1
|
Ebenezer O, Oyebamiji AK, Olanlokun JO, Tuszynski JA, Wong GKS. Recent Update on siRNA Therapeutics. Int J Mol Sci 2025; 26:3456. [PMID: 40331977 PMCID: PMC12026779 DOI: 10.3390/ijms26083456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Small interfering RNA (siRNA) has been deemed a promising therapeutic method for treating diverse diseases. siRNA-based therapeutics provide a distinct mechanism of action by selectively targeting and silencing disease-causing genes at the post-transcriptional level. This paper provides an overview of the present state of siRNA-based therapeutics, highlighting their potential in different therapeutic areas. The first section of this review introduces the basic principles of siRNA technology, including its mechanism of action and delivery methods. Subsequently, we discuss the impediments associated with siRNA delivery and manufacturing development and the strategies for overcoming these obstacles. The clinical advancement of siRNA therapeutics in various disease areas, including cancer, genetic disorders, viral infections, and inflammatory diseases, is summarized. Lastly, we summarize the successes, failures, and lessons learned from the development of siRNAs. With advancements in delivery systems and improvements in target selection, the field of medicine can be revolutionized, and siRNA therapeutics can offer new treatment options for patients.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | | | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
2
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
4
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol (Weinh) 2024; 8:e2300584. [PMID: 38488739 DOI: 10.1002/adbi.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Indexed: 06/16/2024]
Abstract
Nucleic acid aptamers, often termed "chemical antibodies," are short, single-stranded DNA or RNA molecules, which are selected by SELEX. In addition to their high specificity and affinity comparable to traditional antibodies, aptamers have numerous unique advantages such as wider identification of targets, none or low batch-to-batch variations, versatile chemical modifications, rapid mass production, and lack of immunogenicity. These characteristics make aptamers a promising recognition probe for scientific research or even clinical application. Aptamer-functionalized nanomaterials are now emerged as a promising drug delivery system for various diseases with decreased side-effects and improved efficacy. In this review, the technological strategies for generating high-affinity and biostable aptamers are introduced. Moreover, the development of aptamers for their application in biomedicine including aptamer-based biosensors, aptamer-drug conjugates and aptamer functionalized nanomaterials is comprehensively summarized.
Collapse
Affiliation(s)
- Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
6
|
Jadhav V, Vaishnaw A, Fitzgerald K, Maier MA. RNA interference in the era of nucleic acid therapeutics. Nat Biotechnol 2024; 42:394-405. [PMID: 38409587 DOI: 10.1038/s41587-023-02105-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/15/2023] [Indexed: 02/28/2024]
Abstract
Two decades of research on RNA interference (RNAi) have transformed a breakthrough discovery in biology into a robust platform for a new class of medicines that modulate mRNA expression. Here we provide an overview of the trajectory of small-interfering RNA (siRNA) drug development, including the first approval in 2018 of a liver-targeted siRNA interference (RNAi) therapeutic in lipid nanoparticles and subsequent approvals of five more RNAi drugs, which used metabolically stable siRNAs combined with N-acetylgalactosamine ligands for conjugate-based liver delivery. We also consider the remaining challenges in the field, such as delivery to muscle, brain and other extrahepatic organs. Today's RNAi therapeutics exhibit high specificity, potency and durability, and are transitioning from applications in rare diseases to widespread, chronic conditions.
Collapse
Affiliation(s)
- Vasant Jadhav
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA.
| | - Akshay Vaishnaw
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Kevin Fitzgerald
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Martin A Maier
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hofman CR, Corey DR. Targeting RNA with synthetic oligonucleotides: Clinical success invites new challenges. Cell Chem Biol 2024; 31:125-138. [PMID: 37804835 PMCID: PMC10841528 DOI: 10.1016/j.chembiol.2023.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
Synthetic antisense oligonucleotides (ASOs) and duplex RNAs (dsRNAs) are an increasingly successful strategy for drug development. After a slow start, the pace of success has accelerated since the approval of Spinraza (nusinersen) in 2016 with several drug approvals. These accomplishments have been achieved even though oligonucleotides are large, negatively charged, and have little resemblance to traditional small-molecule drugs-a remarkable achievement of basic and applied science. The goal of this review is to summarize the foundation underlying recent progress and describe ongoing research programs that may increase the scope and impact of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Cristina R Hofman
- The Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - David R Corey
- The Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
8
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Yu W, Zhu X, Liu J, Zhou J. Biofunctionalized Decellularized Tissue-Engineered Heart Valve with Mesoporous Silica Nanoparticles for Controlled Release of VEGF and RunX2-siRNA against Calcification. Bioengineering (Basel) 2023; 10:859. [PMID: 37508886 PMCID: PMC10376836 DOI: 10.3390/bioengineering10070859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of tissue-engineered heart valves (TEHV) is to replace normal heart valves and overcome the shortcomings of heart valve replacement commonly used in clinical practice. However, calcification of TEHV is the major bottleneck to break for both clinical workers and researchers. Endothelialization of TEHV plays a crucial role in delaying valve calcification by reducing platelet adhesion and covering the calcified spots. In the present study, we loaded RunX2-siRNA and VEGF into mesoporous silica nanoparticles and investigated the properties of anti-calcification and endothelialization in vitro. Then, the mesoporous silica nanoparticle was immobilized on the decellularized porcine aortic valve (DPAV) by layer self-assembly and investigated the anti-calcification and endothelialization. Our results demonstrated that the mesoporous silica nanoparticles delivery vehicle demonstrated good biocompatibility, and a stable release of RunX2-siRNA and VEGF. The hybrid decellularized valve exhibited a low hemolysis rate and promoted endothelial cell proliferation and adhesion while silencing RunX2 gene expression in valve interstitial cells, and the hybrid decellularized valve showed good mechanical properties. Finally, the in vivo experiment showed that the mesoporous silica nanoparticles delivery vehicle could enhance the endothelialization of the hybrid valve. In summary, we constructed a delivery system based on mesoporous silica to biofunctionalized TEHV scaffold for endothelialization and anti-calcification.
