1
|
Tang R, Sun T, Xing Z, Fan X, Jiang P, Le B, Jia K, Cai Y, Bi X, Zhang D, Lin R, He X. Glucocorticoid Receptor Inhibits the Progression of Schistosomiasis Hepatic Fibrosis Through Inducing Circadian Clock Gene Per1. J Infect Dis 2025:jiaf104. [PMID: 40183568 DOI: 10.1093/infdis/jiaf104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 04/05/2025] Open
Abstract
Hepatic fibrosis is the leading cause of morbidity and mortality in schistosomiasis, and transcription factors (TF) may become potential therapeutic targets for this disease. Here, we found that a TF, NR3C1, was significantly downregulated in hepatic stellate cells (HSC), the effector cell of hepatic fibrosis, from mice infected with Schistosoma japonicum using RNA sequencing. Activation of NR3C1 using dexamethasone blocked HSC activation and hepatic fibrosis progression, while these effects were completely abolished upon specific deletion of NR3C1 in HSCs. Genome-wide binding site and transcriptome analyses suggested that Per1, a circadian clock gene, was under the direct control of NR3C1 through binding the glucocorticoid response elements, and it was responsible for the inhibitory effect of NR3C1 on HSC activation. Therefore, NR3C1 is a key TF in the activation of HSCs and a potential therapeutic target for hepatic schistosomiasis.
Collapse
Affiliation(s)
- Rui Tang
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - Tao Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhou Xing
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - XiaoBin Fan
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - PengYue Jiang
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - Bin Le
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - KaiWei Jia
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - YiLi Cai
- Department of Gastroenterology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - XiaoJuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - DongMei Zhang
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - RenYong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xing He
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Wang F, Li Z, Chen L, Yang T, Liang B, Zhang Z, Shao J, Xu X, Yin G, Wang S, Ding H, Zhang F, Zheng S. Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis. Acta Pharm Sin B 2022; 12:3618-3638. [PMID: 36176909 PMCID: PMC9513497 DOI: 10.1016/j.apsb.2022.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Senescence of activated hepatic stellate cells (aHSCs) is a stable growth arrest that is implicated in liver fibrosis regression. Senescent cells often accompanied by a multi-faceted senescence-associated secretory phenotype (SASP). But little is known about how alanine-serine-cysteine transporter type-2 (ASCT2), a high affinity glutamine transporter, affects HSC senescence and SASP during liver fibrosis. Here, we identified ASCT2 is mainly elevated in aHSCs and positively correlated with liver fibrosis in human and mouse fibrotic livers. We first discovered ASCT2 inhibition induced HSCs to senescence in vitro and in vivo. The proinflammatory SASP were restricted by ASCT2 inhibition at senescence initiation to prevent paracrine migration. Mechanically, ASCT2 was a direct target of glutaminolysis-dependent proinflammatory SASP, interfering IL-1α/NF-κB feedback loop via interacting with precursor IL-1α at Lys82. From a translational perspective, atractylenolide III is identified as ASCT2 inhibitor through directly bound to Asn230 of ASCT2. The presence of –OH group in atractylenolide III is suggested to be favorable for the inhibition of ASCT2. Importantly, atractylenolide III could be utilized to treat liver fibrosis mice. Taken together, ASCT2 controlled HSC senescence while modifying the proinflammatory SASP. Targeting ASCT2 by atractylenolide III could be a therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250035, China
| | - Hai Ding
- Department of General Surgery, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding authors.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding authors.
| |
Collapse
|
3
|
Kendall TJ, Duff CM, Thomson AM, Iredale JP. Integration of geoscience frameworks into digital pathology analysis permits quantification of microarchitectural relationships in histological landscapes. Sci Rep 2020; 10:17572. [PMID: 33067578 PMCID: PMC7567886 DOI: 10.1038/s41598-020-74691-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Although gold-standard histological assessment is subjective it remains central to diagnosis and clinical trial protocols and is crucial for the evaluation of any preclinical disease model. Objectivity and reproducibility are enhanced by quantitative analysis of histological images but current methods require application-specific algorithm training and fail to extract understanding from the histological context of observable features. We reinterpret histopathological images as disease landscapes to describe a generalisable framework defining topographic relationships in tissue using geoscience approaches. The framework requires no user-dependent training to operate on all image datasets in a classifier-agnostic manner but is adaptable and scalable, able to quantify occult abnormalities, derive mechanistic insights, and define a new feature class for machine-learning diagnostic classification. We demonstrate application to inflammatory, fibrotic and neoplastic disease in multiple organs, including the detection and quantification of occult lobular enlargement in the liver secondary to hilar obstruction. We anticipate this approach will provide a robust class of histological data for trial stratification or endpoints, provide quantitative endorsement of experimental models of disease, and could be incorporated within advanced approaches to clinical diagnostic pathology.
Collapse
Affiliation(s)
- Timothy J Kendall
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
- Edinburgh Pathology, The Royal Infirmary of Edinburgh, The University of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK.
| | - Catherine M Duff
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Andrew M Thomson
- NHS Lothian University Hospitals Division, Pathology Department, The Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - John P Iredale
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Senate House, University of Bristol, Tyndall Avenue, Bristol, BS8 1TH, UK
| |
Collapse
|
4
|
Pan Q, Guo CJ, Xu QY, Wang JZ, Li H, Fang CH. miR-16 integrates signal pathways in myofibroblasts: determinant of cell fate necessary for fibrosis resolution. Cell Death Dis 2020; 11:639. [PMID: 32801294 PMCID: PMC7429878 DOI: 10.1038/s41419-020-02832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is characterized by the transdifferentiation of hepatic stellate cells (HSCs) to myofibroblasts and poor response to treatment. This can be attributed to the myofibroblast-specific resistance to phenotype reversal. In this study, we complemented miR-16 into miR-16-deficient myofibroblasts and analyzed the global role of miR-16 using transcriptome profiling and generating a pathway-based action model underlying transcriptomic regulation. Phenotypic analysis of myofibroblasts and fibrogenic characterization were used to understand the effect of miR-16 on phenotypic remodeling of myofibroblasts. miR-16 expression altered the transcriptome of myofibroblasts to resemble that of HSCs. Simultaneous targeting of Smad2 and Wnt3a, etc. by miR-16 integrated signaling pathways of TGF-β and Wnt, etc., which underlay the comprehensive regulation of transcriptome. The synergistic effect of miR-16 on the signaling pathways abolished the phenotypic characteristics of myofibroblasts, including collagen production and inhibition of adipogenesis. In vivo, myofibroblast-specific expression of miR-16 not only eliminated mesenchymal cells with myofibroblast characteristics but also restored the phenotype of HSCs in perisinusoidal space. This phenotypic remodeling resolved liver fibrosis induced by chronic wound healing. Therefore, miR-16 may integrate signaling pathways crucial for the fate determination of myofibroblasts. Its global effect induces the reversal of HSC-to-myofibroblast transdifferentiation and, subsequently, the resolution of fibrogenesis. Taken together, these findings highlight the potential of miR-16 as a promising therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Qin Pan
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China.
| | - Can-Jie Guo
- Department of Gastroenterology, Ren-Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200001, China
| | - Qing-Yang Xu
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Jin-Zhi Wang
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Han Li
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Chun-Hua Fang
- School of Electronics and Information Engineering, Tong-Ji University, Shanghai, 201804, China
| |
Collapse
|
5
|
Zhang T, Hao H, Zhou ZQ, Zeng T, Zhang JM, Zhou XY. Lipoxin A4 inhibited the activation of hepatic stellate cells -T6 cells by modulating profibrotic cytokines and NF-κB signaling pathway. Prostaglandins Other Lipid Mediat 2020; 146:106380. [DOI: 10.1016/j.prostaglandins.2019.106380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
|
6
|
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in Health and Disease. Cells 2019; 9:E101. [PMID: 31906104 PMCID: PMC7016888 DOI: 10.3390/cells9010101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors (NRs) belong to a vast family of evolutionary conserved proteins acting as ligand-activated transcription factors. Functionally, NRs are essential in embryogenesis and organogenesis and in adulthood they are involved in almost every physiological and pathological process. Our knowledge of NRs action has greatly improved in recent years, demonstrating that both their expression and activity are tightly regulated by a network of signaling pathways, miRNA and reciprocal interactions. The Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2) is a NR classified as an orphan due to the lack of a known natural ligand. Although its expression peaks during development, and then decreases considerably, in adult tissues, COUP-TFII is an important regulator of differentiation and it is variably implicated in tissues homeostasis. As such, alterations of its expression or its transcriptional activity have been studied and linked to a spectrum of diseases in organs and tissues of different origins. Indeed, an altered COUP-TFII expression and activity may cause infertility, abnormality in the vascular system and metabolic diseases like diabetes. Moreover, COUP-TFII is actively investigated in cancer research but its role in tumor progression is yet to be fully understood. In this review, we summarize the current understanding of COUP-TFII in healthy and pathological conditions, proposing an updated and critical view of the many functions of this NR.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
- Department of Experimental and Clinical Medicine, University of Florence, largo Brambilla 50, 50139 Firenze, Italy
| | - Sara Pepe
- Istituto per la Ricerca, la Prevenzione e la rete Oncologica (ISPRO), viale Pieraccini 6, 50139 Firenze, Italy;
- Department of Medical Biotechnologies, University of Siena, via M. Bracci 16, 53100 Siena, Italy
| | - Stefano Milani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| |
Collapse
|
7
|
Kong M, Wu J, Fan Z, Chen B, Wu T, Xu Y. The histone demethylase Kdm4 suppresses activation of hepatic stellate cell by inducing MiR-29 transcription. Biochem Biophys Res Commun 2019; 514:16-23. [PMID: 31014673 DOI: 10.1016/j.bbrc.2019.04.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022]
Abstract
One of the hallmark events during liver fibrosis is the transition of quiescent hepatic stellate cells (HSC) into activated myofibroblasts, which are responsible for the production and deposition of pro-fibrogenic proteins. The epigenetic mechanism underlying HSC trans-differentiation is not fully understood. In the present study we investigated the contribution of histone H3K9 demethylase KDM4 in this process. We report that expression levels of KDM4 were down-regulated during HSC activation paralleling the up-regulation of alpha smooth muscle cell actin (Acta2), a marker of mature myofibroblast. Furthermore, HSCs isolated from mice induced to develop liver fibrosis exhibit lowered KDM4 expression compared to the control mice. In accordance, KDM4 depletion with siRNA accelerated HSC activation. Of interest, the loss of KDM4 was mirrored by the repression of miR-29, an antagonist of liver fibrosis, during HSC activation both in vitro and in vivo. KDM4 knockdown resulted in the down-regulation of miR-29 expression. Mechanistically, the sequence-specific transcription factor SREBP2 interacted with KDM4 to activate miR-29 transcription. In conclusion, our data delineate a novel epigenetic mechanism underlying HSC activation. Targeting this axis may yield potential therapeutics against liver fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jiahao Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing, China
| | - Bin Chen
- Department of Nursing, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
8
|
Lu P, Yan M, He L, Li J, Ji Y, Ji J. Crosstalk between Epigenetic Modulations in Valproic Acid Deactivated Hepatic Stellate Cells: An Integrated Protein and miRNA Profiling Study. Int J Biol Sci 2019; 15:93-104. [PMID: 30662350 PMCID: PMC6329925 DOI: 10.7150/ijbs.28642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/27/2018] [Indexed: 01/20/2023] Open
Abstract
Reverting activated hepatic stellate cells (HSCs) to less activation or quiescent status is a promising strategy for liver fibrosis. Histone deacetylase inhibitor (HDACI) could suppress HSCs activation. Our previous study demonstrated a critical role of miRNAs in HSCs activation. Here, we explored the involvement of miRNAs in HDACI induced HSCs deactivation. Human cell line LX2 that resembled activated HSCs was treated with an HDACI - valproic acid (VPA). The effects of VPA on the protein and miRNA profile of LX2 were comprehensively analyzed by iTraq quantitative proteomics and miRNA microarray. The interaction between miRNA and proteins was investigated systematically. The biofunctions of differentially expressed proteins and miRNA targeted proteins were annotated. VPA treatment attenuated the activation phenotype of LX2. In VPA treated LX2, among 1548 quantified proteins, only 86 proteins were differentially expressed (VPA-proteins). While among 282 high-abundance miRNAs, 123 were differentially expressed (VPA-miRNAs), with 104 down-regulated and 19 up-regulated. The top biofunctions of VPA-proteins were closely related to HSCs activation, including cell death and survival, cell movement, cellular growth and proliferation. Furthermore, 22 out of the 36 VPA-proteins involved in cell death and survival, and 19 out of the 30 VPA-proteins involved in cellular movement were predicted targets of VPA-miRNAs. A direct regulatory effect of histone acetylation on miRNA expression was also established. In conclusion, our data provided the molecular mechanisms for VPA induced HSCs deactivation at the protein level and suggested crosstalk between histone acetylation and miRNAs in the inhibitory effects of HDACI on HSCs activation.
