1
|
Zhao Y, Xie L, Liu B, Deng Y, Li P, Dai Y, Liu J, Yi C. Novel insight into the role of Src family kinases in hepatocellular carcinoma and therapeutic potential. Biochem Biophys Res Commun 2025; 772:151970. [PMID: 40414003 DOI: 10.1016/j.bbrc.2025.151970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
Hepatocellular carcinoma remains a highly aggressive malignancy, with the 5-year survival rate for advanced-stage patients persisting below 20 % despite progress in targeted therapies and immunotherapy. This clinical reality underscores the critical need for identifying novel therapeutic targets. Src family kinases (SFKs), critical regulators of cellular metabolism, coordinate regenerative repair through STAT3/ERK signaling in normal hepatic regeneration and preserve cellular polarity via FAK-mediated mechanisms following hepatic injury. Growing evidence suggests that dysregulation of SFKs expression and activity is closely associated with oxidative stress, inflammation-cancer transition, metabolic reprogramming disorders and microenvironmental remodeling in hepatocellular carcinoma. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of SFKs. We explored in depth the molecular and cellular mechanisms of SFKs in the pathological progression and risk factors of hepatocellular carcinoma, including viral hepatitis, metabolic dysfunction-associated steatohepatitis, and other established risk factors. Herein, we highlight the potential of SFKs as a pharmacological target against hepatocellular in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Letian Xie
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Binwei Liu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yulin Deng
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Pengfei Li
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuqing Dai
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jiao Liu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Yi
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Zhang JW, Zhang N, Lyu Y, Zhang XF. Influence of Sex in the Development of Liver Diseases. Semin Liver Dis 2025; 45:15-32. [PMID: 39809453 DOI: 10.1055/a-2516-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The liver is a sexually dimorphic organ. Sex differences in prevalence, progression, prognosis, and treatment prevail in most liver diseases, and the mechanism of how liver diseases act differently among male versus female patients has not been fully elucidated. Biological sex differences in normal physiology and disease arise principally from sex hormones and/or sex chromosomes. Sex hormones contribute to the development and progression of most liver diseases, with estrogen- and androgen-mediated signaling pathways mechanistically involved. In addition, genetic factors in sex chromosomes have recently been found to contribute to the sex disparity of many liver diseases, which might explain, to some extent, the difference in gene expression pattern, immune response, and xenobiotic metabolism between men and women. Although increasing evidence suggests that sex is one of the most important modulators of disease prevalence and outcomes, at present, basic and clinical studies have long been sex unbalanced, with female subjects underestimated. As such, this review focuses on sex disparities of liver diseases and summarizes the current understanding of sex-specific mechanisms, including sex hormones, sex chromosomes, etc. We anticipate that understanding sex-specific pathogenesis will aid in promoting personalized therapies for liver disease among male versus female patients.
Collapse
Affiliation(s)
- Jie-Wen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
3
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
4
|
Yamaguchi M. Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment. Cancers (Basel) 2025; 17:240. [PMID: 39858022 PMCID: PMC11763602 DOI: 10.3390/cancers17020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The regucalcin gene is located on the X chromosome, comprising seven exons and six introns. This gene and protein are expressed in various tissues and cells and is predominantly expressed in human liver, kidney, and adrenal tissues. Regucalcin gene expression is enhanced via a mechanism mediated by several signaling molecules and transcription factors. Regucalcin plays a multifunctional role in cellular regulation in maintaining cell homeostasis. In addition, regucalcin has been implicated in several metabolic disorders and diseases. In particular, regucalcin plays a role as a novel suppressor in several types of cancer patients. Increased expression of regucalcin suppresses the growth of human cancer cells, suggesting its pivotal role in suppressing tumor development. The survival time of cancer patients is prolonged with increased expression of regucalcin in the tumor tissues. The adhesion, migration, invasion, and bone metastatic activity of cancer cells are blocked by the overexpression of regucalcin, promoting dormancy in cancer patients. Interestingly, regucalcin is also found in human serum, suggesting its character as a novel biomarker in various diseases. This extracellular regucalcin has been shown to suppress human cancer cells' growth and bone metastatic activity. Thus, extracellular regucalcin may play a vital role as a suppressor of human cancer activity. Alteration of the serum regucalcin levels in physiological and pathophysiological conditions may influence the activity of cancer cells in the microenvironment. This review will discuss the potential role of extracellular regucalcin in cancer cell activity as a critical suppressor in the cancer microenvironment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Samban SS, Hari A, Nair B, Kumar AR, Meyer BS, Valsan A, Vijayakurup V, Nath LR. An Insight Into the Role of Alpha-Fetoprotein (AFP) in the Development and Progression of Hepatocellular Carcinoma. Mol Biotechnol 2024; 66:2697-2709. [PMID: 37782430 DOI: 10.1007/s12033-023-00890-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the primary malignancy of hepatocytes and the second most common cause of cancer-related mortality across the globe. Despite significant advancements in screening, diagnosis, and treatment modalities for HCC, the mortality-to-incidence ratio remain unacceptably high. A recent study indicates that a minor population of HCCs are AFP negative or express the normal range of AFP levels. Although it is a gold standard and a more reliable biomarker in the advanced stage of HCC and poorly differentiated tumors, it does not serve as a suitable means for screening HCC. AFP plays a significant role in the development and progression of HCC and understanding its role is crucial. By examining the molecular mechanisms involved in AFP-mediated tumorigenesis, we can better understand HCC pathogenesis and identify potential therapeutic targets. This article details the role of alpha-fetoprotein (AFP) in the carcinogenic transformation of hepatocytes. The article also focuses on information about the structure, biosynthesis, and regulation of AFP at the gene level. Additionally, it discusses the immune evasion, metastasis, and control of gene expression that AFP mediates during HCC.
Collapse
Affiliation(s)
- Swathy S Samban
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Aparna Hari
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India
| | - Benjamin S Meyer
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Arun Valsan
- Department of Gastroenterology and Hepatology, Amrita Institute of Medical Science, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, India
| | - Vinod Vijayakurup
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara P.O., Kochi, Kerala, India.
| |
Collapse
|
6
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
7
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
8
|
Yamaguchi M. Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers (Basel) 2023; 15:5489. [PMID: 38001749 PMCID: PMC10670417 DOI: 10.3390/cancers15225489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Regucalcin, a calcium-binding protein lacking the EF-hand motif, was initially discovered in 1978. Its name is indicative of its function in calcium signaling regulation. The rgn gene encodes for regucalcin and is situated on the X chromosome in both humans and vertebrates. Regucalcin regulates pivotal enzymes involved in signal transduction and has an inhibitory function, which includes protein kinases, protein phosphatases, cysteinyl protease, nitric oxide dynthetase, aminoacyl-transfer ribonucleic acid (tRNA) synthetase, and protein synthesis. This cytoplasmic protein is transported to the nucleus where it regulates deoxyribonucleic acid and RNA synthesis as well as gene expression. Overexpression of regucalcin inhibits proliferation in both normal and cancer cells in vitro, independent of apoptosis. During liver regeneration in vivo, endogenous regucalcin suppresses cell growth when overexpressed. Regucalcin mRNA and protein expressions are significantly downregulated in tumor tissues of patients with various types of cancers. Patients exhibiting upregulated regucalcin in tumor tissue have shown prolonged survival. The decrease of regucalcin expression is linked to the advancement of cancer. Overexpression of regucalcin carries the potential for preventing and treating carcinogenesis. Additionally, extracellular regucalcin has displayed control over various types of human cancer cells. Regucalcin may hold a prominent role as a regulatory factor in cancer development. Supplying the regucalcin gene could prove to be a valuable asset in cancer treatment. The therapeutic value of regucalcin suggests its potential significance in treating cancer patients. This review delves into the most recent research on the regulatory role of regucalcin in human cancer development, providing a novel approach for treatment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA
| |
Collapse
|
9
|
Smith CB, Hodges NF, Kading RC, Campbell CL. Dishevelled Has Anti-Viral Activity in Rift Valley Fever Virus Infected Aedes aegypti. Viruses 2023; 15:2140. [PMID: 38005818 PMCID: PMC10675198 DOI: 10.3390/v15112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Mosquitoes in the genera Aedes and Culex are vectors of Rift Valley fever virus (RVFV), which emerges in periodic epidemics in Africa and Saudi Arabia. Factors that influence the transmission dynamics of RVFV are not well characterized. To address this, we interrogated mosquito host-signaling responses through analysis of differentially expressed genes (DEGs) in two mosquito species with marked differences in RVFV vector competence: Aedes aegypti (Aae, low competence) and Culex tarsalis (Cxt, high competence). Mosquito-host transcripts related to three different signaling pathways were investigated. Selected genes from the Wingless (Wg, WNT-beta-catenin) pathway, which is a conserved regulator of cell proliferation and differentiation, were assessed. One of these, dishevelled (DSH), differentially regulates progression/inhibition of the WNT and JNK (c-Jun N-terminal Kinase) pathways. A negative regulator of the JNK-signaling pathway, puckered, was also assessed. Lastly, Janus kinase/signal transducers and activators of transcription (JAK-STAT) are important for innate immunity; in this context, we tested domeless levels. Here, individual Aae and Cxt were exposed to RVFV MP-12 via oral bloodmeals and held for 14 days. Robust decreases in DEGs in both Aae and Cxt were observed. In particular, Aae DSH expression, but not Cxt DSH, was correlated to the presence/absence of viral RNA at 14 days post-challenge (dpc). Moreover, there was an inverse relationship between the viral copy number and aaeDSH expression. DSH silencing resulted in increased viral copy numbers compared to controls at 3 dpc, consistent with a role for aaeDSH in antiviral immunity. Analysis of cis-regulatory regions for the genes of interest revealed clues to upstream regulation of these pathways.