Collapse
Affiliation(s)
- Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| |
Collapse
|
11
|
Abosalha AK, Boyajian J, Ahmad W, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. Clinical pharmacology of siRNA therapeutics: current status and future prospects. Expert Rev Clin Pharmacol 2022; 15:1327-1341. [PMID: 36251525 DOI: 10.1080/17512433.2022.2136166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately twenty years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
12
|
Maepa MB, Ely A, Kramvis A, Bloom K, Naidoo K, Simani OE, Maponga TG, Arbuthnot P. Hepatitis B Virus Research in South Africa. Viruses 2022; 14:v14091939. [PMID: 36146747 PMCID: PMC9503375 DOI: 10.3390/v14091939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The virus remains a significant burden on public health in SA despite the introduction of an infant immunization program implemented in 1995 and the availability of effective treatment for chronic HBV infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes patients to chronicity, and complicates management of the infection. HBV research has made significant progress leading to better understanding of HBV epidemiology and management challenges in the SA context. This has led to recent revision of the national HBV infection management guidelines. Research on developing new vaccines and therapies is underway and progress has been made with designing potentially curative gene therapies against HBV. This review summarizes research carried out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.
Collapse
Affiliation(s)
- Mohube B. Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- Correspondence:
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Anna Kramvis
- Hepatitis Diversity Research Unit, Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kubendran Naidoo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Omphile E. Simani
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tongai G. Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
13
|
Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100063] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Evers MJW, van de Wakker SI, de Groot EM, de Jong OG, Gitz‐François JJJ, Seinen CS, Sluijter JPG, Schiffelers RM, Vader P. Functional siRNA Delivery by Extracellular Vesicle-Liposome Hybrid Nanoparticles. Adv Healthc Mater 2022; 11:e2101202. [PMID: 34382360 PMCID: PMC11468224 DOI: 10.1002/adhm.202101202] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Indexed: 12/13/2022]
Abstract
The therapeutic use of RNA interference is limited by the inability of siRNA molecules to reach their site of action, the cytosol of target cells. Lipid nanoparticles, including liposomes, are commonly employed as siRNA carrier systems to overcome this hurdle, although their widespread use remains limited due to a lack of delivery efficiency. More recently, nature's own carriers of RNA, extracellular vesicles (EVs), are increasingly being considered as alternative siRNA delivery vehicles due to their intrinsic properties. However, they are difficult to load with exogenous cargo. Here, EV-liposome hybrid nanoparticles (hybrids) are prepared and evaluated as an alternative delivery system combining properties of both liposomes and EVs. It is shown that hybrids are spherical particles encapsulating siRNA, contain EV-surface makers, and functionally deliver siRNA to different cell types. The functional behavior of hybrids, in terms of cellular uptake, toxicity, and gene-silencing efficacy, is altered as compared to liposomes and varies among recipient cell types. Moreover, hybrids produced with cardiac progenitor cell (CPC) derived-EVs retain functional properties attributed to CPC-EVs such as activation of endothelial signaling and migration. To conclude, hybrids combine benefits of both synthetic and biological drug delivery systems and might serve as future therapeutic carriers of siRNA.
Collapse
Affiliation(s)
| | - Simonides I. van de Wakker
- Department of CardiologyLaboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Ellis M. de Groot
- CDL ResearchUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Olivier G. de Jong
- CDL ResearchUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Faculty of ScienceUtrecht UniversityUtrecht3584 CGThe Netherlands
| | | | - Cor S. Seinen
- CDL ResearchUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Joost P. G. Sluijter
- Department of CardiologyLaboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Regenerative Medicine CentreUMC UtrechtUniversity UtrechtUtrecht3584 CTThe Netherlands
| | | | - Pieter Vader
- CDL ResearchUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
- Department of CardiologyLaboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| |
Collapse
|
15
|
Thinking Quantitatively of RNA-Based Information Transfer via Extracellular Vesicles: Lessons to Learn for the Design of RNA-Loaded EVs. Pharmaceutics 2021; 13:pharmaceutics13111931. [PMID: 34834346 PMCID: PMC8617734 DOI: 10.3390/pharmaceutics13111931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are 50–1000 nm vesicles secreted by virtually any cell type in the body. They are expected to transfer information from one cell or tissue to another in a short- or long-distance way. RNA-based transfer of information via EVs at long distances is an interesting well-worn hypothesis which is ~15 years old. We review from a quantitative point of view the different facets of this hypothesis, ranging from natural RNA loading in EVs, EV pharmacokinetic modeling, EV targeting, endosomal escape and RNA delivery efficiency. Despite the unique intracellular delivery properties endowed by EVs, we show that the transfer of RNA naturally present in EVs might be limited in a physiological context and discuss the lessons we can learn from this example to design efficient RNA-loaded engineered EVs for biotherapies. We also discuss other potential EV mediated information transfer mechanisms, among which are ligand–receptor mechanisms.
