1
|
Zhang J, Yang J, Luo J, Wu W, Luo H, Wei W, Lyu H, Wang Y, Yi H, Zhang Y, Fan Z, Lyu H, Kanakaveti VP, Qin B, Yuan P, Yang R, Zhang H, Zuo T, Felsher DW, Lee MH, Li K. Lactobacillus acidophilus potentiates oncolytic virotherapy through modulating gut microbiota homeostasis in hepatocellular carcinoma. Nat Commun 2025; 16:3315. [PMID: 40195307 PMCID: PMC11976979 DOI: 10.1038/s41467-025-58407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Oncolytic viruses (OVs) hold promise for cancer treatment. However, the antitumor efficacy is limited. Microbiota plays a pivotal role in cancer treatment and its impact on oncolytic virotherapy is unknown. Here, we show that VSVΔ51 has higher antitumor efficacy for hepatocellular carcinoma in the absence of microbiota in female mouse models. VSVΔ51 infection causes microbiota dysbiosis, increasing most of the gut bacteria abundance, while decreasing the commensal Lactobacillus. VSVΔ51 reduced intestinal expression of SLC20A1 that binds to Lactobacillus acidophilus (L. acidophilus) CdpA cell wall protein through IL6-JAK-STAT3 signaling, thereby attenuating attachment and colonization of L. acidophilus. L. acidophilus supplementation confers sensitivity to VSVΔ51 through restoring gut barrier integrity and microbiota homeostasis destroyed by VSVΔ51. In this work, we show that targeting microbiota homostasis holds substantial potential in improving therapeutic outcomes of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jiayu Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinneng Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinyan Luo
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Weili Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haidan Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxia Wei
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuzhi Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hairong Yi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijing Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongmin Fan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiwen Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Baifu Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, 519, Kunzhou Road, Kunming, 650118, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tao Zuo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mong-Hong Lee
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Neumeyer V, Chavan P, Steiger K, Ebert O, Altomonte J. Cross-Talk Between Tumor Cells and Stellate Cells Promotes Oncolytic VSV Activity in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2025; 17:514. [PMID: 39941881 PMCID: PMC11816849 DOI: 10.3390/cancers17030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
As the mechanisms underlying tumorigenesis become better understood, the dynamic roles of cellular components of the tumor microenvironment, and their cross-talk with tumor cells, have come to light as key drivers of disease progression and have emerged as important targets of new cancer therapies. In the field of oncolytic virus (OV) therapy, stromal cells have been considered as potential barriers to viral spread, thus limiting virus replication and therapeutic outcome. However, new evidence indicates that intratumoral fibroblasts could support virus replication. We have demonstrated in a rat model of stromal-rich intrahepatic cholangiocarcinoma (CCA) that vesicular stomatitis virus (VSV) can be localized within intratumoral hepatic stellate cells (HSCs), in addition to tumor cells, when the virus was applied via hepatic arterial infusion. Furthermore, VSV was shown to efficiently kill CCA cells and activated HSCs, and co-culture of CCA and HSCs increased viral titers. Interestingly, this effect is also observed when each cell type is cultured alone in a conditioned medium of the other cell type, indicating that secreted cell factors are at least partially responsible for this phenomenon. Partial reduction in sensitivity to type I interferons was observed in co-culture systems, providing a possible mechanism for the increased viral titers. Together, the results indicate that targeting activated HSCs with VSV could provide an additional mechanism of OV therapy, which, until now has not been considered. Furthermore, these findings suggest that VSV is a potentially powerful therapeutic agent for stromal-rich tumors, such as CCA and pancreatic cancer, both of which are very difficult to treat with conventional therapy and have a very poor prognosis.
Collapse
Affiliation(s)
- Victoria Neumeyer
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Purva Chavan
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Oliver Ebert
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
3
|
Lv P, Chen H, Cheng H, Liu X, Liu C, Zeng Y, Jiang L, Wang X, Mao J, Liu G. A Calcium Alginate Hydrogel Microsphere‐Based Transcatheter Arterial Viroembolization Strategy for Hepatocellular Carcinoma. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202200174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 12/25/2022]
Abstract
AbstractOncolytic adenoviruses (OAs)‐based virotherapy can regulate the tumor microenvironment, providing a rational strategy for combination treatment with other tumor therapy techniques, such as transcatheter arterial embolization (TAE). Here, a novel, validated transcatheter arterial viroembolization (TAVE) strategy—a calcium alginate hydrogel microsphere with OA encapsulated (OA@Alg beads) to achieve a combination of TAE with oncolytic virotherapy to enhance and prolong antitumor efficacy of OA in hepatocellular carcinoma treatment—is described. The OA@Alg beads show excellent vascular embolization in a rabbit hepatic VX2 carcinoma model, resulting in successful occlusion of hepatic arteries. Importantly, OA@Alg beads enable sustained release of OA and maintain their bioactivity for extended periods while preventing OA shedding from the tumor site to healthy tissues. Moreover, the system preserves the OA's ability to induce an antitumor immune response, resulting in higher intratumoral infiltration by CD4+/CD8+ T cells. The OA@Alg beads have the potential as an effective embolic system for TAVE in the clinical treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education Chongqing Medical University Chongqing 400016 China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Yun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Jingsong Mao
- Department of Radiology Xiang'an Hospital of Xiamen University Xiamen 361102 China
- Amoy Hopeful Biotechnology Co., Ltd. Xiamen 361027 China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 China
| |
Collapse
|
4
|
Repeated dosing improves oncolytic rhabdovirus therapy in mice via interactions with intravascular monocytes. Commun Biol 2022; 5:1385. [PMID: 36536097 PMCID: PMC9761050 DOI: 10.1038/s42003-022-04254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
There is debate in the field of oncolytic virus (OV) therapy, whether a single viral dose, or multiple administrations, is better for tumor control. Using intravital microscopy, we describe the fate of vesicular stomatitis virus (VSV) delivered systemically as a first or a second dose. Following primary administration, VSV binds to the endothelium, initiates tumor infection and activates a proinflammatory response. This initial OV dose induces neutrophil migration into the tumor and limits viral replication. OV administered as a second dose fails to infect the tumor and is captured by intravascular monocytes. Despite a lack of direct infection, this second viral dose, in a monocyte-dependent fashion, enhances and sustains infection by the first viral dose, promotes CD8 T cell recruitment, delays tumor growth and improves survival in multi-dosing OV therapy. Thus, repeated VSV dosing engages monocytes to post-condition the tumor microenvironment for improved infection and anticancer T cell responses. Understanding the complex interactions between the subsequent viral doses is crucial for improving the efficiency of OV therapy and virus-based vaccines.