Collapse
Affiliation(s)
| | | | | | - Corey L. Campbell
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.B.S.); (R.C.K.)
| |
Collapse
|
10
|
Nakagawa C, Kadlera Nagaraj M, Hernandez JC, Uthay Kumar DB, Shukla V, Machida R, Schüttrumpf J, Sher L, Farci P, Mishra L, Tahara SM, Ou JHJ, Machida K. β-CATENIN stabilizes HIF2 through lncRNA and inhibits intravenous immunoglobulin immunotherapy. Front Immunol 2023; 14:1204907. [PMID: 37744383 PMCID: PMC10516572 DOI: 10.3389/fimmu.2023.1204907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Tumor-initiating cells (TICs) are rare, stem-like, and highly malignant. Although intravenous hepatitis B and C immunoglobulins have been used for HBV and HCV neutralization in patients, their tumor-inhibitory effects have not yet been examined. Hepatitis B immunoglobulin (HBIG) therapy is employed to reduce hepatocellular carcinoma (HCC) recurrence in patients after living donor liver transplantations (LDLT). Hypothesis We hypothesized that patient-derived intravenous immunoglobulin (IVIG) binding to HCC associated TICs will reduce self-renewal and cell viability driven by β-CATENIN-downstream pathways. β-CATENIN activity protected TICs from IVIG effects. Methods The effects of HBIG and HCIG binding to TICs were evaluated for cell viability and self-renewal. Results Inhibition of β-CATENIN pathway(s) augmented TIC susceptibility to HBIG- and HCIG-immunotherapy. HBV X protein (HBx) upregulates both β-CATENIN and NANOG expression. The co-expression of constitutively active β-CATENIN with NANOG promotes self-renewal ability and tumor-initiating ability of hepatoblasts. HBIG bound to HBV+ cells led to growth inhibition in a TIC subset that expressed hepatitis B surface antigen. The HBx protein transformed cells through β-CATENIN-inducible lncRNAs EGLN3-AS1 and lnc-β-CatM. Co-expression of constitutively active β-CATENIN with NANOG promoted self-renewal ability of TICs through EGLN3 induction. β-CATENIN-induced lncRNAs stabilized HIF2 to maintain self-renewal of TICs. Targeting of EGLN3-AS1 resulted in destabilization of EZH2-dependent β-CATENIN activity and synergized cell-killing of TICs by HBIG or HCIG immunotherapy. Discussion Taken together, WNT and stemness pathways induced HIF2 of TICs via cooperating lncRNAs resulting in resistance to cancer immunotherapy. Therefore, therapeutic use of IVIG may suppress tumor recurrence through inhibition of TICs.
Collapse
Affiliation(s)
- Chad Nakagawa
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Manjunatha Kadlera Nagaraj
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Dinesh Babu Uthay Kumar
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Vivek Shukla
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Risa Machida
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | | | - Linda Sher
- Department of Surgery, University of Southern California, Los Angeles, CA, United States
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lopa Mishra
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stanley M. Tahara
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
- Southern California Research Center for Alcoholic Liver Disease and Pancreatic Disease (ALPD) and Cirrhosis, Los Angeles, CA, United States
| |
Collapse
|
11
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
12
|
Papatheodoridi A, Papatheodoridis G. Hepatocellular carcinoma: The virus or the liver? Liver Int 2023; 43 Suppl 1:22-30. [PMID: 35319167 DOI: 10.1111/liv.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major public health problem being one of the most common causes of cancer-related deaths worldwide. Hepatitis B (HBV) and C viruses have been classified as oncoviruses and are responsible for the majority of HCC cases, while the role of hepatitis D virus (HDV) in liver carcinogenesis has not been elucidated. HDV/HBV coinfection is related to more severe liver damage than HBV mono-infection and recent studies suggest that HDV/HBV patients are at increased risk of developing HCC compared to HBV mono-infected patients. HBV is known to promote hepatocarcinogenesis via DNA integration into host DNA, disruption of molecular pathways by regulatory HBV x (HBx) protein and excessive oxidative stress. Recently, several molecular mechanisms have been proposed to clarify the pathogenesis of HDV-related HCC including activation of signalling pathways by specific HDV antigens, epigenetic dysregulation and altered gene expression. Alongside, ongoing chronic inflammation and impaired immune responses have also been suggested to facilitate carcinogenesis. Finally, cellular senescence seems to play an important role in chronic viral infection and inflammation leading to hepatocarcinogenesis. In this review, we summarize the current literature on the impact of HDV in HCC development and discuss the potential interplay between HBV, HDV and neighbouring liver tissue in liver carcinogenesis.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens School of Health Sciences, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
13
|
Villanueva RA, Loyola A. Pre- and Post-Transcriptional Control of HBV Gene Expression: The Road Traveled towards the New Paradigm of HBx, Its Isoforms, and Their Diverse Functions. Biomedicines 2023; 11:1674. [PMID: 37371770 DOI: 10.3390/biomedicines11061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped DNA human virus belonging to the Hepadnaviridae family. Perhaps its main distinguishable characteristic is the replication of its genome through a reverse transcription process. The HBV circular genome encodes only four overlapping reading frames, encoding for the main canonical proteins named core, P, surface, and X (or HBx protein). However, pre- and post-transcriptional gene regulation diversifies the full HBV proteome into diverse isoform proteins. In line with this, hepatitis B virus X protein (HBx) is a viral multifunctional and regulatory protein of 16.5 kDa, whose canonical reading frame presents two phylogenetically conserved internal in-frame translational initiation codons, and which results as well in the expression of two divergent N-terminal smaller isoforms of 8.6 and 5.8 kDa, during translation. The canonical HBx, as well as the smaller isoform proteins, displays different roles during viral replication and subcellular localizations. In this article, we reviewed the different mechanisms of pre- and post-transcriptional regulation of protein expression that take place during viral replication. We also investigated all the past and recent evidence about HBV HBx gene regulation and its divergent N-terminal isoform proteins. Evidence has been collected for over 30 years. The accumulated evidence simply strengthens the concept of a new paradigm of the canonical HBx, and its smaller divergent N-terminal isoform proteins, not only during viral replication, but also throughout cell pathogenesis.
Collapse
Affiliation(s)
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
14
|
Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022; 14:v14050986. [PMID: 35632728 PMCID: PMC9146458 DOI: 10.3390/v14050986] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is DNA-based virus, member of the Hepadnaviridae family, which can cause liver disease and increased risk of hepatocellular carcinoma (HCC) in infected individuals, replicating within the hepatocytes and interacting with several cellular proteins. Chronic hepatitis B can progressively lead to liver cirrhosis, which is an independent risk factor for HCC. Complications as liver decompensation or HCC impact the survival of HBV patients and concurrent HDV infection worsens the disease. The available data provide evidence that HBV infection is associated with the risk of developing HCC with or without an underlying liver cirrhosis, due to various direct and indirect mechanisms promoting hepatocarcinogenesis. The molecular profile of HBV-HCC is extensively and continuously under study, and it is the result of altered molecular pathways, which modify the microenvironment and lead to DNA damage. HBV produces the protein HBx, which has a central role in the oncogenetic process. Furthermore, the molecular profile of HBV-HCC was recently discerned from that of HDV-HCC, despite the obligatory dependence of HDV on HBV. Proper management of the underlying HBV-related liver disease is fundamental, including HCC surveillance, viral suppression, and application of adequate predictive models. When HBV-HCC occurs, liver function and HCC characteristics guide the physician among treatment strategies but always considering the viral etiology in the treatment choice.
Collapse
|
15
|
Wang J, Zhang L, Su Y, Qu Y, Cao Y, Qin W, Liu Y. A Novel Fluorescent Probe Strategy Activated by β-Glucuronidase for Assisting Surgical Resection of Liver Cancer. Anal Chem 2022; 94:7012-7020. [PMID: 35506678 DOI: 10.1021/acs.analchem.1c05635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver cancer is a primary malignant tumor with a very high fatality rate, which has seriously threatened human health and life. In normal hepatocellular lesions, β-glucuronidase (GLU) activity in liver cancer tissues is significantly increased. Therefore, GLU has become one of the important biomarkers of primary liver cancer. Here, a series of fluorescent probes (DCDH, DCDCH3, DCDOCH3, and DCDNO2) for early diagnosis of liver cancer and auxiliary surgical resection were successfully synthesized. Since the electron-withdrawing group -NO2 connected to the probe DCDNO2 accelerates the rapid cleavage of the glycosidic bond, DCDNO2 exhibits superior fluorescence properties that are more sensitive and rapid than the other three probes DCDH, DCDCH3, and DCDOCH3 when detecting GLU. DCDNO2 has been well-applied in real-time fluorescent visualization imaging for the detection of GLU activity in liver cancer cells and tumor tissues. In addition, DCDNO2 has also been successfully used in the early diagnosis of liver cancer and real-time imaging to guide the surgical resection of liver cancer tumors. Therefore, DCDNO2 has great potential for development in bioclinical medicine for the early detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Yaling Su
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yi Qu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| |
Collapse
|
16
|
Certad G. Is Cryptosporidium a hijacker able to drive cancer cell proliferation? Food Waterborne Parasitol 2022; 27:e00153. [PMID: 35498550 PMCID: PMC9044164 DOI: 10.1016/j.fawpar.2022.e00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological mechanisms of Cryptosporidium infection are multifactorial and not completely understood. Some advances achieved recently revealed that the infection by Cryptosporidium parvum induces cytoskeleton remodeling and actin reorganization through the implication of several intracellular signals involving, for example, PI3K, Src, Cdc42 and GTPases. It has also been reported that the infection by C. parvum leads to the activation of NF-κβ, known to induce anti-apoptotic mechanisms and to transmit oncogenic signals to epithelial cells. Despite the growing evidence about the hijacking of cellular pathways, potentially being involved in cancer onset, this information has rarely been linked to the tumorigenic potential of the parasite. However, several evidences support an association between Cryptosporidium infection and the development of digestive neoplasia. To explore the dynamics of Cryptosporidium infection, an animal model of cryptosporidiosis using corticoid dexamethasone-treated adult SCID (severe combined immunodeficiency) mice, orally infected with C. parvum or Cryptosporidium muris oocysts was implemented. C. parvum-infected animals developed digestive adenocarcinoma. When mechanisms involved in this neoplastic process were explored, the pivotal role of the Wnt pathway together with the alteration of the cytoskeleton was confirmed. Recently, a microarray assay allowed the detection of cancer-promoting genes and pathways highly up regulated in the group of C. parvum infected animals when compared to non-infected controls. Moreover, different human cases/control studies reported significant higher prevalence of Cryptosporidium infection among patients with recently diagnosed colon cancer before any treatment when compared to the control group (patients without colon neoplasia but with persistent digestive symptoms). These results suggest that Cryptosporidium is a potential oncogenic agent involved in cancer development beyond the usual suspects. If Cryptosporidium is able to hijack signal transduction, then is very likely that this contributes to transformation of its host cell. More research in the field is required in order to identify mechanisms and molecular factors involved in this process and to develop effective treatment interventions.