Collapse
Affiliation(s)
- Peng Lu
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Min Yan
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Li He
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Jing Li
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
9
|
Liu J, Yang P, Zuo G, He S, Tan W, Zhang X, Su C, Zhao L, Wei L, Chen Y, Ruan X, Chen Y. Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Lipids Health Dis 2018; 17:153. [PMID: 30016988 PMCID: PMC6050651 DOI: 10.1186/s12944-018-0790-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that activated hepatocytes are involved in the deposition of the excess extracellular matrix during liver fibrosis via the epithelial to mesenchymal transition. Lipid accumulation in hepatocytes are implicated in the pathogenesis of chronic liver injury. CD36 is known to mediate long-chain fatty acid (LCFA) uptake and lipid metabolism. However, it is unclear whether LCFA directly promotes hepatocyte activation and the involved mechanisms have not been fully clarified. METHODS Mice were fed with a high fat diet (HFD) and normal hepatocyte cells (Chang liver cells) were treated with palmitic acid (PA) in vivo and in vitro. Real-time polymerase chain reaction (RT-PCR) and western blotting were used to examine the gene and protein expression of molecules involved in hepatic fibrogenesis and hepatocyte activation. CD36 was knocked down by transfecting CD36 siRNA into hepatocyte cells. Hydrogen peroxide (H2O2) and reactive oxygen species (ROS) levels were detected using commercial kits. RESULTS HFD induced a profibrogenic response and up-regulated CD36 expression in vivo. Analogously, PA increased lipid accumulation and induced human hepatocyte activation in vitro, which was also accompanied by increased CD36 expression. Interestingly, knockdown of CD36 resulted in a reduction of hepatocyte lipid deposition and decreased expression of Acta2 (34% decrease), Vimentin (29% decrease), Desmin (60% decrease), and TGF-β signaling pathway related genes. In addition, HFD and PA increased the production of H2O2 in vivo (48% increase) and in vitro (385% increase), and the antioxidant, NAC, ameliorated PA-induced hepatocyte activation. Furthermore, silencing of CD36 in vitro markedly attenuated PA-induced oxidative stress (H2O2: 41% decrease; ROS: 39% decrease), and the anti-activation effects of CD36 knockdown could be abolished by pretreatment with H2O2. CONCLUSIONS Our study demonstrated that LCFA facilitates hepatocyte activation by up-regulating oxidative stress through CD36, which could be an important mechanism in the development of hepatic fibrosis.
Collapse
Affiliation(s)
- Jun Liu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.,Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Guoqing Zuo
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Song He
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Wei Tan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Zhang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Chunxiao Su
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiongzhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, NW3 2PF, London, UK.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou, 310058, China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Han X, Hao C, Li L, Li J, Fang M, Zheng Y, Lu J, Li P, Xu Y. HDAC4 stimulates MRTF-A expression and drives fibrogenesis in hepatic stellate cells by targeting miR-206. Oncotarget 2018; 8:47586-47594. [PMID: 28548935 PMCID: PMC5564589 DOI: 10.18632/oncotarget.17739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a hallmark event during liver fibrogenesis. We have previously shown that the transcriptional modulator MRTF-A contributes to liver fibrosis by programming epigenetic activation of HSCs. In the present study we investigated the mechanism whereby MRTF-A expression is regulated in this process. We report here that MRTF-A protein levels, but not mRNA levels, were up-regulated in vivo in the livers of mice induced to develop hepatic fibrosis. Pro-fibrogenic stimuli (TGF-β and PDGF-BB) also activated MRTF-A expression post-transcriptionally in vitro in cultured HSCs. miR-206 bound to the 3′-UTR of MRTF-A presumably to inhibit translation. miR-206 levels were down-regulated in response to pro-fibrogenic stimuli in vivo and in vitro allowing MRTF-A proteins to accumulate. Mechanistically, histone deacetylase 4 (HDAC4) was induced by pro-fibrogenic stimuli and recruited to the miR-206 promoter to repress miR-206 transcription. HDAC4 stimulated MRTF-A expression and drove fibrogenesis in HSCs in a miR-206 dependent manner. Therefore, our data reveal an HDAC4-miR-206-MRTF-A axis that can play a potentially important role in HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Xinrui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chenzhi Hao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jianfei Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ping Li
- Department of Gastroenterology, 2nd Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Brandon-Warner E, Benbow JH, Swet JH, Feilen NA, Culberson CR, McKillop IH, deLemos AS, Russo MW, Schrum LW. Adeno-Associated Virus Serotype 2 Vector-Mediated Reintroduction of microRNA-19b Attenuates Hepatic Fibrosis. Hum Gene Ther 2018; 29:674-686. [PMID: 29281894 DOI: 10.1089/hum.2017.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrotic liver injury is a significant healthcare burden in the United States. It represents a major cause of morbidity and mortality for which there are no effective Food and Drug Administration-approved treatment strategies. Fibrosis is considered a disruption of the normal wound healing responses mediated by fibroblastic cells, which are triggered and sustained by pro-fibrotic cytokines such as transforming growth factor beta 1 (TGF-β1). TGF-β1-mediated trans-differentiation of hepatic stellate cells (HSCs) from quiescent to activated myofibroblasts is a pivotal event in the development of fibrosis. Activation is accompanied by global changes in microRNA (miR) expression. It has been previously reported that miR19b is decreased in activated HSCs and contributes to increased expression of TGF-β receptor II and connective tissue growth factor, both confirmed targets of miR19b. An adeno-associated virus serotype 2 vector (AAV2) with a miR19b transgene downstream of enhanced green fluorescent protein under the murine collage alpha 1(I) promoter was developed specifically to target HSCs. Male Sprague Dawley rats (250 g) underwent sham or bile-duct ligation (BDL) surgery. Directly after BDL, rats received AAV2-miR19b, AAV2-control, or vehicle normal saline (NS) by portal-vein injection. After 2 weeks, the animals were euthanized, and blood was collected for alanine and aspartate aminotransferase, total and direct bilirubin, and alkaline phosphatase. Tissue was collected for RNA and protein extraction and histology. Fibrosis and measures of hepatic injury were significantly reduced in AAV2-miR19b-treated rats in combination with significant improvements in total and direct bilirubin. Histological analysis of collagen by PicroSirius Red staining revealed a ∼50% reduction compared to AAV2-control or NS-injected animals. Pro-fibrotic markers, smooth-muscle alpha-actin, TGF-β receptor II, and collagen alpha 2(I) mRNA and protein were significantly decreased compared to AAV2-control and NS groups. AAV2-mediated reintroduction of miR-19b, specifically expressed in HSCs, improved liver function, inhibited fibrosis, and improved measures of hepatic injury in a BDL model.
Collapse
Affiliation(s)
- Elizabeth Brandon-Warner
- 1 Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center , Charlotte, North Carolina
| | - Jennifer H Benbow
- 1 Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center , Charlotte, North Carolina
| | - Jacob H Swet
- 2 Department of Surgery, Carolinas Medical Center , Charlotte, North Carolina
| | - Nicole A Feilen
- 1 Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center , Charlotte, North Carolina
| | - Catherine R Culberson
- 1 Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center , Charlotte, North Carolina
| | - Iain H McKillop
- 2 Department of Surgery, Carolinas Medical Center , Charlotte, North Carolina
| | - Andrew S deLemos
- 3 Center for Liver Diseases and Liver Transplant, Carolinas Medical Center , Charlotte, North Carolina
| | - Mark W Russo
- 3 Center for Liver Diseases and Liver Transplant, Carolinas Medical Center , Charlotte, North Carolina
| | - Laura W Schrum
- 1 Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center , Charlotte, North Carolina
| |
Collapse
|
12
|
Gao L, Zhang Z, Zhang P, Yu M, Yang T. Role of canonical Hedgehog signaling pathway in liver. Int J Biol Sci 2018; 14:1636-1644. [PMID: 30416378 PMCID: PMC6216024 DOI: 10.7150/ijbs.28089] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an important role in embryonic development. It becomes reactivated in many types of acute and chronic liver injuries. Hh signaling is required for liver regeneration, regulates capillarisation, controls the fates of hepatic stellate cells, promotes liver fibrosis and liver cancers. In this review, we summarize the current knowledge of the role of canonical Hh signaling pathway in adult liver. This help to understand the pathogenesis of liver diseases and find out the new effective targeted therapeutic strategies for liver diseases treatments.
