copper/toxicity
- Dose-Response Relationship, Drug
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Immunohistochemistry
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Luciferases/metabolism
- Mutation
- Oligonucleotide Array Sequence Analysis
- Oxidation-Reduction
- Protein Conformation/drug effects
- RNA, Messenger/metabolism
- Transcription, Genetic/drug effects
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Nadine M Tassabehji
- Florida State University, 237 Biomedical Research Facility, Tallahassee, FL 32306-4340, USA
| | | | | |
Collapse
|
15
|
Lahiri P, Schmidt V, Smole C, Kufferath I, Denk H, Strnad P, Rülicke T, Fröhlich LF, Zatloukal K. p62/Sequestosome-1 Is Indispensable for Maturation and Stabilization of Mallory-Denk Bodies. PLoS One 2016; 11:e0161083. [PMID: 27526095 PMCID: PMC4985067 DOI: 10.1371/journal.pone.0161083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/31/2016] [Indexed: 11/19/2022] Open
Abstract
Mallory-Denk bodies (MDBs) are hepatocytic protein aggregates found in steatohepatitis and several other chronic liver diseases as well as hepatocellular carcinoma. MDBs are mainly composed of phosphorylated keratins and stress protein p62/Sequestosome-1 (p62), which is a common component of cytoplasmic aggregates in a variety of protein aggregation diseases. In contrast to the well-established role of keratins, the role of p62 in MDB pathogenesis is still elusive. We have generated total and hepatocyte-specific p62 knockout mice, fed them with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce MDBs and allowed the mice to recover from DDC intoxication on a standard diet to investigate the role of p62 in MDB formation and elimination. In the absence of p62, smaller, granular and less distinct MDBs appeared, which failed to mature to larger and compact inclusions. Moreover, p62 deficiency impaired the binding of other proteins such as NBR1 and Hsp25 to MDBs and altered the cellular defense mechanism by downregulation of Nrf2 target genes. Upon recovery from DDC intoxication on a standard diet, there was an enhanced reduction of p62-deficient MDBs, which was accompanied by a pronounced decrease in ubiquitinated proteins. Our data provide strong evidence that keratin aggregation is the initial step in MDB formation in steatohepatitis-related mouse models. Interaction of p62 with keratin aggregates then leads to maturation i.e., enlargement and stabilization of the MDBs as well as recruitment of other MDB-associated proteins.
Collapse
Affiliation(s)
- Pooja Lahiri
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Volker Schmidt
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Smole
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Pavel Strnad
- IZKF and Department of Internal Medicine III, Aachen, Germany
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
16
|
Udeigwe TK, Teboh JM, Eze PN, Stietiya MH, Kumar V, Hendrix J, Mascagni HJ, Ying T, Kandakji T. Implications of leading crop production practices on environmental quality and human health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:267-279. [PMID: 25585140 DOI: 10.1016/j.jenvman.2014.11.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Globally, much weight is currently being placed on agriculture to provide food for the growing population as well as feedstock for the bioenergy industry. Unfortunately, the intensification of agricultural operations to satisfy these growing needs has been associated with a number of environmental and human health risks. A review of publications on the subject was conducted and emphasis was placed on articles focusing on agriculture, environment, and public health as well as their interactions. Supporting information was also gathered from publications of various agricultural and environmental agencies. Agricultural practices with potential negative implications on the environment and human health were identified broadly as: (a) utilization of biosolids and animal manures, (b) use of agricultural chemicals, (c) management of post-harvest residue, (d) irrigation, and (e) tillage operations. Soil, water, and air contamination by nutrients, heavy metals, pathogens, and pesticides, as well as air contamination by particulate matters, noxious gases, and pathogens were among the leading environmental impacts. Some of the human-health impacts identified included neurological and reproductive defects, cardiovascular risks, cancers and other diseases (of kidney, liver, lung, and skin), skin allergies, gastroenteritis, and methemoglobinemia. Continual awareness on the impacts of the reviewed agricultural practices on environmental quality and human health and the implementation of experimentally-backed best management practices in agricultural systems remain indispensable.