Collapse
|
5
|
Wang Y, Li J, do Vale GD, Chaudhary J, Anwar A, McDonald JG, Qin T, Zhang H, Corbin IR. Repeated trans-arterial treatments of LDL-DHA nanoparticles induce multiple pathways of tumor cell death in hepatocellular carcinoma bearing rats. Front Oncol 2022; 12:1052221. [PMID: 36505796 PMCID: PMC9730405 DOI: 10.3389/fonc.2022.1052221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Repeated hepatic arterial delivery of therapeutic agents to the liver by percutaneously implanted port-catheter systems has been widely used to treat unresectable liver cancer. This approach is applied to assess the therapeutic efficacy of repeated low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticle treatments in a rat model of hepatocellular carcinoma. Methods N1S1 hepatoma bearing rats underwent placement of a percutaneously implanted hepatic artery port-catheter system and were allocated to untreated, control LDL-triolein (LDL-TO) or LDL-DHA nanoparticle infusions groups. Treatments were performed every three days over a nine day study period. MRI was performed at baseline and throughout the study. At the end of the study tissue samples were collected for analyses. Results and Discussion Implantation of the port catheters was successful in all rats. MRI showed that repeated infusions of LDL-DHA nanoparticles significantly impaired the growth of the rat hepatomas eventually leading to tumor regression. The tumors in the LDL-TO treated group showed delayed growth, while the untreated tumors grew steadily throughout the study. Histopathology and MRI support these findings demonstrating extensive tumor necrosis in LDL-DHA treated groups while the control groups displayed minor necrosis. Molecular and biochemical analyses also revealed that LDL-DHA treated tumors had increased levels of nuclear factor-kappa B and lipid peroxidation and depletion of glutathione peroxidase 4 relative to the control groups. Evidence of both ferroptosis and apoptosis tumor cell death was observed following LDL-DHA treatments. In conclusion repeated transarterial infusions of LDL-DHA nanoparticles provides sustained repression of tumor growth in a rat hepatoma model.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Junjie Li
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jaideep Chaudhary
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Arnida Anwar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jeffrey G. McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Tao Qin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Ian R. Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
- Internal Medicine Division of Liver and Digestive Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
- Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
6
|
Askari FS, Mohebbi A, Moradi A, Javid N. The Role of Vesicular Stomatitis Virus Matrix Protein in Autophagy in the Breast Cancer. Asian Pac J Cancer Prev 2021; 22:249-255. [PMID: 33507706 PMCID: PMC8184201 DOI: 10.31557/apjcp.2021.22.1.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most difficult malignancies to treat. Therapeutics is used to target and kill the cancer cells. Non-human oncolytic viruses have the ability to cause cell death directly to cancers. The objective here was to investigate the role of Vesicular Stomatitis Virus (VSV) Matrix (M) protein in autophagy in the breast cancer cell line. METHODS Two different VSV wild type and mutant (M51R) M protein constructs were produced. Breast cancer cell line BT-20 was transfected by either wild type or mutant vectors. Transfection efficiency was measured using a fluorescent microscopy. Expression of VSV M protein was investigated at protein level. Cell cytotoxicity was measured using an MTT assay. The autophagy pathway was studied by Beclin-1 immunoassay. Data were statistically analyzed between different transfected groups. RESULTS It has been shown that the VSV M protein induced higher levels of Beclin-1 than the M51R mutant in the BT-20 cell line. Increased levels of Beclin-1 were also associated with VSV M cell-induced cytotoxicity. CONCLUSION It has been shown here that VSV wild type or mutant M proteins can cause autophagy-induced cell death by increasing Beclin-1 expression. This includes the possible role of VSV to be used as an oncolytic virus in breast cancer treatment. <br />.
Collapse
Affiliation(s)
- Fatemeh Sana Askari
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Mohebbi
- Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naeme Javid
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Wang Y, Li J, Subramaniyan I, do Vale GD, Chaudhary J, Anwar A, Wight-Carter M, McDonald JG, Putnam WC, Qin T, Zhang H, Corbin IR. An implanted port-catheter system for repeated hepatic arterial infusion of low-density lipoprotein-docosahexaenoic acid nanoparticles in normal rats: A safety study. Toxicol Appl Pharmacol 2020; 400:115037. [PMID: 32417438 DOI: 10.1016/j.taap.2020.115037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, small animal arterial port-catheter systems have been implemented in rodents with reasonable success. The aim of the current study is to employ the small animal port-catheter system to evaluate the safety of multiple hepatic-artery infusions (HAI) of low-density lipoprotein-docosahexaenoic acid (LDL-DHA) nanoparticles to the rat liver. METHODS Wistar rats underwent surgical placement of indwelling HAI ports. Repeated administrations of PBS or LDL-DHA nanoparticles were performed through the port at baseline and days 3 and 6. Rats were sacrificed on day 9 at which point blood and various organs were collected for histopathology and biochemical analyses. RESULTS The port-catheter systems were implanted successfully and repeated infusions of PBS or LDL-DHA nanoparticles were tolerated well by all animals over the duration of the study. Measurements of serum liver/renal function tests, glucose and lipid levels did not differ between control and LDL-DHA treated rats. The liver histology was unremarkable in the LDL-DHA treated rats and the expression of hepatic inflammatory regulators (NF-κβ, IL-6 and CRP) were similar to control rats. Repeated infusions of LDL-DHA nanoparticles did not alter liver glutathione content or the lipid profile in the treated rats. The DHA extracted by the liver was preferentially metabolized to the anti-inflammatory DHA-derived mediator, protectin DX. CONCLUSION Our findings indicate that repeated HAI of LDL-DHA nanoparticles is not only well tolerated and safe in the rat, but may also be protective to the liver.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Hepatobiliary and pancreatic surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China; Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Junjie Li
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Indhumathy Subramaniyan
- Department of Pharmaceutical Sciences, Department of Pharmacy Practice within the Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
| | | | - Jaideep Chaudhary
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Arnida Anwar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | - William C Putnam
- Department of Pharmaceutical Sciences, Department of Pharmacy Practice within the Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
| | - Tao Qin
- Department of Hepatobiliary and pancreatic surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Hongwei Zhang
- Department of Hepatobiliary and pancreatic surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Internal Medicine Division of Liver and Digestive Diseases, Dallas, TX 75390, USA; RadiologyUniversity of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Zhang W, Wang F, Hu X, Liang J, Liu B, Guan Q, Liu S. Inhibition of colorectal cancer liver metastasis in BALB/c mice following intratumoral injection of oncolytic herpes simplex virus type 2 for the induction of specific antitumor immunity. Oncol Lett 2018; 17:815-822. [PMID: 30655834 PMCID: PMC6313052 DOI: 10.3892/ol.2018.9720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Liver metastasis represents the most prominent metastasis of colorectal cancer (CRC) and is the leading cause of CRC mortality, making the early prevention of this event very important. While current CRC therapies include surgery, radiotherapy and chemotherapy, no effective treatment option for CRC liver metastasis (CRLM) exists. Furthermore, the effects of currently available metastatic CRC drugs are frequently limited by their toxicity and side effects. Oncolytic herpes simplex virus type 2 (oHSV2) selectively infects tumor cells and also induces an antitumor immune response. The present study investigated the cytopathic effects of oHSV2 on CT-26 cells in vitro and tested its inhibitory effect on CRLM. In vitro experimental data demonstrated that oHSV2 effectively inhibited the growth of CT-26 cells. In vivo study data demonstrated that treatment with oHSV2 alone slowed the growth of subcutaneous xenograft tumors without inducing weight loss and also inhibited CRLM by increasing the numbers of cluster of differentiation (CD)4+ T, CD8+ T and natural killer cells. In summary, oHSV2 shows potential as a safe and effective therapeutic agent for inhibiting the metastasis of CT-26 CRC cells to the liver.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Feifei Wang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Inner Mongolia University For Nationalities, Tongliao, Inner Mongolia 028000, P.R. China
| | - Xiao Hu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jing Liang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Binlei Liu
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Hubei Provincial Cooperative, Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, Hubei 30068, P.R. China
| | - Qi Guan
- Department of Hematology and Oncology, The Second Clinical Medical School of Inner Mongolia University for Nationalities, Yakeshi, Inner Mongolia 022150, P.R. China
| | - Shangmei Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
9
|
Tenneti P, Borad MJ, Babiker HM. Exploring the role of oncolytic viruses in hepatobiliary cancers. Immunotherapy 2018; 10:971-986. [PMID: 29900755 DOI: 10.2217/imt-2018-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The standard of care for early hepatobiliary cancers (HBC) includes surgical resection. Liver transplantations or locoregional therapies are beneficial in early hepatocellular carcinoma (HCC) under certain circumstances. Systemic treatments have some benefit in advanced HBC, though long-term prognosis remains poor. We evaluated the role of oncolytic viruses in the treatment of HBCs through a systematic literature review. The recombinant vaccinia virus JX-594 improved median survival in patients with local/metastatic HCC more strongly at high dose than at low dose (14.1 vs 6.7 months; p = 0.08) in a Phase II study. A Phase III study with JX-594 and sorafenib in advanced HCC is ongoing. No survival benefit in HCC was seen with two other recombinant adenoviruses (Ad-TK and DL1520). Several preclinical trials using oncolytic viruses in HBC showed promising results, warranting clinical studies.
Collapse
Affiliation(s)
- Pavan Tenneti
- Assistant Professor of Medicine, Department of Medicine, Banner University Medical Center, Tucson, AZ 85721, USA
| | - Mitesh J Borad
- Associate Professor of Medicine, Department of Medicine, Hematology & Oncology division, Mayo Clinic, Scottsdale, AZ 85205, USA
| | - Hani M Babiker
- Assistant Professor of Medicine, Department of Medicine, Hematology & Oncology division, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem 2017; 437:13-36. [PMID: 28593566 DOI: 10.1007/s11010-017-3092-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
11
|
Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16013. [PMID: 27347556 PMCID: PMC4909096 DOI: 10.1038/mto.2016.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection.
