1
|
Chandramoorthy HC, Saleh RO, Altalbawy FMA, Mohammed JS, Ganesan S, Kundlas M, Premkumar J, Ray S, Mustafa YF, Abbas JK. Deciphering cGAS-STING signaling: implications for tumor immunity and hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04240-6. [PMID: 40332552 DOI: 10.1007/s00210-025-04240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and poses a significant global health challenge due to its rising incidence and associated mortality. Recent advancements in understanding the cytosolic DNA sensing, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway have illuminated its critical role in the immune response to HCC. This narrative review deciphers the multifaceted involvement of cGAS-STING in HCC, mainly its function in detecting cytosolic DNA and initiating type I interferon (IFN-I) responses, which are pivotal for antitumor immunity. This immune response is crucial for combating pathogens and can play a role in tumor surveillance. In the context of HCC, the tumor microenvironment (TME) can exhibit immune resistance, which complicates the effectiveness of therapies like immune checkpoint blockade. However, activation of the cGAS-STING pathway has been shown to stimulate antitumor immune responses, enhancing the activity of dendritic cells and cytotoxic T lymphocytes. There is ongoing research into STING agonists as a treatment strategy for HCC, with some studies indicating promising results in prolonging survival and enhancing the immune response against tumors. By summarizing current knowledge and identifying research gaps, this review aims to provide a comprehensive overview of cGAS-STING signaling in HCC and its future directions, emphasizing its potential as a therapeutic target in the fight against HCC. Understanding these mechanisms could pave the way for innovative immunotherapeutic approaches that enhance the efficacy of existing treatments and improve patient prognosis.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Department of Microbiology & Clinical Parasitology, College of Medicine & Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Jamal K Abbas
- Department of Pharmaceutical, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
3
|
Khaksari M, Pourali M, Rezaei Talabon S, Gholizadeh Navashenaq J, Bashiri H, Amiresmaili S. Protective effects of 17-β-estradiol on liver injury: The role of TLR4 signaling pathway and inflammatory response. Cytokine 2024; 181:156686. [PMID: 38991382 DOI: 10.1016/j.cyto.2024.156686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Liver injury, a major global health issue, stems from various causes such as alcohol consumption, nonalcoholic steatohepatitis, obesity, diabetes, metabolic syndrome, hepatitis, and certain medications. The liver's unique susceptibility to ischemia and hypoxia, coupled with the critical role of the gut-liver axis in inflammation, underscores the need for effective therapeutic interventions. The study highlights E2's interaction with estrogen receptors (ERs) and its modulation of the Toll-like receptor 4 (TLR4) signaling pathway as key mechanisms in mitigating liver injury. Activation of TLR4 leads to the release of pro-inflammatory cytokines and chemokines, exacerbating liver inflammation and injury. E2 down-regulates TLR4 expression, reduces oxidative stress, and inhibits pro-inflammatory cytokines, thereby protecting the liver. Both classic (ERα and ERβ) and non-classic [G protein-coupled estrogen receptor (GPER)] receptors are influenced by E2. ERα is particularly crucial for liver regeneration, preventing liver failure by promoting hepatocyte proliferation. Furthermore, E2 exerts anti-inflammatory, antioxidant, and anti-apoptotic effects by inhibiting cytokines such as IL-6, IL-1β, TNF-α, and IL-17, and by reducing lipid peroxidation and free radical damage. The article calls for further clinical research to validate these findings and to develop estrogen-based treatments for liver injuries. Overall, the research emphasizes the significant potential of E2 as a therapeutic agent for liver injuries. It advocates for extensive clinical studies to validate E2 hepatoprotective properties and develop effective estrogen-based treatments.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscince and Endocrinology and Metabolism Research Centers, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Ira
| | | |
Collapse
|
4
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
5
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
7
|
Schwertheim S, Alhardan M, Manka PP, Sowa JP, Canbay A, Schmidt HHJ, Baba HA, Kälsch J. Higher pNRF2, SOCS3, IRF3, and RIG1 Tissue Protein Expression in NASH Patients versus NAFL Patients: pNRF2 Expression Is Concomitantly Associated with Elevated Fasting Glucose Levels. J Pers Med 2023; 13:1152. [PMID: 37511764 PMCID: PMC10381647 DOI: 10.3390/jpm13071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) embraces simple steatosis in non-alcoholic fatty liver (NAFL) to advanced non-alcoholic steatohepatitis (NASH) associated with inflammation, fibrosis, and cirrhosis. NAFLD patients often have metabolic syndrome and high risks of cardiovascular and liver-related mortality. Our aim was to clarify which proteins play a role in the progression of NAFL to NASH. The study investigates paraffin-embedded samples of 22 NAFL and 33 NASH patients. To detect potential candidates, samples were analyzed by immunohistochemistry for the proteins involved in innate immune regulation, autophagy, apoptosis, and antioxidant defense: IRF3, RIG-1, SOCS3, pSTAT3, STX17, SGLT2, Ki67, M30, Caspase 3, and pNRF2. The expression of pNRF2 immunopositive nuclei and SOCS3 cytoplasmic staining were higher in NASH than in NAFL (p = 0.001); pNRF2 was associated with elevated fasting glucose levels. SOCS3 immunopositivity correlated positively with RIG1 (r = 0.765; p = 0.001). Further, in NASH bile ducts showed stronger IRF3 immunostaining than in NAFL (p = 0.002); immunopositive RIG1 tissue was higher in NASH than in NAFL (p = 0.01). Our results indicate that pNRF2, SOCS3, IRF3, and RIG1 are involved in hepatic lipid metabolism. We suggest that they may be suitable for further studies to assess their potential as therapeutics.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Malek Alhardan