Collapse
Affiliation(s)
- Theophilus K Udeigwe
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Jasper M Teboh
- Carrington Research Extension Center, North Dakota State University, Carrington, ND, USA
| | - Peter N Eze
- School of Geography & Environmental Studies, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa
| | - M Hashem Stietiya
- Department of Land, Water and Environment, Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Vipan Kumar
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Bioscience Building, Bozeman, MT 59717-3150, USA
| | - James Hendrix
- Northeast Region, Louisiana State University Agricultural Center, 212-B Macon Ridge Road, Winnsboro LA 71295, USA
| | - Henry J Mascagni
- Northeast Region, Louisiana State University Agricultural Center, 212-B Macon Ridge Road, Winnsboro LA 71295, USA
| | - Teng Ying
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tarek Kandakji
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
17
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Manley S, Williams JA, Ding WX. Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood) 2013; 238:525-38. [PMID: 23856904 DOI: 10.1177/1535370213489446] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p62/sequestosome-1/A170/ZIP (hereafter referred to as p62) is a scaffold protein that has multiple functions, such as signal transduction, cell proliferation, cell survival, cell death, inflammation, tumourigenesis and oxidative stress response. While p62 is an autophagy substrate and is degraded by autophagy, p62 serves as an autophagy receptor for selective autophagic clearance of protein aggregates and organelles. Moreover, p62 functions as a signalling hub for various signalling pathways, including NF-κB, Nrf2 and mTOR. In this review, we discuss the pathophysiological role of p62 in the liver, including formation of hepatic inclusion bodies, cholestasis, obesity, insulin resistance, liver cell death and tumourigenesis.
Collapse
Affiliation(s)
- Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | | | | |
Collapse
|
19
|
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) in adolescents and children is rapidly becoming one of the most common causes of chronic liver disease worldwide. NAFLD varies from simple fatty liver to nonalcoholic steatohepatitis (NASH) with possible fibrosis. Several studies suggest that oxidative stress plays a central role in several metabolic abnormalities and cellular damage that characterize NAFLD. We investigated whether transition metals and their related proteins were related to NAFLD symptoms and their underlying processes. METHODS We measured copper, iron, ceruloplasmin (Cp) concentration and activity, transferrin (Tf), ferroxidase activity, and ferritin, and we calculated Tf saturation and Cp to Tf ratio (Cp/Tf) as an index of the activity of the antioxidant Cp-Tf system in 100 children with biopsy-proven NAFLD. Pediatric patients were grouped by nonalcoholic fatty liver disease score (NAS) ≥ 5 (30 subjects) and NAS < 5 (70). RESULTS Cp distinguished children with NAS ≥ 5 from those with NAS < 5 with an accuracy of 82%. Specifically, a receiver operator characteristics curve showed that a cutoff of 28.6 mg/dL separated NAS ≥ 5 from NAS < 5 with a specificity of 92% and a sensitivity of 76%. The Cp/Tf ratio, as well as copper concentration and Cp activity, decreased in the NAS ≥ 5 group, pointing out an imbalance in metal regulation. Either copper or Cp concentrations were lower in subjects having ballooning. CONCLUSIONS Serum antioxidant capacity owing to Cp failure is strongly associated with NAFLD-related damage. Further studies are, however, required to clarify the role of Cp in NAFLD pathogenesis and to evaluate its potential application as diagnostic marker.