Collapse
|
12
|
Altomonte J, Muñoz-Álvarez KA, Shinozaki K, Baumgartner C, Kaissis G, Braren R, Ebert O. Transarterial Administration of Oncolytic Viruses for Locoregional Therapy of Orthotopic HCC in Rats. J Vis Exp 2016. [PMID: 27167921 DOI: 10.3791/53757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease with limited treatment options and poor prognosis. In recent years, oncolytic virotherapies have proven themselves to be potentially powerful tools to fight malignancy. Due to the unique dual blood supply in the liver, it is possible to apply therapies locally to orthotopic liver tumors, which are predominantly fed by arterial blood flow. We have previously demonstrated that hepatic arterial delivery of oncolytic viruses results in safe and efficient transduction efficiency of multifocal HCC lesions, resulting in significant prolongation of survival in immune competent rats. This procedure closely mimics the application of transarterial embolization in patients, which is the standard palliative care provided to many HCC patients. The ability to administer tumor therapies through the hepatic artery in rats allows for a highly sophisticated preclinical model for evaluating novel viral vectors under development. Here we describe the detailed protocol for microdissection of the hepatic artery for infusion of oncolytic virus vectors to treat orthotopic HCC.
Collapse
Affiliation(s)
| | | | | | | | - Georgios Kaissis
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der TU München
| | - Rickmer Braren
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar der TU München
| | - Oliver Ebert
- II. Medizinische Klinik, Klinikum rechts der Isar der TU München
| |
Collapse
|
13
|
Jebar AH, Vile RG, Melcher AA, Griffin S, Selby PJ, Errington-Mais F. Progress in clinical oncolytic virus-based therapy for hepatocellular carcinoma. J Gen Virol 2015; 96:1533-50. [DOI: 10.1099/vir.0.000098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
STAT3 inhibition reduces toxicity of oncolytic VSV and provides a potentially synergistic combination therapy for hepatocellular carcinoma. Cancer Gene Ther 2015; 22:317-25. [PMID: 25930184 DOI: 10.1038/cgt.2015.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a refractory malignancy with a high mortality and increasing worldwide incidence rates, including the United States and central Europe. In this study, we demonstrate that a specific inhibitor of signal transducer and activator of transcription 3 (STAT3), NSC74859, efficiently reduces HCC cell proliferation and can be successfully combined with oncolytic virotherapy using vesicular stomatitis virus (VSV). The potential benefits of this combination treatment are strengthened by the ability of NSC74859 to protect primary hepatocytes and nervous system cells against virus-induced cytotoxicity, with an elevation of the VSV maximum tolerated dose in mice. Hereby we propose a strategy for improving the current regimen for HCC treatment and seek to further explore the molecular mechanisms underlying selective oncolytic specificity of VSV.
Collapse
|
15
|
Altomonte J, Ebert O. Sorting Out Pandora's Box: Discerning the Dynamic Roles of Liver Microenvironment in Oncolytic Virus Therapy for Hepatocellular Carcinoma. Front Oncol 2014; 4:85. [PMID: 24795862 PMCID: PMC4001031 DOI: 10.3389/fonc.2014.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/07/2014] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viral therapies have recently found their way into clinical application for hepatocellular carcinoma (HCC), a disease with limited treatment options and poor prognosis. Adding to the many intrinsic challenges of in vivo oncolytic viral therapy, is the complex microenvironment of the liver, which imposes unique limitations to the successful delivery and propagation of the virus. The normal liver milieu is characterized by an intricate network of hepatocytes and non-parenchymal cells including Kupffer cells, stellate cells, and sinusoidal endothelial cells, which can secrete anti-viral cytokines, provide a platform for non-specific uptake, and form a barrier to efficient viral spread. In addition, natural killer cells are greatly enriched in the liver, contributing to the innate defense against viruses. The situation is further complicated when HCC arises in the setting of underlying hepatitis virus infection and/or hepatic cirrhosis, which occurs in more than 90% of clinical cases. These conditions pose further inhibitory effects on oncolytic virus (OV) therapy due to the presence of chronic inflammation, constitutive cytokine expression, altered hepatic blood flow, and extracellular matrix deposition. In addition, OVs can modulate the hepatic microenvironment, resulting in a complex interplay between virus and host. The immune system undoubtedly plays a substantial role in the outcome of OV therapy, both as an inhibitor of viral replication, and as a potent mechanism of virus-mediated tumor cell killing. This review will discuss the particular challenges of oncolytic viral therapy for HCC, as well as some potential strategies for modulating the immune system and synergizing with the hepatic microenvironment to improve therapeutic outcome.
Collapse
Affiliation(s)
- Jennifer Altomonte
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München , München , Germany
| | - Oliver Ebert
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München , München , Germany
| |
Collapse
|
16
|
Antifibrotic properties of transarterial oncolytic VSV therapy for hepatocellular carcinoma in rats with thioacetamide-induced liver fibrosis. Mol Ther 2013; 21:2032-42. [PMID: 23939023 DOI: 10.1038/mt.2013.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/25/2013] [Indexed: 01/18/2023] Open
Abstract
Recombinant vesicular stomatitis virus (VSV) shows promise for the treatment of hepatocellular carcinoma (HCC), but its safety and efficacy when administered in a setting of hepatic fibrosis, which occurs in the majority of clinical cases, is unknown. We hypothesized that VSV could provide a novel benefit to the underlying fibrosis, due to its ability to replicate and cause cell death specifically in activated hepatic stellate cells. In addition to the ability of VSV to produce a significant oncolytic response in HCC-bearing rats in the background of thioacetamide-induced hepatic fibrosis without signs of hepatotoxicity, we observed a significant downgrading of fibrosis stage, a decrease in collagen content in the liver, and modulation of gene expression in favor of fibrotic regression. Together, this work suggests that VSV is not only safe and effective for the treatment of HCC with underlying fibrosis, but it could potentially be developed for clinical application as a novel antifibrotic agent.
Collapse
|
17
|
YAMAKI MINORU, SHINOZAKI KATSUNORI, SAKAGUCHI TAKEMASA, MESECK MARCIA, EBERT OLIVER, OHDAN HIDEKI, WOO SAVIOL. The potential of recombinant vesicular stomatitis virus-mediated virotherapy against metastatic colon cancer. Int J Mol Med 2012; 31:299-306. [DOI: 10.3892/ijmm.2012.1205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/30/2012] [Indexed: 12/14/2022] Open
|
18
|
Muik A, Dold C, Geiß Y, Volk A, Werbizki M, Dietrich U, von Laer D. Semireplication-competent vesicular stomatitis virus as a novel platform for oncolytic virotherapy. J Mol Med (Berl) 2012; 90:959-70. [PMID: 22286341 PMCID: PMC3396339 DOI: 10.1007/s00109-012-0863-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/03/2012] [Accepted: 01/16/2012] [Indexed: 12/18/2022]
Abstract
Among oncolytic viruses, the vesicular stomatitis virus (VSV) is especially potent and a highly promising agent for the treatment of cancer. But, even though effective against multiple tumor entities in preclinical animal models, replication-competent VSV exhibits inherent neurovirulence, which has so far hindered clinical development. To overcome this limitation, replication-defective VSV vectors for cancer gene therapy have been tested and proven to be safe. However, gene delivery was inefficient and only minor antitumor efficacy was observed. Here, we present semireplication-competent vector systems for VSV (srVSV), composed of two trans-complementing, propagation-deficient VSV vectors. The de novo generated deletion mutants of the two VSV polymerase proteins P (phosphoprotein) and L (large catalytic subunit), VSVΔP and VSVΔL respectively, were used mutually or in combination with VSVΔG vectors. These srVSV systems copropagated in vitro and in vivo without recombinatory reversion to replication-competent virus. The srVSV systems were highly lytic for human glioblastoma cell lines, spheroids, and subcutaneous xenografts. Especially the combination of VSVΔG/VSVΔL vectors was as potent as wild-type VSV (VSV-WT) in vitro and induced long-term tumor regression in vivo without any associated adverse effects. In contrast, 90% of VSV-WT-treated animals succumbed to neurological disease shortly after tumor clearance. Most importantly, even when injected into the brain, VSVΔG/VSVΔL did not show any neurotoxicity. In conclusion, srVSV is a promising platform for virotherapeutic approaches and also for VSV-based vector vaccines, combining improved safety with an increased coding capacity for therapeutic transgenes, potentially allowing for multipronged approaches.
