1
|
Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, Wen G, Zhu J, Jin H, Tuo B. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024; 31:1611-1618. [PMID: 39048663 PMCID: PMC11567900 DOI: 10.1038/s41417-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hong Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
2
|
Benson KK, Sheel A, Rahman S, Esnakula A, Manne A. Understanding the Clinical Significance of MUC5AC in Biliary Tract Cancers. Cancers (Basel) 2023; 15:cancers15020433. [PMID: 36672382 PMCID: PMC9856870 DOI: 10.3390/cancers15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Biliary tract cancers (BTC) arise from biliary epithelium and include cholangiocarcinomas or CCA (including intrahepatic (ICC) and extrahepatic (ECC)) and gallbladder cancers (GBC). They often have poor outcomes owing to limited treatment options, advanced presentations, frequent recurrence, and poor response to available systemic therapy. Mucin 5AC (MUC5AC) is rarely expressed in normal biliary epithelium, but can be upregulated in tissues of benign biliary disease, premalignant conditions (e.g., biliary intraepithelial neoplasia), and BTCs. This mucin's numerous glycoforms can be divided into less-glycosylated immature and heavily-glycosylated mature forms. Reported MUC5AC tissue expression in BTC varies widely, with some associations based on cancer location (e.g., perihilar vs. peripheral ICC). Study methods were variable regarding cancer subtypes, expression positivity thresholds, and MUC5AC glycoforms. MUC5AC can be detected in serum of BTC patients at high concentrations. The hesitancy in developing MUC5AC into a clinically useful biomarker in BTC management is due to variable evidence on the diagnostic and prognostic value. Concrete conclusions on tissue MUC5AC are difficult, but serum detection might be relevant for diagnosis and is associated with poor prognosis. Future studies are needed to further the understanding of the potential clinical value of MUC5AC in BTC, especially regarding predictive and therapeutic value.
Collapse
Affiliation(s)
- Katherine K. Benson
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shafia Rahman
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-366-2982
| |
Collapse
|
3
|
Vartak N, Drasdo D, Geisler F, Itoh T, P J Oude Elferink R, van de Graaf SFJ, Chiang J, Keitel V, Trauner M, Jansen P, Hengstler JG. On the Mechanisms of Biliary Flux. Hepatology 2021; 74:3497-3512. [PMID: 34164843 DOI: 10.1002/hep.32027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Since the late 1950s, transport of bile in the liver has been described by the "osmotic concept," according to which bile flows into the canaliculi toward the ducts, countercurrent to the blood flow in the sinusoids. However, because of the small size of canaliculi, it was so far impossible to observe, let alone to quantify this process. Still, "osmotic canalicular flow" was a sufficient and plausible explanation for the clearance characteristics of a wide variety of choleretic compounds excreted in bile. Imaging techniques have now been established that allow direct flux analysis in bile canaliculi of the intact liver in living organisms. In contrast to the prevailing osmotic concept these analyses strongly suggest that the transport of small molecules in canalicular bile is diffusion dominated, while canalicular flow is negligibly small. In contrast, with the same experimental approach, it could be shown that in the interlobular ducts, diffusion is augmented by flow. Thus, bile canaliculi can be compared to a standing water zone that is connected to a river. The seemingly subtle difference between diffusion and flow is of relevance for therapy of a wide range of liver diseases including cholestasis and NAFLD. Here, we incorporated the latest findings on canalicular solute transport, and align them with extant knowledge to present an integrated and explanatory framework of bile flux that will undoubtedly be refined further in the future.
Collapse
Affiliation(s)
- Nachiket Vartak
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Dirk Drasdo
- National Institute for Research in Digital Science and Technology, Paris, France
| | - Fabian Geisler
- Clinic and Polyclinic for Internal Medicine II, Kinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Tohru Itoh
- Institute for Quantitative Biosciences, the University of Tokyo, Tokyo, Japan
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - John Chiang
- North-East Ohio Medical University, Rootstown, OH, USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Jansen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
4
|
Sweed N, Kim HJ, Hultenby K, Barros R, Parini P, Sancisi V, Strandvik B, Gabbi C. Liver X receptor β regulates bile volume and the expression of aquaporins and cystic fibrosis transmembrane conductance regulator in the gallbladder. Am J Physiol Gastrointest Liver Physiol 2021; 321:G243-G251. [PMID: 34259574 PMCID: PMC8815792 DOI: 10.1152/ajpgi.00024.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/31/2023]
Abstract
The gallbladder is considered an important organ in maintaining digestive and metabolic homeostasis. Given that therapeutic options for gallbladder diseases are often limited to cholecystectomy, understanding gallbladder pathophysiology is essential in developing novel therapeutic strategies. Since liver X receptor β (LXRβ), an oxysterol-activated transcription factor, is strongly expressed in gallbladder cholangiocytes, the aim was to investigate LXRβ physiological function in the gallbladder. Thus, we studied the gallbladders of WT and LXRβ-/- male mice using immunohistochemistry, electron microscopy, qRT-PCR, bile duct cannulation, bile and blood biochemistry, and duodenal pH measurements. LXRβ-/- mice presented a large gallbladder bile volume with high duodenal mRNA levels of the vasoactive intestinal polypeptide (VIP), a strong mediator of gallbladder relaxation. LXRβ-/- gallbladders showed low mRNA and protein expression of Aquaporin-1, Aquaporin-8, and cystic fibrosis transmembrane conductance regulator (CFTR). A cystic fibrosis-resembling phenotype was evident in the liver showing high serum cholestatic markers and the presence of reactive cholangiocytes. For LXRβ being a transcription factor, we identified eight putative binding sites of LXR on the promoter and enhancer of the Cftr gene, suggesting Cftr as a novel LXRβ regulated gene. In conclusion, LXRβ was recognized as a regulator of gallbladder bile volume through multiple mechanisms involving CFTR and aquaporins.NEW & NOTEWORTHY This report reveals a novel and specific role of the nuclear receptor liver X receptor β (LXRβ) in controlling biliary tree pathophysiology. LXRβ-/- mice have high gallbladder bile volume and are affected by a cholangiopathy that resembles cystic fibrosis. We found LXRβ to regulate the expression of both aquaporins water channels and the cystic fibrosis transmembrane conductance regulator. This opens a new field in biliary tree pathophysiology, enlightening a possible transcription factor controlling CFTR expression.
Collapse
Affiliation(s)
- Nathan Sweed
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Hyun-Jin Kim
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, NEO, Stockholm, Sweden
| | - Rodrigo Barros
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Paoo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Stockholm, Sweden
| | - Chiara Gabbi
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Stockholm, Sweden
| |
Collapse
|
5
|
Hashizume N, Shin R, Akiba J, Sotogaku N, Asagiri K, Hikida S, Fukahori S, Ishii S, Saikusa N, Koga Y, Egami H, Tanaka Y, Nishi A, Yagi M. The herbal medicines Inchinkoto and Saireito improved hepatic fibrosis via aquaporin 9 in the liver of a rat bile duct ligation model. Pediatr Surg Int 2021; 37:1079-1088. [PMID: 33710364 DOI: 10.1007/s00383-021-04882-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine if the administration of the Japanese herbal medicines Inchinkoto (ICKT) and Saireito (SRT) ameliorate hepatic fibrosis and derangement of hepatocyte aquaporins (AQPs) following bile duct ligation (BDL) in a rat model of obstructive cholestasis. MATERIALS AND METHODS Five groups of Wistar rats were used, and the groups included sham surgery (Sham group), BDL with no treatment (NT group), BDL plus ICKT (ICKT group), BDL plus SRT (SRT group), and BDL plus ICKT and SRT (SRT/ICKT group). Each herbal medicine was administered at 1 g/kg/day on the first postoperative day. The serum levels and various clinical markers were measured with real-time polymerase chain reaction. Staining was used to evaluate the degree of fibrosis and the inflammatory responses. RESULTS Serum aspartate aminotransferase and alanine aminotransferase in the ICKT and SRT/ICKT groups were significantly lower than those in the NT group. NF-κB mRNA expression was significantly decreased in the ICKT group and the SRT/ICKT group compared with the NT group. AQP9 mRNA expression was significantly increased in the ICKT group and the SRT/ICKT group compared with the NT group. The degree of Masson's trichrome staining in the SRT/ICKT group was significantly lower than that in the NT group. The degree of NF-κB staining in the SRT/ICKT group was significantly lower than that in the NT, ICKT, or SRT group. CONCLUSIONS The postoperative administration of ICKT and SRT induced synergistic beneficial effects, resulting in the reduction of hepatic fibrosis via mechanisms involving the inhibition of NF-κB expression and the improvement of AQP9 downregulation.