Collapse
|
16
|
Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals (Basel) 2020; 13:E294. [PMID: 33036435 PMCID: PMC7600125 DOI: 10.3390/ph13100294] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Shun Kato
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Kayley Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| |
Collapse
|
17
|
Biscans A, Caiazzi J, Davis S, McHugh N, Sousa J, Khvorova A. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res 2020; 48:7665-7680. [PMID: 32672813 PMCID: PMC7430635 DOI: 10.1093/nar/gkaa595] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Small interfering RNAs (siRNAs) have revolutionized the treatment of liver diseases. However, robust siRNA delivery to other tissues represents a major technological need. Conjugating lipids (e.g. docosanoic acid, DCA) to siRNA supports extrahepatic delivery, but tissue accumulation and gene silencing efficacy are lower than that achieved in liver by clinical-stage compounds. The chemical structure of conjugated siRNA may significantly impact invivo efficacy, particularly in tissues with lower compound accumulation. Here, we report the first systematic evaluation of the impact of siRNA scaffold-i.e. structure, phosphorothioate (PS) content, linker composition-on DCA-conjugated siRNA delivery and efficacy in vivo. We found that structural asymmetry (e.g. 5- or 2-nt overhang) has no impact on accumulation, but is a principal factor for enhancing activity in extrahepatic tissues. Similarly, linker chemistry (cleavable versus stable) altered activity, but not accumulation. In contrast, increasing PS content enhanced accumulation of asymmetric compounds, but negatively impacted efficacy. Our findings suggest that siRNA tissue accumulation does not fully define efficacy, and that the impact of siRNA chemical structure on activity is driven by intracellular re-distribution and endosomal escape. Fine-tuning siRNA chemical structure for optimal extrahepatic efficacy is a critical next step for the progression of therapeutic RNAi applications beyond liver.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Sarah Davis
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| |
Collapse
|
18
|
Coutinho MF, Santos JI, S. Mendonça L, Matos L, Prata MJ, S. Jurado A, Pedroso de Lima MC, Alves S. Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21165732. [PMID: 32785133 PMCID: PMC7461213 DOI: 10.3390/ijms21165732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: ; Tel.: +351-(223)-401-113
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- i3S—Institute of Research and Innovation in Health/IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Amália S. Jurado
- University of Coimbra, CNC—Center for Neuroscience and Cell Biology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Maria C. Pedroso de Lima
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
19
|
van den Berg F, Limani SW, Mnyandu N, Maepa MB, Ely A, Arbuthnot P. Advances with RNAi-Based Therapy for Hepatitis B Virus Infection. Viruses 2020; 12:E851. [PMID: 32759756 PMCID: PMC7472220 DOI: 10.3390/v12080851] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Infection with hepatitis B virus (HBV) remains a global health challenge. Approximately 292 million people worldwide are chronically infected with HBV and the annual mortality from the infection is approaching 900,000. Despite the availability of an effective prophylactic vaccine, millions of individuals are at risk of potentially fatal complicating cirrhosis and hepatocellular carcinoma. Current drug treatments can suppress viral replication, slow the progression of liver fibrosis, and reduce infectivity, but can rarely clear the viral covalently closed circular DNA (cccDNA) that is responsible for HBV persistence. Alternative therapeutic strategies, including those based on viral gene silencing by harnessing the RNA interference (RNAi) pathway, effectively suppress HBV replication and thus hold promise. RNAi-based silencing of certain viral genes may even lead to disabling of cccDNA during chronic infection. This review summarizes different RNAi activators that have been tested against HBV, the advances with vectors used to deliver artificial potentially therapeutic RNAi sequences to the liver, and the current status of preclinical and clinical investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.v.d.B.); (S.W.L.); (N.M.); (M.B.M.); (A.E.)
| |
Collapse
|
20
|
Kumar P, Degaonkar R, Guenther DC, Abramov M, Schepers G, Capobianco M, Jiang Y, Harp J, Kaittanis C, Janas MM, Castoreno A, Zlatev I, Schlegel MK, Herdewijn P, Egli M, Manoharan M. Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5'-exonuclease. Nucleic Acids Res 2020; 48:4028-4040. [PMID: 32170309 PMCID: PMC7192627 DOI: 10.1093/nar/gkaa125] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/15/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2′-deoxy-2′-fluoro and 2′-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5′ end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5′ end was more stable in the presence of 5′-exonuclease than an oligonucleotide of the same sequence and chemical composition without the ANA modification. Modeling studies provide insight into the origins of regiospecific changes in potency of siRNAs and the increased protection against 5′-exonuclease degradation afforded by the ANA modification.
Collapse
Affiliation(s)
- Pawan Kumar
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Rohan Degaonkar
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Dale C Guenther
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Mikhail Abramov
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Guy Schepers
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Marie Capobianco
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Joel Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Maja M Janas
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Adam Castoreno
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
21
|
Developing small activating RNA as a therapeutic: current challenges and promises. Ther Deliv 2020; 10:151-164. [PMID: 30909853 DOI: 10.4155/tde-2018-0061] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA activation (RNAa) allows specific gene upregulation mediated by a small activating RNA (saRNA). Harnessing this process would help in developing novel therapeutics for undruggable diseases. Since its discovery in mid 2000s, improvements of saRNA design, synthetic chemistry and understanding of the biology have matured the way to apply RNAa. Indeed, MiNA therapeutics Ltd has conducted the first RNAa clinical trial for advanced hepatocellular carcinoma patients with promising outcomes. However, to fully realize the RNAa potential better saRNA delivery strategies are needed to target other diseases. Currently, saRNA can be delivered in vivo by lipid nanoparticles, dendrimers, lipid and polymer hybrids and aptamers. Further developing these delivery technologies and novel application of RNAa will prove to be invaluable for new treatment development.
Collapse
|
22
|
Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev 2020; 154-155:37-63. [PMID: 32526452 DOI: 10.1016/j.addr.2020.06.002] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Nucleic Acid (NA) based therapeutics are poised to disrupt modern medicine and augment traditional pharmaceutics in a meaningful way. However, a key challenge to advancing NA therapies into the clinical setting and on to the market is the safe and effective delivery to the target tissue and cell. Lipid Nanoparticles (LNP) have been extensively investigated and are currently the most advanced vector for the delivery of NA drugs, as evidenced by the approval of Onpattro for treatment of Amyloidosis in the US and EU in 2018. This article provides a comprehensive review of the state-of-the-art for LNP technology. We discuss key advances in the design and development of LNP, leading to a broad range of therapeutic applications. Finally, the current status of this technology in clinical trials and its future prospects are discussed.