Collapse
|
20
|
Medici V, Shibata NM, Kharbanda KK, LaSalle JM, Woods R, Liu S, Engelberg JA, Devaraj S, Török NJ, Jiang JX, Havel PJ, Lönnerdal B, Kim K, Halsted CH. Wilson's disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology 2013; 57:555-65. [PMID: 22945834 PMCID: PMC3566330 DOI: 10.1002/hep.26047] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022]
Abstract
UNLABELLED Hepatic methionine metabolism may play an essential role in regulating methylation status and liver injury in Wilson's disease (WD) through the inhibition of S-adenosylhomocysteine hydrolase (SAHH) by copper (Cu) and the consequent accumulation of S-adenosylhomocysteine (SAH). We studied the transcript levels of selected genes related to liver injury, levels of SAHH, SAH, DNA methyltransferases genes (Dnmt1, Dnmt3a, Dnmt3b), and global DNA methylation in the tx-j mouse (tx-j), an animal model of WD. Findings were compared to those in control C3H mice, and in response to Cu chelation by penicillamine (PCA) and dietary supplementation of the methyl donor betaine to modulate inflammatory and methylation status. Transcript levels of selected genes related to endoplasmic reticulum stress, lipid synthesis, and fatty acid oxidation were down-regulated at baseline in tx-j mice, further down-regulated in response to PCA, and showed little to no response to betaine. Hepatic Sahh transcript and protein levels were reduced in tx-j mice with consequent increase of SAH levels. Hepatic Cu accumulation was associated with inflammation, as indicated by histopathology and elevated serum alanine aminotransferase (ALT) and liver tumor necrosis factor alpha (Tnf-α) levels. Dnmt3b was down-regulated in tx-j mice together with global DNA hypomethylation. PCA treatment of tx-j mice reduced Tnf-α and ALT levels, betaine treatment increased S-adenosylmethionine and up-regulated Dnmt3b levels, and both treatments restored global DNA methylation levels. CONCLUSION Reduced hepatic Sahh expression was associated with increased liver SAH levels in the tx-j model of WD, with consequent global DNA hypomethylation. Increased global DNA methylation was achieved by reducing inflammation by Cu chelation or by providing methyl groups. We propose that increased SAH levels and inflammation affect widespread epigenetic regulation of gene expression in WD.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis
| | - Rima Woods
- Department of Medical Microbiology and Immunology, University of California Davis
| | - Sarah Liu
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | | | | | - Natalie J. Török
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Joy X. Jiang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| | - Peter J. Havel
- Department of Molecular Biosciences, University of California Davis
- Department of Nutrition, University of California Davis
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis
| | - Charles H. Halsted
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis
| |
Collapse
|
21
|
Abstract
Nonalcoholic steatohepatitis (NASH) is defined histopathologically by the presence of macrovesicular steatosis, cellular ballooning, and inflammation. NASH represents a complex multifactorial disease that typically occurs within the context of the metabolic syndrome. NASH lacks homogeneity, and other forms of NASH can present atypically. Less than 50% of patients with NASH respond to pharmacologic treatment, which speaks to this heterogeneity. The authors discuss drugs, disease entities, and nutritional states that can cause or exacerbate underlying NASH indirectly through worsening insulin resistance or directly by interfering with lipid metabolism, promoting oxidative injury, or activating inflammatory pathways.
Collapse
Affiliation(s)
- Soledad Larrain
- Division of Gastroenterology & Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
22
|
Iakovidis I, Delimaris I, Piperakis SM. Copper and its complexes in medicine: a biochemical approach. Mol Biol Int 2011; 2011:594529. [PMID: 22091409 PMCID: PMC3195324 DOI: 10.4061/2011/594529] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
The fundamental role of copper and the recognition of its complexes as important bioactive compounds in vitro and in vivo aroused an ever-increasing interest in these agents as potential drugs for therapeutic intervention in various diseases. The vast array of information available for their bioinorganic properties and mode of action in several biological systems, combined with the new opportunities offered by the flourishing technologies of medicinal chemistry, is creating an exciting scenario for the development of a novel generation of highly active drugs with minimized side effects which could add significantly to the current clinical research and practice. In this paper we attempt to summarize all the available-to-date information on these issues.
Collapse
Affiliation(s)
- Isidoros Iakovidis
- Department of Physics Chemistry & Materials Technology, Technological Educational Institute of Athens, 12210 Athens, Greece
| | | | | |
Collapse
|
23
|
Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011; 16:123-40. [PMID: 21251164 DOI: 10.1111/j.1365-2443.2010.01473.x] [Citation(s) in RCA: 1162] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Keap1–Nrf2 regulatory pathway plays a central role in the protection of cells against oxidative and xenobiotic damage. Under unstressed conditions, Nrf2 is constantly ubiquitinated by the Cul3–Keap1 ubiquitin E3 ligase complex and rapidly degraded in proteasomes. Upon exposure to electrophilic and oxidative stresses, reactive cysteine residues of Keap1 become modified, leading to a decline in the E3 ligase activity, stabilization of Nrf2 and robust induction of a battery of cytoprotective genes. Biochemical and structural analyses have revealed that the intact Keap1 homodimer forms a cherry-bob structure in which one molecule of Nrf2 associates with two molecules of Keap1 by using two binding sites within the Neh2 domain of Nrf2. This two-site binding appears critical for Nrf2 ubiquitination. In many human cancers, missense mutations in KEAP1 and NRF2 genes have been identified. These mutations disrupt the Keap1–Nrf2 complex activity involved in ubiquitination and degradation of Nrf2 and result in constitutive activation of Nrf2. Elevated expression of Nrf2 target genes confers advantages in terms of stress resistance and cell proliferation in normal and cancer cells. Discovery and development of selective Nrf2 inhibitors should make a critical contribution to improved cancer therapy.