Collapse
Affiliation(s)
| | - Catherine Dold
- Institute for Virology, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria
| | - Yvonne Geiß
- Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Andreas Volk
- Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | | | | | - Dorothee von Laer
- Institute for Virology, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria
| |
Collapse
|
19
|
Marozin S, Altomonte J, Apfel S, Dinh PX, De Toni EN, Rizzani A, Nüssler A, Kato N, Schmid RM, Pattnaik AK, Ebert O. Posttranslational modification of vesicular stomatitis virus glycoprotein, but not JNK inhibition, is the antiviral mechanism of SP600125. J Virol 2012; 86:4844-4855. [PMID: 22345438 PMCID: PMC3347359 DOI: 10.1128/jvi.06649-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/09/2012] [Indexed: 12/28/2022] Open
Abstract
Vesicular stomatitis virus (VSV), a negative-sense single-stranded-RNA rhabdovirus, is an extremely promising oncolytic agent for cancer treatment. Since oncolytic virotherapy is moving closer to clinical application, potentially synergistic combinations of oncolytic viruses and molecularly targeted antitumor agents are becoming a meaningful strategy for cancer treatment. Mitogen-activated protein kinase (MAPK) inhibitors have been shown to impair liver cell proliferation and tumor development, suggesting their potential use as therapeutic agents for hepatocellular carcinoma (HCC). In this work, we show that the impairment of MAPK in vitro did not interfere with the oncolytic properties of VSV in HCC cell lines. Moreover, the administration of MAPK inhibitors did not restore the responsiveness of HCC cells to alpha/beta interferon (IFN-α/β). In contrast to previous reports, we show that JNK inhibition by the inhibitor SP600125 is not responsible for VSV attenuation in HCC cells and that this compound acts by causing a posttranslational modification of the viral glycoprotein.
Collapse
Affiliation(s)
- Sabrina Marozin
- Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jennifer Altomonte
- Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sibylle Apfel
- Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Phat X. Dinh
- School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Enrico N. De Toni
- Department of Medicine 2, University Hospital Grosshadern, University of Munich, Munich, Germany
| | - Antonia Rizzani
- Department of Medicine 2, University Hospital Grosshadern, University of Munich, Munich, Germany
| | - Andreas Nüssler
- Department of Traumatology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nobuyuki Kato
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Roland M. Schmid
- Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Oliver Ebert
- Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
20
|
Heiber JF, Xu XX, Barber GN. Potential of vesicular stomatitis virus as an oncolytic therapy for recurrent and drug-resistant ovarian cancer. CHINESE JOURNAL OF CANCER 2011; 30:805-14. [PMID: 22059911 PMCID: PMC4013328 DOI: 10.5732/cjc.011.10205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the last decade, we have gained significant understanding of the mechanism by which vesicular stomatitis virus (VSV) specifically kills cancer cells. Dysregulation of translation and defective innate immunity are both thought to contribute to VSV oncolysis. Safety and efficacy are important objectives to consider in evaluating VSV as a therapy for malignant disease. Ongoing efforts may enable VSV virotherapy to be considered in the near future to treat drug-resistant ovarian cancer when other options have been exhausted. In this article, we review the development of VSV as a potential therapeutic approach for recurrent or drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Joshua F Heiber
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
21
|
Kubo T, Shimose S, Matsuo T, Fujimori J, Sakaguchi T, Yamaki M, Shinozaki K, Woo SLC, Ochi M. Oncolytic vesicular stomatitis virus administered by isolated limb perfusion suppresses osteosarcoma growth. J Orthop Res 2011; 29:795-800. [PMID: 21437961 DOI: 10.1002/jor.21307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/08/2010] [Indexed: 02/04/2023]
Abstract
A significant limitation to oncolytic virotherapy in vivo is the lack of a clinically relevant means of delivering the virus. We evaluated the oncolytic activity of vesicular stomatitis virus (VSV) in human osteosarcoma cells and explored isolated limb perfusion (ILP) as a novel oncolytic virus delivery system to extremity sarcoma in immune-competent rats. Human and rat osteosarcoma cells transduced with rVSV-lacZ uniformly expressed β-gal. VSV was fully capable of replicating its RNA genome in all osteosarcoma cell lines, and efficiently killed them in time- and dose-dependent manners, whereas normal bone marrow stromal cells were refractory to the virus. VSV delivered by ILP inhibited growth of osteosarcoma xenografts more potently than that injected intravenously and intratumorally in the hind limb of immune-competent rats. Histopathological sections of tumor lesions treated by ILP-delivered VSV showed positive for VSV-G protein. There were no VSV-G expressions in perfused leg muscle, nonperfused leg muscle, brain, lung, and liver in VSV-treated rats. Our findings show efficient VSV gene expression and replication in osteosarcoma cells, suggesting that osteosarcoma may be a promising target for oncolytic virotherapy with VSV. Furthermore, we firstly showed that ILP of VSV against extremity sarcoma caused antitumor activity.
Collapse
Affiliation(s)
- Tadahiko Kubo
- Department of Orthopaedic Surgery, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ausubel LJ, Meseck M, Derecho I, Lopez P, Knoblauch C, McMahon R, Anderson J, Dunphy N, Quezada V, Khan R, Huang P, Dang W, Luo M, Hsu D, Woo SLC, Couture L. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment. Hum Gene Ther 2011; 22:489-97. [PMID: 21083425 DOI: 10.1089/hum.2010.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.
Collapse
Affiliation(s)
- L J Ausubel
- Center for Biomedicine and Genetics, and Center for Applied Technology Development, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marozin S, De Toni EN, Rizzani A, Altomonte J, Junger A, Schneider G, Thasler WE, Kato N, Schmid RM, Ebert O. Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma. PLoS One 2010; 5:e10988. [PMID: 20539760 PMCID: PMC2881869 DOI: 10.1371/journal.pone.0010988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 05/10/2010] [Indexed: 12/24/2022] Open
Abstract
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bε have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bε are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future.
Collapse
Affiliation(s)
- Sabrina Marozin
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Enrico N. De Toni
- Medizinische Klinik und Poliklinik II, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Antonia Rizzani
- Medizinische Klinik und Poliklinik II, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Jennifer Altomonte
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Junger
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang E. Thasler
- Chirurgische Klinik und Poliklinik, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Nobuyuki Kato
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Roland M. Schmid
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Ebert
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
24
|
Abstract
The mortality of colorectal carcinoma often results from the progression of metastatic disease, which is predominantly hepatic. Although recent advances in surgical, locoregional, and systemic therapies have yielded modest improvements in survival, treatment of these aggressive lesions is limited to palliation for the vast majority of patients. Oncolytic viral therapy represents a promising novel therapeutic modality that has achieved tumor regression in several preclinical and clinical models. Evidence further suggests that locoregional viral administration may improve viral efficacy while minimizing toxicity. This study will review the theories behind hepatic arterial infusion of oncolytic virus, as well as herpes viral design, preclinical data, and clinical progress in regional liver therapy using oncolytic virus to treat hepatic colorectal carcinoma metastases.