Collapse
Affiliation(s)
- Eleni Samaridou
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - James Heyes
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Peter Lutwyche
- Genevant Sciences Corp., 155 - 887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The clinical significance, target pathways, recent successes, and challenges that preclude translation of RNAi bone regenerative approaches are overviewed. RECENT FINDINGS RNA interference (RNAi) is a promising new therapeutic approach for bone regeneration by stimulating or inhibiting critical signaling pathways. However, RNAi suffers from significant delivery challenges. These challenges include avoiding nuclease degradation, achieving bone tissue targeting, and reaching the cytoplasm for mRNA inhibition. Many drug delivery systems have overcome stability and intracellular localization challenges but suffer from protein adsorption that results in clearance of up to 99% of injected dosages, thus severely limiting drug delivery efficacy. While RNAi has myriad promising attributes for use in bone regenerative applications, delivery challenges continue to plague translation. Thus, a focus on drug delivery system development is critical to provide greater delivery efficiency and bone targeting to reap the promise of RNAi.
Collapse
Affiliation(s)
- Dominic W Malcolm
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuchen Wang
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Clyde Overby
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA.
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
24
|
|
25
|
Lennox KA, Behlke MA. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. Methods Mol Biol 2020; 2115:23-55. [PMID: 32006393 DOI: 10.1007/978-1-0716-0290-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically modified oligonucleotides (ONs) are routinely used in the laboratory to assess gene function, and clinical advances are rapidly progressing as continual efforts are being made to optimize ON efficacy. Over the years, RNA interference (RNAi) has become one of the main tools used to inhibit RNA expression across a wide variety of species. Efforts have been made to improve the exogenous delivery of the double-stranded RNA components to the endogenous intracellular RNAi machinery to direct efficacious degradation of a user-defined RNA target. More recently, synthetic RNA ONs are being used to mimic the bacterial-derived CRISPR/Cas system to direct specific editing of the mammalian genome. Both of these techniques rely on the use of various chemical modifications to the RNA phosphate backbone or sugar in specific positions throughout the ONs to improve the desired biological outcome. Relevant chemical modifications also include conjugated targeting ligands to assist ON delivery to specific cell types. Chemical modifications are most beneficial for therapeutically relevant ONs, as they serve to enhance target binding, increase drug longevity, facilitate cell-specific targeting, improve internalization into productive intracellular compartments, and mitigate both sequence-specific as well as immune-related off-target effects (OTEs). The knowledge gained from years of optimizing RNAi reagents and characterizing the biochemical and biophysical properties of each chemical modification will hopefully accelerate the CRISPR/Cas technology into the clinic, as well as further expand the use of RNAi to treat currently undruggable diseases. This review discusses the most commonly employed chemical modifications in RNAi reagents and CRISPR/Cas guide RNAs and provides an overview of select publications that have demonstrated success in improving ON efficacy and/or mitigating undesired OTEs.
Collapse
Affiliation(s)
- Kim A Lennox
- Integrated DNA Technologies, Inc., Coralville, IA, USA.
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| |
Collapse
|
26
|
Kim B, Park JH, Sailor MJ. Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903637. [PMID: 31566258 PMCID: PMC6891135 DOI: 10.1002/adma.201903637] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/12/2019] [Indexed: 05/07/2023]
Abstract
With the recent FDA approval of the first siRNA-derived therapeutic, RNA interference (RNAi)-mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA-mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
27
|
Wang F, Liu LS, Lau CH, Han Chang TJ, Tam DY, Leung HM, Tin C, Lo PK. Synthetic α-l-Threose Nucleic Acids Targeting BcL-2 Show Gene Silencing and in Vivo Antitumor Activity for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38510-38518. [PMID: 31556592 DOI: 10.1021/acsami.9b14324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We design and synthesize a sequence-defined α-l-threose nucleic acid (TNA) polymer, which is complementary to certain nucleotide sites of target anti-apoptotic proteins, BcL-2 involving in development and progression of tumors. Compared to scramble TNA, anti-BcL-2 TNA significantly suppresses target mRNA and protein expression in cancerous cells and shows antitumor activity in carcinoma xenografts, resulting in suppression of tumor cell growth and induction of tumor cell death. Together with good biocompatibility, very low toxicity, excellent specificity features, and strong binding affinity toward the complementary target RNAs, TNAs become new useful biomaterials and effective alternatives to traditional antisense oligonucleotides including locked nucleic acids, morpholino oligomers, and peptide nucleic acids in antisense therapy. Compared to conventional cancer therapy such as radiotherapy, surgery, and chemotherapy, we anticipate that this TNA-based polymeric system will work effectively in antisense cancer therapy and shortly start to play an important role in practical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pik Kwan Lo
- Key Laboratory of Biochip Technology, Biotech and Health Care , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| |
Collapse
|
28
|
Ehexige E, Ganbold T, Yu X, Han S, Baigude H. Design of Peptidomimetic Functionalized Cholesterol Based Lipid Nanoparticles for Efficient Delivery of Therapeutic Nucleic Acids. Molecules 2019; 24:E3413. [PMID: 31546908 PMCID: PMC6767268 DOI: 10.3390/molecules24183413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/29/2022] Open
Abstract
Lipid nanoparticles (LNP) are the most potent carriers for the delivery of nucleic acid-based therapeutics. The first FDA approved a short interfering RNA (siRNA) drug that uses a cationic LNP system for the delivery of siRNA against human transthyretin (hTTR). However, preparation of such LNP involves tedious multi-step synthesis with relatively low yields. In the present study, we synthesized cationic peptidomimetic functionalized cholesterol (denote Chorn) in straightforward chemical approaches with high yield. When formulated with helper lipids, Chorn LNPs complexed with siRNA to form nanoparticles with an average diameter of 150 nm to 200 nm. Chorn LNP mediated transfection of a green fluorescence protein (GFP) expressing plasmid resulted in 60% GFP positive cells. Moreover, Chorn LNP delivered siRNA against polo-like kinase 1 (Plk1), a disease related gene in cancer cells and efficiently suppressed the expression of the gene, resulting in significant morphological changes in the cell nuclei. Our data suggested that cholesterol based cationic LNP, prepared through a robust chemical strategy, may provide a promising siRNA delivery system.