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Paul P Manka
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Ali Canbay
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Hartmut H-J Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Julia Kälsch
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital of Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
8
|
Abenavoli L, Scarlata GGM, Paravati MR, Boccuto L, Luzza F, Scarpellini E. Gut Microbiota and Liver Transplantation: Immune Mechanisms behind the Rejection. Biomedicines 2023; 11:1792. [PMID: 37509432 PMCID: PMC10376769 DOI: 10.3390/biomedicines11071792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Liver transplantation (LT) is the treatment of choice for patients with cirrhosis, decompensated disease, acute liver failure, and hepatocellular carcinoma (HCC). In 3-25% of cases, an alarming problem is acute and chronic cellular rejection after LT, and this event can lead to the need for new transplantation or the death of the patient. On the other hand, gut microbiota is involved in several mechanisms sustaining the model of the "gut-liver axis". These include modulation of the immune response, which is altered in case of gut dysbiosis, possibly resulting in acute graft rejection. Some studies have evaluated the composition of the gut microbiota in cirrhotic patients before and after LT, but few of them have assessed its impact on liver rejection. This review underlines the changes in gut microbiota composition before and after liver transplantation, hypothesizing possible immune mechanisms linking dysbiosis to transplantation rejection. Evaluation of changes in the gut microbiota composition in these patients is therefore essential in order to monitor the success of LT and eventually adopt appropriate preventive measures.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | | | | | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Francesco Luzza
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (TARGID.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Zhang J, Zao X, Zhang J, Guo Z, Jin Q, Chen G, Gan D, Du H, Ye Y. Is it possible to intervene early cirrhosis by targeting toll-like receptors to rebalance the intestinal microbiome? Int Immunopharmacol 2023; 115:109627. [PMID: 36577151 DOI: 10.1016/j.intimp.2022.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Cirrhosis is a progressive chronic liver disease caused by one or more causes and characterized by diffuse fibrosis, pseudolobules, and regenerated nodules. Once progression to hepatic decompensation, the function of the liver and other organs is impaired and almost impossible to reverse and recover, which often results in hospitalization, impaired quality of life, and high mortality. However, in the early stage of cirrhosis, there seems to be a possibility of cirrhosis reversal. The development of cirrhosis is related to the intestinal microbiota and activation of toll-like receptors (TLRs) pathways, which could regulate cell proliferation, apoptosis, expression of the hepatomitogen epiregulin, and liver inflammation. Targeting regulation of intestinal microbiota and TLRs pathways could affect the occurrence and development of cirrhosis and its complications. In this paper, we first reviewed the dynamic change of intestinal microbiota and TLRs during cirrhosis progression. And further discussed the interaction between them and potential therapeutic targets to reverse early staged cirrhosis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Da'nan Gan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
10
|
Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut–liver axis in sepsis: interaction mechanisms and therapeutic potential. Crit Care 2022; 26:213. [PMID: 35831877 PMCID: PMC9277879 DOI: 10.1186/s13054-022-04090-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a potentially fatal condition caused by dysregulation of the body's immune response to an infection. Sepsis-induced liver injury is considered a strong independent prognosticator of death in the critical care unit, and there is anatomic and accumulating epidemiologic evidence that demonstrates intimate cross talk between the gut and the liver. Intestinal barrier disruption and gut microbiota dysbiosis during sepsis result in translocation of intestinal pathogen-associated molecular patterns and damage-associated molecular patterns into the liver and systemic circulation. The liver is essential for regulating immune defense during systemic infections via mechanisms such as bacterial clearance, lipopolysaccharide detoxification, cytokine and acute-phase protein release, and inflammation metabolic regulation. When an inappropriate immune response or overwhelming inflammation occurs in the liver, the impaired capacity for pathogen clearance and hepatic metabolic disturbance can result in further impairment of the intestinal barrier and increased disruption of the composition and diversity of the gut microbiota. Therefore, interaction between the gut and liver is a potential therapeutic target. This review outlines the intimate gut–liver cross talk (gut–liver axis) in sepsis.