Collapse
|
17
|
Canonical and Divergent N-Terminal HBx Isoform Proteins Unveiled: Characteristics and Roles during HBV Replication. Biomedicines 2021; 9:biomedicines9111701. [PMID: 34829930 PMCID: PMC8616016 DOI: 10.3390/biomedicines9111701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a viral regulatory and multifunctional protein. It is well-known that the canonical HBx reading frame bears two phylogenetically conserved internal in-frame translational initiation codons at Met2 and Met3, thus possibly generating divergent N-terminal smaller isoforms during translation. Here, we demonstrate that the three distinct HBx isoforms are generated from the ectopically expressed HBV HBx gene, named XF (full-length), XM (medium-length), and XS (short-length); they display different subcellular localizations when expressed individually in cultured hepatoma cells. Particularly, the smallest HBx isoform, XS, displayed a predominantly cytoplasmic localization. To study HBx proteins during viral replication, we performed site-directed mutagenesis to target the individual or combinatorial expression of the HBx isoforms within the HBV viral backbone (full viral genome). Our results indicate that of all HBx isoforms, only the smallest HBx isoform, XS, can restore WT levels of HBV replication, and bind to the viral mini chromosome, thereby establishing an active chromatin state, highlighting its crucial activities during HBV replication. Intriguingly, we found that sequences of HBV HBx genotype H are devoid of the conserved Met3 position, and therefore HBV genotype H infection is naturally silent for the expression of the HBx XS isoform. Finally, we found that the HBx XM (medium-length) isoform shares significant sequence similarity with the N-terminus domain of the COMMD8 protein, a member of the copper metabolism MURR1 domain-containing (COMMD) protein family. This novel finding might facilitate studies on the phylogenetic origin of the HBV X protein. The identification and functional characterization of its isoforms will shift the paradigm by changing the concept of HBx from being a unique, canonical, and multifunctional protein toward the occurrence of different HBx isoforms, carrying out different overlapping functions at different subcellular localizations during HBV genome replication. Significantly, our current work unveils new crucial HBV targets to study for potential antiviral research, and human virus pathogenesis.
Collapse
|
18
|
Heparanase-Induced Activation of AKT Stabilizes β-Catenin and Modulates Wnt/β-Catenin Signaling during Herpes Simplex Virus 1 Infection. mBio 2021; 12:e0279221. [PMID: 34749529 PMCID: PMC8576534 DOI: 10.1128/mbio.02792-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Under pathological conditions like herpes simplex virus 1 (HSV-1) infection, host-pathogen interactions lead to major reconstruction of the host protein network, which contributes to the dysregulation of signaling pathways and disease onset. Of note is the upregulation of a multifunctional host protein, heparanase (HPSE), following infection, which serves as a mediator in HSV-1 replication. In this study, we identify a novel function of HPSE and highlight it as a key regulator of β-catenin signal transduction. The regulatory role of HPSE on the activation, nuclear translocation, and signal transduction of β-catenin disrupts cellular homeostasis and establishes a pathogenic environment that promotes viral replication. Under normal physiological conditions, β-catenin is bound to a group of proteins, referred to as the destruction complex, and targeted for ubiquitination and, ultimately, degradation. We show that virus-induced upregulation of HPSE leads to the activation of Akt and subsequent stabilization and activation of β-catenin through (i) the release of β-catenin from the destruction complex, and (ii) direct phosphorylation of β-catenin at Ser552. This study also provides an in-depth characterization of the proviral role of β-catenin signaling during HSV-1 replication using physiologically relevant cell lines and in vivo models of ocular infection. Furthermore, pharmacological inhibitors of this pathway generated a robust antiviral state against multiple laboratory and clinical strains of HSV-1. Collectively, our findings assign a novel regulatory role to HPSE as a driver of β-catenin signaling in HSV-1 infection. IMPORTANCE Heparanase (HPSE) and β-catenin have independently been implicated in regulating key pathophysiological processes, including neovascularization, angiogenesis, and inflammation; however, the relationship between the two proteins has remained elusive thus far. For that reason, characterizing this relationship is crucial and can lead to the development of novel therapeutics. For HSV-1 specifically, current antivirals are not able to abolish the virus from the host, leaving patients susceptible to episodes of viral reactivation. Identifying a host-based intervention can provide a better alternative with enhanced efficacy and sustained relief.
Collapse
|
19
|
Alqahtani SA, Colombo M. Treatment for Viral Hepatitis as Secondary Prevention for Hepatocellular Carcinoma. Cells 2021; 10:3091. [PMID: 34831314 PMCID: PMC8619578 DOI: 10.3390/cells10113091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic infections with either hepatitis B or C virus (HBV or HCV) are among the most common risk factors for developing hepatocellular carcinoma (HCC). The hepatocarcinogenic potential of these viruses is mediated through a wide range of mechanisms, including the induction of chronic inflammation and oxidative stress and the deregulation of cellular pathways by viral proteins. Over the last decade, effective anti-viral agents have made sustained viral suppression or cure a feasible treatment objective for most chronic HBV/HCV patients. Given the tumorigenic potential of HBV/HCV, it is no surprise that obtaining sustained viral suppression or eradication proves to be effective in preventing HCC. This review summarizes the mechanisms by which HCV and HBV exert their hepatocarcinogenic activity and describes in detail the efficacy of anti-HBV and anti-HCV therapies in terms of HCC prevention. Although these treatments significantly reduce the risk for HCC in patients with chronic viral hepatitis, this risk is not eliminated. Therefore, we evaluate potential strategies to improve these outcomes further and address some of the remaining controversies.
Collapse
Affiliation(s)
- Saleh A. Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD 21287, USA
- Liver Transplant Center, and Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Massimo Colombo
- Liver Center, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
| |
Collapse
|
20
|
Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virol Sin 2021; 36:1303-1314. [PMID: 34580816 PMCID: PMC8692646 DOI: 10.1007/s12250-021-00450-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
21
|
El Hidan MA, Laaradia MA, El Hiba O, Draoui A, Aimrane A, Kahime K. Scorpion-Derived Antiviral Peptides with a Special Focus on Medically Important Viruses: An Update. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9998420. [PMID: 34527748 PMCID: PMC8437663 DOI: 10.1155/2021/9998420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
The global burden of viral infection, especially the current pandemics of SARS-CoV-2, HIV/AIDS, and hepatitis, is a very risky one. Additionally, HCV expresses the necessity for antiviral therapeutic elements. Venoms are known to contain an array of bioactive peptides that are commonly used in the treatment of various medical issues. Several peptides isolated from scorpion venom have recently been proven to possess an antiviral activity against several viral families. The aim of this review is to provide an up-to-date overview of scorpion antiviral peptides and to discuss their modes of action and potential biomedical application against different viruses.
Collapse
Affiliation(s)
- Moulay Abdelmonaim El Hidan
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| | | | - Omar El Hiba
- Nutritional Physiopathology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Morocco
| | - Abdelmohcine Aimrane
- Nutritional Physiopathology Team, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Kholoud Kahime
- SAEDD Laboratory, School of Technology Essaouira, Cadi Ayyad University of Marrakesh, Morocco
| |
Collapse
|
22
|
Lok J, Agarwal K. Screening for Hepatocellular Carcinoma in Chronic Hepatitis B: An Update. Viruses 2021; 13:v13071333. [PMID: 34372539 PMCID: PMC8309969 DOI: 10.3390/v13071333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Hepatocellular carcinoma (HCC) is an important cause of mortality in individuals with chronic hepatitis B infection, with screening of high-risk groups recommended in all major international guidelines. Our understanding of the risk factors involved has improved over time, encouraging researchers to develop models that predict future risk of HCC development. (2) Methods: A literature search of the PubMed database was carried out to identify studies that derive or validate models predicting HCC development in patients with chronic hepatitis B. Subsequently, a second literature search was carried out to explore the potential role of novel viral biomarkers in this field. (3) Results: To date, a total of 23 models have been developed predicting future HCC risk, of which 12 have been derived from cohorts of treatment-naïve individuals. Most models have been developed in Asian populations (n = 20), with a smaller number in Caucasian cohorts (n = 3). All of the models demonstrate satisfactory performance in their original derivation cohorts, but many lack external validation. In recent studies, novel viral biomarkers have demonstrated utility in predicting HCC risk in patients with chronic hepatitis B, amongst both treated and treatment-naïve patients. (4) Conclusion: Several models have been developed to predict the risk of HCC development in individuals with chronic hepatitis B infection, but many have not been externally validated outside of the Asian population. Further research is needed to refine these models and facilitate a more tailored HCC surveillance programme in the future.