Collapse
Affiliation(s)
- Ehexige Ehexige
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, China.
| | - Tsogzolmaa Ganbold
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, China.
| | - Xiang Yu
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, China.
| | - Shuqin Han
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, China.
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
29
|
Coutinho MF, Matos L, Santos JI, Alves S. RNA Therapeutics: How Far Have We Gone? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:133-177. [PMID: 31342441 DOI: 10.1007/978-3-030-19966-1_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Liliana Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Juliana Inês Santos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Sandra Alves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.
| |
Collapse
|
30
|
Senapati D, Patra BC, Kar A, Chini DS, Ghosh S, Patra S, Bhattacharya M. Promising approaches of small interfering RNAs (siRNAs) mediated cancer gene therapy. Gene 2019; 719:144071. [PMID: 31454539 DOI: 10.1016/j.gene.2019.144071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) has extensive potential to revolutionize every aspect of clinical application in biomedical research. One of the promising tools is the Small interfering RNA (siRNA) molecules within a cellular component. Principally, siRNA mediated innovative advances are increasing rapidly in support of cancer diagnosis and therapeutic purposes. Conversely, it has some delivery challenges to the site of action within the cells of a target organ, due to the progress of nucleic acids engineering and advance material science research contributing to the exceptional organ-specific targeted therapy. This siRNA based therapeutic technique definitely favors a unique and effective prospect to cancer patients. Herein, the significant drive also takes to review and summarize the major organ specific targets of diverse siRNAs based gene silencing mechanism. This machinery promisingly served as the inhibitor components for cancer development in the human model. Furthermore, the focus is also given to current applications on siRNA based quantifiable therapy leading to the silencing of cancer related gene expression in a sequence dependent and selective manner for cancer treatment. That might be a potent tool against the traditional chemotherapy techniques. Therefore, the siRNA mediated cancer gene therapy definitely require sharp attention like future weapons in opposition to cancer by the method of non-invasive siRNA delivery and effective gene silencing approaches.
Collapse
Affiliation(s)
- Debabrata Senapati
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Avijit Kar
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Deep Sankar Chini
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Soumendu Ghosh
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Shinjan Patra
- Department of General Medicine, Midnapore Medical College and Hospital, Midnapore, West Bengal 721101, India
| | - Manojit Bhattacharya
- Department of Zoology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
31
|
Biscans A, Coles A, Echeverria D, Khvorova A. The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo. J Control Release 2019; 302:116-125. [PMID: 30940496 PMCID: PMC6546539 DOI: 10.1016/j.jconrel.2019.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Lipid-conjugated small-interfering RNAs (siRNAs) exhibit accumulation and gene silencing in extrahepatic tissues, providing an opportunity to expand therapeutic siRNA utility beyond the liver. Chemically engineering lipids may further improve siRNA delivery and efficacy, but the relationship between lipid structure/configuration and siRNA pharmacodynamics is unclear. Here, we synthesized a panel of mono-, di-, and tri-meric fatty acid-conjugated siRNAs to systematically evaluate the impact of fatty acid structure and valency on siRNA clearance, distribution, and efficacy. Fatty acid valency significantly altered the physicochemical properties of conjugated siRNAs, including hydrophobicity and micelle formation, which affected distribution. Trivalent lipid-conjugated siRNAs were predominantly retained at the site of injection with minimal systemic exposure, whereas monovalent lipid-conjugated siRNAs were quickly released into the circulation and accumulated primarily in kidney. Divalent lipid-conjugated siRNAs showed intermediate behavior, and preferentially accumulated in liver with functional distribution to lung, heart, and fat. The chemical structure of the conjugate, rather than overall physicochemical properties (i.e. hydrophobicity), predicted the degree of extrahepatic tissue accumulation necessary for productive gene silencing. Our findings will inform chemical engineering strategies for enhancing the extrahepatic delivery of lipophilic siRNAs.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA.
| |
Collapse
|
32
|
Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, Memari F, Miri SR, Rad MR, Marmari V. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine 2019; 14:3111-3128. [PMID: 31118626 PMCID: PMC6504672 DOI: 10.2147/ijn.s200253] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.