Collapse
Affiliation(s)
- Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Ryusuke Shin
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Naoki Sotogaku
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Kimio Asagiri
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Shigeki Hikida
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Shinji Ishii
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Nobuyuki Saikusa
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Yoshinori Koga
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hideaki Egami
- Department of Innovative Kampo Medicine, Kurume University Medical Center, Kurume, Japan
| | - Yoshiaki Tanaka
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.,Division of Medical Safety Management, Kurume University School of Medicine, Kurume, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
6
|
Yoshihara M, Nishino T, Yadav MK, Kuno A, Nagata T, Ando H, Takahashi S. Mathematical analysis of the effect of portal vein cells on biliary epithelial cell differentiation through the Delta-Notch signaling pathway. BMC Res Notes 2021; 14:243. [PMID: 34187572 PMCID: PMC8243745 DOI: 10.1186/s13104-021-05656-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Objective The Delta-Notch signaling pathway induces fine-grained patterns of differentiation from initially homogeneous progenitor cells in many biological contexts, including Drosophila bristle formation, where mathematical modeling reportedly suggests the importance of production rate of the components of this signaling pathway. In contrast, the epithelial differentiation of bile ducts in the developing liver is unique in that it occurs around the portal vein cells, which express extremely high amounts of Delta ligands and act as a disturbance for the amount of Delta ligands in the field by affecting the expression levels of downstream target genes in the cells nearby. In the present study, we mathematically examined the dynamics of the Delta-Notch signaling pathway components in disturbance-driven biliary differentiation, using the model for fine-grained patterns of differentiation. Results A portal vein cell induced a high Notch signal in its neighboring cells, which corresponded to epithelial differentiation, depending on the production rates of Delta ligands and Notch receptors. In addition, this epithelial differentiation tended to occur in conditions where fine-grained patterning was reported to be lacking. These results highlighted the potential importance of the stability towards homogeneity determined by the production rates in Delta ligands and Notch receptors, in a disturbance-dependent epithelial differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05656-y.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan. .,Laboratory Animal Resource Center, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Teppei Nishino
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
| | - Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nagata
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Hiroyasu Ando
- Division of Policy and Planning Science, Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, Godfrey EM, Upponi SS, Brevini T, Wesley BT, Garcia-Bernardo J, Mahbubani K, Canu G, Gieseck R, Berntsen NL, Mulcahy VL, Crick K, Fear C, Robinson S, Swift L, Gambardella L, Bargehr J, Ortmann D, Brown SE, Osnato A, Murphy MP, Corbett G, Gelson WTH, Mells GF, Humphreys P, Davies SE, Amin I, Gibbs P, Sinha S, Teichmann SA, Butler AJ, See TC, Melum E, Watson CJE, Saeb-Parsy K, Vallier L. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021; 371:839-846. [PMID: 33602855 PMCID: PMC7610478 DOI: 10.1126/science.aaz6964] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/01/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023]
Abstract
Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium.
Collapse
Affiliation(s)
- Fotios Sampaziotis
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge,Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust,Correspondence to: Fotios Sampaziotis, ; Ludovic Vallier,
| | | | - Olivia C. Tysoe
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK
| | - Stephen Sawiak
- University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy E. Beach
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK
| | - Edmund M. Godfrey
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | - Sara S. Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | | | | | - Jose Garcia-Bernardo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK
| | | | - Richard Gieseck
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20852, USA
| | - Natalie L. Berntsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Victoria L. Mulcahy
- Department of Medicine, University of Cambridge,Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Keziah Crick
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Corrina Fear
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sharayne Robinson
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lisa Swift
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Laure Gambardella
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge
| | - Johannes Bargehr
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge,Division of Cardiovascular Medicine, University of Cambridge, ACCI Level 6, Box 110, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | | | | | - Anna Osnato
- Wellcome and MRC Cambridge Stem Cell Institute
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - William T. H. Gelson
- Department of Medicine, University of Cambridge,Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust
| | - George F. Mells
- Department of Medicine, University of Cambridge,Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust,Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | - Susan E. Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Irum Amin
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Paul Gibbs
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sanjay Sinha
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Medicine, University of Cambridge
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK,Cavendish Laboratory, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Andrew J Butler
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Teik Choon See
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway,Section for Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christopher J. E. Watson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK,National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, and the NIHR Blood and Transplant Research Unit (BTRU) at the,University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT), Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research centre, Cambridge, UK,Correspondence to: Fotios Sampaziotis, ; Ludovic Vallier,
| |
Collapse
|
8
|
Qian Y, Liu F, Zhang W, Zheng X, Liao S, Lv L, Mei Z. AQP9 suppresses hepatocellular carcinoma cell invasion through inhibition of hypoxia-inducible factor 1α expression under hypoxia. J Gastroenterol Hepatol 2020; 35:1990-1997. [PMID: 32115773 DOI: 10.1111/jgh.15023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Intratumor hypoxia is a hallmark of hepatocellular carcinoma (HCC) and is associated with an aggressive tumor phenotype. Although it has been shown that AQP9 plays an important role in HCC, the relevance between hypoxia and AQP9 is still unknown. METHODS We established in vitro normoxic or hypoxic models to investigate the role of AQP9 in the regulation of hypoxia-inducible factor 1α (HIF-1α) and hypoxia-enhanced invasion of hepatoma cells. Molecular expression was detected using western blot or quantitative polymerase chain reaction. Cell invasion ability was determined using Transwell invasion assay. In vivo xenograft experiment was used to detect the role of AQP9 on tumor growth. RESULTS Our present study revealed a decrease in the expression levels of AQP9 in hypoxic microenvironments. Overexpression of AQP9 led to a decreased expression of HIF-1α; conversely, suppression of AQP9 in HCC cells had an opposite effect. Furthermore, up-regulated AQP9 blocked the hypoxic-enhanced invasion of HCC cells. The overexpression of AQP9 inhibited the growth of tumors and HIF-1α expression in vivo. CONCLUSIONS These data suggest that AQP9 acts as a tumor suppressor in HCC invasion via the regulation of HIF-1α expression in the tumor hypoxic microenvironment.
Collapse
Affiliation(s)
- Yanzhi Qian
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenguang Zhang
- Department of Gastroenterology, Banan People's Hospital of Chongqing, Chongqing, China
| | - Xi Zheng
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin Lv
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Nejak-Bowen K. If It Looks Like a Duct and Acts Like a Duct: On the Role of Reprogrammed Hepatocytes in Cholangiopathies. Gene Expr 2020; 20:19-23. [PMID: 31439080 PMCID: PMC7284107 DOI: 10.3727/105221619x15664105014956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholangiopathies are chronic, progressive diseases of the biliary tree, and can be either acquired or genetic. The primary target is the cholangiocyte (CC), the cell type lining the bile duct that is responsible for bile modification and transport. Despite advances in our understanding and diagnosis of these diseases in recent years, there are no proven therapeutic treatments for the majority of the cholangiopathies, and liver transplantation is the only life-extending treatment option for patients with end-stage cholestatic liver disease. One potential therapeutic strategy is to facilitate endogenous repair of the biliary system, which may alleviate intrahepatic cholestasis caused by these diseases. During biliary injury, hepatocytes (HC) are known to alter their phenotype and acquire CC-like features, a process known as cellular reprogramming. This brief review discusses the potential ways in which reprogrammed HC may contribute to biliary repair, thereby restoring bile flow and reducing the severity of cholangiopathies. Some of these include modifying bile to reduce toxicity, serving as a source of de novo CC to repair the biliary epithelium, or creating new channels to facilitate bile flow.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Gilloteaux J. Primary cilia in the Syrian hamster biliary tract: Bile flow antennae and outlooks about signaling on the hepato-biliary-pancreatic stem cells. TRANSLATIONAL RESEARCH IN ANATOMY 2020. [DOI: 10.1016/j.tria.2020.100063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Mansini AP, Peixoto E, Jin S, Richard S, Gradilone SA. The Chemosensory Function of Primary Cilia Regulates Cholangiocyte Migration, Invasion, and Tumor Growth. Hepatology 2019; 69:1582-1598. [PMID: 30299561 PMCID: PMC6438749 DOI: 10.1002/hep.30308] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, the epithelial cells lining the biliary tree in the liver, express primary cilia that can detect several kinds of environmental signals and then transmit this information into the cell. We have reported that cilia are significantly reduced in cholangiocarcinoma (CCA) and that the experimental deciliation of normal cells induces a malignant-like phenotype with increased proliferation, anchorage-independent growth, invasion, and migration. Here, we tested the hypothesis that the chemosensory function of cholangiocyte primary cilia acts as a mechanism for tumor suppression. We found that in the presence of extracellular nucleotides cilia-dependent chemosensation of the nucleotides inhibited migration and invasion in normal ciliated cholangiocytes through a P2Y11 receptor and liver kinase B1 (LKB1)-phosphatase and tensin homolog-AKT-dependent mechanism. In contrast, in normal deciliated cholangiocytes and CCA cells, the nucleotides induced the opposite effects, i.e., increased migration and invasion. As activation of LKB1 through a cilia-dependent mechanism was required for the nucleotide-mediated inhibitory effects on migration and invasion, we attempted to activate LKB1 directly, independent of ciliary expression, using the compound hesperidin methyl chalcone (HMC). We found that HMC induced activation of LKB1 in both ciliated and deciliated cells in vitro, resulting in the inhibition of migration and proliferation. Furthermore, using a rat syngeneic orthotopic CCA model, we found that HMC inhibited tumor growth in vivo. Conclusion: These findings highlight the importance of the chemosensory function of primary cilia for the control of migration and invasion and suggest that, by directly activating LKB1 and bypassing the need for primary cilia, it is possible to emulate this chemosensory function in CCA cells; these data warrant further studies evaluating the possibility of using HMC as therapy for CCA.