Collapse
Affiliation(s)
- Susanne G Carpenter
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
25
|
Enhanced oncolytic activity of vesicular stomatitis virus encoding SV5-F protein against prostate cancer. J Urol 2010; 183:1611-8. [PMID: 20172545 DOI: 10.1016/j.juro.2009.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Indexed: 11/21/2022]
Abstract
PURPOSE Vesicular stomatitis virus has been investigated as an oncolytic agent for cancer therapy because it preferentially replicates in tumor but not in normal cells due to the lack of a robust interferon antiviral system in transformed cells. However, wild-type vesicular stomatitis virus can induce a strong systemic immunological response and replicate in the central nervous system, potentially limiting its clinical usefulness. We report the construction of the recombinant, replication restricted vesicular stomatitis virus encoding SV5-F, which can induce syncytial formation with enhanced oncolytic properties against TRAMP-C2 tumors in an immunocompetent mouse model of prostate cancer. MATERIALS AND METHODS We constructed the SV5-F recombinant restricted virus vector by replacing the vesicular stomatitis virus G gene with that of the SV5-F transgene to generate rVSV-DeltaG-SV5-F. Morphological changes and DNA fragmentation induced by rVSV-DeltaG-GFP or rVSV-DeltaG-SV5-F were determined by phase contrast microscopy and gel electrophoresis. In vitro cytotoxicity by recombinant vesicular stomatitis virus was done by MTT assay. In vivo study of rVSV treatment was done in immunocompetent mice by subcutaneous administration of TRAMP-C2 cells. RESULTS In vitro characterization of the recombinant fusogenic VSV-DeltaG vector on TRAMP-C2 cells showed significantly enhanced apoptotic and cytotoxic effects relative to a similar virus encoding green fluorescent protein, that is rVSV-DeltaG-GFP. Regardless of initial tumor size intratumor rVSV-DeltaG-SV5-F administration in mice bearing subcutaneous TRAMP-C2 tumors resulted in a significantly reduced tumor load over that of the nonfusogenic green fluorescent control virus and of heat inactivated recombinant vesicular stomatitis virus in treated animals (p <0.01). CONCLUSIONS Results show that G complemented recombinant VSV-DeltaG vectors, especially rVSV-DeltaG-SV5-F, are an effective oncolytic agent against mouse prostate cancer cells in vitro and in an in vivo immunocompetent mouse model system.
Collapse
|
26
|
Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther 2009; 17:158-70. [PMID: 20016540 PMCID: PMC3934361 DOI: 10.1038/gt.2009.161] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A fully intact immune system would be expected to hinder the efficacy of oncolytic virotherapy by inhibiting viral replication. Simultaneously, however, it may also enhance antitumor therapy through initiation of proinflammatory, antiviral cytokine responses at the tumor site. The aim of this study was to investigate the role of a fully intact immune system on the antitumor efficacy of an oncolytic virus. In this respect, injection of oncolytic vesicular stomatitis virus (VSV) into subcutaneous B16ova melanomas in C57Bl/6 mice leads to tumor regression, but it is not associated with viral replicative burst in the tumor. In contrast, intratumoral delivery of VSV induces an acute proinflammatory reaction, which quickly resolves concomitantly with virus clearance. Consistent with the hypothesis that therapy may not be dependent on the ability of VSV to undergo progressive rounds of replication, a single-cycle VSV is equally effective as a fully replication-competent VSV, whereas inactivated viruses do not generate therapy. Even though therapy is dependent on host CD8+ and natural killer cells, these effects are not associated with interferon-gamma-dependent responses against either the virus or tumor. There is, however, a strong correlation between viral gene expression, induction of proinflammatory reaction in the tumor and in vivo therapy. Overall, our results suggest that acute innate antiviral immune response, which rapidly clears VSV from B16ova tumors, is associated with the therapy observed in this model. Therefore, the antiviral immune response to an oncolytic virus mediates an intricate balance between safety, restriction of oncolysis and, potentially, significant immune-mediated antitumor therapy.
Collapse
|
27
|
Capo-chichi CD, Yeasky TM, Heiber JF, Wang Y, Barber GN, Xu XX. Explicit targeting of transformed cells by VSV in ovarian epithelial tumor-bearing Wv mouse models. Gynecol Oncol 2009; 116:269-75. [PMID: 19932656 DOI: 10.1016/j.ygyno.2009.10.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Current treatment options for epithelial ovarian cancer are limited and therapeutic development for recurrent and drug-resistant ovarian cancer is an urgent agenda. We investigated the potential use of genetically engineered Vesicular Stomatitis Virus (VSV) to treat ovarian cancer patients who fail to respond to available therapies. Specifically, we examined the toxicity to hosts and specificity of targeting ovarian tumors using a Wv ovarian tumor model. METHODS We first tested recombinant VSV for oncolytic activity in a panel of human ovarian epithelial cancer, immortalized, and primary ovarian surface epithelial cells in culture. Then, we tested VSV oncolytic therapy using the immune competent Wv mice that develop tubular adenomas, benign tumor lesions derived from ovarian surface epithelial cells. RESULTS The expression of GFP encoded by the recombinant VSV genome was detected in about 5% of primary ovarian surface epithelial cells (3 lines) up to 30 days without significantly altering the growth pattern of the cells, suggesting the lack of toxicity to the normal ovarian surface epithelial cells. However, VSV-GFP was detected in the majority (around 90%) of cells that are either "immortalized" by SV40 antigen expression or cancer lines. Some variation in killing time courses was observed, but all the transformed cell lines were killed within 3 days. We found that regardless of the inoculation route (intra bursal, IP, or IV), VSV specifically infected and replicated in the in situ ovarian tumors in the Wv mice without significant activity in any other organs and tissues, and showed no detectable toxicity. The epithelial tumor lesions were greatly reduced in VSV-targeted ovarian tumors in the Wv mice. CONCLUSIONS VSV oncolytic activity depends on a cell autonomous property distinguishing primary and transformed cells. The efficient oncolytic activity of VSV for the "immortalized" non-tumorigenic ovarian surface epithelial cells suggests that the selective specificity extends from pre-neoplastic to overt cancer cells. The results demonstrated the explicit targeting of ovarian epithelial tumors by VSV in immune competent, ovarian tumor-bearing mouse models, and further support the utility of VSV as an effective and safe anti-cancer agent.
Collapse
Affiliation(s)
- Callinice D Capo-chichi
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
28
|
Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J Virol 2009; 84:1563-73. [PMID: 19906910 DOI: 10.1128/jvi.02040-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vesicular stomatitis virus (VSV) has been shown in laboratory studies to be effective against a variety of tumors, including malignant brain tumors. However, attenuation of VSV may be necessary to balance the potential toxicity toward normal cells, particularly when targeting brain tumors. Here we compared 10 recombinant VSV variants resulting from different attenuation strategies. Attenuations included gene shifting (VSV-p1-GFP/RFP), M protein mutation (VSV-M51), G protein cytoplasmic tail truncations (VSV-CT1/CT9), G protein deletions (VSV-dG-GFP/RFP), and combinations thereof (VSV-CT9-M51). Using in vitro viability and replication assays, the VSV variants were grouped into three categories, based on their antitumor activity and non-tumor-cell attenuation. In the first group, wild-type-based VSV-G/GFP, tumor-adapted VSV-rp30, and VSV-CT9 showed a strong antitumor profile but also retained some toxicity toward noncancer control cells. The second group, VSV-CT1, VSV-dG-GFP, and VSV-dG-RFP, had significantly diminished toxicity toward normal cells but showed little oncolytic action. The third group displayed a desired combination of diminished general toxicity and effective antitumor action; this group included VSV-M51, VSV-CT9-M51, VSV-p1-GFP, and VSV-p1-RFP. A member of the last group, VSV-p1-GFP, was then compared in vivo against wild-type-based VSV-G/GFP. Intranasal inoculation of young, postnatal day 16 mice with VSV-p1-GFP showed no adverse neurological effects, whereas VSV-G/GFP was associated with high lethality (80%). Using an intracranial tumor xenograft model, we further demonstrated that attenuated VSV-p1-GFP targets and kills human U87 glioblastoma cells after systemic application. We concluded that some, but not all, attenuated VSV mutants display a favorable oncolytic profile and merit further investigation.
Collapse
|
29
|
Altomonte J, Marozin S, Schmid RM, Ebert O. Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol Ther 2009; 18:275-84. [PMID: 19809404 DOI: 10.1038/mt.2009.231] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Newcastle disease virus (NDV) is an intrinsically tumor-specific virus, which is currently under investigation as a clinical oncolytic agent. Several clinical trials have reported NDV to be a safe and effective agent for cancer therapy; however, there remains a clear need for improvement in therapeutic outcome. The endogenous NDV fusion (F) protein directs membrane fusion, which is required for virus entry and cell-cell fusion. Here, we report a novel NDV vector harboring an L289A mutation within the F gene, which resulted in enhanced fusion and cytotoxicity of hepatocellular carcinoma (HCC) cells in vitro, as compared with the rNDV/F3aa control virus. In vivo administration of the recombinant vector, termed rNDV/F3aa(L289A), via hepatic arterial infusion in immune-competent Buffalo rats bearing multifocal, orthotopic liver tumors resulted in tumor-specific syncytia formation and necrosis, with no evidence of toxicity to the neighboring hepatic parenchyma. Furthermore, the improved oncolysis conferred by the L289A mutation translated to significantly prolonged survival compared with control NDV. Taken together, rNDV/F(L289A) represents a safe, yet more effective vector than wild-type NDV for the treatment of HCC, making it an ideal candidate for clinical application in HCC patients.