Collapse
Affiliation(s)
- Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | | | | |
Collapse
|
24
|
Honma Y, Harada M, Sato M, Katsuki Y, Hiura M, Shibata M, Narita R, Harada R, Abe S, Tabaru A, Tajiri N, Shimajiri S. Late diagnosed Wilson disease with hepatic and neurological manifestations. Hepatol Res 2011; 41:270-6. [PMID: 21338455 DOI: 10.1111/j.1872-034x.2010.00754.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A 50-year-old woman was referred to our hospital due to liver dysfunction and progressive neurological symptoms. She had previously been diagnosed with nonalcoholic steatohepatitis (NASH). Ursodeoxycholic acid (UDCA) had effectively normalized her serum aminotransferase levels, however, she presented with loss of balance, dysarthria and difficulty in handwriting. Autoantibodies and hepatitis virus markers were negative. Serum ceruloplasmin and copper levels were noted to be 9 mg/dL and 32 µg/dL, respectively. The 24-h urinary copper excretion was 331.8 µg/day. Kayser-Fleischer ring was demonstrated. Histological examination of the liver revealed inflammatory infiltrate and fibrosis, and the hepatic copper concentration was 444.4 µg/g dry weight. We diagnosed her as having Wilson disease and started treatment with trientine. Immuohistochemistry for keratin 8 and p62 demonstrated Mallory-Denk bodies. Many of the p62-expressing cells were positive for 4-Hydroxy-2-nonenal (HNE). Few Ki-67-positive hepatocytes were present in the liver. Wilson disease is one of the causes of NASH and UDCA may be a supportive therapeutic agent for Wilson disease. Cell proliferation is suppressed under copper-loaded conditions and this phenomenon may be associated with the clinical course of Wilson disease.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine Department of Second Pathology and Cell Biology, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu Department of Gastroenterology, Social Insurance Tagawa Hospital, Tagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Diagnostic and Therapeutic Significance of the Oxidative Stress Parameters in ChildrenPharmacotherapy of pediatric diseases represents a major challenge considering that the majority of medicines in everyday practice have not been pediatrically evaluated. The efficacy of therapy depends to a large extent on the knowledge of pathophysiological processes in the children organism at different ages. Therefore, research in that direction is of the utmost importance. An imbalance in the production of free oxygen/nitrogen species and parameters of antioxidative protection is a significant factor in many diseases (e.g. heart failure, pulmonary hypertension, asthma, neonatal sepsis, cancer etc.) in children of different age groups. Reactive oxygen/nitrogen species serve as cell signaling molecules for normal biologic processes. An increase in their generation can cause damages which can disrupt normal physiological cellular processes and eventually cause cell death. This review outlines the previous assessments of oxidative stress parameters in children of different ages for some diseases. Also, the potential diagnostic and therapeutic possibilities for the oxydative stress parameters in children have been considered.
Collapse
|
26
|
Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG, Wooten MC. Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease. J Biomed Biotechnol 2010; 2006:62079. [PMID: 17047309 PMCID: PMC1559922 DOI: 10.1155/jbb/2006/62079] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic
situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be
prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their
degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved
by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been
shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome.
P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases.
Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor
to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed.