Collapse
Affiliation(s)
| | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fereidoon Memari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Vahid Marmari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
33
|
Saw PE, Song EW. siRNA therapeutics: a clinical reality. SCIENCE CHINA-LIFE SCIENCES 2019; 63:485-500. [PMID: 31054052 DOI: 10.1007/s11427-018-9438-y] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
Since the revolutionary discovery of RNA interference (RNAi), a remarkable progress has been achieved in understanding and harnessing gene silencing mechanism; especially in small interfering RNA (siRNA) therapeutics. Despite its tremendous potential benefits, major challenges in most siRNA therapeutics remains unchanged-safe, efficient and target oriented delivery of siRNA. Twenty years after the discovery of RNAi, siRNA therapeutics finally charts its way into clinics. As we journey through the decades, we reminisce the history of siRNA discovery and its application in a myriad of disease treatments. Herein, we highlight the breakthroughs in siRNA therapeutics, with special feature on the first FDA approved RNAi therapeutics Onpattro (Patisiran) and the consideration of effective siRNA delivery system focusing on current siRNA nanocarrier in clinical trials. Lastly, we present some challenges and multiple barriers that are yet to be fully overcome in siRNA therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Zhongshan School of Medicine, Breast Surgery, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Ng B, Cash-Mason T, Wang Y, Seitzer J, Burchard J, Brown D, Dudkin V, Davide J, Jadhav V, Sepp-Lorenzino L, Cejas PJ. Intratracheal Administration of siRNA Triggers mRNA Silencing in the Lung to Modulate T Cell Immune Response and Lung Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:194-205. [PMID: 30901578 PMCID: PMC6426712 DOI: 10.1016/j.omtn.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Abstract
Clinical application of siRNA-based therapeutics outside of the liver has been hindered by the inefficient delivery of siRNA effector molecules into extra-hepatic organs and cells of interest. To understand the parameters that enable RNAi activity in vivo, it is necessary to develop a systematic approach to identify which cells within a tissue are permissive to oligonucleotide internalization and activity. In the present study, we evaluate the distribution and activity within the lung of chemically stabilized siRNA to characterize cell-type tropism and structure-activity relationship. We demonstrate intratracheal delivery of fully modified siRNA for RNAi-mediated target knockdown in lung CD11c+ cells (dendritic cells, alveolar macrophages) and alveolar epithelial cells. Finally, we use an allergen-induced model of lung inflammation to demonstrate the capacity of inhaled siRNA to induce target knockdown in dendritic cells and ameliorate lung pathology.
Collapse
Affiliation(s)
- Bruce Ng
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Tanesha Cash-Mason
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Yi Wang
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Jessica Seitzer
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Julja Burchard
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Duncan Brown
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Vadim Dudkin
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Joseph Davide
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Vasant Jadhav
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA
| | | | - Pedro J Cejas
- Department of RNA Therapeutics, Merck & Co., Inc., West Point, PA 19486, USA; Department of Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA 19486, USA.
| |
Collapse
|
35
|
Biscans A, Coles A, Haraszti R, Echeverria D, Hassler M, Osborn M, Khvorova A. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res 2019; 47:1082-1096. [PMID: 30544191 PMCID: PMC6379722 DOI: 10.1093/nar/gky1239] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Small interfering RNA (siRNA)-based therapies are proving to be efficient for treating liver-associated disorders. However, extra-hepatic delivery remains challenging, limiting therapeutic siRNA utility. We synthesized a panel of fifteen lipid-conjugated siRNAs and systematically evaluated the impact of conjugate on siRNA tissue distribution and efficacy. Generally, conjugate hydrophobicity defines the degree of clearance and the liver-to-kidney distribution profile. In addition to primary clearance tissues, several conjugates achieve significant siRNA accumulation in muscle, lung, heart, adrenal glands and fat. Oligonucleotide distribution to extra-hepatic tissues with some conjugates was significantly higher than with cholesterol, a well studied conjugate, suggesting that altering conjugate structure can enhance extra-hepatic delivery. These conjugated siRNAs enable functional gene silencing in lung, muscle, fat, heart and adrenal gland. Required levels for productive silencing vary (5-200 μg/g) per tissue, suggesting that the chemical nature of conjugates impacts tissue-dependent cellular/intracellular trafficking mechanisms. The collection of conjugated siRNA described here enables functional gene modulation in vivo in several extra-hepatic tissues opening these tissues for gene expression modulation. A systemic evaluation of a panel of conjugated siRNA, as reported here, has not previously been investigated and shows that chemical engineering of lipid siRNAs is essential to advance the RNA therapeutic field.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Reka Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Maire Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01604, USA
| |
Collapse
|
36
|
Shin H, Park SJ, Yim Y, Kim J, Choi C, Won C, Min DH. Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800065] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hojeong Shin
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Se-Jin Park
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Yeajee Yim
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Jungho Kim
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Chulwon Choi
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| |
Collapse
|
37
|
Gatta AK, Hariharapura RC, Udupa N, Reddy MS, Josyula VR. Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opin Drug Discov 2018; 13:709-725. [PMID: 29902093 DOI: 10.1080/17460441.2018.1480607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA interference has become a tool of choice in the development of drugs in various therapeutic areas of Post Transcriptional Gene Silencing (PTGS). The critical element in developing successful RNAi therapeutics lies in designing small interfering RNA (siRNA) using an efficient algorithm satisfying the designing criteria. Further, translation of siRNA from bench-side to bedside needs an efficient delivery system and/or chemical modification. Areas covered: This review emphasizes the importance of dicer, the criteria for efficient siRNA design, the currently available algorithms and strategies to overcome off-target effects, immune stimulatory effects and endosomal trap. Expert opinion: Specificity and stability are the primary concerns for siRNA therapeutics. The design criteria and algorithms should be chosen rationally to have a siRNA sequence that binds to the corresponding mRNA as it happens in the Watson and Crick base pairing. However, it must evade a few more hurdles (Endocytosis, Serum stability etc.) to be functional in the cytosol.
Collapse
Affiliation(s)
- Aditya Kiran Gatta
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Raghu Chandrashekhar Hariharapura
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Nayanabhirama Udupa
- b Research Directorate of Health Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Meka Sreenivasa Reddy
- c Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| |
Collapse
|
38
|
Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1318-1325. [DOI: 10.1016/j.bbamem.2018.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
|
39
|
Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol 2018; 28:e1976. [PMID: 29656441 PMCID: PMC7169094 DOI: 10.1002/rmv.1976] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023]
Abstract
Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics worldwide. Along with their resistant strains, new pathogenic viruses continue to be discovered so creating an ongoing need for new antiviral treatments. RNA interference is a cellular gene‐silencing phenomenon in which sequence‐specific degradation of target mRNA is achieved by means of complementary short interfering RNA (siRNA) molecules. Short interfering RNA technology affords a potential tractable strategy to combat viral pathogenesis because siRNAs are specific, easy to design, and can be directed against multiple strains of a virus by targeting their conserved gene regions. In this review, we briefly summarize the current status of siRNA therapy for representative examples from different virus families. In addition, other aspects like their design, delivery, medical significance, bioinformatics resources, and limitations are also discussed.