Collapse
Affiliation(s)
- James Lok
- Department of Gastroenterology, St. George’s Hospital, London SW17 0QT, UK
- Correspondence:
| | - Kosh Agarwal
- Institute of Liver Studies, King’s College Hospital, London SE5 9RS, UK;
| |
Collapse
|
23
|
Yamaguchi M, Murata T, Ramos JW. The phytochemical p-hydroxycinnamic acid suppresses the growth and stimulates the death in human liver cancer HepG2 cells. Anticancer Drugs 2021; 32:558-566. [PMID: 33595948 PMCID: PMC8903240 DOI: 10.1097/cad.0000000000001059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant diseases and causes a third of cancer-related death. The prognosis and effective treatment of advanced HCC remains poor in spite of the development of novel therapeutic strategies. In the present study, we investigate anticancer effects of the botanical molecule p-hydroxycinnamic acid (HCA) in the HepG2 liver cancer model in vitro. Culturing with HCA (10-1000 nM) suppressed colony formation and growth of HepG2 cells. Mechanistically, culturing with HCA decreased levels of Ras, PI3K, Akt, MAPK, NF-κB p65 and β-catenin, which are linked to processes of cell signaling and transcription, and increased levels of retinoblastoma and regucalcin, which are suppressors for carcinogenesis. These alterations may lead to the suppression of cell growth. Furthermore, culturing with HCA (10-1000 nM) stimulated cell death due to increased caspase-3 levels. Interestingly, the effects of HCA on the growth and death of HepG2 cells were inhibited by culturing with CH223191, an antagonist of aryl hydrocarbon receptor (AHR), suggesting that the flavonoid effects are, at least partly, mediated by activation of AHR signaling. Notably, HCA blocked stimulatory effects of Bay K 8644, an agonist of L-type calcium channel, on the growth of HepG2 cells. Thus, our study demonstrates that HCA suppresses the growth and stimulates the death of human liver cancer HepG2 cells in vitro. The botanical molecule HCA may therefore be a useful tool in the treatment of HCC, providing a novel strategy for the therapy of human liver cancers.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Hawaii, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Yagotoyama, Tempaku, Nagoya, Japan
| | - Joe W. Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Hawaii, USA
| |
Collapse
|
24
|
Sekiba K, Otsuka M, Koike K. Potential of HBx Gene for Hepatocarcinogenesis in Noncirrhotic Liver. Semin Liver Dis 2021; 41:142-149. [PMID: 33984871 DOI: 10.1055/s-0041-1723033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Current treatments for hepatitis B virus (HBV) using nucleos(t)ide analogs cannot eliminate the risk of hepatocellular carcinoma (HCC) development. As HBV-associated HCC can develop even in the absence of liver cirrhosis, HBV is regarded to possess direct oncogenic potential. HBV regulatory protein X (HBx) has been identified as a primary mediator of HBV-mediated hepatocarcinogenesis. A fragment of the HBV genome that contains the coding region of HBx is commonly integrated into the host genome, resulting in the production of aberrant proteins and subsequent hepatocarcinogenesis. Besides, HBx interferes with the host DNA or deoxyribonucleic acid damage repair pathways, signal transduction, epigenetic regulation of gene expression, and cancer immunity, thereby promoting carcinogenesis in the noncirrhotic liver. However, numerous molecules and pathways have been implicated in the development of HBx-associated HCC, suggesting that the mechanisms underlying HBx-mediated hepatocarcinogenesis remain to be elucidated.
Collapse
Grants
- Japan Agency for Medical Research and Development, AMED JP20fk0210054
- Japan Agency for Medical Research and Development, AMED JP20fk0210080h0001
- Japan Agency for Medical Research and Development, AMED JP20fk0310102
- The Ministry of Education, Culture, Sports, Science, and Technology, Japan 19H03430
- The Ministry of Education, Culture, Sports, Science, and Technology, Japan 19J11829
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
You H, Yuan D, Bi Y, Zhang N, Li Q, Tu T, Wei X, Lian Q, Yu T, Kong D, Yang X, Liu X, Liu X, Kong F, Zheng K, Tang R. Hepatitis B virus X protein promotes vimentin expression via LIM and SH3 domain protein 1 to facilitate epithelial-mesenchymal transition and hepatocarcinogenesis. Cell Commun Signal 2021; 19:33. [PMID: 33722250 PMCID: PMC7958410 DOI: 10.1186/s12964-021-00714-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) X protein (HBX) has been reported to be responsible for the epithelial-mesenchymal transition (EMT) in HBV-related hepatocellular carcinoma (HCC). Vimentin is an EMT-related molecular marker. However, the importance of vimentin in the pathogenesis of HCC mediated by HBX has not been well determined. METHODS The expression of vimentin induced by HBX, and the role of LIM and SH3 domain protein 1 (LASP1) in HBX-induced vimentin expression in hepatoma cells were examined by western blot and immunohistochemistry analysis. Both the signal pathways involved in the expression of vimentin, the interaction of HBX with vimentin and LASP1, and the stability of vimentin mediated by LASP1 in HBX-positive cells were assessed by western blot, Co-immunoprecipitation, and GST-pull down assay. The role of vimentin in EMT, proliferation, and migration of HCC cells mediated by HBX and LASP1 were explored with western blot, CCK-8 assay, plate clone formation assay, transwell assay, and wound healing assay. RESULTS Vimentin expression was increased in both HBX-positive hepatoma cells and HBV-related HCC tissues, and the expression of vimentin was correlated with HBX in HBV-related HCC tissues. Functionally, vimentin was contributed to the EMT, proliferation, and migration of hepatoma cells mediated by HBX. The mechanistic analysis suggested that HBX was able to enhance the expression of vimentin through LASP1. On the one hand, PI3-K, ERK, and STAT3 signal pathways were involved in the upregulation of vimentin mediated by LASP1 in HBX-positive hepatoma cells. On the other hand, HBX could directly interact with vimentin and LASP1, and dependent on LASP1, HBX was capable of promoting the stability of vimentin via protecting it from ubiquitination mediated protein degradation. Besides these, vimentin was involved in the growth and migration of hepatoma cells mediated by LASP1 in HBX-positive hepatoma cells. CONCLUSION Taken together, these findings demonstrate that, dependent on LASP1, vimentin is crucial for HBX-mediated EMT and hepatocarcinogenesis, and may serve as a potential target for HBV-related HCC treatment. Video abstract.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Yanwei Bi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
- Clinical Laboratory, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu People’s Republic of China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Tao Tu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Xiao Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Qi Lian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Tong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| |
Collapse
|
26
|
Xu J, Koval A, Katanaev VL. Beyond TNBC: Repositioning of Clofazimine Against a Broad Range of Wnt-Dependent Cancers. Front Oncol 2020; 10:602817. [PMID: 33363033 PMCID: PMC7758533 DOI: 10.3389/fonc.2020.602817] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Wnt signaling plays key roles in oncogenic transformation and progression in a number of cancer types, including tumors in the breast, colon, ovaries, liver, and other tissues. Despite this importance, no therapy targeting the Wnt pathway currently exists. We have previously shown that the anti-mycobacterium drug clofazimine is a specific inhibitor of Wnt signaling and cell proliferation in triple-negative breast cancer (TNBC). Here, we expand the applicability of clofazimine to a set of other Wnt-dependent cancers. Using a panel of cell lines from hepatocellular carcinoma, glioblastoma, as well as colorectal and ovarian cancer, we show that the efficacy of clofazimine against a given cancer type correlates with the basal levels of Wnt pathway activation and the ability of the drug to inhibit Wnt signaling in it, being further influenced by the cancer mutational spectrum. Our study establishes the basis for patient stratification in the future clinical trials of clofazimine and may ultimately contribute to the establishment of the Wnt pathway-targeted therapy against a diverse set of cancer types relying on the oncogenic Wnt signaling.
Collapse
Affiliation(s)
- Jiabin Xu
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vladimir L Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
27
|
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv Cancer Res 2020; 149:1-61. [PMID: 33579421 PMCID: PMC8796122 DOI: 10.1016/bs.acr.2020.10.001] [Citation(s) in RCA: 505] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the primary malignancy of hepatocytes, is a diagnosis with bleak outcome. According to National Cancer Institute's SEER database, the average five-year survival rate of HCC patients in the US is 19.6% but can be as low as 2.5% for advanced, metastatic disease. When diagnosed at early stages, it is treatable with locoregional treatments including surgical resection, Radio-Frequency Ablation, Trans-Arterial Chemoembolization or liver transplantation. However, HCC is usually diagnosed at advanced stages when the tumor is unresectable, making these treatments ineffective. In such instances, systemic therapy with tyrosine kinase inhibitors (TKIs) becomes the only viable option, even though it benefits only 30% of patients, provides only a modest (~3months) increase in overall survival and causes drug resistance within 6months. HCC, like many other cancers, is highly heterogeneous making a one-size fits all option problematic. The selection of liver transplantation, locoregional treatment, TKIs or immune checkpoint inhibitors as a treatment strategy depends on the disease stage and underlying condition(s). Additionally, patients with similar disease phenotype can have different molecular etiology making treatment responses different. Stratification of patients at the molecular level would facilitate development of the most effective treatment option. With the increase in efficiency and affordability of "omics"-level analysis, considerable effort has been expended in classifying HCC at the molecular, metabolic and immunologic levels. This review examines the results of these efforts and the ways they can be leveraged to develop targeted treatment options for HCC.