Collapse
Affiliation(s)
- Marie W. Wooten
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiao Hu
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - J. Ramesh Babu
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - M. Lamar Seibenhener
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- *M. Lamar Seibenhener:
| | - Thangiah Geetha
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael G. Paine
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael C. Wooten
- Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
27
|
|
28
|
Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J Hepatol 2008; 48:821-8. [PMID: 18329127 DOI: 10.1016/j.jhep.2008.01.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/23/2007] [Accepted: 01/03/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Hepatocyte "ballooning" is an often used but ill defined term in liver pathology to designate a special form of liver cell degeneration associated with cell swelling and enlargement found particularly in steatohepatitis. Alterations of the intermediate filament cytoskeleton of the hepatocyte may contribute to the pathogenesis of this microscopic change. Ballooning degeneration is considered a hallmark of steatohepatitis, but enlarged hepatocytes may also be observed in a variety of other acute and chronic liver diseases. METHODS The intermediate filament cytoskeleton was investigated using keratin 8 and 18 immunohistochemistry in liver diseases associated with enlarged or ballooned hepatocytes. RESULTS Keratin 8/18 immunostaining was drastically reduced or lost in the cytoplasm of ballooned hepatocytes in alcoholic and non-alcoholic steatohepatitis, chronic cholestatic conditions, ischemia/reperfusion injury and in ballooned hepatocytes in chronic hepatitis C cases with concurrent steatohepatitis. In contrast, substantial decrease or loss of keratin 8/18 immunostaining was not noted in cases of acute hepatitis, giant cell hepatitis, chronic hepatitis B, or autoimmune hepatitis. CONCLUSIONS Loss of keratin 8/18 immunostaining can serve as an objective marker of a specific type of ballooning degeneration of hepatocytes. Oxidative stress may be a common denominator in the pathogenesis of keratin filament alterations in these conditions.
Collapse
Affiliation(s)
- Carolin Lackner
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz, Austria.
| | | | | | | | | | | |
Collapse
|
29
|
Strnad P, Stumptner C, Zatloukal K, Denk H. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 2008; 129:735-49. [PMID: 18443813 PMCID: PMC2386529 DOI: 10.1007/s00418-008-0431-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.
Collapse
Affiliation(s)
- P Strnad
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strabe 8, 89081, Ulm, Germany.
| | | | | | | |
Collapse
|
30
|
Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB. From Mallory to Mallory–Denk bodies: What, how and why? Exp Cell Res 2007; 313:2033-49. [PMID: 17531973 DOI: 10.1016/j.yexcr.2007.04.024] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 12/16/2022]
Abstract
Frank B. Mallory described cytoplasmic hyaline inclusions in hepatocytes of patients with alcoholic hepatitis in 1911. These inclusions became known as Mallory bodies (MBs) and have since been associated with a variety of other liver diseases including non-alcoholic fatty liver disease. Helmut Denk and colleagues described the first animal model of MBs in 1975 that involves feeding mice griseofulvin. Since then, mouse models have been instrumental in helping understand the pathogenesis of MBs. Given the tremendous contributions made by Denk to the field, we propose renaming MBs as Mallory-Denk bodies (MDBs). The major constituents of MDBs include keratins 8 and 18 (K8/18), ubiquitin, and p62. The relevant proteins and cellular processes that contribute to MDB formation and accumulation include the type of chronic stress, the extent of stress-induced protein misfolding and consequent proteasome overload, a K8-greater-than-K18 ratio, transamidation of K8 and other proteins, presence of p62 and autophagy. Although it remains unclear whether MDBs serve a bystander, protective or injury promoting function, they do serve an important role as histological and potential progression markers in several liver diseases.
Collapse
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Progressive hepatolenticular degeneration, or Wilson's disease, is a genetic disorder of copper metabolism. Knowledge of the clinical presentations and treatment of the disease are important both to the generalist and to specialists in gastroenterology and hepatology, neurology, psychiatry, and paediatrics. Wilson's disease invariably results in severe disability and death if untreated. The diagnosis is easily overlooked but if discovered early, effective treatments are available that will prevent or reverse many manifestations of this disorder. Studies have identified the role of copper in disease pathogenesis and clinical, biochemical, and genetic markers that can be useful in diagnosis. There are several chelating agents and zinc salts for medical therapy. Liver transplantation corrects the underlying pathophysiology and can be lifesaving. The discovery of the Wilson's disease gene has opened up a new molecular diagnostic approach, and could form the basis of future gene therapy.