Collapse
Affiliation(s)
- Abid Qureshi
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Vaqar Gani Tantray
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Altaf Rehman Kirmani
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Abdul Ghani Ahangar
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| |
Collapse
|
40
|
Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens 2018; 31:150-165. [PMID: 29186297 DOI: 10.1093/ajh/hpx197] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNA) include a diverse range of functional RNA species-microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being most studied in pathophysiology. Cardiovascular morbidity is associated with differential expression of myriad miRNAs; miR-21, miR-155, miR-126, miR-146a/b, miR-143/145, miR-223, and miR-221 are the top 9 most reported miRNAs in hypertension and atherosclerotic disease. A single miRNA may have hundreds of messenger RNA targets, which makes a full appreciation of the physiologic ramifications of such broad-ranging effects a challenge. miR-21 is the most prominent ncRNA associated with hypertension and atherosclerotic disease due to its role as a "mechano-miR", responding to arterial shear stresses. "Immuno-miRs", such as miR-155 and miR-223, affect cardiovascular disease (CVD) via regulation of hematopoietic cell differentiation, chemotaxis, and activation in response to many pro-atherogenic stimuli. "Myo-miRs", such as miR-1 and miR-133, affect cardiac muscle plasticity and remodeling in response to mechanical overload. This in-depth review analyzes observational and experimental reports of ncRNAs in CVD, including future applications of ncRNA-based strategies in diagnosis, prediction (e.g., survival and response to small molecule therapy), and biologic therapy.
Collapse
Affiliation(s)
- Roopesh S Gangwar
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
42
|
Kratschmer C, Levy M. Effect of Chemical Modifications on Aptamer Stability in Serum. Nucleic Acid Ther 2017; 27:335-344. [PMID: 28945147 DOI: 10.1089/nat.2017.0680] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is increasing interest in the use of aptamers for the development of therapeutics. However, as oligonucleotides, aptamers are susceptible to nuclease degradation; poor serum stability is likely to negatively affect in vivo function. Modified nucleotides have been used to thwart nuclease degradation. However, few studies report the serum stability of selected aptamers. In this study, we examined the effect of various chemical modifications (2'-deoxy, 2'-hydroxyl, 2'-fluoro, and 2'-O-methyl) on the stability of a control oligonucleotide sequence following incubation in frozen human, fresh mouse, and fresh human serum. We also assessed the effect of the 3' inverted dT cap on stability. Surprisingly, we found that fYrR (2'-fluoro RNA) is only roughly as stable as DNA (2'-deoxy). Interestingly, the inclusion of a 3' inverted dT cap had only a modest effect on serum stability, if any. In one instance, the addition of a 3' inverted dT cap rendered a molecule composed of DNA more stable than its fYrR counterpart. By far, fully modified oligonucleotides (100% 2-O-Methyl or 2'-O-methyl A, C, and U in combination with 2'-fluoro G, termed fGmH) had the longest half-lives. These compositions demonstrated little degradation in human serum even after prolonged incubation. Together these results support the need for using fully modified aptamers for in vivo applications and should encourage those in the field to exploit newer polymerase variants capable of directly generating such polymers.
Collapse
Affiliation(s)
- Christina Kratschmer
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York
| |
Collapse
|
43
|
Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int J Mol Sci 2017; 18:ijms18081683. [PMID: 28767098 PMCID: PMC5578073 DOI: 10.3390/ijms18081683] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Nucleic acid aptamers have minimal immunogenicity, high chemical synthesis production, low cost and high chemical stability when compared with antibodies. However, the susceptibility to nuclease degradation, rapid excretion through renal filtration and insufficient binding affinity hindered their development as drug candidates for therapeutic applications. In this review, we will discuss methods to conquer these challenges and highlight recent developments of chemical modifications and technological advances that may enable early aptamers to be translated into clinical therapeutics.
Collapse
|
44
|
The state of gene therapy research in Africa, its significance and implications for the future. Gene Ther 2017; 24:581-589. [PMID: 28692018 PMCID: PMC7094717 DOI: 10.1038/gt.2017.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Gene therapy has made impressive recent progress and has potential for treating a wide range of diseases, many of which are important to Africa. However, as a result of lack of direct public funding and skilled personnel, direct research on gene therapy in Africa is currently limited and resources to support the endeavor are modest. A strength of the technology is that it is based on principles of rational design, and the tools of gene therapy are now highly versatile. For example gene silencing and gene editing may be used to disable viral genes for therapeutic purposes. Gene therapy may thus lead to cure from infections with HIV-1, hepatitis B virus and Ebola virus, which are of significant public health importance in Africa. Although enthusiasm for gene therapy is justified, significant challenges to implementing the technology remain. These include ensuring efficient delivery of therapeutic nucleic acids to target cells, limiting unintended effects, cost and complexity of treatment regimens. In addition, implementation of effective legislation that will govern gene therapy research will be a challenge. Nevertheless, it is an exciting prospect that gene therapy should soon reach the mainstream of medical management. Participation of African researchers in the exciting developments is currently limited, but their involvement is important to address health problems, develop capacity and enhance economic progress of the continent.