Collapse
Affiliation(s)
- Lili Gao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhenya Zhang
- Department of general surgery, Hebei Medical University Fourth Hospital, Shijiazhuang, 050011, China
| | - Peng Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Minghua Yu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- ✉ Corresponding authors: Dr. Minghua Yu, Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. Phone: 86-21-68030812; E-mail: and Dr. Tao Yang, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China. Phone: 86-21-68036516; E-mail:
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- ✉ Corresponding authors: Dr. Minghua Yu, Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. Phone: 86-21-68030812; E-mail: and Dr. Tao Yang, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China. Phone: 86-21-68036516; E-mail:
| |
Collapse
|
13
|
Oh JE, Shim KY, Lee JI, Choi SI, Baik SK, Eom YW. 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-γ by increasing the expression of IFN-γRβ, IRF-1 and FAS. Int J Mol Med 2017; 40:576-582. [PMID: 28656203 DOI: 10.3892/ijmm.2017.3043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/16/2017] [Indexed: 11/06/2022] Open
Abstract
Liver fibrosis, a precursor to cirrhosis, is the result of the deposition of extracellular matrix (ECM) proteins and is mediated primarily by activated hepatic stellate cells (HSCs). In this study, we investigated the anti-fibrotic effects of interferon (IFN)-γ in activated HSCs in vitro and whether cell viability would be decreased by the inhibition of indoleamine 2,3-dioxygemase (IDO), which is responsible for cell cycle arrest. Following treatment with IFN-γ, cell signaling pathways and DNA content were analyzed to assess the inactivation of HSCs or the decrease in HSC proliferation. The IDO inhibitor, 1-methyl-L-tryptophan (1-MT), was used to determine whether IDO plays a key role in the regulation of activated HSCs, as IFN-γ increases the expression of IDO. IFN-γ significantly inhibited the growth of HSCs and downregulated the expression of α-smooth muscle actin (α-SMA) in the HSCs. IDO expression was markedly increased by IFN-γ through signal transducer and activator of transcription 1 (STAT1) activation and resulted in the depletion of tryptophan. This depletion induced G1 cell cycle arrest. When the cells were released from IFN-γ-mediated G1 cell cycle arrest by treatment with 1-MT, the apoptosis of the HSCs was markedly increased through the induction of IFN-γRβ, interferon regulatory factor (IRF-1) and FAS. Our results thus suggest that the inhibition of IDO enhances the suppression of activated HSCs, and therefore co-treatment with IFN-γ and 1-MT may be applied to ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Ji Eun Oh
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Kwang Yong Shim
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Jong In Lee
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Soo In Choi
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University, Wonju College of Medicine, Wonju, Gangwon-do 26426, Republic of Korea
| |
Collapse
|
14
|
Lipopolysaccharides induce Smad2 phosphorylation through PI3K/Akt and MAPK cascades in HSC-T6 hepatic stellate cells. Life Sci 2017; 184:37-46. [PMID: 28689803 DOI: 10.1016/j.lfs.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/22/2023]
Abstract
AIMS Endotoxemia and its pro-fibrogenic signaling play a significant role in the development of hepatic fibrosis. This study investigated whether lipopolysaccharide (LPS) directly activate cultured HSC-T6 hepatic stellate cells (HSCs) through triggering Smad-dependent pro-fibrogenic signaling pathway. MAIN METHODS Direct cell counting and assays for cell proliferation and migration were used to measure the effects of LPS on HSC behaviors. Quantitative PCR, Western blot, and gelatin zymography were used to quantify the molecular effects of LPS on expression of HSC activation markers and signaling activity. KEY FINDINGS Long-term exposure to LPS exhibited moderately stimulatory effect on HSC cell growth. A wound-healing cell migration assay showed that LPS suppressed HSC-T6 cell migration. qPCR and Western blotting detection indicated that LPS treatment induced upregulation of type I and IV collagens, α-smooth muscle actin (α-SMA), and matrix metalloproteinase-9 (MMP-9). Gelatin zymography confirmed that LPS elevated MMP-9, but not MMP-2 gelatinolytic activity. Moreover, LPS immediately stimulated Akt, EKR1/2, JNK, p38 MAPK, and Smad2 hyperphosphorylation, supporting that LPS directly triggers pro-fibrogenic Smad signaling cascade without TGF-β1 stimulation. Kinase blockade experiments demonstrated the involvement of PI3K/Akt, JNK, p38 MAPK, but not ERK1/2 signaling activation in the LPS-elicited Smad2 phosphorylation as well as the overexpression of type I collagen and α-SMA in HSC-T6 cells. SIGNIFICANCE These findings demonstrate that LPS exerts pro-fibrogenic effect through activation and transformation of HSCs. The tissue-remodeling effect of LPS may be attributable to its ability to activate non-canonical Smad pathway through PI3K/Akt and MAPK signaling cascades.
Collapse
|
15
|
Shi B, Shi J, Qin H. Effect of medicated serum of Curcumae Radix extract on mRNA expression of TIMP-1, MMPs-13 and aI-collagen of HSC-T6 cell. Saudi Pharm J 2017; 25:509-512. [PMID: 28579884 PMCID: PMC5447404 DOI: 10.1016/j.jsps.2017.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To study the effect of medicated serum of Curcumae Radix (Yujin) on the mRNA expression of Tissue inhibitor of metalloproteinase-1 (TIMP-1), Matrix metalloproteinases-13 (MMPs-13) and aI-collagen of Hepatic stellate cell-T6 (HSC-T6) cell. Twenty SD rats were randomly divided into 4 groups: high dose of Yujin group (16.2 g kg−1), medium dose of Yujin group (8.1 g kg−1), low dose of Yujin group (4.05 g kg−1) and blank control group (with the same volume of 0.9% saline). Yujin extract or 0.9% saline were administered daily by gavage to rats for 4d, after once administration of full-day dose for 1 h on the fourth day, ether anaesthesia was given, and blood was taken from abdominal aortic in asepsis condition for preparation of medicated serum. HSC-T6 cells were divided into 5 groups: high dose medicated serum of Yujin group, medium dose medicated serum of Yujin group, low dose medicated serum of Yujin group, medicated serum of blank control group and negative control group (added with the same volume of PBS instead of rat serum), after 48 h of simultaneous acting on HSC-T6 cells in all groups by the medicated serum with a concentration of 10%, the mRNA expression level of TIMP-1, MMPs-13 and aI-collagen was analyzed with RT-PCR. Compared with the negative control group, the mRNA expression level of TIMP-1, MMPs-13 and aI-collagen in all experimental groups increased significantly. Compared with the control group, the mRNA expression of aI-collagen and TIMP-1 was obviously inhibited in all medicated serum of Yujin groups (P < 0.01), meanwhile, the mRNA expression level of MMPs-13 was effectively improved (P < 0.05). The medicated serum of Yujin had an effect on the production and degradation of Extracellular matrix (ECM) of HSC-T6 cell.
Collapse
Affiliation(s)
- Bo Shi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingjing Shi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huazhen Qin
- School of Pharmacy, GuangXi University of Chinese Medicine, NanNing 530001, China
| |
Collapse
|
16
|
Zhou CL, Kong DL, Liu JF, Lu ZK, Guo HF, Wang W, Qiu JF, Liu XJ, Wang Y. MHC II -, but not MHC II +, hepatic Stellate cells contribute to liver fibrosis of mice in infection with Schistosoma japonicum. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1848-1857. [PMID: 28483578 DOI: 10.1016/j.bbadis.2017.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cells (HSCs) are considered as the main effector cells in vitamin A metabolism and liver fibrosis, as well as in hepatic immune regulation. Recently, researches have revealed that HSCs have plasticity and heterogeneity, which depend on their lobular location and whether liver is normal or injured. This research aimed to explore the biological characteristics and heterogeneity of HSCs in mice with Schistosoma japonicum (S. japonicum) infection, and determine the subpopulation of HSCs in pathogenesis of hepatic fibrosis caused by S. japonicum infection. Results revealed that HSCs significantly increased the expressions of MHC II and fibrogenic genes after S. japonicum infection, and could be classified into MHC II+ HSCs and MHC II- HSCs subsets. Both two HSCs populations suppressed the proliferation of activated CD4+T cells, whereas only MHC II- HSCs displayed a myofibroblast-like phenotype. In response to IFN-γ, HSCs up-regulated the expressions of MHC II and CIITA, while down-regulated the expression of fibrogenic gene Col1. In addition, praziquantel treatment decreased the expressions of fibrogenic genes in MHC II- HSCs. These results confirmed that HSCs from S. japonicum-infected mice have heterogeneity. The MHC II- α-SMA+ HSCs were major subsets of HSCs contributing to liver fibrosis and could be considered as a potential target of praziquantel anti-fibrosis treatment.
Collapse
Affiliation(s)
- Chun-Lei Zhou
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - De-Long Kong
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jin-Feng Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Zhong-Kui Lu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Hong-Fei Guo
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Wei Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jing-Fan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xin-Jian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
17
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
18
|
Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci Rep 2017; 7:44356. [PMID: 28287163 PMCID: PMC5347010 DOI: 10.1038/srep44356] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
As well as systemic vascular endothelial cells, the liver has specialised sinusoidal endothelial cells (LSEC). LSEC dysfunction has been documented in many diseased states yet their phenotype in normal human liver has not been comprehensively assessed. Our aim was to improve characterisation of subsets of endothelial cells and associated pericytes in the human liver. Immunofluorescence microscopy was performed on normal human liver tissue samples to assess endothelial and structural proteins in a minimum of three donors. LSEC are distributed in an acinar pattern and universally express CD36, but two distinctive subsets of LSEC can be identified in different acinar zones. Type 1 LSEC are CD36hiCD32−CD14−LYVE-1− and are located in acinar zone 1 of the lobule, while Type 2 LSEC are LYVE-1+CD32hiCD14+CD54+CD36mid-lo and are located in acinar zones 2 and 3 of the lobule. Portal tracts and central veins can be identified using markers for systemic vascular endothelia and pericytes, none of which are expressed by LSEC. In areas of low hydrostatic pressure LSEC are lined by stellate cells that express the pericyte marker CD146. Our findings identify distinctive populations of LSEC and distinguish these cells from adjacent stellate cells, systemic vasculature and pericytes in different zones of the liver acinus.
Collapse
Affiliation(s)
- Otto Strauss
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony Phillips
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Katya Ruggiero
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Zeilinger K, Freyer N, Damm G, Seehofer D, Knöspel F. Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood) 2016; 241:1684-98. [PMID: 27385595 PMCID: PMC4999620 DOI: 10.1177/1535370216657448] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.