Collapse
Affiliation(s)
- Adrian P. Mansini
- The Hormel Institute, University of Minnesota, Austin, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sujeong Jin
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA,Address correspondence to Sergio A Gradilone, PhD. Section Leader “Cancer Cell Biology and Translational Research.” The Hormel Institute, University of Minnesota. 801 16th Avenue NE. Austin, MN 55912, USA; Tel: +1-507-437-9628;
| |
Collapse
|
13
|
Aquaporin 11-Dependent Inhibition of Proliferation by Deuterium Oxide in Activated Hepatic Stellate Cells. Molecules 2018; 23:molecules23123209. [PMID: 30563120 PMCID: PMC6321126 DOI: 10.3390/molecules23123209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
Deuterium oxide (D2O) has been reported to be active toward various in vitro cell lines in combination with phytochemicals. Our objective was to describe, for the first time, the effect of D2O on the proliferation of hepatic stellate cells (HSCs). After D2O treatment, the p53-cyclin-dependent kinase (CDK) pathway was stimulated, leading to inhibition of the proliferation of HSCs and an increase in the [ATP]/[ADP] ratio. We also evaluated the role of aquaporin (AQP) 11 in activated HSCs. We found that D2O treatment decreased AQP11 expression levels. Of note, AQP11 levels elevated by a genetic approach counteracted the D2O-mediated inhibition of proliferation. In addition, the expression levels of AQP11 negatively correlated with those of p53. On the other hand, cells transfected with an AQP11-targeted small interfering RNA (siRNA) showed enhanced inhibition of proliferation. These findings suggest that the inhibition of cell proliferation by D2O in activated HSCs could be AQP11 dependent. Our previous studies have documented that bisdemethoxycurcumin (BDMC) induces apoptosis by regulating heme oxygenase (HO)-1 protein expression in activated HSCs. In the current study, we tested whether cotreatment with BDMC and D2O can modulate the AQP11-dependent inhibition of cell proliferation effectively. We observed that D2O cotreatment with BDMC significantly decreased cell proliferation compared to treatment with D2O alone, and this effect was accompanied by downregulation of HO-1 and an increase in p53 levels.
Collapse
|
14
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The establishment of mouse models of gallstones, and the contribution of mouse models to genetic studies of gallstone disease, as well as the latest advances in the pathophysiology of gallstones from mouse experiments are summarized. RECENT FINDINGS The combined uses of genomic strategies and phenotypic studies in mice have successfully led to the identification of many Lith genes, which pave the way for the discovery of human LITH genes. The physical-chemical, genetic, and molecular biological studies of gallstone disease in mice with knockout or transgene of specific target genes have provided many novel insights into the complex pathophysiological mechanisms of this very common hepatobiliary disease worldwide, showing that interactions of five primary defects play a critical role in the pathogenesis of cholesterol gallstones. Based on mouse studies, a new concept has been proposed that hepatic hypersecretion of biliary cholesterol is induced by multiple Lith genes, with insulin resistance as part of the metabolic syndrome interacting with cholelithogenic environmental factors to cause the phenotype. SUMMARY The mouse model of gallstones is crucial for elucidating the physical-chemical and genetic mechanisms of cholesterol crystallization and gallstone formation, which greatly increase our understanding of the pathogenesis of this disease in humans.
Collapse
Affiliation(s)
- Tony Y. Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica ‘A. Murri’, University of Bari ‘Aldo Moro’ Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
16
|
Li CF, Zhang WG, Liu M, Qiu LW, Chen XF, Lv L, Mei ZC. Aquaporin 9 inhibits hepatocellular carcinoma through up-regulating FOXO1 expression. Oncotarget 2018; 7:44161-44170. [PMID: 27329843 PMCID: PMC5190086 DOI: 10.18632/oncotarget.10143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/03/2016] [Indexed: 01/02/2023] Open
Abstract
Aquaporin 9 (AQP9) is the main aquaglyceroporin in the liver. Few studies have been performed regarding the role of AQP9 in liver cancer. Here we report AQP9 expression and function in liver cancer. We found that AQP9 mRNA and protein levels were reduced in human hepatocellular cancer compared to the para-tumor normal liver tissues. Human hepatoma cell line SMMC7721 expressed low basal levels of AQP9. When AQP9 was overexpressed in SMMC7721 cell line, cell proliferation was inhibited due to cell cycle arrest at G1 phase and increased apoptosis. At the molecular level, AQP9 overexpression decreased the protein levels of phosphatidylinositol-3-kinase (PI3K), leading to reduced phosphorylation of Akt. Subsequently, the protein levels of forkhead box protein O1 (FOXO1) were increased, resulting in down-regulation of proliferating cell nuclear antigen (PCNA) expression and up-regulation of caspase-3 expression. AQP9 overexpression inhibited growth of subcutaneously xenografted liver tumors in nude mice. These findings suggest that AQP9 expression is down-regulated in liver cancer compared to the normal liver tissue and restoration of AQP9 expression can inhibit development of liver cancer.
Collapse
Affiliation(s)
- Chuan-Fei Li
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wen-Guang Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lie-Wang Qiu
- Department of Gastroenterology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-Feng Chen
- The First Branch of The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe-Chuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
|
18
|
Madunić IV, Breljak D, Karaica D, Koepsell H, Sabolić I. Expression profiling and immunolocalization of Na +-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats. Pflugers Arch 2017; 469:1545-1565. [PMID: 28842746 PMCID: PMC5691098 DOI: 10.1007/s00424-017-2056-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022]
Abstract
The expression and localization of sodium-D-glucose cotransporter SGLT1 (SLC5A1), which is involved in small intestinal glucose absorption and renal glucose reabsorption, is of high biomedical relevance because SGLT1 inhibitors are currently tested for antidiabetic therapy. In human and rat organs, detailed expression profiling of SGLT1/Sglt1 mRNA and immunolocalization of the transporter protein has been performed. Using polyspecific antibodies and preabsorption with antigenic peptide as specificity control, in several organs, different immunolocalizations of SGLT1/Sglt1 between human and rat were obtained. Because the preabsorption control does not exclude cross-reactivity with similar epitopes, some localizations remained ambiguous. In the present study, we performed an immunocytochemical localization of Sglt1 in various organs of mice. Specificities of the immunoreactions were evaluated using antibody preabsorption with the Sglt1 peptide and the respective organs of Sglt1 knockout mice. Because staining in some locations was abolished after antibody preabsorption but remained in the knockout mice, missing staining in knockout mice was used as specificity criterion. The immunolocalization in mouse was identical or similar to rat in many organs, including small intestine, liver, and kidney. However, the male-dominant renal Sglt1 protein expression in mice differed from the female-dominant expression in rats, and localization in lung, heart, and brain observed in rats was not detected in mice. In mice, several novel locations of Sglt1, e.g., in eyes, tongue epithelial cells, pancreatic ducts, prostate, and periurethral glands were detected. Using end-point and quantitative RT-PCR in various organs, different Sglt1 expression in mice and rats was confirmed.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
19
|
Affiliation(s)
- Domenico Alvaro
- University Sapienza of Rome, Division of Gastroenterology, Department of Internal Medicine and Medical Specialties, Rome, Italy.