Collapse
|
45
|
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 2017; 35:238-248. [PMID: 28244990 PMCID: PMC5517098 DOI: 10.1038/nbt.3765] [Citation(s) in RCA: 825] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
After nearly 40 years of development, oligonucleotide therapeutics are nearing meaningful clinical productivity. One of the key advantages of oligonucleotide drugs is that their delivery and potency are derived primarily from the chemical structure of the oligonucleotide whereas their target is defined by the base sequence. Thus, as oligonucleotides with a particular chemical design show appropriate distribution and safety profiles for clinical gene silencing in a particular tissue, this will open the door to the rapid development of additional drugs targeting other disease-associated genes in the same tissue. To achieve clinical productivity, the chemical architecture of the oligonucleotide needs to be optimized with a combination of sugar, backbone, nucleobase, and 3'- and 5'-terminal modifications. A portfolio of chemistries can be used to confer drug-like properties onto the oligonucleotide as a whole, with minor chemical changes often translating into major improvements in clinical efficacy. One outstanding challenge in oligonucleotide chemical development is the optimization of chemical architectures to ensure long-term safety. There are multiple designs that enable effective targeting of the liver, but a second challenge is to develop architectures that enable robust clinical efficacy in additional tissues.
Collapse
Affiliation(s)
- Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
46
|
Tsutsumi S, Shinkai N, Tanaka Y. Recent advances in hepatitis B research and drug development. KANZO 2017; 58:217-227. [DOI: 10.2957/kanzo.58.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Affiliation(s)
- Susumu Tsutsumi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences
| | - Noboru Shinkai
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
47
|
Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev 2016; 104:16-28. [PMID: 26549145 DOI: 10.1016/j.addr.2015.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
Abstract
Small interfering RNA (siRNA), a 21-23nt double-stranded RNA responsible for post-transcriptional gene silencing, has attracted great interests as promising genomic drugs, due to its strong ability to silence target genes in a sequence-specific manner. Despite high silencing efficiency and on-target specificity, the clinical translation of siRNA has been hindered by its inherent features: poor intracellular delivery, limited blood stability, unpredictable immune responses and unwanted off-targeting effects. To overcome these hindrances, researchers have made various advances to modify siRNA itself and to improve its delivery. In this review paper, first we briefly discuss the innate properties and delivery barriers of siRNA. Then, we describe recent progress in (1) chemically and structurally modified siRNAs to solve their intrinsic problems and (2) siRNA delivery formulations including siRNA conjugates, polymerized siRNA, and nucleic acid-based nanoparticles to improve in vivo delivery.
Collapse
|
48
|
Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 2016; 104:93-109. [PMID: 26686832 DOI: 10.1016/j.addr.2015.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) is a promising drug candidate, expected to have broad therapeutic potentials toward various diseases including viral infections and cancer. With recent advances in bioconjugate chemistry and carrier technology, several siRNA-based drugs have advanced to clinical trials. However, most cases address local applications or diseases in the filtering organs, reflecting remaining challenges in systemic delivery of siRNA. The difficulty in siRNA delivery is in large part due to poor circulation stability and unfavorable pharmacokinetics and biodistribution profiles of siRNA. This review describes the pharmacokinetics and biodistribution of siRNA nanomedicines, focusing on those reported in the past 5years, and their pharmacological effects in selected disease models such as hepatocellular carcinoma, liver infections, and respiratory diseases. The examples discussed here will provide an insight into the current status of the art and unmet needs in siRNA delivery.
Collapse
|
49
|
Maier KE, Levy M. From selection hits to clinical leads: progress in aptamer discovery. Mol Ther Methods Clin Dev 2016; 5:16014. [PMID: 27088106 PMCID: PMC4822646 DOI: 10.1038/mtm.2016.14] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 12/23/2022]
Abstract
Aptamers were discovered more than 25 years ago, yet only one has been approved by the US Food and Drug Administration to date. With some noteworthy advances in their chemical design and the enzymes we use to make them, aptamers and aptamer-based therapeutics have seen a resurgence in interest. New aptamer drugs are being approved for clinical evaluation, and it is certain that we will see increasingly more aptamers and aptamer-like drugs in the future. In this review, we will discuss the production of aptamers with an emphasis on the advances and modifications that enabled early aptamers to succeed in clinical trials as well as those that are likely to be important for future generations of these drugs.
Collapse
Affiliation(s)
- Keith E Maier
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York, USA
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York, USA
| |
Collapse
|
50
|
Terrazas M, Ivani I, Villegas N, Paris C, Salvans C, Brun-Heath I, Orozco M. Rational design of novel N-alkyl-N capped biostable RNA nanostructures for efficient long-term inhibition of gene expression. Nucleic Acids Res 2016; 44:4354-67. [PMID: 26975656 PMCID: PMC4872095 DOI: 10.1093/nar/gkw169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/03/2016] [Indexed: 12/29/2022] Open
Abstract
Computational techniques have been used to design a novel class of RNA architecture with expected improved resistance to nuclease degradation, while showing interference RNA activity. The in silico designed structure consists of a 24–29 bp duplex RNA region linked on both ends by N-alkyl-N dimeric nucleotides (BCn dimers; n = number of carbon atoms of the alkyl chain). A series of N-alkyl-N capped dumbbell-shaped structures were efficiently synthesized by double ligation of BCn-loop hairpins. The resulting BCn-loop dumbbells displayed experimentally higher biostability than their 3′-N-alkyl-N linear version, and were active against a range of mRNA targets. We studied first the effect of the alkyl chain and stem lengths on RNAi activity in a screen involving two series of dumbbell analogues targeting Renilla and Firefly luciferase genes. The best dumbbell design (containing BC6 loops and 29 bp) was successfully used to silence GRB7 expression in HER2+ breast cancer cells for longer periods of time than natural siRNAs and known biostable dumbbells. This BC6-loop dumbbell-shaped structure displayed greater anti-proliferative activity than natural siRNAs.
Collapse
Affiliation(s)
- Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ivan Ivani
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
| | - Clément Paris
- Department of Organic Chemistry and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Cándida Salvans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|