Collapse
Affiliation(s)
- Katrin Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nora Freyer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Fanny Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
20
|
Zhou B, Zeng S, Li L, Fan Z, Tian W, Li M, Xu H, Wu X, Fang M, Xu Y. Angiogenic factor with G patch and FHA domains 1 (Aggf1) regulates liver fibrosis by modulating TGF-β signaling. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1203-13. [DOI: 10.1016/j.bbadis.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/26/2022]
|
21
|
Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clin Sci (Lond) 2016; 130:1469-80. [PMID: 27226339 DOI: 10.1042/cs20160334] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
MicroRNA-21 (miR-21) has emerged as a critical regulatory molecule and an important serum marker in hepatic fibrogenesis. The aim of the present study was to investigate the role of inhibiting miR-21 on hepatic fibrosis treatment. Serum miR-21 levels in 60 healthy individuals and 180 patients with different stages of liver cirrhosis were examined, miR-21 levels in normal or cirrhotic human liver tissues (n=10 each) were also detected. An adenoviral vector (Ad-TuD-21) carrying the sponging ToughDecoy (TuD)-RNA sequence against miR-21 was constructed to reduce miR-21 expression efficiently in vitro and in vivo Histological and immunohistological examinations were performed to evaluate the inhibitory effects and mechanism of Ad-TuD-21 delivery into carbon tetrachloride (CCl4) induced hepatic fibrosis rats by targeting extracellular signal-regulated kinase 1 (ERK1) signalling in hepatic stellate cells (HSC) and hepatocyte epithelial-mesenchymal transition (EMT). Our results revealed that enhanced miR-21 levels in cirrhotic patients were related to the severity and activity of liver cirrhosis. Ad-TuD-21 administered to liver fibrosis rats could remarkably suppress profibrotic gene expression, cause histological improvements in liver and attenuate hepatic fibrosis significantly. More importantly, after Ad-TuD-21 treatment, inhibition of both the ERK1 signalling pathway in HSC and hepatocyte EMT was confirmed, which paralleled the enhancement of miR-21 target genes-sprouty2 (SPRY2) and hepatocyte nuclear factor 4α (HNF4α)-expression in vivo These data demonstrated that miR-21 is a key regulator to promote hepatic fibrogenesis, and sponging miR-21 expression may present a novel potentially therapeutic option for hepatic fibrosis.
Collapse
|
22
|
Ouyang Y, Guo J, Lin C, Lin J, Cao Y, Zhang Y, Wu Y, Chen S, Wang J, Chen L, Friedman SL. Transcriptomic analysis of the effects of Toll-like receptor 4 and its ligands on the gene expression network of hepatic stellate cells. FIBROGENESIS & TISSUE REPAIR 2016; 9:2. [PMID: 26900402 PMCID: PMC4759739 DOI: 10.1186/s13069-016-0039-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/05/2016] [Indexed: 01/28/2023]
Abstract
Background Intact Toll-like receptor 4 (TLR4) has been identified in hepatic stellate cells (HSCs), the primary fibrogenic cell type in liver. Here, we investigated the impact of TLR4 signaling on the gene expression network of HSCs by comparing the transcriptomic changes between wild-type (JS1) and TLR4 knockout (JS2) murine HSCs in response to two TLR4 ligands, lipopolysacchride (LPS), or high-mobility group box 1 (HMGB1). Results Whole mouse genome microarray was performed for gene expression analysis. Gene interaction and co-expression networks were built on the basis of ontology and pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene expression profiles are markedly different between Wild type (JS1) and TLR4 knockout (JS2) HSCs under basal conditions or following stimulation with LPS or HMGB1. The differentially expressed genes between TLR4 intact and null HSCs were enriched in signaling pathways including p53, mTOR, NOD-like receptor, Jak-STAT, chemokine, focal adhesion with some shared downstream kinases, and transcriptional factors. Venn analysis revealed that TLR4-dependent, LPS-responsive genes were clustered into pathways including Toll-like receptor and PI3K-Akt, whereas TLR4-dependent, HMGB1-responsive genes were clustered into pathways including metabolism and phagosome signaling. Genes differentially expressed that were categorized to be TLR4-dependent and both LPS- and HMGB1-responsive were enriched in cell cycle, ubiquitin mediated proteolysis, and mitogen-activated protein kinase (MAPK) signaling pathways. Conclusions TLR4 mediates complex gene expression alterations in HSCs. The affected pathways regulate a wide spectrum of HSC functions, including inflammation, fibrogenesis, and chemotaxis, as well as cell growth and metabolism. There are common and divergent regulatory signaling downstream of LPS and HMGB1 stimulation via TLR4 on HSCs. These findings emphasize the complex cascades downstream of TLR4 in HSCs that could influence their cellular biology and function. Electronic supplementary material The online version of this article (doi:10.1186/s13069-016-0039-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yangyang Ouyang
- Division of Digestive Diseases, Department of Internal Medicine, Zhong Shan Hospital, Shanghai Medical College, Fu Dan University, 180 Feng Lin Road, Shanghai, 200032 China
| | - Jinsheng Guo
- Division of Digestive Diseases, Department of Internal Medicine, Zhong Shan Hospital, Shanghai Medical College, Fu Dan University, 180 Feng Lin Road, Shanghai, 200032 China
| | - Chenzhao Lin
- Institutes of Biomedical Sciences, Fu Dan University, Shanghai, 200032 China
| | - Jie Lin
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yirong Cao
- Division of Digestive Diseases, Department of Internal Medicine, Zhong Shan Hospital, Shanghai Medical College, Fu Dan University, 180 Feng Lin Road, Shanghai, 200032 China
| | - Yuanqin Zhang
- Division of Digestive Diseases, Department of Internal Medicine, Zhong Shan Hospital, Shanghai Medical College, Fu Dan University, 180 Feng Lin Road, Shanghai, 200032 China
| | - Yujin Wu
- Division of Digestive Diseases, Department of Internal Medicine, Zhong Shan Hospital, Shanghai Medical College, Fu Dan University, 180 Feng Lin Road, Shanghai, 200032 China
| | - Shiyao Chen
- Division of Digestive Diseases, Department of Internal Medicine, Zhong Shan Hospital, Shanghai Medical College, Fu Dan University, 180 Feng Lin Road, Shanghai, 200032 China
| | - Jiyao Wang
- Division of Digestive Diseases, Department of Internal Medicine, Zhong Shan Hospital, Shanghai Medical College, Fu Dan University, 180 Feng Lin Road, Shanghai, 200032 China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., Room 11-70C, New York, 10029-6574 NY USA
| |
Collapse
|
23
|
Fierro-Fernández M, Miguel V, Lamas S. Role of redoximiRs in fibrogenesis. Redox Biol 2015; 7:58-67. [PMID: 26654978 PMCID: PMC4683389 DOI: 10.1016/j.redox.2015.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis can be defined as an excessive accumulation of extracellular matrix (ECM) components, ultimately leading to stiffness, scarring and devitalized tissue. MicroRNAs (miRNAs) are short, 19-25 nucleotides (nt), non-coding RNAs involved in the post-transcriptional regulation of gene expression. Recently, miRNAs have also emerged as powerful regulators of fibrotic processes and have been termed "fibromiRs". Oxidative stress represents a self-perpetuating mechanism in fibrogenesis. MiRNAs can also influence the expression of genes responsible for the generation of reactive oxygen species (ROS) and antioxidant defence and are termed "redoximiRs". Here, we review the current knowledge of mechanisms by which "redoximiRs" regulate fibrogenesis. This new set of miRNAs may be called "redoxifibromiRs".
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Fan Z, Hao C, Li M, Dai X, Qin H, Li J, Xu H, Wu X, Zhang L, Fang M, Zhou B, Tian W, Xu Y. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1219-28. [PMID: 26241940 DOI: 10.1016/j.bbagrm.2015.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/13/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Transforming growth factor (TGF-β) induced activation of portal fibroblast cells serves as a primary cause for liver fibrosis following cholestatic injury. The underlying epigenetic mechanism is not clear. We studied the role of a transcriptional modulator, megakaryoblastic leukemia 1 (MKL1) in this process. We report here that MKL1 deficiency ameliorated BDL-induced liver fibrosis in mice as assessed by histological stainings and expression levels of pro-fibrogenic genes. MKL1 silencing by small interfering RNA (siRNA) abrogated TGF-β induced transactivation of pro-fibrogenic genes in portal fibroblast cells. TGF-β stimulated the binding of MKL1 on the promoters of pro-fibrogenic genes and promoted the interaction between MKL1 and SMAD3. While SMAD3 was necessary for MKL1 occupancy on the gene promoters, MKL1 depletion impaired SMAD3 binding reciprocally. TGF-β treatment induced the accumulation of trimethylated histone H3K4 on the gene promoters by recruiting a methyltransferase complex. Knockdown of individual members of this complex significantly weakened the binding of SMAD3 and down-regulated the activation of portal fibroblast cells. In conclusion, we have identified an epigenetic pathway that dictates TGF-β induced pro-fibrogenic transcription in portal fibroblast thereby providing novel insights for the development of therapeutic solutions to treat liver fibrosis.
Collapse
Affiliation(s)
- Zhiwen Fan
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jianfei Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liping Zhang
- Department of Biochemistry, Xinjiang Medical University, Urumqi, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Duan XL, Wei YF, Liao D, Peng Y, Liu XM, Zhao TJ. Interventional effects of Plumbago zeylanica L. decoction on CCl 4-induced hepatic fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:1059-1067. [DOI: 10.11569/wcjd.v23.i7.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the intervention effects of Plumbago zeylanica L. decoction (PZL) on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats.
METHODS: A model of hepatic fibrosis was established by subcutaneous injection of 40% CCl4 in rats. SD rats were randomly divided into five groups (10 rats in each group): a model group, a positive control group (colchicines 0.25 mg/kg), high-, medium- and low-dose PZL groups. A blank control group was also established. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were tested using a ultraviolet-visible pectrophotometer (UV). Serum levels of total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL) were detected by the method of vanadate oxidation. The contents of hyaluronic acid (HA), laminin (LN), procollagen type Ⅲ (P3NP), and type Ⅳ collagen (CⅣ) were detected by radioimmunoassay. HE staining was used to examine the degree of hepatic fibrosis, and the expression of collagen type Ⅰ and Ⅲ and α-SMA in hepatic tissues was detected by immunohistochemistry.
RESULTS: Compared with the model group, the levels of ALT, AST, TBIL, DBIL and IBIL were significantly decreased in the PZL groups. PZL could also significantly reduce the contents of HA, LN, P3NP, and CⅣ. HE staining showed that PZL could significantly reduce the degree of hepatic fibrosis. Immunohistochemistry showed that the expression of collagen type Ⅰ and Ⅲ and α-SMA in hepatic tissues was decreased by PZL (P < 0.05 or P < 0.01), and the effect was dose-dependent.
CONCLUSION: PZL has a protective effect against CCl4-induced liver fibrosis in rats possibly by improving the liver function, inhibiting liver cell degeneration and necrosis, reducing secretion of collagen by hepatic stellate cells and promoting extracellular matrix degradation.