Collapse
Affiliation(s)
- Saranya Chidambaranathan-Reghupaty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
28
|
D'souza S, Lau KCK, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol 2020; 26:5759-5783. [PMID: 33132633 PMCID: PMC7579760 DOI: 10.3748/wjg.v26.i38.5759] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC) represents 90% of all primary liver cancers. Solid tumors like HCC are complex and have heterogeneous tumor genomic profiles contributing to complexity in diagnosis and management. Chronic infection with hepatitis B virus (HBV), hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest etiological risk factors for HCC. Due to the significant role of chronic viral infection in HCC development, it is important to investigate direct (viral associated) and indirect (immune-associated) mechanisms involved in the pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that drive hepatocarcinogenesis include persistent liver inflammation with an impaired antiviral immune response, immune and viral protein-mediated oxidative stress, and deregulation of cellular signaling pathways by viral proteins. DNA integration to promote genome instability is a feature of HBV infection, and metabolic reprogramming leading to steatosis is driven by HCV infection. The current review aims to provide a brief overview of HBV, HCV and HDV molecular biology, and highlight specific viral-associated oncogenic mechanisms and common molecular pathways deregulated in HCC, and current as well as emerging treatments for HCC.
Collapse
Affiliation(s)
- Simmone D'souza
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Keith CK Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Trushar R Patel
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge T1K3M4, AB, Canada
| |
Collapse
|
29
|
Yamaguchi M, Murata T, Ramos JW. The calcium channel agonist Bay K 8644 promotes the growth of human liver cancer HepG2 cells in vitro: suppression with overexpressed regucalcin. Mol Cell Biochem 2020; 472:173-185. [PMID: 32591915 DOI: 10.1007/s11010-020-03795-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
Hepatocellular carcinoma is one of the most prevalent malignant diseases and causes a third of cancer-related death. The consequences of altered calcium homeostasis in cancer cells may contribute to tumor progression. Regucalcin plays an inhibitory role in calcium signaling linked to transcription regulation. Regucalcin gene expression is downregulated in the tumor tissues of liver cancer patients, suggesting an involvement as a suppressor in hepatocarcinogenesis. We investigated whether Bay K 8644, an agonist of the L-type Ca2+ channel, promotes the growth of human liver cancer and if the effect of Bay K 8644 is suppressed by overexpressed regucalcin using the HepG2 cell model. The colony formation and growth of HepG2 cells were promoted by culturing with Bay K 8644 (0.1-10 nM). This effect was suppressed by inhibitors of signaling processes linked to cell proliferation, including PD98059 and wortmannin. Death of HepG2 cells was stimulated by Bay K 8644 with higher concentrations (25 and 100 nM). The effects of Bay K 8644 on cell growth and death were abolished by verapamil, an antagonist of calcium channel. Mechanistically, culturing with Bay K 8644 increased levels of mitogen-activated protein kinase (MAPK) and phospho-MAPK. Notably, overexpressed regucalcin suppressed Bay K 8644-promoted growth and death of HepG2 cells. Furthermore, overexpressed regucalcin prevented growth and increased death induced by thapsigargin, which induces the release of intracellular stored calcium. Thus, higher regucalcin expression suppresses calcium signaling linked to the growth of liver cancer cells, providing a novel strategy in treatment of hepatocellular carcinoma with delivery of the regucalcin gene.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/adverse effects
- Apoptosis
- Calcium Channel Agonists/adverse effects
- Calcium Channels, L-Type/chemistry
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Cell Proliferation
- Humans
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Liver Neoplasms/etiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| |
Collapse
|
30
|
Jeong GU, Ahn BY, Jung J, Kim H, Kim TH, Kim W, Lee A, Lee K, Kim JH. A recombinant human immunoglobulin with coherent avidity to hepatitis B virus surface antigens of various viral genotypes and clinical mutants. PLoS One 2020; 15:e0236704. [PMID: 32790777 PMCID: PMC7425877 DOI: 10.1371/journal.pone.0236704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/12/2020] [Indexed: 12/26/2022] Open
Abstract
The hepatitis B virus (HBV) envelope is composed of a lipid bilayer and three glycoproteins, referred to as the large (L), middle (M), and small (S) hepatitis B virus surface antigens (HBsAg). S protein constitutes the major portion of the viral envelope and an even greater proportion of subviral particles (SVP) that circulate in the blood. Recombinant S proteins are currently used as a preventive vaccine, while plasma fractions isolated from vaccinated people, referred to as hepatitis B immune globulin (HBIG), are used for short-term prophylaxis. Here, we characterized a recombinant human IgG1 type anti-S antibody named Lenvervimab regarding its binding property to a variety of cloned S antigens. Immunochemical data showed an overall consistent avidity of the antibody to S antigens of most viral genotypes distributed worldwide. Further, antibody binding was not affected by the mutations in the antigenic ‘a’ determinant found in many clinical variants, including the immune escape mutant G145R. In addition, mutations in the S gene sequence that confer drug resistance to the viral polymerase did not interfere with the antibody binding. These results support for a preventive use of the antibody against HBV infection.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Department of Life Science, Korea University, Seoul, Korea
| | - Byung-Yoon Ahn
- Department of Life Science, Korea University, Seoul, Korea
- * E-mail: (BYA); (JHK)
| | - Jaesung Jung
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Hyunjin Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Tae-Hee Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Woohyun Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Ara Lee
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Kyuhyun Lee
- Development Division PL Unit, GC Pharma Corp., Youngin, Korea
| | - Jung-Hwan Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
- * E-mail: (BYA); (JHK)
| |
Collapse
|
31
|
An Alternatively Spliced Sirtuin 2 Isoform 5 Inhibits Hepatitis B Virus Replication from cccDNA by Repressing Epigenetic Modifications Made by Histone Lysine Methyltransferases. J Virol 2020; 94:JVI.00926-20. [PMID: 32493816 DOI: 10.1128/jvi.00926-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sirtuin 2 (Sirt2), an NAD+-dependent protein deacetylase, deacetylates tubulin, AKT, and other proteins. Previously, we showed that Sirt2 isoform 1 (Sirt2.1) increased replication of hepatitis B virus (HBV). Here, we show that HBV replication upregulates the expression of Sirt2 primary and alternatively spliced transcripts and their respective isoforms, 1, 2, and 5. Since Sirt2 isoform 5 (Sirt2.5) is a catalytically inactive nuclear protein with a spliced-out nuclear export signal (NES), we speculated that its different localization affects its activity. The overexpression of Sirt2.5 reduced expression of HBV mRNAs, replicative intermediate DNAs, and covalently closed circular DNA (cccDNA), an activity opposite that of Sirt2.1 and Sirt2.2. Unlike the Sirt2.1-AKT interaction, the Sirt2.5-AKT interaction was weakened by HBV replication. Unlike Sirt2.1, Sirt2.5 activated the AKT/GSK-3β/β-catenin signaling pathway very weakly and independently of HBV replication. When the NES and an N-terminal truncated catalytic domain were added to the Sirt2.5 construct, it localized in the cytoplasm and increased HBV replication (like Sirt2.1 and Sirt2.2). Chromatin immunoprecipitation assays revealed that more Sirt2.5 was recruited to cccDNA than Sirt2.1. The recruitment of histone lysine methyltransferases (HKMTs), such as SETDB1, SUV39H1, EZH2, and PR-Set7, and their respective transcriptional repressive markers, H3K9me3, H3K27me3, and H4K20me1, to cccDNA also increased in Sirt2.5-overexpressing cells. Among these, the Sirt2.5-PR-Set7 and -SETDB1 interactions increased upon HBV replication. These results demonstrate that Sirt2.5 reduces cccDNA levels and viral transcription through epigenetic modification of cccDNA via direct and/or indirect association with HKMTs, thereby exhibiting anti-HBV activity.IMPORTANCE Sirt2, a predominant cytoplasmic α-tubulin deacetylase, promotes the growth of hepatocellular carcinoma; indeed, HBV replication increases Sirt2 expression, and overexpression of Sirt2 is associated with hepatic fibrosis and epithelial-to-mesenchymal transition. Increased amounts of Sirt2 isoforms 1, 2, and 5 upon HBV replication might further upregulate HBV replication, leading to a vicious cycle of virus replication/disease progression. However, we show here that catalytically inactive nuclear Sirt2.5 antagonizes the effects of Sirt2.1 and Sirt2.2 on HBV replication, thereby inhibiting cccDNA level, transcription of cccDNA, and subsequent synthesis of replicative intermediate DNA. More Sirt2.5 was recruited to cccDNA than Sirt2.1, thereby increasing epigenetic modification by depositing transcriptional repressive markers, possibly through direct and/or indirect association with histone lysine methyltransferases, such as SETDB1, SUV39H1, EZH2, and/or PR-Set7, which represses HBV transcription. Thus, Sirt2.5 might provide a functional cure for HBV by silencing the transcription of HBV.