Collapse
Affiliation(s)
- Jennifer Altomonte
- II Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
30
|
Willmon CL, Saloura V, Fridlender ZG, Wongthida P, Diaz RM, Thompson J, Kottke T, Federspiel M, Barber G, Albelda SM, Vile RG. Expression of IFN-beta enhances both efficacy and safety of oncolytic vesicular stomatitis virus for therapy of mesothelioma. Cancer Res 2009; 69:7713-20. [PMID: 19773437 DOI: 10.1158/0008-5472.can-09-1013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our preclinical and clinical trials using a replication-defective adenoviral vector expressing IFN-beta have shown promising results for the treatment of malignant mesothelioma. Based on the hypotheses that a replication-competent vesicular stomatitis virus (VSV) oncolytic vector would transduce more tumor cells in vivo, that coexpression of the immunostimulatory IFN-beta gene would enhance the immune-based effector mechanisms associated both with regression of mesotheliomas and with VSV-mediated virotherapy, and that virus-derived IFN-beta would add further safety to the VSV platform, we tested the use of IFN-beta as a therapeutic transgene expressed from VSV as a novel treatment for mesothelioma. VSV-IFN-beta showed significant therapy against AB12 murine mesotheliomas in the context of both local and locoregional viral delivery. Biologically active IFN-beta expressed from VSV added significantly to therapy compared with VSV alone, dependent in part on host CD8+ T-cell responses. Immune monitoring suggested that these antitumor T-cell responses may be due to a generalized T-cell activation rather than the priming of tumor antigen-specific T-cell responses. Finally, IFN-beta also added considerable extra safety to the virus by providing protection from off-target viral replication in nontumor tissues and protected severe combined immunodeficient mice from developing lethal neurotoxicity. The enhanced therapeutic index provided by the addition of IFN-beta to VSV therefore provides a powerful justification for the development of this virus for future clinical trials.
Collapse
Affiliation(s)
- Candice L Willmon
- Departments of Molecular Medicine and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Altomonte J, Braren R, Schulz S, Marozin S, Rummeny EJ, Schmid RM, Ebert O. Synergistic antitumor effects of transarterial viroembolization for multifocal hepatocellular carcinoma in rats. Hepatology 2008; 48:1864-73. [PMID: 19003878 DOI: 10.1002/hep.22546] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Oncolytic virotherapy is a promising strategy for safe and effective treatment of malignancy. We have reported previously that recombinant vesicular stomatitis virus (VSV) vectors are effective oncolytic agents that can be safely administered via the hepatic artery in immunocompetent rats to treat multifocal hepatocellular carcinoma (HCC), resulting in tumor necrosis and prolonged survival. Though the results were encouraging, complete tumor regression was not observed, which led us to explore alternative approaches to further enhance the efficacy of VSV treatment. Transarterial embolization techniques have been shown to improve the efficiency and tumor selectivity of anticancer treatments. Degradable starch microspheres (DSM) are one such embolic agent that provides transient embolization of the therapeautic agent before being degraded by serum amylases. Here we demonstrate via dynamic contrast-enhanced magnetic resonance imaging that in our rat model of multifocal HCC, DSM injection into the hepatic artery results in a substantial reduction in tumor perfusion of systemically applied contrast agent. VSV, when administered in combination with DSM, results in enhanced tumor necrosis and synergistically prolongs survival when compared with VSV or DSM monotherapy. CONCLUSION This regimen of viroembolization represents an innovative therapeutic modality that can augment the future development of transarterial oncolytic virus therapy for patients with advanced HCC.
Collapse
|
32
|
Marozin S, Altomonte J, Stadler F, Thasler WE, Schmid RM, Ebert O. Inhibition of the IFN-β Response in Hepatocellular Carcinoma by Alternative Spliced Isoform of IFN Regulatory Factor-3. Mol Ther 2008; 16:1789-1797. [DOI: 10.1038/mt.2008.201] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/19/2008] [Indexed: 12/21/2022] Open
|
33
|
Chang JF, Chen PJ, Sze DY, Reid T, Bartlett D, Kirn DH, Liu TC. Oncolytic virotherapy for advanced liver tumours. J Cell Mol Med 2008; 13:1238-47. [PMID: 19175689 PMCID: PMC4496138 DOI: 10.1111/j.1582-4934.2008.00563.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Primary and metastatic neoplasms of the liver account for more than a million deaths per year worldwide. Despite decades of research, effective novel therapies for these cancers are urgently needed. Oncolytic virotherapeutics represent a novel class of pharmacophore that holds promise for the treatment of hepatic neoplasms. Cancer-specific replication is followed by oncolysis, virus spreading and infection of adjacent cancer cells. This process is then repeated. Virotherapeutics target multiple genetic pathways involved in carcino-genesis, and demonstrate activity against apoptosis-resistant tumour cells. This platform can also exploit the advantage of multiple intrinsic anti-cancer therapeutic mechanisms, combining direct viral oncolysis with therapeutic transgene expression. Recent advances in pre-clinical and clinical studies are revealing the potential of this unique therapeutic class, in particular for liver cancers. This review summarizes the available data on applying oncolytic virotherapeutics to hepatic neoplasms to date, and discusses the challenges and future directions for virotherapy.
Collapse
Affiliation(s)
- Ju-Fang Chang
- Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Altomonte J, Wu L, Meseck M, Chen L, Ebert O, Garcia-Sastre A, Fallon J, Mandeli J, Woo SLC. Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther 2008; 16:266-78. [PMID: 18846115 DOI: 10.1038/cgt.2008.74] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recombinant oncolytic viruses represent a promising alternative option for the treatment of malignant cancers. We have reported earlier the safety and efficacy of recombinant vesicular stomatitis virus (VSV) vectors in a rat model of hepatocellular carcinoma (HCC). However, the full potential of VSV therapy is limited by a sudden decline in intratumoral virus replication observed early after viral administration, a phenomenon that coincides with an accumulation of inflammatory cells within infected lesions. To overcome the antiviral function of these cells, we present a recombinant virus, rVSV-UL141, which expresses a protein from human cytomegalovirus known to downregulate the natural killer (NK) cell-activating ligand CD155. The modified vector resulted in an inhibition of NK cell recruitment in vitro, as well as decreased intratumoral accumulations of NK and NKT cells in vivo. Administration of rVSV-UL141 through hepatic artery infusion in immune-competent Buffalo rats harboring orthotopic, multi-focal HCC lesions resulted in a one-log elevation of intratumoral virus replication over a control rVSV vector, which translated to enhance tumor necrosis and substantial prolongation of survival. Moreover, these results were achieved in the absence of apparent toxicities. The present study suggests the applicability of this strategy for the development of effective and safe oncolytic agents to treat multi-focal HCC, and potentially a multitude of other cancers, in the future.
Collapse
Affiliation(s)
- J Altomonte
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Green DS, Lum T, Mullins BT, Green JA. Antibody-mediated enhancement of the rate, magnitude, and responsiveness of vesicular stomatitis virus induced alpha interferon production. J Med Virol 2008; 80:1675-83. [PMID: 18649334 DOI: 10.1002/jmv.21232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A majority of adults without evidence of exposure to vesicular stomatitis virus (VSV) have serum IgG antibodies that interact with pro-inflammatory TLR7 in the presence of VSV, and enhance several aspects of VSV-induced IFN-alpha production. Enhancing IgG antibody enables human PBMC to make IFN-alpha more rapidly and in higher titers in response to a broad range of VSV-concentrations that include those too low to independently stimulate IFN-alpha production. These antibody-mediated functions compensate for the inherent delay in virus-induced IFN-alpha production in vitro, and have the potential to improve the in vivo IFN-alpha response and effectively terminate infection before the occurrence of clinically apparent disease. The frequent presence of enhancing antibody in persons without predictable VSV exposure has implications for naturally occurring infections with this and other viruses, and for the use of viruses as vaccine vectors and oncolytic agents.