Collapse
|
26
|
Zhao J, Tang N, Wu K, Dai W, Ye C, Shi J, Zhang J, Ning B, Zeng X, Lin Y. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One 2014; 9:e108005. [PMID: 25303175 PMCID: PMC4193742 DOI: 10.1371/journal.pone.0108005] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 08/24/2014] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA-21 (miR-21) plays an important role in the pathogenesis and progression of liver fibrosis. Here, we determined the serum and hepatic content of miR-21 in patients with liver cirrhosis and rats with dimethylnitrosamine-induced hepatic cirrhosis and examined the effects of miR-21 on SPRY2 and HNF4α in modulating ERK1 signaling in hepatic stellate cells (HSCs) and epithelial-mesenchymal transition (EMT) of hepatocytes. Methods Quantitative RT-PCR was used to determine miR-21 and the expression of SPRY2, HNF4α and other genes. Immunoblotting assay was carried out to examine the expression of relevant proteins. Luciferase reporter assay was performed to assess the effects of miR-21 on its predicted target genes SPRY2 and HNF4α. Primary HSCs and hepatocytes were treated with miR-21 mimics/inhibitors or appropriate adenoviral vectors to examine the relation between miR-21 and SPRY2 or HNF4α. Results The serum and hepatic content of miR-21 was significantly higher in cirrhotic patients and rats. SPRY2 and HNF4α mRNA levels were markedly lower in the cirrhotic liver. MiR-21 overexpression was associated with enhanced ERK1 signaling and EMT in liver fibrosis. Luciferase assay revealed suppressed SPRY2 and HNF4α expression by miR-21. Ectopic miR-21 stimulated ERK1 signaling in HSCs and induced hepatocyte EMT by targeting SPRY2 or HNF4α. Downregulating miR-21 suppressed ERK1 signaling, inhibited HSC activation, and blocked EMT in TGFβ1-treated hepatocytes. Conclusions MiR-21 modulates ERK1 signaling and EMT in liver fibrosis by regulating SPRY2 and HNF4α expression. MiR-21 may serve as a potentially biomarker as well as intervention target for hepatic cirrhosis.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Nan Tang
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weiping Dai
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Changhong Ye
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junping Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (YL); (XZ)
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (YL); (XZ)
| |
Collapse
|
27
|
Martín-Vílchez S, Rodríguez-Muñoz Y, López-Rodríguez R, Hernández-Bartolomé Á, Borque-Iñurrita MJ, Molina-Jiménez F, García-Buey L, Moreno-Otero R, Sanz-Cameno P. Inhibition of tyrosine kinase receptor Tie2 reverts HCV-induced hepatic stellate cell activation. PLoS One 2014; 9:e106958. [PMID: 25302785 PMCID: PMC4193738 DOI: 10.1371/journal.pone.0106958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/12/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hepatitis C virus (HCV) infection is a major cause of chronic liver disease (CLD) and is frequently linked to intrahepatic microvascular disorders. Activation of hepatic stellate cells (HSC) is a central event in liver damage, due to their contribution to hepatic renewal and to the development of fibrosis and hepatocarcinoma. During the progression of CLDs, HSC attempt to restore injured tissue by stimulating repair processes, such as fibrosis and angiogenesis. Because HSC express the key vascular receptor Tie2, among other angiogenic receptors and mediators, we analyzed its involvement in the development of CLD. Methods Tie2 expression was monitored in HSC cultures that were exposed to media from HCV-expressing cells (replicons). The effects of Tie2 blockade on HSC activation by either neutralizing antibody or specific signaling inhibitors were also examined. Results Media from HCV-replicons enhanced HSC activation and invasion and upregulated Tie2 expression. Notably, the blockade of Tie2 receptor (by a specific neutralizing antibody) or signaling (by selective AKT and MAPK inhibitors) significantly reduced alpha-smooth muscle actin (α-SMA) expression and the invasive potential of HCV-conditioned HSC. Conclusions These findings ascribe a novel profibrogenic function to Tie2 receptor in the progression of chronic hepatitis C, highlighting the significance of its dysregulation in the evolution of CLDs and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Samuel Martín-Vílchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Yolanda Rodríguez-Muñoz
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosario López-Rodríguez
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángel Hernández-Bartolomé
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Jesús Borque-Iñurrita
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisca Molina-Jiménez
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Luisa García-Buey
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ricardo Moreno-Otero
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Paloma Sanz-Cameno
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
28
|
LI XIA, HE CAN, WU WANGYANG, HUANG HUAN, LI WEIZU, YIN YANYAN. Anti-fibrotic effects of Acremoniumterricola milleretal mycelium on immunological hepatic fibrosis in rats. Mol Med Rep 2014; 10:3327-33. [DOI: 10.3892/mmr.2014.2604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/23/2014] [Indexed: 11/05/2022] Open
|
29
|
Zhang X, Zhang F, Kong D, Wu X, Lian N, Chen L, Lu Y, Zheng S. Tetramethylpyrazine inhibits angiotensin II-induced activation of hepatic stellate cells associated with interference of platelet-derived growth factor β receptor pathways. FEBS J 2014; 281:2754-68. [PMID: 24725506 DOI: 10.1111/febs.12818] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 01/18/2023]
Abstract
Liver fibrosis represents a frequent event following chronic insult to trigger wound healing responses in the liver. Activation of hepatic stellate cells (HSCs) is a pivotal event during liver fibrogenesis. Compelling evidence indicates that the renin-angiotensin system (RAS) takes part in the pathogenesis of liver fibrosis. Angiotensin II (Ang II), the primary effector peptide of the RAS, has been demonstrated to be a potent pro-fibrogenic molecule for HSC activation. In this study we investigated the effects of tetramethylpyrazine (TMP) on HSC activation induced by Ang II in order to elucidate the underlying mechanisms. Our results demonstrated that Ang II significantly promoted cell growth, upregulated the expression of the fibrotic markers α-smooth muscle actin (α-SMA) and α1(I) procollagen, and enhanced the invasion capacity in HSCs. TMP inhibited proliferation and arrested the cell cycle at the G2/M checkpoint associated with altering several cell cycle regulatory proteins in Ang II-treated HSCs. TMP also modulated Bcl-2 family proteins and activated the caspase cascade leading to apoptosis in Ang II-treated HSCs. Moreover, TMP reduced the expression of α-SMA and α1(I) procollagen at mRNA and protein levels, and these effects were associated with interference of the platelet-derived growth factor β receptor (PDGF-βR) mediated PI3K/AKT/mTOR pathway in HSCs exposed to Ang II. Furthermore, Ang II-enhanced HSC invasion capacity was diminished by TMP, which was associated with interference of PDGF-βR/FAK signaling. These data collectively indicated that interference of PDGF-βR-mediated fibrotic pathways was involved in TMP inhibition of HSC activation caused by Ang II, providing novel mechanistic insights into TMP as a potential therapeutic remedy for hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaoping Zhang
- School of Hanlin, Nanjing University of Chinese Medicine, Taizhou, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bansal R, Prakash J, De Ruiter M, Poelstra K. Targeted recombinant fusion proteins of IFNγ and mimetic IFNγ with PDGFβR bicyclic peptide inhibits liver fibrogenesis in vivo. PLoS One 2014; 9:e89878. [PMID: 24587093 PMCID: PMC3933682 DOI: 10.1371/journal.pone.0089878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/24/2014] [Indexed: 01/17/2023] Open
Abstract
Hepatic stellate cells (HSCs), following transdifferentiation to myofibroblasts plays a key role in liver fibrosis. Therefore, attempts to attenuate this myofibroblastic phenotype would be a promising therapeutic approach. Interferon gamma (IFNγ) is a potent anti-fibrotic cytokine, but its pleiotropic receptor expression leading to severe adverse effects has limited its clinical application. Since, activated HSC express high-level of platelet derived growth factor beta receptor (PDGFβR), we investigated the potential of PDGFβR-specific targeting of IFNγ and its signaling peptide that lacks IFNγR binding site (mimetic IFNγ or mimIFNγ) in liver fibrosis. We prepared DNA constructs expressing IFNγ, mimIFNγ or BiPPB (PDGFβR-specific bicyclic peptide)-IFNγ, BiPPB-mimIFNγ fusion proteins. Both chimeric proteins alongwith IFNγ and mimIFNγ were produced in E.coli. The expressed proteins were purified and analyzed for PDGFβR-specific binding and in vitro effects. Subsequently, these recombinant proteins were investigated for the liver uptake (pSTAT1α signaling pathway), for anti-fibrotic effects and adverse effects (platelet counts) in CCl4-induced liver fibrogenesis in mice. The purified HSC-targeted IFNγ and mimIFNγ fusion proteins showed PDGFβR-specific binding and significantly reduced TGFβ-induced collagen-I expression in human HSC (LX2 cells), while mouse IFNγ and mimIFNγ did not show any effect. Conversely, mouse IFNγ and BiPPB-IFNγ induced activation and dose-dependent nitric oxide release in mouse macrophages (express IFNγR while lack PDGFβR), which was not observed with mimIFNγ and BiPPB-mimIFNγ, due to the lack of IFNγR binding sites. In vivo, targeted BiPPB-IFNγ and BiPPB-mimIFNγ significantly activated intrahepatic IFNγ-signaling pathway compared to IFNγ and mimIFNγ suggesting increased liver accumulation. Furthermore, the targeted fusion proteins ameliorated liver fibrogenesis in mice by significantly reducing collagen and α-SMA expression and potentiating collagen degradation. IFNγ also induced reduction in fibrogenesis but showed significant decrease in platelet counts, which was restored with targeted proteins. These results suggest that these rationally designed proteins can be further developed as novel anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Ruchi Bansal
- Department of Controlled Drug Delivery (Targeted Therapeutics), MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Jai Prakash
- Department of Controlled Drug Delivery (Targeted Therapeutics), MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Marieke De Ruiter
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Bansal R, Prakash J, De Ruiter M, Poelstra K. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo. J Control Release 2014; 179:18-24. [PMID: 24491909 DOI: 10.1016/j.jconrel.2014.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 01/21/2023]
Abstract
Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent anti-fibrotics, interferon gamma (IFNγ), a proinflammatory cytokine, is highly efficacious but it failed in clinical trials due to the poor efficacy and multiple adverse effects attributed to the ubiquitous IFNγ receptor (IFNγR) expression. To resolve these drawbacks, we chemically synthesized a chimeric molecule containing (a) IFNγ signaling peptide (IFNγ peptidomimetic, mimγ) that retains the agonistic activities of IFNγ but lacks an extracellular receptor recognition sequence for IFNγR; coupled via heterobifunctional PEG linker to (b) bicyclic platelet derived growth factor beta receptor (PDGFβR)-binding peptide (BiPPB) to induce internalization into the stellate cells that express PDGFβR. The synthesized targeted IFNγ peptidomimetic (mimγ-BiPPB) was extensively investigated for its anti-fibrotic and adverse effects in acute and chronic CCl4-induced liver fibrosis models in mice. Treatment with mimγ-BiPPB, after the onset of disease, markedly inhibited both early and established hepatic fibrosis as reflected by a reduced intrahepatic α-SMA, desmin and collagen-I mRNA expression and protein levels. While untargeted mimγ and BiPPB had no effect, and native IFNγ only induced a moderate reduction. Additionally, no off-target effects, e.g. systemic inflammation, were found with mimγ-BiPPB, which were substantially observed in mice treated with native IFNγ. The present study highlights the beneficial effects of a novel BiPPB mediated cell-specific targeting of IFNγ peptidomimetic to the disease-inducing cells and therefore represents a highly potential therapeutic approach to treat fibrotic diseases.