| |
Collapse
|
20
|
Peng R, Zhang Y, Zhao GX, Li J, Shen XZ, Wang JY, Sun JY. Differential regulation of the expression of aquaporins 3 and 9 by Auphen and dbcAMP in the SMMC-7721 hepatocellular carcinoma cell line. Biotech Histochem 2016; 91:333-41. [PMID: 27058469 DOI: 10.3109/10520295.2016.1168525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aquaglycero-aquaporins (agAQPs) are the structural foundation of rapid water transport and they appear to participate in cancer proliferation and malignancy. AQP3 expression is increased and AQP9 expression is decreased in hepatocellular carcinoma (HCC) compared to normal liver, which suggests their possible use as targets for cancer treatment. AQP-based modifiers, such as Auphen and dibutyryladenosine 3', 5'-cyclic monophosphate (dbcAMP), might be used to treat several diseases and as chemical tools for assessing the functions of AQPs in biological systems. We investigated the effects of both Auphen on AQP3 and dbcAMP on AQP9 in SMMC-7721 cells. We used western blotting, real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry to evaluate changes in AQP3 and AQP9 expression in SMMC-7721 cells after culturing with Auphen and dbcAMP, respectively. We also determined the proliferation of SMMC-7721 cells. We found that compared to HL-7702 (L02) liver cells, Auphen increased AQP3 expression in tumor cells, whereas dbcAMP decreased expression of AQP9 in these cells. Also, high concentrations of Auphen and dbcAMP inhibited proliferation of SMMC-7721 cells in vitro. Auphen and dbcAMP may inhibit HCC development and could be considered targets for HCC diagnosis and therapy.
Collapse
Affiliation(s)
- R Peng
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Y Zhang
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - G X Zhao
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - J Li
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - X Z Shen
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - J Y Wang
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - J Y Sun
- a Department of Gastroenterology , Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
21
|
Ambe PC, Gödde D, Zirngibl H, Störkel S. Aquaporin-1 and 8 expression in the gallbladder mucosa might not be associated with the development of gallbladder stones in humans. Eur J Clin Invest 2016; 46:227-33. [PMID: 26707370 DOI: 10.1111/eci.12586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cholecystolithiasis is a highly prevalent condition in the Western world. Gallbladder stone-related conditions represent the second most common gastrointestinal pathology. Cholesterol stones represent over 80% of gallstones. Cholesterol stones develop secondary to crystallization of bile cholesterol. Water resorption from gallbladder bile via aquaporin in the gallbladder mucosa might play a role in the development of cholesterol stones. This study investigated the expression of Aquaporin-1 (AQP1) and Aquaporin-8 (AQP8) in the human gallbladder mucosa and their possible association with the formation of gallbladder stones. METHODS The expression of AQP1 and AQP8 in the gallbladder mucosa was examined via immunohistochemical staining. The expression of both AQP1 and AQP8 in the gallbladder mucosa of stone carriers (study group) was compared to that of nonstone carriers (control group). RESULTS Eighty-four gallbladder specimens from 44 male (52·2%) and 40 female (47·6%) patients were analysed. The study group included 47 specimens from stone carriers, while 37 specimens from stone-free gallbladders were included in the control group. Immunostaining for both AQP1 and AQP8 was positive in 80 cases. AQP1 was expressed both over the apical and intercellular membrane, while AQP8 was expressed only over the apical membrane. A similar distribution was recorded in specimens from the cystic duct. Immunostaining with AQP1 was generally stronger in comparison with AQP8. No significant (P > 0·05) relationship was found between aquaporin expression and the presence or absence of gallbladder stones. CONCLUSION AQP1 and AQP8 are both expressed in the gallbladder and cystic duct mucosa. However, their role in the development of gallbladder stones is still to be proven.
Collapse
Affiliation(s)
- Peter C Ambe
- Department of Surgery II, Helios Klinikum Wuppertal, Universität Witten Herdecke, Wuppertal, Germany
| | - Daniel Gödde
- Institute of Pathology and Molecular Pathology, Helios Klinikum Wuppertal, Universität Witten Herdecke, Wuppertal, Germany
| | - Hubert Zirngibl
- Department of Surgery II, Helios Klinikum Wuppertal, Universität Witten Herdecke, Wuppertal, Germany
| | - Stephan Störkel
- Institute of Pathology and Molecular Pathology, Helios Klinikum Wuppertal, Universität Witten Herdecke, Wuppertal, Germany
| |
Collapse
|
22
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [PMID: 26878854 DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
23
|
Gregoire F, Lucidi V, Zerrad-Saadi A, Virreira M, Bolaky N, Delforge V, Lemmers A, Donckier V, Devière J, Demetter P, Perret J, Delporte C. Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem Cell Biol 2015; 144:347-63. [PMID: 26126651 DOI: 10.1007/s00418-015-1341-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
A deeper understanding of aquaporins (AQPs) expression and transcriptional regulation will provide useful information for liver pathophysiology. We established a complete AQPs mRNA expression profile in human and mouse liver, as well as protein localization of expressed AQPs. Additionally, the modulation of AQPs mRNA levels in response to various agents was determined in human HuH7 cells and in primary culture of mouse hepatocytes. AQP1, AQP3, AQP7, AQP8, and AQP9 mRNA and protein expressions were detected in human liver, while only AQP6 and AQP11 mRNAs were detected. We reported for the first time the localization of AQP3 in Kupffer cells, AQP7 in hepatocytes and endothelial cells, and AQP9 in cholangiocytes. In addition, we confirmed the localization of AQP1 in endothelial cells, and of AQP8 and AQP9 in hepatocytes. On HuH7 cells, we reported the presence of AQP4 mRNA, confirmed the presence of AQP3, AQP7, and AQP11 mRNAs, but not of AQP8 mRNA. On primary culture of murine hepatocytes, AQP1 and AQP7 mRNAs were identified, while the presence of AQP3, AQP8, AQP9, and AQP11 mRNAs was confirmed. At the protein level, murine endothelial liver cells expressed AQP1 and AQP9, while hepatocytes expressed AQP3, AQP7, AQP8, and AQP9, and macrophages expressed AQP3. Dexamethasone, forskolin, AICAR, rosiglitazone, octanoylated, and non-octanoylated ghrelin regulated some AQP expression in primary culture of murine hepatocytes and human HuH7 cells. Additional studies will be required to further assess the role of AQPs expression in human and murine liver and understand the transcriptional regulation of AQPs in hepatocytes under pathophysiological conditions.
Collapse
Affiliation(s)
- Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Valério Lucidi
- Digestive Oncology Department, Erasme Hospital, Brussels, Belgium
| | - Amal Zerrad-Saadi
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Myrna Virreira
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Nargis Bolaky
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Delforge
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Lemmers
- Gastroenterology Department, Erasme Hospital, Brussels, Belgium
| | - Vincent Donckier
- Digestive Oncology Department, Erasme Hospital, Brussels, Belgium
| | - Jacques Devière
- Gastroenterology Department, Erasme Hospital, Brussels, Belgium
| | - Pieter Demetter
- Anatomopathology Department, Erasme Hospital, Brussels, Belgium
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
24
|
Pollheimer MJ, Fickert P, Stieger B. Chronic cholestatic liver diseases: clues from histopathology for pathogenesis. Mol Aspects Med 2013; 37:35-56. [PMID: 24141039 DOI: 10.1016/j.mam.2013.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Chronic cholestatic liver diseases include fibrosing cholangiopathies such as primary biliary cirrhosis or primary sclerosing cholangitis. These and related cholangiopathies clearly display pathologies associated with (auto)immunologic processes. As the cholangiocyte's apical membrane is exposed to the toxic actions of the bile fluid, the interaction of bile with cholangiocytes and the biliary tree in general must be considered to completely understand the pathogenesis of cholangiopathies. While the molecular processes involved in the hepatocellular formation of bile are well understood in both normal and pathophysiologic conditions, those in the bile ducts of normal liver and in livers with cholangiopathies lag behind. This survey highlights key mechanisms known to date that are important for the formation of bile by hepatocytes and its modification by the biliary tree. It also delineates the clinical pathophysiologic findings for cholangiopathies and puts them in perspective with current experimental models to reveal the pathogenesis of cholangiopathies and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Marion J Pollheimer
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria.