Collapse
Affiliation(s)
- D S Green
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
36
|
Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo. Mol Ther 2007; 16:146-53. [PMID: 18071337 DOI: 10.1038/sj.mt.6300343] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oncolytic virotherapy is a promising strategy for treatment of malignancy, although its effectiveness is hampered by host antiviral inflammatory responses. The efficacy of treatment of oncolytic vesicular stomatitis virus (VSV) in rats bearing multifocal hepatocellular carcinoma (HCC) can be substantially elevated by antibody-mediated depletion of natural killer (NK) cells. In order to test the hypothesis that the oncotyic potency of VSV can be exponentially elevated by evasion of inflammatory responses in vivo, we constructed a recombinant VSV vector expressing equine herpes virus-1 glycoprotein G, which is a broad-spectrum viral chemokine binding protein (rVSV-gG). Infusion of rVSV-gG via the hepatic artery into immune-competent rats bearing syngeneic and multifocal HCC in their livers, resulted in a reduction of NK and NKT cells in the tumors and a 1-log enhancement in intratumoral virus titer in comparison with a reference rVSV vector. The treatment led to increased tumor necrosis and substantially prolonged animal survival without toxicities. These results indicate that rVSV-gG has the potential to be developed as an effective and safe oncolytic agent to treat patients with advanced HCC. Furthermore, the novel concept that oncolytic potency can be substantially enhanced by vector-mediated suppression of host antiviral inflammatory responses could have general applicability in the field of oncolytic virotherapy for cancer.
Collapse
|
37
|
Qiao J, Kottke T, Willmon C, Galivo F, Wongthida P, Diaz RM, Thompson J, Ryno P, Barber GN, Chester J, Selby P, Harrington K, Melcher A, Vile RG. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nat Med 2007; 14:37-44. [PMID: 18066076 DOI: 10.1038/nm1681] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 10/11/2007] [Indexed: 11/09/2022]
Abstract
In many common cancers, dissemination of secondary tumors via the lymph nodes poses the most significant threat to the affected individual. Metastatic cells often reach the lymph nodes by mimicking the molecular mechanisms used by hematopoietic cells to traffic to peripheral lymphoid organs. Therefore, we exploited naive T cell trafficking in order to chaperone an oncolytic virus to lymphoid organs harboring metastatic cells. Metastatic burden was initially reduced by viral oncolysis and was then eradicated, as tumor cell killing in the lymph node and spleen generated protective antitumor immunity. Lymph node purging of tumor cells was possible even in virus-immune mice. Adoptive transfer of normal T cells loaded with oncolytic virus into individuals with cancer would be technically easy to implement both to reduce the distribution of metastases and to vaccinate the affected individual in situ against micrometastatic disease. As such, this adoptive transfer could have a great therapeutic impact, in the adjuvant setting, on many different cancer types.
Collapse
Affiliation(s)
- Jian Qiao
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shin EJ, Chang JI, Choi B, Wanna G, Ebert O, Genden EM, Woo SLC. Fusogenic vesicular stomatitis virus for the treatment of head and neck squamous carcinomas. Otolaryngol Head Neck Surg 2007; 136:811-7. [PMID: 17478221 DOI: 10.1016/j.otohns.2006.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study investigates the efficacy of recombinant fusogenic VSV [rVSV-NDV/F(L289A) or rVSV-F] in the treatment of head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN AND SETTING The in vitro replication and cytotoxicity of rVSV-F were studied in two human SCC cell lines, in one murine SCC cell line, and in human keratinocytes. The effects on tumor size and animal survival were investigated following in vivo rVSV-F treatment of floor-of-mouth tumor model C3H/HeJ mice. RESULTS Recombinant VSV-F preferentially induced rapid syncytia formation, and replicated in (P < 0.04) and killed (P < 1 x 10(-13)) all three SCC lines tested. The virus had no observable effect on human keratinocytes. Tumor size was smaller (P < 0.03) and overall survival was better (P < 0.001) for treated animals than for control animals. CONCLUSION/SIGNIFICANCE Recombinant VSV-F confers a modest survival benefit for HNSCC in this orthotopic murine model. This oncolytic virus holds promise as a novel cancer treatment for recurrent HNSCC.
Collapse
Affiliation(s)
- Edward J Shin
- Department of Otolaryngology--Head and Neck Surgery, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Diaz RM, Galivo F, Kottke T, Wongthida P, Qiao J, Thompson J, Valdes M, Barber G, Vile RG. Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 2007; 67:2840-8. [PMID: 17363607 DOI: 10.1158/0008-5472.can-06-3974] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Relatively little attention has been paid to the role of virotherapy in promoting antitumor immune responses. Here, we show that CD8+ T cells are critical for the efficacy of intratumoral vesicular stomatitis virus virotherapy and are induced against both virally encoded and tumor-associated immunodominant epitopes. We tested three separate immune interventions to increase the frequency/activity of activated antitumoral T cells. Depletion of Treg had a negative therapeutic effect because it relieved suppression of the antiviral immune response, leading to early viral clearance. In contrast, increasing the circulating levels of tumor antigen-specific T cells using adoptive T cell transfer therapy, in combination with intratumoral virotherapy, generated significantly improved therapy over either adoptive therapy or virotherapy alone. Moreover, the incorporation of a tumor-associated antigen within the oncolytic vesicular stomatitis virus increased the levels of activation of naïve T cells against the antigen, which translated into increased antitumor therapy. Therefore, our results show that strategies which enhance immune activation against tumor-associated antigens can also be used to enhance the efficacy of virotherapy.
Collapse
Affiliation(s)
- Rosa Maria Diaz
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shin EJ, Wanna GB, Choi B, Aguila D, Ebert O, Genden EM, Woo SL. Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope 2007; 117:210-4. [PMID: 17204993 DOI: 10.1097/01.mlg.0000246194.66295.d8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Replication-competent, vesicular stomatitis virus (VSV) has been demonstrated to be an effective oncolytic agent in a variety of malignant tumors. Cytokine gene transfer has also been used as immunomodulatory therapy for cancer. To test the use of combining these two approaches, an oncolytic VSV vector (rVSV-IL12) was designed to express the murine interleukin 12 (IL12) gene. This cytokine-carrying oncolytic virus was compared with an analogous noncytokine-carrying fusogenic virus (rVSV-F) in the treatment of murine SCC VII squamous cell carcinoma (SCC). STUDY DESIGN AND SETTING The authors performed in vitro testing of recombinant VSV-F and recombinant VSV-IL12 in SCC cell lines. In vivo testing of multiple direct intratumoral injections of rVSV-F or rVSV-IL12 in an orthotopic floor of mouth murine model was performed. Each cell line was tested using rVSV-F or rVSV-IL12 at multiplicity of infection of 0.01. The ability of each virus to replicate was tested by real-time reverse transcriptase-polymerase chain reaction over 48 hours to determine viral copies of RNA. Cell survival was determined by MTT assay over 72 hours. IL12 expression by rVSV-IL12-treated cells was determined by enzyme-linked immunosorbent assay. RESULTS Both viruses demonstrated similar infection efficiency, viral replication, and cytotoxicity in vitro. In an SCC VII orthotopic floor of mouth model in immunocompetent C3H/HeJ mice, multiple intratumoral injections with each virus caused a significant reduction in tumor volume when compared with saline injections alone. The rVSV-IL12-treated tumors showed a striking reduction in tumor volume when compared with rVSV-F and saline-treated tumors (P < .005). This striking reduction in tumor volume translated into a substantial survival benefit in rVSV-IL12-treated animals. No treatment-related toxicity was observed in either group. CONCLUSION/SIGNIFICANCE rVSV-IL12 is a novel oncolytic vesicular stomatitis virus that effectively expresses IL12 and significantly enhances the treatment of head and neck murine carcinoma. Such combined oncolytic and immunomodulatory strategies hold promise in the treatment of head and neck cancers.