Collapse
Affiliation(s)
- Aftab Ala
- UCL Institute of Hepatology, Hampstead Campus, Division of Medicine, Royal Free and University College Medical School, University College London, London, UK.
| | | | | | | | | |
Collapse
|
32
|
Alexandrova A, Kebis A, Misl'anová C, Kukan M. Copper impairs biliary epithelial cells and induces protein oxidation and oxidative DNA damage in the isolated perfused rat liver. ACTA ACUST UNITED AC 2006; 58:255-61. [PMID: 17127046 DOI: 10.1016/j.etp.2006.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
Copper is one of the major metals causing environmental contamination. Previous studies showed that copper induced toxic effects in isolated perfused rat liver models and these effects were associated with lipid peroxidation. Here we investigated whether effects of copper (at concentrations of 0.01, 0.03, and 0.1 mM of Cu(2+) in Krebs-Henseleit buffer perfusing the isolated rat liver for 60 min), were associated with biliary epithelial cell injury, as well as protein oxidation and oxidative DNA damage. The highest concentration of copper in perfusate (0.1 mM) did not allow complete evaluation of all parameters because it blocked portal flow within 30 min of perfusion, indicating severe microcirculatory disturbances. Further, copper decreased secretion of bile and it increased lactate dehydrogenase, aspartate transaminase, and alanine transaminase leakage into perfusate as well as liver weight in a dose-dependent manner. Biliary gamma-glutamyltransferase, an index of biliary epithelial cell integrity increased similarly at 0.01 and 0.03 mM copper concentrations in perfusate. Compared to controls, 0.01 and 0.03 mM concentrations of copper increased the amount of thiobarbituric acid reacting substances, a marker of lipid peroxidation, tissue protein carbonyl groups, an index of protein oxidation, and 8-oxo-7,8-dihydro-2'-deoxyguanosine, a marker of oxidative DNA damage. The results suggest that toxic effects of copper in the isolated perfused rat liver may involve biliary epithelial cells and they are associated with lipid peroxidation, protein oxidation, and oxidative DNA damage.
Collapse
Affiliation(s)
- Albena Alexandrova
- Laboratory of Free Radical Processes, Institute of Physiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
33
|
Denk H, Stumptner C, Fuchsbichler A, Müller T, Farr G, Müller W, Terracciano L, Zatloukal K. Are the Mallory bodies and intracellular hyaline bodies in neoplastic and non-neoplastic hepatocytes related? J Pathol 2006; 208:653-61. [PMID: 16477590 DOI: 10.1002/path.1946] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mallory bodies (MBs) and intracellular hyaline bodies (IHBs) are cytoplasmic hepatocellular inclusions that consist of aggregated proteins. MBs are characteristically associated with alcoholic and non-alcoholic steatohepatitis, but may also be found in chronic cholestatic and metabolic (eg copper intoxication) diseases and hepatocellular neoplasms, particularly hepatocellular carcinomas. IHBs have hitherto only been described in hepatocellular carcinoma cells. In the present study hepatocellular carcinomas (HCCs) and a case of idiopathic copper toxicosis were evaluated with respect to the presence and mutual relationship of MBs and IHBs. IHBs alone were present in 8.6%, MBs alone in 16.1% and both types of inclusion in 7.5% of HCCs. It is shown that IHBs may also occur in non-neoplastic hepatocytes in association with idiopathic copper toxicosis, together with MBs. In HCCs and idiopathic copper toxicosis, MBs and IHBs may be present within the same cell. Moreover, hybrid inclusions holding an intermediate position between MBs and IHBs regarding light microscopy, ultrastructure and composition exist. MBs and IHBs contain p62, a stress-inducible adapter protein, as the major constituent. In MBs p62 is associated with keratins, whereas classical IHBs lack keratins. Light microscopic, electron microscopic and immunohistochemical data suggest a close pathogenetic relationship between MBs and IHBs. Both types of inclusion are the result of over-expression and accumulation of the stress protein p62. If p62 is induced alone, or at least prevails, IHBs may arise by aggregation. However, if abnormal keratins are present in addition to p62, p62 associates and co-aggregates with keratins, finally leading to classical MBs.