Collapse
Affiliation(s)
- Ruchi Bansal
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Jai Prakash
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marieke De Ruiter
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, The Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, The Netherlands
| |
Collapse
|
32
|
Liu C, Chen X, Yang L, Kisseleva T, Brenner DA, Seki E. Transcriptional repression of the transforming growth factor β (TGF-β) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J Biol Chem 2014; 289:7082-7091. [PMID: 24448807 DOI: 10.1074/jbc.m113.543769] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TLR4 signaling induces down-regulation of the bone morphogenic protein (BMP) and activin membrane-bound inhibitor (BAMBI), which enhances TGF-β signaling during hepatic stellate cell (HSC) activation. We investigated the mechanism by which TLR4 signaling down-regulates BAMBI expression in HSCs and found that TLR4- and TNF-α-mediated BAMBI down-regulation is dependent on regulation of BAMBI promoter activity through the interaction with NF-κBp50 and HDAC1 in HSCs. Bambi was predominantly expressed in HSCs, at high levels in quiescent HSCs but at low levels in in vivo-activated and LPS-stimulated HSCs. In human HSCs, BAMBI expression was down-regulated in response to LPS and TNF-α. A BAMBI reporter assay demonstrated that the regulatory element to repress BAMBI transcription is located between 3384 and 1560 bp upstream from the transcription start site. LPS stimulation down-regulated BAMBI expression in cells with NF-κBp65 knockdown. However, it failed to down-regulate BAMBI in cells with inactivation of NF-κB or NF-κBp50 silencing, indicating that NF-κBp50 is a factor for BAMBI down-regulation. ChIP analysis revealed that LPS and TNF-α induced binding of the NF-κBp50/p50 homodimer to the BAMBI promoter region. We also found that HDAC1 is bound to this region as part of the NF-κBp50-HDAC1 complex, repressing transcriptional activity of the BAMBI promoter. Finally, we confirmed that LPS does not repress BAMBI reporter activity using a BAMBI reporter construct with a mutation at 3166 bp upstream of the coding region. In summary, our study demonstrates that LPS- and TNF-α-induced NF-κBp50-HDAC1 interaction represses BAMBI transcriptional activity, which contributes to TLR4-mediated enhancement of TGF-β signaling in HSCs during liver fibrosis.
Collapse
Affiliation(s)
- Cheng Liu
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California 92093; Scientific Research Center, Shanghai 201508, China; Department of Traditional Chinese Medicine, Shanghai Public Clinical Health Center, Shanghai 201508, China
| | - Xiaorong Chen
- Department of Traditional Chinese Medicine, Shanghai Public Clinical Health Center, Shanghai 201508, China
| | - Ling Yang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California 92093
| | - Tatiana Kisseleva
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California 92093
| | - David A Brenner
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California 92093
| | - Ekihiro Seki
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California 92093.
| |
Collapse
|
33
|
Gao B, Friedman SL, Mehal WZ. The Immunopathogenesis of Cirrhosis. LIVER IMMUNOLOGY 2014:413-424. [DOI: 10.1007/978-3-319-02096-9_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Zhao WX, Wang L, Yang JL, Li LZ, Xu WM, Li T. Caffeic acid phenethyl ester attenuates pro-inflammatory and fibrogenic phenotypes of LPS-stimulated hepatic stellate cells through the inhibition of NF-κB signaling. Int J Mol Med 2013; 33:687-94. [PMID: 24378685 DOI: 10.3892/ijmm.2013.1613] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/05/2013] [Indexed: 11/06/2022] Open
Abstract
Hepatic stellate cells (HSCs) are the major cell type involved in liver fibrosis. Lipopolysaccharide (LPS)-mediated signaling through Τoll-like receptor 4 (TLR4) in HSCs has been identified as a key event in liver fibrosis, and as the molecular link between inflammation and liver fibrosis. In this study, we investigated the effects of caffeic acid phenethyl ester (CAPE), one of the main medicinal components of propolis, on the pro-inflammatory and fibrogenic phenotypes of LPS-stimulated HSCs. HSCs from rats were isolated and cultured in Dulbecco's modified Eagle's medium (DMEM). Following treatment with LPS, HSCs showed a strong pro-inflammatory phenotype with an upregulation of pro-inflammatory mediators, and a fibrogenic phenotype with enhanced collagen synthesis, mediated by transforming growth factor-β1 (TGF-β1). CAPE significantly and dose-dependently reduced LPS-induced nitrite production, as well as the transcription and protein synthesis of monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), as determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting and enzyme-linked immunosorbent assays (ELISA). CAPE further reduced the TGF-β1-induced transcription and translation (protein synthesis) of the gene coding for collagen type I α1 (col1A1), in LPS-stimulated HSCs. Following LPS stimulation, the phosphorylation of the nuclear factor-κB (NF-κB) inhibitor IκBα and consequently, the nuclear translocation of NF-κB, were markedly increased in the HSCs, and these changes were reversed by pre-treatment with CAPE. In conclusion, CAPE attenuates the pro-inflammatory phenotype of LPS-stimulated HSCs, as well as the LPS-induced sensitization of HSCs to fibrogenic cytokines by inhibiting NF-κB signaling. Our results provide new insight into the treatment of hepatic fibrosis through regulation of the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Wen-Xing Zhao
- Department of Pathology, Kunming General Hospital of PLA, Kunming, Yunnan 650032, P.R. China
| | - Li Wang
- Department of Pathology, Kunming General Hospital of PLA, Kunming, Yunnan 650032, P.R. China
| | - Ju-Lun Yang
- Department of Pathology, Kunming General Hospital of PLA, Kunming, Yunnan 650032, P.R. China
| | - Lian-Zhen Li
- School of Life Sciences of Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Wen-Mang Xu
- Department of Pathology, Kunming General Hospital of PLA, Kunming, Yunnan 650032, P.R. China
| | - Tao Li
- Department of Pathology, Kunming General Hospital of PLA, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
35
|
Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro. Apoptosis 2013; 18:135-49. [PMID: 23247439 DOI: 10.1007/s10495-012-0791-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event in the pathogenesis of liver fibrosis. Pharmacological induction of HSC apoptosis could be a promising strategy for fibrosis regression. Natural product tetramethylpyrazine (TMP) exhibits potent antifibrotic activities in vivo. However, the molecular mechanisms remain to be defined. The present study aimed at investigating the anti-proliferative and pro-apoptotic effects of TMP on HSCs and elucidating the underlying mechanisms. Our results demonstrated that TMP had no apparent cytotoxic effects on hepatocytes, but significantly inhibited HSC proliferation and induced cell cycle arrest at the G0/G1 checkpoint. These effects were associated with TMP regulation of cyclin D1, p21, p27 and p53. Furthermore, we found that TMP disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that TMP selectively blocked the extracellular signal-regulated kinase (ERK) signaling and activated p53, which was required for TMP induction of caspase-dependent mitochondrial apoptosis in HSCs. Autodock simulations predicted that TMP could directly bind to ERK2 with two hydrogen bonds and low energy score, indicating that ERK2 could be a direct target molecule for TMP within HSCs. Moreover, TMP altered expression of some marker proteins relevant to HSC activation. These data collectively revealed that TMP modulation of ERK/p53 signaling led to mitochondrial-mediated and caspase-dependent apoptosis in HSCs in vitro. These studies provided mechanistic insights into the antifibrotic properties of TMP that may be exploited as a potential option for hepatic fibrosis.
Collapse
|
36
|
De Minicis S, Candelaresi C, Agostinelli L, Taffetani S, Saccomanno S, Rychlicki C, Trozzi L, Marzioni M, Benedetti A, Svegliati-Baroni G. Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution. Liver Int 2012; 32:1574-84. [PMID: 22938186 DOI: 10.1111/j.1478-3231.2012.02860.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/07/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Survival of hepatic stellate cells (HSCs) is a hallmark of liver fibrosis, while the induction of HSC apoptosis may induce recovery. Activated HSC are resistant to many pro-apoptotic stimuli. To this issue, the role of Endoplasmic Reticulum (ER) stress in promoting apoptosis of HSCs and consequently fibrosis resolution is still debated. AIM To evaluate the potential ER stress-mediated apoptosis of HSCs and fibrosis resolution METHODS HSCs were incubated with the ER stress agonists, tunicamycin or thapsigargin. In vivo, HSC were isolated from normal, bile duct-ligated (BDL) and bile duct-diverted (BDD) rats. RESULTS In activated HSC, the specific inhibitor of ER stress-induced apoptosis, calpastatin, is significantly increased vs. quiescent HSCs. Calpain is conversely reduced in activated HSCs. This pattern of protein expression provides HSCs resistance to the ER stress signals of apoptosis (apoptosis-resistant phenotype). However, both tunicamycin and thapsigargin are able to induce apoptosis in HSCs in vitro, completely reversing the calpain/calpastatin pattern expression. Furthermore, in vivo, the fibrosis resolution observed in rat livers subjected to bile duct ligation (BDL) and subsequent bile duct diversion (BDD), leads to fibrosis resolution through a mechanism of HSCs apoptosis, potentially associated with ER stress: in fact, BDD rat liver shows an increased number of apoptotic HSCs associated with reduced calapstatin and increased calpain protein expression, leading to an apoptosis-sensible phenotype. CONCLUSIONS ER stress sensitizes HSC to apoptosis both in vitro and in vivo. Thus, ER stress represents a key target to trigger cell death in activated HSC and promotes fibrosis resolution.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Llorente-Cortes V, Barbarigo V, Badimon L. Low density lipoprotein receptor-related protein 1 modulates the proliferation and migration of human hepatic stellate cells. J Cell Physiol 2012; 227:3528-33. [PMID: 22392894 DOI: 10.1002/jcp.24080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human hepatic stellate cells (HHSCs) proliferation and migration play a key role in the pathogenesis of liver inflammation and fibrogenesis. Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor involved in intracellular signal transduction. The aim of this work was to analyse the role of low density lipoprotein receptor-related protein (LRP1) in HHSCs proliferation and migration and the mechanisms involved. Human LRP1 deficient-HHSCs were generated by nucleofecting the line HHSCs with siRNA anti-LRP1. HHSCs DNA synthesis was measured by [(3) H]-thymidine incorporation and cell cycle progression by flow cytometry after annexin V and iodure propidium staining. Cell migration was assessed using a wound repair model system. LRP1 expression and extracellular matrix-regulated kinase (ERK1,2) phosphorylation were analysed by Western blot analysis. Transforming growth factor-β (TGF-β) extracellular levels were analysed by ELISA. siRNA-antiLRP1 treatment almost completely inhibited LRP1 mRNA and protein expression. LRP1 deficient HHSCs showed higher proliferative response (172 ± 19 vs. 93 ± 8 [(3) H]-thymidine incorporation; 78.68% vs. 82.69% in G0/G1, 21.32% vs. 17.30% in G2/S) and higher migration rates than control HHSCs. LRP1 deficient cells showed higher levels of phosphorylated ERK1,2. TGF-β extracellular levels were threefold higher in LRP1-deficient than in control HHSCs cells. These results demonstrate that LRP1 regulates HHSCs proliferation and migration through modulation of ERK1,2 phosphorylation and TGF-β extracellular levels. These results suggest that HHSCs-LRP1 may play a key role in the modulation of factors determining hepatic fibrosis.