Collapse
Affiliation(s)
- Edward J Shin
- Department of Otolaryngology-Head and Neck Surgery, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wollmann G, Robek MD, van den Pol AN. Variable deficiencies in the interferon response enhance susceptibility to vesicular stomatitis virus oncolytic actions in glioblastoma cells but not in normal human glial cells. J Virol 2006; 81:1479-91. [PMID: 17108037 PMCID: PMC1797501 DOI: 10.1128/jvi.01861-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
With little improvement in the poor prognosis for humans with high-grade glioma brain tumors, alternative therapeutic strategies are needed. As such, selective replication-competent oncolytic viruses may be useful as a potential treatment modality. Here we test the hypothesis that defects in the interferon (IFN) pathway could be exploited to enhance the selective oncolytic profile of vesicular stomatitis virus (VSV) in glioblastoma cells. Two green fluorescent protein-expressing VSV strains, recombinant VSV and the glioma-adapted recombinant VSV-rp30a, were used to study infection of a variety of human glioblastoma cell lines compared to a panel of control cells, including normal human astrocytes, oligodendrocyte precursor cells, and primary explant cultures from human brain tissue. Infection rate, cell viability, viral replication, and IFN-alpha/beta-related gene expression were compared in the absence and presence of IFN-alpha or polyriboinosinic polyribocytidylic acid [poly(I:C)], a synthetic inducer of the IFN-alpha/beta pathway. Both VSV strains caused rapid and total infection and death of all tumor cell lines tested. To a lesser degree, normal cells were also subject to VSV infection. In contrast, IFN-alpha or poly(I:C) completely attenuated the infection of all primary control brain cells, whereas most glioblastoma cell lines treated with IFN-alpha or poly(I:C) showed little or no sign of protection and were killed by VSV. Together, our results demonstrate that activation of the interferon pathway protects normal human brain cells from VSV infection while maintaining the vulnerability of human glioblastoma cells to viral destruction.
Collapse
Affiliation(s)
- Guido Wollmann
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
42
|
Guinn BA, Norris JS, Farzaneh F, Deisseroth AB. International Society for Cell and Gene Therapy of Cancer: 2005 meeting in Shenzhen, China. Cancer Gene Ther 2006; 14:128-38. [PMID: 17041563 DOI: 10.1038/sj.cgt.7700996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The 2005 International Society for Cell and Gene Therapy of Cancer (ISCGT) Congress was held in Shenzhen, China (www.iscgtchina2005.com) from December 9th-11th 2005. Here, we describe a representation of the most seminal presentations providing an overview of the progress in the field of cancer gene therapy including the successful introduction of the first approved gene therapy drug.
Collapse
Affiliation(s)
- B A Guinn
- King's College London School of Medicine, Department of Haematological Medicine, The Rayne Institute, 123 Coldharbour Lane, London, UK.
| | | | | | | |
Collapse
|
43
|
Shiba H, Okamoto T, Futagawa Y, Misawa T, Yanaga K, Ohashi T, Eto Y. Adenovirus vector-mediated gene transfer using degradable starch microspheres for hepatocellular carcinoma in rats. J Surg Res 2006; 133:193-6. [PMID: 16730258 DOI: 10.1016/j.jss.2005.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/17/2005] [Accepted: 10/17/2005] [Indexed: 12/20/2022]
Abstract
BACKGROUND When gene therapy is performed for malignant tumors, gene transfer efficiency and selectivity are extremely important. The delivery of anticancer agents and embolic agents through tumor feeding artery is known as transarterial embolization. We speculated that genes might be efficiently and selectively transferred to hepatocellular carcinomas (HCCs) by degradable starch microspheres (DSM) as the embolic agent, which could be trapped within the tumor and release a gene vector. Therefore, we studied the use of DSM for adenovirus vector-mediated gene transfer to HCC in vivo. MATERIAL AND METHODS HCC was induced in rats with diethylnitrosamine and phenobarbital, after which either AxCALacZ and DSM or AxCALacZ alone was injected through the hepatic artery. RESULTS Histological examination revealed that beta-galactosidase expression was greater (P < 0.001), and more selective (P < 0.001) in tumors after injection of AxCALacZ and DSM, than after injection of the vector alone. CONCLUSION Injection of DSM together with an adenovirus vector through the hepatic artery can result in efficient and cancer-selective transfer of genes to HCC.
Collapse
Affiliation(s)
- Hiroaki Shiba
- Department of Surgery, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Hwang LH. Gene therapy strategies for hepatocellular carcinoma. J Biomed Sci 2006; 13:453-68. [PMID: 16633742 DOI: 10.1007/s11373-006-9085-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 03/23/2006] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide. Effective therapy to this cancer is currently lacking, creating an urgent need for new therapeutic strategies for HCC. Gene therapy approach that relies on the transduction of cells with genetic materials, such as apoptotic genes, suicide genes, genes coding for antiangiogenic factors or immunomodulatory molecules, small interfering RNA (siRNA), or oncolytic viral vectors, may provide a promising strategy. The aforementioned strategies have been largely evaluated in the animal models with HCC or liver metastasis. Due to the diversity of vectors and therapeutic genes, being used alone or in combination, gene therapy approach may generate great beneficial effects to control the growth of tumors within the liver.
Collapse
Affiliation(s)
- Lih-Hwa Hwang
- Hepatitis Research Center, National Taiwan University Hospital and Graduate Institute of Microbiology, National Taiwan University College of Medicine, 7 Chung-Shan S. Road, Taipei 10016, Taiwan, R.O.C.
| |
Collapse
|
45
|
Abstract
Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer, including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological techniques and a better understanding of gastric carcinogenesis have allowed us to validate a variety of genes as molecular targets for gene therapy. This review provides an update of the new developments in cancer gene therapy, new principles, techniques, strategies and vector systems, and shows how they may be applied in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Andreas P Sutter
- Department of Gastroenterology/Infectious Diseases/Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
46
|
Parato KA, Senger D, Forsyth PAJ, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 2005; 5:965-76. [PMID: 16294217 DOI: 10.1038/nrc1750] [Citation(s) in RCA: 412] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the past 5 years, the field of oncolytic virus research has matured significantly and is moving past the stage of being a laboratory novelty into a new era of preclinical and clinical trials. What have recent anticancer trials of oncolytic viruses taught us about this exciting new line of therapeutics?
Collapse
Affiliation(s)
- Kelley A Parato
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, 503 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | |
Collapse
|
47
|
Shinozaki K, Ebert O, Suriawinata A, Thung SN, Woo SLC. Prophylactic alpha interferon treatment increases the therapeutic index of oncolytic vesicular stomatitis virus virotherapy for advanced hepatocellular carcinoma in immune-competent rats. J Virol 2005; 79:13705-13. [PMID: 16227290 PMCID: PMC1262571 DOI: 10.1128/jvi.79.21.13705-13713.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is a negative-strand RNA virus with intrinsic oncolytic specificity due to substantially attenuated antiviral responses in many tumors. We have recently reported that recombinant VSV vector can be used as an effective oncolytic agent to safely treat multifocal hepatocellular carcinoma (HCC) in the livers of immune-competent rats via hepatic artery infusion. When administered at doses above the maximum tolerated dose (MTD), however, the animals suffered from neurotoxicity and/or acute lethal hepatotoxicity. Since VSV is extremely sensitive to the antiviral actions of alpha/beta interferon (IFN-alpha/beta) in normal cells, we tested if prophylactic treatment with rat IFN-alpha would enhance VSV safety without compromising treatment efficacy in tumor-bearing rats. We found that VSV retained its replication potential in human and rat HCC cells after preincubation with relatively high doses of rat and human IFN-alpha in vitro, and its MTD in tumor-bearing rats treated systemically with rat IFN-alpha at 66 IU/g body weight (BW), equivalent to a human IFN-alpha dose that is currently prescribed for patients with viral hepatitis, was elevated by more than 1/2 log unit. Furthermore, we demonstrate that intratumoral replication of VSV was not attenuated by administration of 66 IU/g BW rat IFN-alpha, as tumor response and survival advantage in VSV-treated rats in the presence or absence of rat IFN-alpha were equivalent. The results suggest that prophylactic rat IFN-alpha treatment elevates the therapeutic index of hepatic arterial VSV therapy for multifocal HCC in rats. Since human IFN-alpha is currently in clinical use, its prophylactic application should be considered in future clinical translational protocols for VSV-mediated oncolytic virotherapy as a novel therapeutic modality in patients with advanced HCC, as well as other types of cancer.
Collapse
Affiliation(s)
- Katsunori Shinozaki
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1496, New York, NY 10029-6574.
| | | | | | | | | |
Collapse
|