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Iguchi H, Oda M, Yamazaki H, Yoshimura K, Ando W, Yokomori H. Aquaporin-1 is associated with arterial capillary proliferation and hepatic sinusoidal transformation contributing to portal hypertension in primary biliary cirrhosis. Med Mol Morphol 2013; 47:90-9. [PMID: 23949237 DOI: 10.1007/s00795-013-0048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/25/2013] [Indexed: 01/22/2023]
Abstract
Although aquaporins (AQPs) in normal hepatobiliary system have been studied, little is known about AQP localization and changes in the hepatic microvascular system including sinusoids in cholestatic liver. The present study aimed to clarify the localization of AQP-1 in the microvessels in normal human liver and in primary biliary cirrhosis (PBC). Human normal liver (control) and PBC liver specimens were obtained. Immunohistochemistry, Western blotting, in situ hybridization (ISH) and electron microscopic examination for AQP-1 were conducted. In control liver and stages I-II PBC liver, AQP-1 immunoreactivity was mainly localized in portal venules, hepatic arterioles and bile ducts in the portal tract, but was hardly detected in the sinusoids. However, AQP-1 expression was enhanced in the proliferated bile ductules in PBC. In stages III-IV PBC liver tissues, AQP-1 was aberrantly expressed in proliferated arterial capillaries opening into the sinusoids at the peripheral edge of regenerating hepatic nodules and in the fibrotic septa. Overexpression of AQP-1 at protein and mRNA levels was demonstrated by Western blot and ISH, respectively. Angiogenetic and fibrotic responses are probably induced by AQP-1, leading to enhanced pouring of arterial blood into the sinusoids; thus, contributing to progression of portal hypertension in PBC.
Collapse
Affiliation(s)
- Hiroyoshi Iguchi
- Department of Radiology, Kitasato University Medical Center, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Iguchi H, Oda M, Yamazaki H, Yokomori H. Participation of aquaporin-1 in vascular changes and remodeling in cirrhotic liver. Med Mol Morphol 2013; 46:123-32. [PMID: 23549977 DOI: 10.1007/s00795-013-0039-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/13/2013] [Indexed: 12/22/2022]
Abstract
The pathophysiology of arterial capillary proliferation accompanying fibrosis in human cirrhosis remains unclear. However, evidence regarding the molecules participating in the pathophysiological process has been accumulating. Water channel proteins known as aquaporins (AQP)s, notably AQP-1, appear to be involved in the arterial capillary proliferation in the cirrhotic liver.
Collapse
Affiliation(s)
- Hiroyoshi Iguchi
- Department of Radiology, Kitasato University Medical Center, Saitama, 364-8501, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic ducts of the biliary tree. The main physiologic function of cholangiocytes is modification of hepatocyte-derived bile, an intricate process regulated by hormones, peptides, nucleotides, neurotransmitters, and other molecules through intracellular signaling pathways and cascades. The mechanisms and regulation of bile modification are reviewed herein.
Collapse
|
28
|
Portincasa P, Calamita G. Water channel proteins in bile formation and flow in health and disease: when immiscible becomes miscible. Mol Aspects Med 2012; 33:651-664. [PMID: 22487565 DOI: 10.1016/j.mam.2012.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 12/19/2022]
Abstract
An essential function of the liver is the formation and secretion of bile, a complex aqueous solution of organic and inorganic compounds essential as route for the elimination of body cholesterol as unesterified cholesterol or as bile acids. In bile, a considerable amount of otherwise insoluble cholesterol is solubilized by carriers including two other classes of lipids, namely phospholipid and bile acids. Formation of bile and generation of bile flow are driven by the active secretion of bile acids, lipids and electrolytes into the canalicular and bile duct lumens followed by the parallel movement of water. Thus, water has to cross rapidly into and out of the cell interior driven by osmotic forces. Bile as a fluid, results from complicated interplay of hepatocyte and cholangiocyte uptake and secretion, concentration, by involving a number of transporters of lipids, anions, cations, and water. The discovery of the aquaporin water channels, has clarified the mechanisms by which water, the major component of bile (more than 95%), moves across the hepatobiliary epithelia. This review is focusing on novel acquisitions in liver membrane lipidic and water transport and functional participation of aquaporin water channels in multiple aspects of hepatobiliary fluid balance. Involvement of aquaporins in a series of clinically relevant hepatobiliary disorders are also discussed.
Collapse
Affiliation(s)
- Piero Portincasa
- University of Bari Medical School, Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, Policlinico Hospital, 70124 Bari, Italy.
| | | |
Collapse
|
29
|
Diaz-Cruz A, Vilchis-Landeros MM, Guinzberg R, Villalobos-Molina R, Piña E. NOX2 activated by α1-adrenoceptors modulates hepatic metabolic routes stimulated by β-adrenoceptors. Free Radic Res 2012; 45:1366-78. [PMID: 21958220 DOI: 10.3109/10715762.2011.627920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The NADPH oxidase (NOX) family of enzymes oxidase catalyzes the transport of electrons from NADPH to molecular oxygen and generates O(2)(•-), which is rapidly converted into H(2)O(2). We aimed to identify in hepatocytes the protein NOX complex responsible for H(2)O(2) synthesis after α(1)-adrenoceptor (α(1)-AR) stimulation, its activation mechanism, and to explore H(2)O(2) as a potential modulator of hepatic metabolic routes, gluconeogenesis, and ureagenesis, stimulated by the ARs. The dormant NOX2 complex present in hepatocyte plasma membrane (HPM) contains gp91(phox), p22(phox), p40(phox), p47(phox), p67(phox) and Rac 1 proteins. In HPM incubated with NADPH and guanosine triphosphate (GTP), α(1)-AR-mediated H(2)O(2) synthesis required all of these proteins except for p40(phox). A functional link between α(1)-AR and NOX was identified as the Gα(13) protein. Alpha(1)-AR stimulation in hepatocytes promotes Rac1-GTP generation, a necessary step for H(2)O(2) synthesis. Negative cross talk between α(1)-/β-ARs for H(2)O(2) synthesis was observed in HPM. In addition, negative cross talk of α(1)-AR via H(2)O(2) to β-AR-mediated stimulation was recorded in hepatocyte gluconeogenesis and ureagenesis, probably involving aquaporine activity. Based on previous work we suggest that H(2)O(2), generated after NOX2 activation by α(1)-AR lightening in hepatocytes, reacts with cAMP-dependent protein kinase A (PKA) subunits to form an oxidized PKA, insensitive to cAMP activation that prevented any rise in the rate of gluconeogenesis and ureagenesis.
Collapse
Affiliation(s)
- Antonio Diaz-Cruz
- Department of Animal Nutrition and Biochemistry, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico.
| | | | | | | | | |
Collapse
|
30
|
Lakner AM, Walling TL, McKillop IH, Schrum LW. Altered aquaporin expression and role in apoptosis during hepatic stellate cell activation. Liver Int 2011; 31:42-51. [PMID: 20958918 DOI: 10.1111/j.1478-3231.2010.02356.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatic stellate cells (HSCs) are effector cells of hepatic fibrosis contributing to excessive collagen deposition and scar matrix formation. Sustained HSC activation leads to hepatic cirrhosis, a leading cause of liver-related death. Reversal of hepatic fibrosis has been attributed to the induction of HSC apoptosis. Aquaporins (AQPs) are critical proteinacious channels that mediate cellular water loss during the initiation and progression of apoptosis. AIMS This study examined AQP expression in quiescent and activated HSCs and determined the responsiveness to AQP-dependent apoptosis. METHODS Aquaporin gene and protein expressions in quiescent and activated HSCs were determined by reverse transcription polymerase chain reaction and Western blot analyses. AQP function was determined by cell swelling and apoptotic assays in the absence and presence of HgCl(2) , a non-specific AQP inhibitor. RESULTS In this study, we report that activated HSCs showed no detectable expression of AQP 1, 5, 8, 9 and 12 mRNAs but expression was observed in quiescent HSCs. Similarly, AQP 0, 1, 8 and 9 protein was not detected in activated HSCs but was measured in quiescent HSCs. Dual fluorescent immunohistochemistry confirmed that AQP expression is decreased in activated HSCs in a model of liver injury. Functional studies demonstrated that quiescent HSCs were highly susceptible to osmotic challenge and apoptotic stimulus, whereas activated HSCs were less responsive. Finally, apoptosis was abrogated by the inhibition of AQP-dependent water movement. CONCLUSIONS These findings demonstrate that increased resistance to apoptosis in activated HSCs is due, at least in part, to the changes in AQP expression and function that occur following HSC activation.