Collapse
|
32
|
Sex Hormone-Dependent Physiology and Diseases of Liver. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082620. [PMID: 32290381 PMCID: PMC7216036 DOI: 10.3390/ijerph17082620] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism is associated not only with somatic and behavioral differences between men and women, but also with physiological differences reflected in organ metabolism. Genes regulated by sex hormones differ in expression in various tissues, which is especially important in the case of liver metabolism, with the liver being a target organ for sex hormones as its cells express estrogen receptors (ERs: ERα, also known as ESR1 or NR3A; ERβ; GPER (G protein-coupled ER, also known as GPR 30)) and the androgen receptor (AR) in both men and women. Differences in sex hormone levels and sex hormone-specific gene expression are mentioned as some of the main variations in causes of the incidence of hepatic diseases; for example, hepatocellular carcinoma (HCC) is more common in men, while women have an increased risk of autoimmune liver disease and show more acute liver failure symptoms in alcoholic liver disease. In non-alcoholic fatty liver disease (NAFLD), the distinction is less pronounced, but increased incidences are suggested among men and postmenopausal women, probably due to an increased tendency towards visceral fat accumulation.
Collapse
|
33
|
In silico Analysis of Genetic Diversity of Human Hepatitis B Virus in Southeast Asia, Australia and New Zealand. Viruses 2020; 12:v12040427. [PMID: 32283837 PMCID: PMC7232418 DOI: 10.3390/v12040427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
The extent of whole genome diversity amongst hepatitis B virus (HBV) genotypes is not well described. This study aimed to update the current distribution of HBV types and to investigate mutation rates and nucleotide diversity between genotypes in Southeast Asia, Australia and New Zealand. We retrieved 930 human HBV complete genomes from these regions from the NCBI nucleotide database for genotyping, detection of potential recombination, serotype prediction, mutation identification and comparative genome analyses. Overall, HBV genotypes B (44.1%) and C (46.2%) together with predicted serotypes adr (36%), adw2 (29%) and ayw1 (19.9%) were the most commonly circulating HBV types in the studied region. The three HBV variants identified most frequently were p.V5L, c.1896G>A and double mutation c.1762A>T/c.1764G>A, while genotypes B and C had the widest range of mutation types. The study also highlighted the distinct nucleotide diversity of HBV genotypes for whole genome and along the genome length. Therefore, this study provided a robust update to HBV currently circulating in Southeast Asia, Australia and New Zealand as well as an insight into the association of HBV genetic hypervariability and prevalence of well reported mutations.
Collapse
|
34
|
Lin X, Li AM, Li YH, Luo RC, Zou YJ, Liu YY, Liu C, Xie YY, Zuo S, Liu Z, Liu Z, Fang WY. Silencing MYH9 blocks HBx-induced GSK3β ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. Signal Transduct Target Ther 2020; 5:13. [PMID: 32296025 PMCID: PMC7018736 DOI: 10.1038/s41392-020-0111-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
MYH9 has dual functions in tumors. However, its role in inducing tumor stemness in hepatocellular carcinoma (HCC) is not yet determined. Here, we found that MYH9 is an effective promoter of tumor stemness that facilitates hepatocellular carcinoma pathogenesis. Importantly, targeting MYH9 remarkably improved the survival of hepatocellular carcinoma-bearing mice and promoted sorafenib sensitivity of hepatocellular carcinoma cells in vivo. Mechanistic analysis suggested that MYH9 interacted with GSK3β and reduced its protein expression by ubiquitin-mediated degradation, which therefore dysregulated the β-catenin destruction complex and induced the downstream tumor stemness phenotype, epithelial-mesenchymal transition, and c-Jun signaling in HCC. C-Jun transcriptionally stimulated MYH9 expression and formed an MYH9/GSK3β/β-catenin/c-Jun feedback loop. X protein is a hepatitis B virus (HBV)-encoded key oncogenic protein that promotes HCC pathogenesis. Interestingly, we observed that HBV X protein (HBX) interacted with MYH9 and induced its expression by modulating GSK3β/β-catenin/c-Jun signaling. Targeting MYH9 blocked HBX-induced GSK3β ubiquitination to activate the β-catenin destruction complex and suppressed cancer stemness and EMT. Based on TCGA database analysis, MYH9 was found to be elevated and conferred poor prognosis for hepatocellular carcinoma patients. In clinical samples, high MYH9 expression levels predicted poor prognosis of hepatocellular carcinoma patients. These findings identify the suppression of MYH9 as an alternative approach for the effective eradication of CSC properties to inhibit cancer migration, invasion, growth, and sorafenib resistance in HCC patients. Our study demonstrated that MYH9 is a crucial therapeutic target in HCC.
Collapse
Affiliation(s)
- Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Ai-Min Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yong-Hao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Rong-Cheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yu-Jiao Zou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yi-Yi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Ying-Ying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China, 550004
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, People's Republic of China, 410002
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, 510095.
| | - Wei-Yi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310.
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510515.
| |
Collapse
|
35
|
Tao S, Pan S, Gu C, Wei L, Kang N, Xie Y, Liu J. Characterization and engineering of broadly reactive monoclonal antibody against hepatitis B virus X protein that blocks its interaction with DDB1. Sci Rep 2019; 9:20323. [PMID: 31889135 PMCID: PMC6937242 DOI: 10.1038/s41598-019-56819-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) plays diverse roles in both viral life cycle and HBV-related carcinogenesis. Its interaction with DNA damage-binding protein 1 (DDB1) was shown to be essential for engendering cellular conditions favorable for optimal viral transcription and replication. Previously, we described a mouse monoclonal antibody against HBx (anti-HBx 2A7) recognizing HBx encoded by representative strains from 7 of 8 known HBV genotypes. In this work, we further characterized 2A7 in order to explore its potential usefulness in HBx-targeting applications. We demonstrated that 2A7 recognizes a linear epitope mapped to L89PKVLHKR96 on HBx, a segment that is highly conserved across genotypes and coincidentally overlaps with the DDB1-interacting segment. HBx-DDB1 binding could be inhibited by 2A7 in vitro, suggesting therapeutic potential. Nucleic acid and amino acid sequences of 2A7 were then obtained, which allowed construction of recombinant antibody and single chain variable fragments (scFv). 2A7-derived recombinant antibody and scFv recapitulate 2A7's HBx-binding capacity and epitope specificity. We also reported preliminary results using cell-penetrating peptide for delivering 2A7 antibody across cell membrane to target intracellular HBx. Anti-HBx 2A7 and 2A7-derived scFv characterized here may give rise to novel HBx-targeting diagnostics and therapeutics for HBV- and HBx-related pathologies.
Collapse
Affiliation(s)
- Shuai Tao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaokun Pan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lili Wei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Tsuchiya H, Amisaki M, Takenaga A, Honjo S, Fujiwara Y, Shiota G. HBx and c-MYC Cooperate to Induce URI1 Expression in HBV-Related Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20225714. [PMID: 31739577 PMCID: PMC6888623 DOI: 10.3390/ijms20225714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023] Open
Abstract
Unconventional prefoldin RNA polymerase II subunit 5 interactor (URI1) has emerged as an oncogenic driver in hepatocellular carcinoma (HCC). Although the hepatitis B virus (HBV) represents the most common etiology of HCC worldwide, it is unknown whether URI1 plays a role in HBV-related HCC (HCC-B). In the present study, we investigated URI1 expression and its underlying mechanism in HCC-B tissues and cell lines. URI1 gene-promoter activity was determined by a luciferase assay. Human HCC-B samples were used for a chromatin immunoprecipitation assay. We found that c-MYC induced URI1 expression and activated the URI1 promoter through the E-box in the promoter region while the HBx protein significantly enhanced it. The positivity of URI1 expression was significantly higher in HCC-B tumor tissues than in non-HBV-related HCC tumor tissues, suggesting that a specific mechanism underlies URI1 expression in HCC-B. In tumor tissues from HCC-B patients, a significantly higher level of c-MYC was recruited to the E-box than in non-tumor tissues. These results suggest that HBx and c-MYC are involved in URI1 expression in HCC-B. URI1 expression may play important roles in the development and progression of HCC-B because HBx and c-MYC are well-known oncogenic factors in the virus and host, respectively.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
- Correspondence: ; Tel./Fax: +81-859-38-6435
| | - Masataka Amisaki
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Ai Takenaga
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
37
|
Lin X, Zuo S, Luo R, Li Y, Yu G, Zou Y, Zhou Y, Liu Z, Liu Y, Hu Y, Xie Y, Fang W, Liu Z. HBX-induced miR-5188 impairs FOXO1 to stimulate β-catenin nuclear translocation and promotes tumor stemness in hepatocellular carcinoma. Theranostics 2019; 9:7583-7598. [PMID: 31695788 PMCID: PMC6831466 DOI: 10.7150/thno.37717] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer stem cells (CSCs) are the key factor in determining cancer recurrence, metastasis, chemoresistance and patient prognosis in hepatocellular carcinoma (HCC). The role of miR-5188 in cancer stemness has never been documented. In this study, we investigated the clinical and biological roles of miR-5188 in HCC. Methods: MiRNA expression in HCC was analyzed by bioinformatics analysis and in situ hybridization. The biological effect of miR-5188 was demonstrated in both in vitro and in vivo studies through the ectopic expression of miR-5188. The target gene and molecular pathway of miR-5188 were characterized using bioinformatics tools, dual-luciferase reporter assays, gene knockdown, and rescue experiments. Results: MiR-5188 was shown to be upregulated and confer poor prognosis in HCC patient data from TCGA database. MiR-5188 was subsequently identified as a significant inducer of cancer stemness that promotes HCC pathogenesis. Specifically, the targeting of miR-5188 by its antagomir markedly prolonged the survival time of HCC-bearing mice and improved HCC cell chemosensitivity in vivo. Mechanistic analysis indicated that miR-5188 directly targets FOXO1, which interacts with β-catenin in the cytoplasm to reduce the nuclear translocation of β-catenin and promotes the activation of Wnt signaling and downstream tumor stemness, EMT, and c-Jun. Moreover, c-Jun transcriptionally activates miR-5188 expression, forming a positive feedback loop. Interestingly, the miR-5188-FOXO1/β-catenin-c-Jun feedback loop was induced by hepatitis X protein (HBX) through Wnt signaling and participated in the HBX-induced pathogenesis of HCC. Finally, analyses of transcriptomics data and our clinical data supported the significance of the abnormal expression of the miR-5188 pathway in HCC pathogenesis. Conclusions: These findings present the inhibition of miR-5188 as a novel strategy for the efficient elimination of CSCs to prevent tumor metastasis, recurrence and chemoresistance in patients with hepatocellular carcinoma. Our study highlights the importance of miR-5188 as a tumor stemness inducer that acts as a potential target for HCC treatment.