Collapse
Affiliation(s)
- V Llorente-Cortes
- Cardiovascular Research Center of Barcelona, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.
| | | | | |
Collapse
|
38
|
Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways. Toxicol Appl Pharmacol 2012; 265:51-60. [PMID: 23022513 DOI: 10.1016/j.taap.2012.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/13/2022]
Abstract
Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H(2)O(2)), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H(2)O(2) at 5μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H(2)O(2)-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H(2)O(2) stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H(2)O(2)-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis.
Collapse
|
39
|
Spector I, Zilberstein Y, Lavy A, Nagler A, Genin O, Pines M. Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice. PLoS One 2012; 7:e41833. [PMID: 22848627 PMCID: PMC3404977 DOI: 10.1371/journal.pone.0041833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction Stroma cells and extracellular matrix (ECM) components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development. Methods Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I) gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells. Results Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development. Conclusions The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice.
Collapse
Affiliation(s)
- Itai Spector
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Zilberstein
- The Sackler Cellular and Molecular Imaging Center (SCMIC), Tel Aviv University, Tel Aviv, Israel
| | - Adi Lavy
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Olga Genin
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
| | - Mark Pines
- Institute of Animal Sciences, The Volcani Center, Bet Dagan, Israel
- * E-mail:
| |
Collapse
|
40
|
Huang G, Besner GE, Brigstock DR. Heparin-binding epidermal growth factor-like growth factor suppresses experimental liver fibrosis in mice. J Transl Med 2012; 92:703-12. [PMID: 22330337 PMCID: PMC3338873 DOI: 10.1038/labinvest.2012.3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a cytoprotective agent in several organ systems but its roles in liver fibrosis are unclear. We studied the roles of HB-EGF in experimental liver fibrosis in mice and during hepatic stellate cell (HSC) activation. Thioacetamide (TAA; 100 mg/kg) was administered by intraperitoneal injection three times a week for 4 weeks to wild-type HB-EGF(+/+) or HB-EGF-null (HB-EGF(-/-)) male mice. Livers were examined for histology and expression of key fibrotic markers. Primary cultured HSCs isolated from untreated HB-EGF(+/+) or HB-EGF(-/-) mice were examined for fibrotic markers and/or cell migration either during culture-induced activation or after exogenous HB-EGF (100 ng/ml) treatment. TAA induced liver fibrosis in both HB-EGF(+/+) and HB-EGF(-/-) mice. Hepatic HB-EGF expression was decreased in TAA-treated HB-EGF(+/+) mice by 37.6% (P<0.05) as compared with animals receiving saline alone. HB-EGF(-/-) mice treated with TAA showed increased hepatic α-smooth muscle actin-positive cells and collagen deposition, and, as compared with HB-EGF(+/+) mice, TAA-stimulated hepatic mRNA levels in HB-EGF(-/-) mice were, respectively, 2.1-, 1.7-, 1.8-, 2.2-, 1.2- or 3.3-fold greater for α-smooth muscle actin, α1 chain of collagen I or III (COL1A1 or COL3A1), transforming growth factor-β1, connective tissue growth factor or tissue inhibitor of metalloproteinase-1 (P<0.05). HB-EGF expression was detectable in primary cultured HSCs from HB-EGF(+/+) mice. Both endogenous and exogenous HB-EGF inhibited HSC activation in primary culture, and HB-EGF enhanced HSC migration. These findings suggest that HB-EGF gene knockout in mice increases susceptibility to chronic TAA-induced hepatic fibrosis and that HB-EGF expression or action is associated with suppression of fibrogenic pathways in HSCs.
Collapse
Affiliation(s)
- Guangcun Huang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Gail E. Besner
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA,Department of Surgery, The Ohio State University, Columbus, OH 43205, USA
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA,Department of Surgery, The Ohio State University, Columbus, OH 43205, USA,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43205, USA,Correspondence: David R. Brigstock, PhD, The Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Research II, Room WA 2020, 700 Children's Dr, Columbus, OH 43205, USA.
| |
Collapse
|
41
|
Tian XP, Yin YY, Li X. Effects and mechanisms of Acremoniumterricola milleretal mycelium on liver fibrosis induced by carbon tetrachloride in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:537-50. [PMID: 21598420 DOI: 10.1142/s0192415x11009019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acremoniumterricola milleretal mycelium (AMM) is one of the most precious traditional Chinese medicines. It has numerous protective effects on organs, and has been used in Chinese herb prescription to treat refractory diseases. Our preliminary studies demonstrated that AMM had hepatoprotective activity in acute liver injury. We further investigated the effects of AMM on liver fibrosis in rats induced by carbon tetrachloride (CCl(4)) and explore its possible mechanisms. The animal model was established by injection with 50% CCl(4) subcutaneously in male Sprague-Dawley rats twice a week for eight weeks. Meanwhile, AMM (175, 350 and 700 mg/kg) was administered intragastrically per day until sacrifice. We found that treatment with AMM (175, 350 and 700 mg/kg) decreased CCl(4)-induced elevation of serum transaminase activities, hyaluronic acid, laminin and procollagen type III levels, and contents of hydroxyproline in liver tissues. It also restored the decreased SOD and GSH-Px activities and inhibited the formation of lipid peroxidative products during CCl(4) treatment. Moreover, AMM (350 and 700 mg/kg) decreased the elevation of TGF-β1 by 19.6% and 34.3%, respectively. In the pathological study, liver injury and the formation of liver fibrosis in rates treated by AMM were improved significantly. Immunoblot analysis showed that AMM (175, 350 and 700 mg/kg) inhibited Smad 2/3 phosphorylation, and elevated inhibitor Smad 7 expression. These results suggested that AMM could protect liver damage and inhibit the progression of hepatic fibrosis induced by CCl(4), and its mechanisms might be associated with its ability to scavenge free radicals, decrease the level of TGF-β1 and block TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Pharmacology, Anhui Medical University, HeFei, China
| | | | | |
Collapse
|
42
|
Zhao L, Gandhi CR, Gao ZH. Involvement of cytosolic phospholipase A2 alpha signalling pathway in spontaneous and transforming growth factor-beta-induced activation of rat hepatic stellate cells. Liver Int 2011; 31:1565-73. [PMID: 22093332 DOI: 10.1111/j.1478-3231.2011.02632.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 08/01/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatic stellate cells (HSCs) are extracellular matrix-producing cells that play a pivotal role in liver fibrogenesis. During liver injury and when cells are placed in vitro, HSCs undergo phenotypic transition from quiescent retinoid-storing cells to activated retinoid-deficient myofibroblast-like cells. Although several mediators including reactive oxygen species, platelet derived growth factor, transforming growth factor-beta (TGF-β) and tumour necrosis factor-alpha (TNF-α) were implicated in HSC activation, the cellular signalling pathways that regulate this process remain incompletely defined. AIMS The objectives of this study were to evaluate the role of cytosolic phospholipase A(2) alpha (cPLA(2)α) and peroxisome proliferator-activated receptor-beta/delta (PPAR-β/δ) in HSC activation. METHODS Rat HSCs were isolated, purified, cultured and stimulated with TGF-β1 in the presence or absence of the selective cPLA(2)α inhibitor, arachidonyltrifluoromethyl ketone (AACOCF(3)). The activation status of HSC was evaluated by immunofluorescent staining of alpha-smooth muscle actin (α-SMA) and by measuring the expression of cPLA(2)α, cyclooxygenase 2 (COX-2) and PPAR-β/δ using western blot analysis. RESULTS Rapid and significant increase in cPLA(2)α expression was observed during activation of HSCs. These events preceded the elevation of PPAR-β/δ and the expression of α-SMA. Elevated expression of cPLA(2)α, but not COX-2, was also observed during TGF-β-induced HSC activation. The TGF-β-induced α-SMA expression was blocked by AACOCF(3). Furthermore, transfection of a cPLA(2)α expression vector enhanced the transcription activity of PPAR-β/δ and the expression of α-SMA in HSCs. CONCLUSION cPLA(2)α-mediated induction of PPAR-β/δ is a novel intracellular signalling pathway in spontaneous and TGF-β induced activation of HSCs and could be a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Liena Zhao
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada
| | | | | |
Collapse
|
43
|
Silva CC, Domingues AL, Lopes EP, Morais CN, Santos RB, Luna CF, Nader HB, Martins JR. Schistosomiasis mansoni: ultrasound-evaluated hepatic fibrosis and serum concentrations of hyaluronic acid. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2011; 105:233-9. [PMID: 21801502 DOI: 10.1179/136485911x12987676649629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Schistosomiasis mansoni is a fibrogenic liver disease that constitutes a major health problem in north-eastern Brazil. Although one common manifestation of the disease, periportal fibrosis (PPF), can be assessed by ultrasonography by well-trained physicians, the necessary equipment and personnel are not always readily available. Serum markers, including hyaluronic acid (HA), have been used as alternative means of measuring fibrosis. Recently serum concentrations of HA have been evaluated in 77 Brazilians (61 cases of schistosomiasis mansoni and 16 healthy controls) and compared against the ultrasound-evaluated PPF in the same subjects. The HA was measured using a non-competitive fluorescence-based assay, while the PPF was explored using a portable ultrasound scanner (SSD-500; Aloka, Tokyo) and graded, as patterns A-F, according to the World Health Organization's 'Niamey protocol'. In general, the serum concentrations of HA were found to be positively correlated with the severity of the PPF. The mean concentration of HA in the sera of the 16 controls was significantly lower than that recorded in the schistosomiasis cases who showed PPF of patterns D or E (P<0·001 for each). The cases who showed pattern-C PPF also had significantly less HA in their sera than the cases with PPF of patterns D or E (P<0·001 for each), and the cases with pattern-D fibrosis had significantly lower HA concentrations in their sera than the cases with PPF of pattern E (P<0·001). In an analysis based on a receiver-operating-characteristic (ROC) curve, an HA concentration of 20·2 μg/litre of serum was identified as a threshold that could be used to distinguish moderate cases of PPF (i.e. patterns C or D) from the more advanced cases (i.e. patterns E or F), with a sensitivity of 60% and specificity of 65%. In conclusion, it appears that serum concentrations of hyaluronic acid could be used as markers for periportal fibrosis in patients with schistosomiasis mansoni.