Collapse
Affiliation(s)
- H Denk
- Department of Pathology, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Copper (Cu), a redox active metal, is an essential nutrient for all species studied to date. During the past decade, there has been increasing interest in the concept that marginal deficits of this element can contribute to the development and progression of a number of disease states including cardiovascular disease and diabetes. Deficits of this nutrient during pregnancy can result in gross structural malformations in the conceptus, and persistent neurological and immunological abnormalities in the offspring. Excessive amounts of Cu in the body can also pose a risk. Acute Cu toxicity can result in a number of pathologies, and in severe cases, death. Chronic Cu toxicity can result in liver disease and severe neurological defects. The concept that elevated ceruloplasmin is a risk factor for certain diseases is discussed. In this paper, we will review recent literature on the potential causes of Cu deficiency and Cu toxicity, and the pathological consequences associated with the above. Finally, we will review some of the potential biochemical lesions that might underlie these pathologies. Given that oxidative stress is a characteristic of Cu deficiency, the role of Cu in the oxidative defense system will receive special attention. The concept that excess Cu may be a precipitating factor in Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, One Shields Ave., University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
35
|
Bardag-Gorce F, Francis T, Nan L, Li J, He Lue Y, French BA, French SW. Modifications in P62 occur due to proteasome inhibition in alcoholic liver disease. Life Sci 2005; 77:2594-602. [PMID: 15964033 DOI: 10.1016/j.lfs.2005.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/05/2005] [Accepted: 04/11/2005] [Indexed: 11/30/2022]
Abstract
P62 is capable of binding the polyubiquitin chain that targets proteins for degradation by the proteasome through its ubiquitin associated domain (UBA). Immunostaining of hepatocytes from human liver with alcoholic hepatitis showed colocalization of ubiquitin and P62 in Mallory bodies. Rats fed ethanol chronically and their controls showed that P62 is colocalized with the proteasome in hepatocytes as shown by confocal microscopy. P62 cosedimented with 26S proteasomes isolated from livers of control and alcohol fed rats. P62 was increased in the 26S proteasome fraction when the proteasome chymotrypsin-like (ChT-L) activity decreased in rats fed ethanol. PS-341, a potent proteasome inhibitor was used to compare the inhibition of the proteasome with the inhibition which occurs with ethanol feeding. P62 protein levels were also increased in the purified proteasome fraction of rats given PS-341. This data indicates that modifications in P62 occur due to proteasome inhibition in experimental alcoholic liver disease.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to identify and discuss recent findings related to inherited metabolic disorders of the liver that increase our understanding of the pathophysiology and treatment for hemochromatosis and other iron overload disorders, Wilson disease and alpha one antitrypsin deficiency. RECENT FINDINGS The main theme in the recent discoveries for both iron overload disorders and Wilson disease is our increasing understanding that the phenotypic expression of these disorders are greatly influenced by genes involved in the metabolic pathways for these metals, or influence the progression of liver disease independent of metal metabolism. For example, the role of hepcidin dysregulation in hemochromatosis has been a surprising discovery that provides some mechanistic understanding for the increased iron absorption that is present in this disorder. SUMMARY Given the recent explosion of information on iron and copper metabolism and the cellular processing of alpha one antitrypsin, the highlights reviewed in this article will help the reader keep up to date with the current understanding of these diseases and potential future approaches to their treatment.
Collapse
Affiliation(s)
- Michael L Schilsky
- Department of Medicine, Center for Liver Disease and Transplantation, Weill Cornell Medical Center, New York, NY 10021, USA.
| | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review highlights recent publications on hepatobiliary pathology concerning several unusual types of hepatitis, fatty liver disease, disorders of the biliary tree and other topics that have a substantial impact on liver biopsy interpretation. RECENT FINDINGS In the outbreak of severe acute respiratory syndrome (SARS), many patients had abnormalities in liver function tests. Liver biopsy findings in three cases were reported that showed a generic picture of hepatitis, with exceptionally increased mitotic activity. The role of portal myofibroblasts in cirrhosis was examined in several studies. A newly described lesion, isolated ductular hyperplasia (IDH) was found in patients with prolonged abnormalities of liver function tests of uncertain origin. Hyperplastic, well-differentiated bile ductules were seen on liver biopsy in the absence of any identifiable biliary disease. Hereditary hemochromatosis is now a complex entity with various clinicopathological forms based on mutations in the HFE gene and other iron-homeostatic genes such as transferrin receptor 2 and ferroportin 1. In some of these heritable forms of primary iron overload, stainable iron is present in both hepatocytes and Kupffer cells. After liver transplantation, differentiating recurrent HCV infection from acute rejection on liver biopsy is problematic, with exceptionally low inter- and intra-observer reliability shown in one study. SUMMARY The hepatitis associated with the SARS coronavirus, Isolated Ductular Hyperplasia in patients with liver function test abnormalities and other topics with pathologic relevance are reviewed.