Collapse
Affiliation(s)
- Xian Lin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University; Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shi Zuo
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rongcheng Luo
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yujiao Zou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Zhan Liu
- Department of Gastroenterology, Hunan People's Hospital, Changsha, Hunan, China
| | - Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingying Hu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University; Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiyi Fang
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University; Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Jeong H, Cha S, Jang KL. HBx natural variants containing Ser-101 instead of Pro-101 evade ubiquitin-dependent proteasomal degradation by activating proteasomal activator 28 gamma expression. J Gen Virol 2019; 100:1554-1566. [PMID: 31596196 DOI: 10.1099/jgv.0.001337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteasomal activator 28 gamma (PA28γ) is frequently overexpressed in hepatocellular carcinoma; however, its underlying mechanism and role in hepatitis B virus (HBV) replication are largely unknown. Here, we found that HBV X protein (HBx) natural variants containing Ser-101 instead of Pro-101 increase reactive oxygen species levels in the mitochondria and activate the ataxia telangiectasia mutated/checkpoint kinase 2 pathway in the nucleus, resulting in the phosphorylation of p53 at Ser-15 and Ser-20 and the subsequent upregulation of its protein levels. Therefore, HBx variants containing Ser-101 induced p53-dependent activation of PA28γ expression in human hepatoma cells. The elevated PA28γ levels upregulated HBx levels through the inhibition of seven in absentia homologue 1-dependent proteasomal degradation. The self-amplifying ability of HBx variants containing Ser-101 via a positive feedback loop involving p53 and PA28γ was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, which also provided evidence for the stimulation of HBV replication by these HBx variants. In conclusion, the ability of HBx to upregulate PA28γ levels via p53 activation, in a Ser-101-dependent pathway, is critical for the stimulation of HBV replication.
Collapse
Affiliation(s)
- Hyerin Jeong
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sungkyung Cha
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
39
|
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: A double-edged sword in hepatocarcinogenesis. J Cell Physiol 2019; 234:14734-14742. [PMID: 30741410 DOI: 10.1002/jcp.28249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Nuclear factor-κB (NF-κB), a family of master regulated dimeric transcription factors, signaling transduction pathways are active players in the cell signaling that control vital cellular processes, including cell growth, proliferation, differentiation, apoptosis, morphogenesis, angiogenesis, and immune responses. Nevertheless, aberrant regulation of the NF-κB signaling pathways has been associated with a significant number of human cancers. In fact, NF-κB acts as a double-edged sword in the vital cellular processes and carcinogenesis. This review provides an overview on the modulation of the NF-κB signaling pathways by proteins of hepatitis B and C viruses. One of the major NF-κB events that are modulated by these viruses is the induction of hepatocellular carcinoma. Given the central function of NF-κB in carcinogenesis, it has turned out to be a considerable therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farid Azizi Jalalian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Wang W, Smits R, Hao H, He C. Wnt/β-Catenin Signaling in Liver Cancers. Cancers (Basel) 2019; 11:E926. [PMID: 31269694 PMCID: PMC6679127 DOI: 10.3390/cancers11070926] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is among the leading global healthcare issues associated with high morbidity and mortality. Liver cancer consists of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), hepatoblastoma (HB), and several other rare tumors. Progression has been witnessed in understanding the interactions between etiological as well as environmental factors and the host in the development of liver cancers. However, the pathogenesis remains poorly understood, hampering the design of rational strategies aiding in preventing liver cancers. Accumulating evidence demonstrates that aberrant activation of the Wnt/β-catenin signaling pathway plays an important role in the initiation and progression of HCC, CCA, and HB. Targeting Wnt/β-catenin signaling potentiates a novel avenue for liver cancer treatment, which may benefit from the development of numerous small-molecule inhibitors and biologic agents in this field. In this review, we discuss the interaction between various etiological factors and components of Wnt/β-catenin signaling early in the precancerous lesion and the acquired mechanisms to further enhance Wnt/β-catenin signaling to promote robust cancer formation at later stages. Additionally, we shed light on current relevant inhibitors tested in liver cancers and provide future perspectives for preclinical and clinical liver cancer studies.
Collapse
Affiliation(s)
- Wenhui Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam 3015 CN, The Netherlands
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
41
|
Lee HM, Kwon SB, Son A, Kim DH, Kim KH, Lim J, Kwon YG, Kang JS, Lee BK, Byun YH, Seong BL. Stabilization of Intrinsically Disordered DKK2 Protein by Fusion to RNA-Binding Domain. Int J Mol Sci 2019; 20:ijms20112847. [PMID: 31212691 PMCID: PMC6600415 DOI: 10.3390/ijms20112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.
Collapse
Affiliation(s)
- Hye Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Doo Hyun Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Kyun-Hwan Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Jonghyo Lim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jin Sun Kang
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Byung Kyu Lee
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
42
|
Tang W, Yang L, Yang T, Liu M, Zhou Y, Lin J, Wang K, Ding C. INPP4B inhibits cell proliferation, invasion and chemoresistance in human hepatocellular carcinoma. Onco Targets Ther 2019; 12:3491-3507. [PMID: 31123408 PMCID: PMC6511246 DOI: 10.2147/ott.s196832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Inositol polyphosphate 4-phosphatase type II (INPP4B) has been identified as a negative regulator of phosphatidyl inositol 3-kinase (PI3K)/Akt signaling in human several cancers. However, the expression, clinical significance and biological function of INPP4B in human hepatocellular carcinoma (HCC) clinical tissues and cell lines are little known. Materials and methods: We evaluated the expression of INPP4B in 86 cases of paired human HCC samples by immunohistochemistry, and the clinical significance of INPP4B expression was analyzed. The expression of INPP4B in five HCC cell lines was detected through using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses. The role of INPP4B gene on HCC cell proliferation, apoptosis, migration, invasion as well as epithelial-to-mesenchymal transition (EMT) and chemoresistance was examined via INPP4B mammalian expression vector and small interfering RNA (siRNA) transfection in vitro. Western blot analysis was used to explore the downstream molecules modulated by INPP4B. Results: Immunohistochemistry analysis revealed that INPP4B was significantly downregulated in HCC tissues compared with the corresponding normal tissues. The rate of INPP4B-positive staining was markedly lower in metastatic samples than in those of non-metastatic samples. Univariate analysis showed that INPP4B expression was indicated to have a marked association with histological grades, tumor size and tumor metastasis. Moreover, INPP4B overexpression suppressed cell proliferation, migration, invasion and EMT, but induced cell apoptosis and chemosensitivity in human HCC cell lines. In contrast, INPP4B knockdown had the opposite effects on the biological behaviors of HCC cells. Furthermore, INPP4B was found to inhibit the activation of PI3K/Akt signaling in HCC cells. Conclusion: Our findings suggest that INPP4B is a tumor suppressing gene in human HCC, and might act as a novel therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Wendong Tang
- Center of Clinical Laboratory Medicine, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - Liwen Yang
- Department of Immunology, Zunyi Medical University, Zunyi, People's Republic of China
| | - Taoyu Yang
- Department of Invasive Technology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, People's Republic of China
| | - Min Liu
- Department of Health, Yancheng Maternal and Child Health Care Hospital, Yancheng, People's Republic of China
| | - Yanjie Zhou
- Center of Clinical Laboratory Medicine, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - Jiang Lin
- Center of Clinical Laboratory Medicine, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - Ke Wang
- Center of Clinical Laboratory Medicine, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - Chenbo Ding
- Department of Clinical Medical Laboratory, Medical School of Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
44
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
45
|
Sirtuin 2 Isoform 1 Enhances Hepatitis B Virus RNA Transcription and DNA Synthesis through the AKT/GSK-3β/β-Catenin Signaling Pathway. J Virol 2018; 92:JVI.00955-18. [PMID: 30111572 DOI: 10.1128/jvi.00955-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 2 (Sirt2), a NAD+-dependent protein deacetylase, is overexpressed in many hepatocellular carcinomas (HCCs) and can deacetylate many proteins, including tubulins and AKT, prior to AKT activation. Here, we found that endogenous Sirt2 was upregulated in wild-type hepatitis B virus (HBV WT)-replicating cells, leading to tubulin deacetylation; however, this was not the case in HBV replication-deficient-mutant-transfected cells and 1.3-mer HBV WT-transfected and reverse transcriptase inhibitor (entecavir or lamivudine)-treated cells, but all HBV proteins were expressed. In HBV WT-replicating cells, upregulation of Sirt2 induced AKT activation, which consequently downregulated glycogen synthase kinase 3β (GSK-3β) and increased β-catenin levels; however, downregulation of Sirt2 in HBV-nonreplicating cells impaired AKT/GSK-3β/β-catenin signaling. Overexpression of Sirt2 isoform 1 stimulated HBV transcription and consequently HBV DNA synthesis, which in turn activated AKT and consequently increased β-catenin levels, possibly through physical interactions with Sirt2 and AKT. Knockdown of Sirt2 by short hairpin RNAs (shRNAs), inhibition by 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furanyl]-N-5-quinolinyl-2-propenamide (AGK2), or dominant negative mutant expression inhibited HBV replication, reduced AKT activation, and decreased β-catenin levels. Through HBV infection, we demonstrated that Sirt2 knockdown inhibited HBV replication from transcription. Although HBx itself activates AKT and upregulates β-catenin, Sirt2-mediated signaling and upregulated HBV replication were HBx independent. Since constitutively active AKT inhibits HBV replication, the results suggest that upregulated Sirt2 and activated AKT may balance HBV replication to prolong viral replication, eventually leading to the development of HCC. Also, the results indicate that Sirt2 inhibition may be a new therapeutic option for controlling HBV infection and preventing HCC.IMPORTANCE Even though Sirt2, a NAD+-dependent protein deacetylase, is overexpressed in many HCCs, and overexpressed Sirt2 promotes hepatic fibrosis and associates positively with vascular invasion by primary HCCs through AKT/GSK-3β/β-catenin signaling, the relationship between Sirt2, HBV, HBx, and/or HBV-associated hepatocarcinogenesis is unclear. Here, we show that HBV DNA replication, not HBV expression, correlates positively with Sirt2 upregulation and AKT activation. We demonstrate that overexpression of Sirt2 further increases HBV replication, increases AKT activation, downregulates GSK-3β, and increases β-catenin levels. Conversely, inhibiting Sirt2 decreases HBV replication, reduces AKT activation, and decreases β-catenin levels. Although HBx activates AKT to upregulate β-catenin, Sirt2-mediated effects were not dependent on HBx. The results also indicate that a Sirt2 inhibitor may control HBV infection and prevent the development of hepatic fibrosis and HCC.