Collapse
Affiliation(s)
- Ashley M Lakner
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28203, USA
| | | | | | | |
Collapse
|
31
|
Jessner W, Zsembery A, Graf J. Transcellular water transport in hepatobiliary secretion and role of aquaporins in liver. Wien Med Wochenschr 2009; 158:565-9. [PMID: 18998074 DOI: 10.1007/s10354-008-0597-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/28/2008] [Indexed: 01/11/2023]
Abstract
In the context of the osmotic model of bile formation, we used isolated rat hepatocyte couplets and performed volume measurements by video image analysis to analyze the transport of water between the bile canalicular lumen, liver cells and the surrounding bathing medium. Increasing bath osmolarity by the addition of sucrose led to shrinkage of cells that preceded shrinkage of the canalicular lumen by approx. 1 sec. Thermodynamic modeling of water transport across the basolateral and apical cell membranes and across a paracellular pathway (tight junctions) revealed high hydraulic water permeabilities of both cell membranes of approx. 3*10(-4) cm*sec(-1)*(osmol/kg)(-1) indicating transcellular water flux between bathing medium and bile. Tight junctions exhibited low water permeability but allowed for electrolyte permeation that enables canalicular spaces to shrink below van't Hoff equilibrium during the osmotic maneuver. The results are discussed with respect to the role of different types of membrane aquaporins being expressed in hepatocytes.
Collapse
Affiliation(s)
- Wolfgang Jessner
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
32
|
Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. Toxicol Appl Pharmacol 2009; 237:232-6. [DOI: 10.1016/j.taap.2009.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 03/16/2009] [Accepted: 03/24/2009] [Indexed: 11/22/2022]
|
33
|
Padma S, Smeltz AM, Banks PM, Iannitti DA, McKillop IH. Altered aquaporin 9 expression and localization in human hepatocellular carcinoma. HPB (Oxford) 2009; 11:66-74. [PMID: 19590626 PMCID: PMC2697857 DOI: 10.1111/j.1477-2574.2008.00014.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/06/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND In addition to the biochemical components secreted in bile, aquaporin (AQP) water channels exist in hepatocyte membranes to form conduits for water movement between the sinusoid and the bile canaliculus. The aim of the current study was to analyse AQP 9 expression and localization in human hepatocellular carcinoma (HCC) and non-tumourigenic liver (NTL) tissue from patients undergoing hepatic resection. METHODS Archived tissue from 17 patients was sectioned and analysis performed using an antibody raised against AQP 9. Slides were blind-scored to determine AQP 9 distribution within HCC and NTL tissue. RESULTS Aquaporin 9 was predominantly expressed in the membranes of hepatocytes and demonstrated zonal distribution relative to hepatic sinusoid structure in normal liver. In HCC arising in the absence of cirrhosis AQP 9 remained membrane-localized with zonal distribution in the majority of NTL. By contrast, AQP 9 expression was significantly decreased in the HCC mass vs. pair-matched NTL. In HCC in the presence of cirrhosis, NTL was characterized by extensive AQP 9 staining in the membrane in the absence of zonal distribution and AQP 9 staining in NTL was significantly greater than that observed in the tumour mass. CONCLUSIONS These data demonstrate that human HCC is characterized by altered AQP 9 expression and AQP 9 localization in the NTL mass is dependent on underlying liver pathology. Given the central role of AQPs in normal liver function and the potential role of AQPs during transformation and progression, these data may prove valuable in future diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Srikanth Padma
- Departments of General Surgery Carolinas Medical CenterCharlotte, NC, USA
| | - Alan M Smeltz
- Department of Biology, University of North Carolina at CharlotteCharlotte, NC, USA
| | - Peter M Banks
- Pathology, Carolinas Medical CenterCharlotte, NC, USA
| | - David A Iannitti
- Departments of General Surgery Carolinas Medical CenterCharlotte, NC, USA
| | - Iain H McKillop
- Departments of General Surgery Carolinas Medical CenterCharlotte, NC, USA
| |
Collapse
|
34
|
Mulder J, Karpen SJ, Tietge UJF, Kuipers F. Nuclear receptors: mediators and modifiers of inflammation-induced cholestasis. FRONT BIOSCI-LANDMRK 2009; 14:2599-630. [PMID: 19273222 PMCID: PMC4085779 DOI: 10.2741/3400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive responses to inflammation and possess anti-inflammatory characteristics. The latter two functions may be exploited in the search for new treatments for IIC as well as for cholestasis in general. Current knowledge of the pathogenesis of IIC and the dual role NRs in this process are reviewed. Special interest is given to the use of NRs as potential targets for intervention.
Collapse
Affiliation(s)
- Jaap Mulder
- Department of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
35
|
Calamita G, Ferri D, Gena P, Carreras FI, Liquori GE, Portincasa P, Marinelli RA, Svelto M. Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. Am J Physiol Gastrointest Liver Physiol 2008; 295:G682-G690. [PMID: 18669624 DOI: 10.1152/ajpgi.90226.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rat hepatocytes express aquaporin-9 (AQP9), a basolateral channel permeable to water, glycerol, and other small neutral solutes. Although liver AQP9 is known for mediating the uptake of sinusoidal blood glycerol, its relevance in bile secretion physiology and pathophysiology remains elusive. Here, we evaluated whether defective expression of AQP9 is associated to secretory dysfunction of rat hepatocytes following bile duct ligation (BDL). By immunoblotting, 1-day BDL resulted in a slight decrease of AQP9 protein in basolateral membranes and a simultaneous increase of AQP9 in intracellular membranes. This pattern was steadily accentuated in the subsequent days of BDL since at 7 days BDL basolateral membrane AQP9 decreased by 85% whereas intracellular AQP9 increased by 115%. However, the AQP9 immunoreactivity of the total liver membranes from day 7 of BDL rats was reduced by 49% compared with the sham counterpart. Results were confirmed by immunofluorescence and immunogold electron microscopy and consistent with biophysical studies showing considerable decrease of the basolateral membrane water and glycerol permeabilities of cholestatic hepatocytes. The AQP9 mRNA was slightly reduced only at day 7 of BDL, indicating that the dysregulation was mainly occurring at a posttranslational level. The altered expression of liver AQP9 during BDL was not dependent on insulin, a hormone known to negatively regulate AQP9 at a transcriptional level, since insulinemia was unchanged in 7-day BDL rats. Overall, these results suggest that extrahepatic cholestasis leads to downregulation of AQP9 in the hepatocyte basolateral plasma membrane and dysregulated aquaporin channels contribute to bile flow dysfunction of cholestatic hepatocyte.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Dipartimento di Fisiologia Generale ed Ambientale, Università degli Studi di Bari, Via Amendola, 165/A, 70126 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Balen D, Ljubojević M, Breljak D, Brzica H, Z̆lender V, Koepsell H, Sabolić I. Revised immunolocalization of the Na+-d-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Physiol Cell Physiol 2008; 295:C475-89. [DOI: 10.1152/ajpcell.00180.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previously, we characterized localization of Na+-glucose cotransporter SGLT1 ( Slc5a1) in the rat kidney using a polyclonal antibody against the synthetic COOH-terminal peptide of the rat protein (Sabolić I, Škarica M, Gorboulev V, Ljubojević M, Balen D, Herak-Kramberger CM, Koepsell H. Am J Physiol Renal Physiol 290: 913–926, 2006). However, the antibody gave some false-positive reactions in immunochemical studies. Using a shortened peptide for immunization, we have presently generated an improved, more specific anti-rat SGLT1 antibody (rSGLT1-ab), which in immunochemical studies with isolated membranes and tissue cryosections from male (M) and female (F) rats exhibited 1) in kidneys and small intestine, labeling of a major protein band of ∼75 kDa; 2) in kidneys of adult animals, localization of rSGLT1 to the proximal tubule (PT) brush-border membrane (S1 < S2 < S3) and intracellular organelles (S1 > S2 > S3), with zonal (cortex < outer stripe) and sex differences (M < F) in the protein expression, which correlated well with the tissue expression of its mRNA in RT-PCR studies; 3) in kidneys of castrated adult M rats, upregulation of the protein expression; 4) in kidneys of prepubertal rats, weak and sex-independent labeling of the 75-kDa protein band and immunostaining intensity; 5) in small intestine, sex-independent regional differences in protein abundance (jejunum > duodenum = ileum); and 6) thus far unrecognized localization of the transporter in cortical thick ascending limbs of Henle and macula densa in kidney, bile ducts in liver, enteroendocrine cells and myenteric plexus in the small intestine, and initial ducts in the submandibular gland. Our improved rSGLT1-ab may be used to identify novel sites of SGLT1 localization and thus unravel additional physiological functions of this transporter in rat organs.