Collapse
Affiliation(s)
- Jay H Lefkowitch
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
38
|
Lowe J, Hand N, Mayer RJ. Application of Ubiquitin Immunohistochemistry to the Diagnosis of Disease. Methods Enzymol 2005; 399:86-119. [PMID: 16338351 DOI: 10.1016/s0076-6879(05)99007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Ubiquitin immunohistochemistry has changed understanding of the pathophysiology of many diseases, particularly chronic neurodegenerative diseases. Protein aggregates (inclusions) containing ubiquitinated proteins occur in neurones and other cell types in the central nervous system in afflicted cells. The inclusions are present in all the neurological illnesses, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, polyglutamine diseases, and rarer forms of neurodegenerative disease. A new cause of cognitive decline in the elderly, "dementia with Lewy bodies," accounting for some 15-30% of cases, was initially discovered and characterized by ubiquitin immunocytochemistry. The optimal methods for carrying out immunohistochemical analyses of paraffin-embedded tissues are described, and examples of all the types of intracellular inclusions detected by ubiquitin immunohistochemistry in the diseases are illustrated. The role of the ubiquitin proteasome system (UPS) in disease progression is being actively researched globally and increasingly, because it is now realized that the UPS controls most pathways in cellular homeostasis. Many of these regulatory mechanisms will be dysfunctional in diseased cells. The goal is to understand fully the role of the UPS in the disorders and then therapeutically intervene in the ubiquitin pathway to treat these incurable diseases.
Collapse
Affiliation(s)
- James Lowe
- School of Molecular Medical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
39
|
Zatloukal K, Stumptner C, Fuchsbichler A, Fickert P, Lackner C, Trauner M, Denk H. The keratin cytoskeleton in liver diseases. J Pathol 2004; 204:367-76. [PMID: 15495250 DOI: 10.1002/path.1649] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The keratin intermediate filament (IF) cytoskeleton of hepatocytes has continuously gained medical relevance over the last two decades. Originally it was mainly recognized as a differentiation marker for diagnostic purposes in pathology. However, keratin IFs were soon identified as major cellular structures to be affected in a variety of chronic liver diseases, such as alcoholic and non-alcoholic steatohepatitis (ASH, NASH), copper toxicosis, and cholestasis. Based on observations in keratin gene knock-out mice, the insight into the functional role of keratins was extended from a mere structural role providing mechanical stability to hepatocytes, to an additional role as target and modulator of toxic stress and apoptosis. The functional relevance of keratins in human diseases has recently been underlined by the identification of mutations in keratin genes in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, A-8036 Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. Since daily copper intake exceeds the body's requirements, effective means of excreting excess copper are essential. These are accomplished by ATP7B, a new member of the cation-transporting p-type ATPase family, which is mainly expressed in the liver and mediates both copper secretion into plasma (coupled with ceruloplasmin synthesis) and its excretion into bile. Thus far, more than 200 mutations of the WD gene have been detected, causing impairment of ATP7B function and, ultimately, copper accumulation. Excess copper, however, induces free-radical reactions and lipid peroxidation. Resultant liver damage leads to steatosis, inflammation, cirrhosis, and, occasionally, fulminant liver failure. The diagnosis of WD is commonly made on the basis of typical clinical and laboratory findings, including low serum ceruloplasmin, increased urinary copper excretion, and increased hepatic copper content. Since liver morphology is non-specific, and copper histochemistry may lead to both false-negative and false-positive results, the pathologist usually only suspects the disease or assists in its confirmation. Although the value of molecular genetic testing is limited due to the high number of possible gene mutations, polymerase chain reaction may be useful for the evaluation of family members of homozygous index patients.
Collapse
Affiliation(s)
- Cord Langner
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
| | | |
Collapse
|