Collapse
Affiliation(s)
- C C Silva
- Universidade Federal de Pernambuco, Rua Irmã Maria Davi 154, Recife, PE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bansal R, Prakash J, de Ruijter M, Beljaars L, Poelstra K. Peptide-modified albumin carrier explored as a novel strategy for a cell-specific delivery of interferon gamma to treat liver fibrosis. Mol Pharm 2011; 8:1899-909. [PMID: 21800888 DOI: 10.1021/mp200263q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Excessive accumulation of the extracellular matrix proteins primarily produced by activated hepatic stellate cells (HSC) leads to liver fibrosis. To date, no successful therapeutic intervention is available for the treatment of this disease. Platelet derived growth factor beta receptor (PDGFβR) is highly upregulated on disease-inducing activated HSC and thus can be used for delivery of antifibrotic drugs to increase therapeutic efficacy with reduced adverse effects. Interferon gamma (IFNγ) has been recognized as a potent antifibrotic cytokine; however, poor pharmacokinetics and side effects due to frequent administration have limited its clinical use. For HSC-specific delivery, a PDGFβR-specific drug delivery carrier (PPB-HSA) was developed by modifying albumin with PDGFβR-recognizing cyclic peptides. Subsequently, IFNγ was conjugated to PPB-HSA via bifunctional PEG linkers to synthesize PPB-HSA-PEG-IFNγ. In vitro, PPB-HSA-PEG-IFNγ retained complete biological activity similar to unmodified IFNγ and showed PDGFβR-specific binding to human HSC and primary culture-activated rat HSC. In TGFβ-stimulated mouse fibroblasts and human HSC, PPB-HSA-PEG-IFNγ induced significant reduction in crucial fibrotic parameters. In vivo, the conjugate rapidly accumulated into PDGFβR-expressing HSC in fibrotic livers and activated IFNγ-mediated pstat1α signaling pathway. Furthermore, in a CCl(4)-induced acute liver injury model in mice, treatment with HSC-targeted IFNγ strongly ameliorated hepatic fibrogenesis by inducing significant reduction (about 60%; p < 0.01) in collagen I and α-SMA expression as well as enhanced fibrolysis (increased MMP/TIMP ratio; p < 0.05) while free unmodified IFNγ was ineffective. Furthermore, in contrast to free native IFNγ, the conjugate did not induce macrophage infiltration and IL-1β expression in the liver. In conclusion, these data demonstrate the enhanced antifibrotic efficacy and reduced off-target effects of PPB-HSA-PEG-IFNγ conjugate showing the potential of cell-specific targeting of IFNγ for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ruchi Bansal
- Department of Pharmacokinetics, Toxicology and Targeting, Graduate School for Drug Exploration, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Bansal R, Post E, Proost JH, de Jager-Krikken A, Poelstra K, Prakash J. PEGylation improves pharmacokinetic profile, liver uptake and efficacy of Interferon gamma in liver fibrosis. J Control Release 2011; 154:233-40. [PMID: 21664391 DOI: 10.1016/j.jconrel.2011.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/25/2011] [Accepted: 05/29/2011] [Indexed: 01/09/2023]
Abstract
Interferon gamma (IFNγ) is a potent cytokine that displays a variety of anti-viral, anti-proliferative, immunomodulatory, apoptotic and anti-fibrotic functions. However, its clinical use is limited to the treatment of few diseases due to the rapid clearance from the body. PEGylated IFN-alpha formulations are shown to be beneficial in viral hepatitis, but PEGylation of IFNγ to enhance its therapeutic effects in liver fibrosis is not yet explored. Liver fibrosis is characterized by the extensive accumulation of an abnormal extracellular matrix and is the major cause of liver-related morbidity and mortality worldwide. To date, there is no pharmacotherapy available for this disease. We modified IFNγ with different-sized linear PEG molecules (5, 10 and 20kDa) and assessed the biological activity in vitro and in vivo. All PEGylated IFNγ constructs were biologically active and activated IFNγ signaling in vitro as determined with a nitric oxide release assay and a pGAS-Luc reporter plasmid assay, respectively. Similar to IFNγ, all PEGylated IFNγ induced a significant reduction of fibrotic parameters in mouse NIH3T3 fibroblasts as shown with immunohistochemical staining and quantitative PCR analyses. In vivo, the pharmacokinetic profile of radiolabeled (125)I-IFNγ-PEG conjugates revealed a decreased renal clearance and an increased plasma half-life with an increase of PEG size. Moreover, the liver accumulation of PEGylated IFNγ constructs was significantly higher than the unmodified IFNγ, which was also confirmed by increased MHC-II expression in the livers. Furthermore, in a CCl(4)-induced acute liver injury model in mice, PEGylated constructs reduced the early fibrotic parameters more drastically than unmodified IFNγ. Of note, these effects were stronger with higher PEG-sized IFNγ constructs. These data nicely correlated with the pharmacokinetic data. In conclusion, PEGylation significantly improved the pharmacokinetics, liver uptake and anti-fibrotic effects of IFNγ. This study opens new opportunities to exploit the therapeutic applications of PEGylated IFNγ for the treatment of liver fibrosis and other diseases.
Collapse
Affiliation(s)
- Ruchi Bansal
- Department of Pharmacokinetics, Toxicology and Targeting, Graduate School for Drug Exploration (GUIDE), University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Schachtrup C, Le Moan N, Passino MA, Akassoglou K. Hepatic stellate cells and astrocytes: Stars of scar formation and tissue repair. Cell Cycle 2011; 10:1764-71. [PMID: 21555919 DOI: 10.4161/cc.10.11.15828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Scar formation inhibits tissue repair and regeneration in the liver and central nervous system. Activation of hepatic stellate cells (HSCs) after liver injury or of astrocytes after nervous system damage is considered to drive scar formation. HSCs are the fibrotic cells of the liver, as they undergo activation and acquire fibrogenic properties after liver injury. HSC activation has been compared to reactive gliosis of astrocytes, which acquire a reactive phenotype and contribute to scar formation after nervous system injury, much like HSCs after liver injury. It is intriguing that a wide range of neuroglia-related molecules are expressed by HSCs. We identified an unexpected role for the p75 neurotrophin receptor in regulating HSC activation and liver repair. Here we discuss the molecular mechanisms that regulate HSC activation and reactive gliosis and their contributions to scar formation and tissue repair. Juxtaposing key mechanistic and functional similarities in HSC and astrocyte activation might provide novel insight into liver regeneration and nervous system repair.
Collapse
|
47
|
Huang G, Brigstock DR. Integrin expression and function in the response of primary culture hepatic stellate cells to connective tissue growth factor (CCN2). J Cell Mol Med 2011; 15:1087-95. [PMID: 20406330 PMCID: PMC2912974 DOI: 10.1111/j.1582-4934.2010.01072.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/29/2010] [Indexed: 01/01/2023] Open
Abstract
Production of connective tissue growth factor (CCN2, also known as CTGF) is a hallmark of hepatic fibrosis. This study examined early primary cultures of hepatic stellate cells (HSC) for (i) CCN2 regulation of its cognate receptor integrin subunits; and (ii) interactions between CCN2 and integrin α(5)β(1), heparan sulphate proteoglycans (HSPG) or fibronectin (FN) in supporting cell adhesion. HSC were isolated from healthy male Balb/c mice. mRNA levels of CCN2 or α(5), β(1), αv or β(3) integrin subunits were measured in days 1-7 primary culture HSC, and day 3 or day 7 cells treated with recombinant CCN2 or CCN2 small interfering RNA. Interactions between CCN2 and integrin α(5)β(1), HSPG or FN were investigated using an in vitro cell adhesion assay. Co-incident with autonomous activation over the first 7 days, primary culture HSC increasingly expressed mRNA for CCN2 or integrin subunits. Addition of exogenous CCN2 or knockdown of endogenous CCN2 differentially regulated integrin gene expression in day 3 versus day 7 cells. Either full length CCN2 ('CCN2(1-4)') or residues 247-349 containing module 4 alone ('CCN2(4)') supported day 3 cell adhesion in an integrin α(5)β(1) - and HSPG-dependent fashion. Adhesion of day 3 cells to FN was promoted in an integrin α(5) β(1)-dependent manner by CCN2(1-4) or CCN2(4), whereas FN promoted HSPG-dependent HSC adhesion to CCN2(1-4) or CCN2(4). These findings suggest CCN2 regulates integrin expression in primary culture HSC and supports HSC adhesion via its binding of cell surface integrin α(5)β(1), a novel CCN2 receptor in primary culture HSC which interacts co-operatively with HSPG or FN.
Collapse
Affiliation(s)
- Guangcun Huang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s HospitalColumbus, OH, USA
| | - David R Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s HospitalColumbus, OH, USA
- Departments of Surgery and Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
48
|
Ding H, Shi J, Wang Y, Guo J, Zhao J, Dong L. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism. Eur J Pharmacol 2010; 650:163-9. [PMID: 20969858 DOI: 10.1016/j.ejphar.2010.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/14/2010] [Accepted: 10/03/2010] [Indexed: 12/31/2022]
Abstract
Neferine is a major alkaloid component of "Lian Zi Xin", embryos of the seeds of Nelumbo nucifera Gaertner, Nymphaeaceae. Previous studies have shown that neferine has an inhibitory effect on pulmonary fibrosis through its anti-inflammatory and anti-oxidative activities and inhibition of cytokines and NF-κB. However, it is unknown whether neferine also has an inhibitory effect on liver fibrosis through inhibition of TGF-β1 and collagen I and facilitation of apoptosis of hepatic stellate cells. This study examined the effects of neferine on cultured hepatic stellate (HSC-T6) cells and explored its possible action mechanisms by means of MTT assay, enzyme-linked immunosorbent assay, flow-cytometric annexin V-PI assay and Hoechst 33258 staining, as well as real-time PCR and western blotting. The results showed that neferine administration (2, 4, 6, 8 and 10μmol/l) significantly decreased the TGF-β1 and collagen I produced in HSC-T6 cells, and increased the HSC-T6 cell apoptosis in a dose-dependent manner. Neferine treatment for 48h at concentrations of 6 and 10μmol/l significantly increased Bax and caspase 3 mRNAs and proteins, and reduced Bcl2 and alpha-smooth muscle actin (α-SMA) mRNAs and proteins. Our data indicate that neferine efficiently inhibits cultured HSC-T6 cell activation and induces apoptosis by increasing Bax and caspase 3 expression via the mitochondrial pathway.
Collapse
Affiliation(s)
- Hui Ding
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | | | | | | | | | | |
Collapse
|
49
|
Interaction of stellate cells with pancreatic carcinoma cells. Cancers (Basel) 2010; 2:1661-82. [PMID: 24281180 PMCID: PMC3837330 DOI: 10.3390/cancers2031661] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction.
Collapse
|
50
|
Mansy SS, Elkhafif NA, Abelfatah AS, Yehia HA, Mostafa I. Hepatic stellate cells and fibrogenesis in hepatitis C virus infection: an ultrastructural insight. Ultrastruct Pathol 2010; 34:62-7. [PMID: 20192701 DOI: 10.3109/01913120903506645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An ultrastructural quantitative assessment of hepatic stellate cells (HSCs) was made in relation to hepatic fibrosis, apoptotic cellular changes, intracellular fat deposition, circulating inflammatory cells in the sinusoids, and the necroinflammatory activity in liver specimens of 33 patients proven to be positive for hepatitis C virus (HCV)-RNA by polymerase chain reaction with the intention that electron microscopy may throw more light on the role of HSCs in the complicated process of fibrogenesis. A detailed review concerning these parameters and observed evidence suggesting the potential properties of HSCs to recycle cellular debris into collagen fibers are reported.
Collapse
Affiliation(s)
- Soheir S Mansy
- Electron Microscopy Research Department (Pathology), Theodor Bilharz Research Institute, Imbaba, Guiza, Egypt.
| | | | | | | | | |
Collapse
|