Collapse
|
37
|
Suh HN, Lee SH, Lee MY, Heo JS, Lee YJ, Han HJ. High glucose induced translocation of Aquaporin8 to chicken hepatocyte plasma membrane: involvement of cAMP, PI3K/Akt, PKC, MAPKs, and microtubule. J Cell Biochem 2008; 103:1089-100. [PMID: 17661357 DOI: 10.1002/jcb.21479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aquaporin8 (AQP8) is a transmembrane water channel that is found mainly in hepatocytes. The direct involvement of AQP8 in high glucose condition has not been established. Therefore, this study examined the effects of high glucose on AQP8 and its related signal pathways in primary cultured chicken hepatocytes. High glucose increased the movement of AQP8 from the intracellular membrane to plasma membrane in a 30 mM glucose concentration and in a time- (> or =10 min) dependent manner. On the other hand, 30 mM mannitol did not affect the translocation of AQP8, which suggested the absence of osmotic effect. Thirty millimolar glucose increased intracellular cyclic adenosine 3, 5-monophosphate (cAMP) level. Moreover, high glucose level induced Akt phosphorylation, protein kinase C (PKC) activation, p44/42 mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-jun NH2-terminal kinase (JNK) phosphorylation. On the other hand, inhibition of each pathway by SQ 22536 (adenylate cyclase inhibitor), LY 294002 (PI3-K phosphatidylinositol 3-kinase inhibitor), Akt inhibitor, staurosporine (PKC inhibitor), PD 98059 (MEK inhibitor), SB 203580 (p38 MAPK inhibitor), or SP 600125 (JNK inhibitor) blocked 30 mM glucose-induced AQP8 translocation, respectively. In addition, inhibition of microtubule movement with nocodazole blocked high glucose-induced AQP8 translocation. High glucose level also increased the level of kinesin light chain and dynein protein expression. In conclusion, high glucose level stimulates AQP8 via cAMP, PI3-K/Akt, PKC, and MAPKs pathways in primary cultured chicken hepatocytes.
Collapse
Affiliation(s)
- Han Na Suh
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond) 2008; 114:567-88. [PMID: 18377365 DOI: 10.1042/cs20070227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent overwhelming advances in molecular and cell biology have added enormously to our understanding of the physiological processes involved in bile formation and, by extension, to our comprehension of the consequences of their alteration in cholestatic hepatopathies. The present review addresses in detail this new information by summarizing a number of recent experimental findings on the structural, functional and regulatory aspects of hepatocellular transporter function in acquired cholestasis. This comprises (i) a short overview of the physiological mechanisms of bile secretion, including the nature of the transporters involved and their role in bile formation; (ii) the changes induced by nuclear receptors and hepatocyte-enriched transcription factors in the constitutive expression of hepatocellular transporters in cholestasis, either explaining the primary biliary failure or resulting from a secondary adaptive response; (iii) the post-transcriptional changes in transporter function and localization in cholestasis, including a description of the subcellular structures putatively engaged in the endocytic internalization of canalicular transporters and the involvement of signalling cascades in this effect; and (iv) a discussion on how this new information has contributed to the understanding of the mechanism by which anticholestatic agents exert their beneficial effects, or the manner in which it has helped the design of new successful therapeutic approaches to cholestatic liver diseases.
Collapse
|
39
|
Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA. A Current View of the Mammalian Aquaglyceroporins. Annu Rev Physiol 2008; 70:301-27. [DOI: 10.1146/annurev.physiol.70.113006.100452] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandra Rojek
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jeppe Praetorius
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jørgen Frøkiaer
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Søren Nielsen
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Robert A. Fenton
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| |
Collapse
|
40
|
Portincasa P, Palasciano G, Svelto M, Calamita G. Aquaporins in the hepatobiliary tract. Which, where and what they do in health and disease. Eur J Clin Invest 2008; 38:1-10. [PMID: 18173545 DOI: 10.1111/j.1365-2362.2007.01897.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The biological importance of the aquaporin family of water channels was recently acknowledged by the 2003 Nobel Prize for Chemistry awarded to the discovering scientist Peter Agre. Among the pleiotropic roles exerted by aquaporins in nature in both health and disease, the review addresses the latest acquisitions about the expression and regulation, as well as physiology and pathophysiology of aquaporins in the hepatobiliary tract. Of note, at least seven out of the thirteen mammalian aquaporins are expressed in the liver, bile ducts and gallbladder. Aquaporins are essential for bile water secretion and reabsorption, as well as for plasma glycerol uptake by the hepatocyte and its conversion to glucose during starvation. Novel data are emerging regarding the physio-pathological involvement of aquaporins in multiple diseases such as cholestases, liver cirrhosis, obesity and insulin resistance, fatty liver, gallstone formation and even microparasite invasion of intrahepatic bile ducts. This body of knowledge represents the mainstay of present and future research in a rapidly expanding field.
Collapse
Affiliation(s)
- P Portincasa
- Department of Internal Medicine & Public Medicine, University of Bari, Italy
| | | | | | | |
Collapse
|
41
|
|
42
|
Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 2007; 104:19138-43. [PMID: 18024594 DOI: 10.1073/pnas.0705964104] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cholangiocytes, epithelial cells lining the biliary tree, have primary cilia extending from their apical membrane into the ductal lumen. Although important in disease, cilia also play a vital role in normal cellular functions. We reported that cholangiocyte cilia are sensory organelles responding to mechanical stimuli (i.e., luminal fluid flow) by alterations in intracellular Ca(2+) and cAMP. Because cholangiocyte cilia are also ideally positioned to detect changes in composition and tonicity of bile, we hypothesized that cilia also function as osmosensors. TRPV4, a Ca(2+)-permeable ion channel, has been implicated in signal transduction of osmotic stimuli. Using purified rat cholangiocytes and perfused intrahepatic bile duct units (IBDUs), we found that TRPV4 is expressed on cholangiocyte cilia, and that hypotonicity induces an increase in intracellular Ca(2+) in a TRPV4-, ciliary-, and extracellular calcium-dependent manner. The osmosensation of luminal tonicity by ciliary TRPV4 induces bicarbonate secretion, the main determinant of ductal bile formation, by a mechanism involving apical ATP release. Furthermore, the activation of TRPV4 in vivo, by its specific agonist, 4alphaPDD, induces an increase in bile flow as well as ATP release and bicarbonate secretion. Our results suggest that cholangiocyte primary cilia play an important role in ductal bile formation by acting as osmosensors.