Collapse
|
46
|
von Olshausen G, Quasdorff M, Bester R, Arzberger S, Ko C, van de Klundert M, Zhang K, Odenthal M, Ringelhan M, Niessen CM, Protzer U. Hepatitis B virus promotes β-catenin-signalling and disassembly of adherens junctions in a Src kinase dependent fashion. Oncotarget 2018; 9:33947-33960. [PMID: 30338037 PMCID: PMC6188061 DOI: 10.18632/oncotarget.26103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a prominent cause of hepatocellular carcinoma (HCC) but the underlying molecular mechanisms are complex and multiple pathways have been proposed such as the activation of the Wnt-/β-catenin-signalling and dysregulation of E-cadherin/β-catenin adherens junctions. This study aimed to identify mechanisms of how HBV infection and replication as well as HBV X protein (HBx) gene expression in the context of an HBV genome influence Wnt-/β-catenin-signalling and formation of adherens junctions and to which extent HBx contributes to this. Regulation of E-cadherin/β-catenin junctions and β-catenin-signalling as well as the role of HBx were investigated using constructs transiently or stably inducing replication of HBV+/-HBx in hepatoma cell lines. In addition, HCC and adjacent non-tumorous tissue samples from HBV-infected HCC patients and drug interference in HBV-infected cells were studied. Although HBV did not alter overall expression levels of E-cadherin or β-catenin, it diminished their cell surface localization resulting in nuclear translocation of β-catenin and activation of its target genes. In addition, HBV gene expression increased the amount of phosphorylated c-Src kinase. Treatment with Src kinase inhibitor Dasatinib reduced HBV replication, prevented adherens junction disassembly and reduced β-catenin-signalling, while Sorafenib only did so in cells with mutated β-catenin. Interestingly, none of the HBV induced alterations required HBx. Thus, HBV stimulated β-catenin-signalling and induced disassembly of adherens junctions independently of HBx through Src kinase activation. These pathways may contribute to hepatocellular carcinogenesis and seem to be more efficiently inhibited by Dasatinib than by Sorafenib.
Collapse
Affiliation(s)
- Gesa von Olshausen
- Department of Internal Medicine I, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Quasdorff
- Molecular Infectiology, Institute for Medical Micro biology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Silke Arzberger
- Molecular Infectiology, Institute for Medical Micro biology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Maarten van de Klundert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Ke Zhang
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marc Ringelhan
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carien M Niessen
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.,Department of Dermatology, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
47
|
Khanizadeh S, Hasanvand B, Esmaeil Lashgarian H, Almasian M, Goudarzi G. Interaction of viral oncogenic proteins with the Wnt signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:651-659. [PMID: 30140402 PMCID: PMC6098952 DOI: 10.22038/ijbms.2018.28903.6982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/08/2018] [Indexed: 12/13/2022]
Abstract
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenesis. Different signaling pathways play a part in the carcinogenesis that occurs in a cell. Among these pathways, the Wnt signaling pathway plays a predominant role in carcinogenesis and is known as a central cellular pathway in the development of tumors. There are three Wnt signaling pathways that are well identified, including the canonical or Wnt/β-catenin dependent pathway, the noncanonical or β-catenin-independent planar cell polarity (PCP) pathway, and the noncanonical Wnt/Ca2+ pathway. Most of the oncogenic viruses modulate the canonical Wnt signaling pathway. This review discusses the interaction between proteins of several human oncogenic viruses with the Wnt signaling pathway.
Collapse
Affiliation(s)
- Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Banafsheh Hasanvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mohammad Almasian
- Department of English Language, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Goudarzi
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
48
|
Wu CC, Wu DW, Lin YY, Lin PL, Lee H. Hepatitis B virus X protein represses LKB1 expression to promote tumor progression and poor postoperative outcome in hepatocellular carcinoma. Surgery 2018; 163:1040-1046. [PMID: 29475611 DOI: 10.1016/j.surg.2017.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 11/24/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hepatitis B virus X (HBx) protein plays critical roles in hepatitis B virus (HBV)-associated hepatocellular tumorigenesis through different molecular mechanisms, including inactivation of p53, a key transcription factor of liver kinase B1 (LKB1). We hypothesized that p53 inactivation by HBx protein could decrease LKB1 expression, thereby promoting tumor progression and poor outcomes in patients with HBV-associated hepatocellular carcinoma. METHODS Manipulation strategies for HBx protein and/or p53 were used to verify that loss of LKB1 could promote colony formation and invasiveness in HepG2 and Hep3B cells. The expressions of HBx protein and LKB1 in 93 hepatocellular carcinomas (HCC) were also evaluated by immunohistochemistry. Kaplan-Meier and Cox regression models were used to assess the prognostic value of both HBx protein and LKB1 proteins in patients with hepatocellular carcinoma. RESULTS Mechanistically, LKB1 expression was decreased at the transcriptional level after inactivation of p53 by HBx protein. Decreases in LKB1 expression were also associated with HBx protein-mediated colony formation and invasive capabilities. HBx protein, LKB1, and a combination of both proteins had prognostic significance for overall survival and relapse-free survival in our study population. CONCLUSION The results from cell line experiments and evaluation of patient prognosis according to expression of HBx protein and LKB1 in their HCC strongly support the hypothesis that decreases in LKB1 expression by HBx protein-mediated p53 inactivation may play an important role in HBV-associated hepatocellular tumorigenesis.
Collapse
Affiliation(s)
- Cheng-Chung Wu
- Department of General Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ying-Yu Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
49
|
Li C, Lin C, Cong X, Jiang Y. PDK1-WNK1 signaling is affected by HBx and involved in the viability and metastasis of hepatic cells. Oncol Lett 2018; 15:5940-5946. [PMID: 29563998 DOI: 10.3892/ol.2018.8001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV)-encoded X antigen (HBx) contributes to the development of hepatocellular carcinoma (HCC). Although HBx has been implicated in the progression of HCC, its precise function in HBV-associated HCC remains unclear. In the present study, HBx affected 3-phosphoinositide-dependent protein kinase-1 (PDK1) and with-no-lysine (K) kinase (WNK1) signaling, which was identified to be involved in the viability and metastasis of hepatic cells. The phosphorylation of WNK1 was decreased when the hepatic cells were treated with a PDK1 inhibitor. The inhibition of PDK1 activity inhibited the viability and migration of hepatic cells. To the best of our knowledge, the present study is the first to identify the activation of PDK1 in HCC tissues, confirmed using western blot analysis. PDK1-WNK1 signaling may be a potential therapeutic target in HBV-associated liver cancer.
Collapse
Affiliation(s)
- Chaoying Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Cong Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Xianling Cong
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| |
Collapse
|
50
|
Deregulation of Frizzled Receptors in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19010313. [PMID: 29361730 PMCID: PMC5796257 DOI: 10.3390/ijms19010313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have a substantial role in tumorigenesis and are described as a “cancer driver”. Aberrant expression or activation of GPCRs leads to the deregulation of downstream signaling pathways, thereby promoting cancer progression. In hepatocellular carcinoma (HCC), the Wnt signaling pathway is frequently activated and it is associated with an aggressive HCC phenotype. Frizzled (FZD) receptors, a family member of GPCRs, are known to mediate Wnt signaling. Accumulating findings have revealed the deregulation of FZD receptors in HCC and their functional roles have been implicated in HCC progression. Given the important role of FZD receptors in HCC, we summarize here the expression pattern of FZD receptors in HCC and their corresponding functional roles during HCC progression. We also further review and highlight the potential targeting of FZD receptors as an alternative therapeutic strategy in HCC.
Collapse
|