Collapse
|
43
|
Aishima S, Kuroda Y, Nishihara Y, Taguchi K, Iguchi T, Taketomi A, Maehara Y, Tsuneyoshi M. Down-regulation of aquaporin-1 in intrahepatic cholangiocarcinoma is related to tumor progression and mucin expression. Hum Pathol 2007; 38:1819-25. [PMID: 17854859 DOI: 10.1016/j.humpath.2007.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 11/21/2022]
Abstract
Aquaporin-1 (AQP-1) has been found to be important in bile formation across cell membranes of the biliary epithelium, and thus it has been suggested that AQP-1 is involved in the pathogenesis of hepatobiliary disease. To clarify the role of AQP-1 in the development of intrahepatic cholangiocarcinoma, we determined AQP-1 expression in the normal bile duct, 21 cases of biliary dysplasia, and in 112 cases of intrahepatic cholangiocarcinoma by immunohistochemical analysis. Mucus core protein 5AC expression, a poor prognostic marker of intrahepatic cholangiocarcinoma, was also assessed in intrahepatic cholangiocarcinoma cases. High (>50%) expression of AQP-1 was detected in 16% (9/58) of the normal large bile ducts examined, and in 48% (10/21) of the biliary dysplasia samples originating from large bile ducts. High (>50%), low (<or=50%), and negative AQP-1 expression was observed in 46 (41%), 20 (19%), and 46 (41%) cases of intrahepatic cholangiocarcinoma, respectively. Large tumor size (>40 mm) and poorly differentiated histology were significantly more prevalent in the negative AQP-1 group than in the high AQP-1 group. Low or negative AQP-1 expression was associated with positive lymph node metastasis (P=.0001). AQP-1 expression was found to inversely correlate with that of mucus core protein 5AC, and their distributions tended to be complementary. The low and negative AQP-1 expression was an independent prognostic factor by multivariate survival analysis. We concluded that AQP-1 is up-regulated in biliary dysplasia, as compared with in the normal large bile duct, and down-regulation of AQP-1 is associated with mucin production and aggressive progression of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Shinichi Aishima
- Department of Pathology, Hamanomachi Hospital, Fukuoka 810-8539, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yovchev MI, Grozdanov PN, Joseph B, Gupta S, Dabeva MD. Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology 2007; 45:139-49. [PMID: 17187413 DOI: 10.1002/hep.21448] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED Hepatic progenitor/oval cells appear in injured livers when hepatocyte proliferation is impaired. These cells can differentiate into hepatocytes and cholangiocytes and could be useful for cell and gene therapy applications. In this work, we studied progenitor/oval cell surface markers in the liver of rats subjected to 2-acetylaminofluorene treatment followed by partial hepatectomy (2-AAF/PH) by using rat genome 230 2.0 Array chips and subsequent RT-PCR, immunofluorescent (IF), immunohistochemical (IHC) and in situ hybridization (ISH) analyses. We also studied expression of the identified novel cell surface markers in fetal rat liver progenitor cells and FAO-1 hepatoma cells. Novel cell surface markers in adult progenitor cells included tight junction proteins, integrins, cadherins, cell adhesion molecules, receptors, membrane channels and other transmembrane proteins. From the panel of 21 cell surface markers, 9 were overexpressed in fetal progenitor cells, 6 in FAO-1 cells and 6 are unique for the adult progenitors (CD133, claudin-7, cadherin 22, mucin-1, ros-1, Gabrp). The specificity of progenitor/oval cell surface markers was confirmed by ISH and double IF analyses. Moreover, study of progenitor cells purified with Ep-CAM antibodies from D-galactosamine injured rat liver, a noncarcinogenic model of progenitor cell activation, verified that progenitor cells expressed these markers. CONCLUSION We identified novel cell surface markers specific for hepatic progenitor/oval cells, which offers powerful tool for their identification, isolation and studies of their physiology and pathophysiology. Our studies also reveal the mesenchymal/epithelial phenotype of these cells and the existence of species diversity in the hepatic progenitor cell identity.
Collapse
Affiliation(s)
- Mladen I Yovchev
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
45
|
Jablonski EM, Mattocks MA, Sokolov E, Koniaris LG, Hughes FM, Fausto N, Pierce RH, McKillop IH. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett 2006; 250:36-46. [PMID: 17084522 PMCID: PMC1934939 DOI: 10.1016/j.canlet.2006.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 09/12/2006] [Accepted: 09/15/2006] [Indexed: 12/22/2022]
Abstract
Cells undergoing apoptosis are characterized by decreased cell size due to changes in intracellular ion concentration and rapid, aquaporin (AQP)-dependent water movement out of the cell, events required for the activation of pro-apoptotic enzymes. The current study demonstrates AQP 8 and 9 expression is significantly decreased in hepatocellular carcinoma (HCC) versus normal liver. Isolation of hepatic tumor cells (H4IIE) and hepatocytes confirmed a lack of water movement across the H4IIE cell membrane via AQPs and identified an inherent resistance of H4IIE cells to apoptotic stimuli. In contrast, hepatocytes rapidly responded to osmotic challenge through AQP-dependent water movement and underwent cell death following apoptotic stimulation.
Collapse
Affiliation(s)
| | - M. Adrian Mattocks
- Department of Biology, UNC at Charlotte, 9201 University City Blvd., Charlotte, NC
| | - Eugene Sokolov
- Department of Biology, UNC at Charlotte, 9201 University City Blvd., Charlotte, NC
| | - Leonidas G. Koniaris
- Dewitt Daughtry Department of Surgery and The Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL
| | - Francis M. Hughes
- Department of Biology, UNC at Charlotte, 9201 University City Blvd., Charlotte, NC
| | - Nelson Fausto
- Department of Pathology, University of Washington, Seattle, WA
| | - Robert H. Pierce
- Department of Pathology, University of Rochester Medical School, Rochester, NY
| | - Iain H. McKillop
- Department of Biology, UNC at Charlotte, 9201 University City Blvd., Charlotte, NC
| |
Collapse
|
46
|
Yang B, Zhao D, Verkman AS. Evidence against Functionally Significant Aquaporin Expression in Mitochondria. J Biol Chem 2006; 281:16202-6. [PMID: 16624821 DOI: 10.1074/jbc.m601864200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent reports suggest the expression of aquaporin (AQP)-type water channels in mitochondria from liver (AQP8) (Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005) J. Biol. Chem. 280, 17149-17153) and brain (AQP9) (Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005) FASEB J. 19, 1459-1467), where they were speculated to be involved in metabolism, apoptosis, and Parkinson disease. Here, we systematically examined the functional consequence of AQP expression in mitochondria by measurement of water and glycerol permeabilities in mitochondrial membrane preparations from rat brain, liver, and kidney and from wild-type versus knock-out mice deficient in AQPs -1, -4, or -8. Osmotic water permeability, measured by stopped-flow light scattering, was similar in all mitochondrial preparations, with a permeability coefficient P(f) approximately 0.009 cm/s. Glycerol permeability was also similar ( approximately 5 x 10(-6) cm/s) in the various preparations. HgCl(2) slowed osmotic equilibration comparably in mitochondria from wild-type and AQP-deficient mice, although the slowing was explained by altered mitochondrial size rather than reduced P(f). Immunoblot analysis of mouse liver mitochondria failed to detect AQP8 expression, with liver homogenates from wild-type/AQP8 null mice as positive/negative controls. Our results provide evidence against functionally significant AQP expression in mitochondria, which is consistent with the high mitochondrial surface-to-volume ratio producing millisecond osmotic equilibration, even when intrinsic membrane water permeability is not high.
Collapse
Affiliation(s)
- Baoxue Yang
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94143-0521, USA
| | | | | |
Collapse
|
47
|
Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:283-308. [PMID: 17291602 DOI: 10.1016/j.bbamcr.2006.04.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/21/2006] [Accepted: 04/24/2006] [Indexed: 12/16/2022]
Abstract
Hepatic uptake and biliary excretion of organic anions (e.g., bile acids and bilirubin) is mediated by hepatobiliary transport systems. Defects in transporter expression and function can cause or maintain cholestasis and jaundice. Recruitment of alternative export transporters in coordination with phase I and II detoxifying pathways provides alternative pathways to counteract accumulation of potentially toxic biliary constituents in cholestasis. The genes encoding for organic anion uptake (NTCP, OATPs), canalicular export (BSEP, MRP2) and alternative basolateral export (MRP3, MRP4) in liver are regulated by a complex interacting network of hepatocyte nuclear factors (HNF1, 3, 4) and nuclear (orphan) receptors (e.g., FXR, PXR, CAR, RAR, LRH-1, SHP, GR). Bile acids, proinflammatory cytokines, hormones and drugs mediate causative and adaptive transporter changes at a transcriptional level by interacting with these nuclear factors and receptors. Unraveling the underlying regulatory mechanisms may therefore not only allow a better understanding of the molecular pathophysiology of cholestatic liver diseases but should also identify potential pharmacological strategies targeting these regulatory networks. This review is focused on general principles of transcriptional basolateral and canalicular transporter regulation in inflammation-induced cholestasis, ethinylestradiol- and pregnancy-associated cholestasis, obstructive cholestasis and liver regeneration. Moreover, the potential therapeutic role of nuclear receptor agonists for the management of liver diseases is highlighted.
Collapse
Affiliation(s)
- Andreas Geier
- Department of Internal Medicine III, Aachen University (RWTH), Aachen, Germany.
| | | | | | | |
Collapse
|