Collapse
|
11
|
Edwards JS, Delabat SA, Badilla AD, DiCaprio RC, Hyun J, Burgess RA, Silva T, Dykxhoorn DM, Chen SX, Wang L, Ishida Y, Saito T, Thomas E. Downregulation of SOCS1 increases interferon-induced ISGylation during differentiation of induced-pluripotent stem cells to hepatocytes. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100592. [PMID: 36439639 PMCID: PMC9685392 DOI: 10.1016/j.jhepr.2022.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
Background & Aims Increased expression of IFN-stimulated gene 15 (ISG15) and subsequently increased ISGylation are key factors in the host response to viral infection. In this study, we sought to characterize the expression of ISG15, ISGylation, and associated enzymes at each stage of differentiation from induced pluripotent stem cells (iPSCs) to hepatocytes. Methods To study the regulation of ISGylation, we utilized patient samples and in vitro cell culture models including iPSCs, hepatocytes-like cells, immortalized cell lines, and primary human hepatocytes. Protein/mRNA expression were measured following treatment with poly(I:C), IFNα and HCV infection. Results When compared to HLCs, we observed several novel aspects of the ISGylation pathway in iPSCs. These include a lower baseline expression of the ISGylation-activating enzyme, UBE1L, a lack of IFN-induced expression of the ISGylation-conjugation enzyme UBE2L6, an attenuated activation of the transcription factor STAT1 and constitutive expression of SOCS1. ISGylation was observed in iPSCs following downregulation of SOCS1, which facilitated STAT1 activation and subsequently increased expression of UBE2L6. Intriguingly, HCV permissive transformed hepatoma cell lines demonstrated higher intrinsic expression of SOCS1 and weaker ISGylation following IFN treatment. SOCS1 downregulation in HCV-infected Huh 7.5.1 cells led to increased ISGylation. Conclusions Herein, we show that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Furthermore, as iPSCs differentiate into hepatocytes, epigenetic mechanisms regulate ISGylation by modifying UBE1L and SOCS1 expression levels. Overall, this study demonstrates that the development of cell-intrinsic innate immunity during the differentiation of iPSCs to hepatocytes provides insight into cell type-specific regulation of host defense responses and related oncogenic processes. Impact and implications To elucidate the mechanism underlying regulation of ISGylation, a key process in the innate immune response, we studied changes in ISGylation-associated genes at the different stages of differentiation from iPSCs to hepatocytes. We found that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Importantly, epigenetic regulation of SOCS1 and subsequently ISGylation may be important factors in the development of cell type-specific host defense responses in hepatocytes that should be considered when studying chronic infections and oncogenic processes in the liver.
Collapse
Key Words
- AFP, alpha-fetoprotein
- ALB, albumin
- Antiviral Response
- Epigenetic Regulation
- FOXA2, forkhead Box A2
- HB, hepatoblast
- HCC, hepatocellular carcinoma
- HCV
- HLC, hepatocyte-like cell
- Hepatocellular Carcinoma
- Host Defense
- IFN, interferon
- IRF3, interferon regulatory factor 3
- ISG, interferon-stimulated gene
- ISG15
- Innate Immunity
- JAK, Janus kinase
- Liver Cancer
- OCT4, octamer-binding transcription factor 4
- PHHs, primary human hepatocytes
- RIG-I, retinoic acid-inducible gene I
- RLR, RIGI-like receptor
- RNAseq, RNA sequencing
- SOCS1
- SOCS1, suppressor of cytokine signaling 1
- STAT1
- STAT1, signal transducer and activator of transcription 1
- TLR, toll-like receptor
- UBE1L/UBA7, ubiquitin-activating enzyme E1
- USP18, deconjugation enzyme ubiquitin specific peptidase 18
- UbcH8/UBE2L6, ubiquitin-conjugating enzyme E2 L6
- iPSC, induced-pluripotent stem cell
- pSTAT1, phosphorylated STAT1
Collapse
Affiliation(s)
- Jasmine S. Edwards
- University of Miami Miller School of Medicine Department of Microbiology and Immunology, USA
| | | | - Alejandro D. Badilla
- University of Miami Miller School of Medicine Department of Microbiology and Immunology, USA
| | - Robert C. DiCaprio
- University of Miami Miller School of Medicine Department of Pathology, USA
| | - Jinhee Hyun
- University of Miami Miller School of Medicine Department of Pathology, USA
| | - Robert A. Burgess
- University of Miami Miller School of Medicine Department of Pathology, USA
| | - Tiago Silva
- University of Miami Department of Public Health Sciences, USA
| | - Derek M. Dykxhoorn
- University of Miami Miller School of Medicine Department of Human Genetics, USA
| | - Steven Xi Chen
- University of Miami Department of Public Health Sciences, USA
| | - Lily Wang
- University of Miami Department of Public Health Sciences, USA
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,USC Research Center for Liver Diseases, Los Angeles, California, USA
| | - Emmanuel Thomas
- University of Miami Miller School of Medicine Department of Microbiology and Immunology, USA,University of Miami Miller School of Medicine Department of Pathology, USA,Corresponding author. Address: 1550 NW 10th Avenue, Papanicolaou Building Room 109, Miami, FL 33136, United States; Tel.: (305) 243-2895.
| |
Collapse
|
12
|
Liu T, Xu G, Liang L, Xiao X, Zhao Y, Bai Z. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment. Front Pharmacol 2022; 13:967594. [PMID: 36160411 PMCID: PMC9492967 DOI: 10.3389/fphar.2022.967594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a key contributing factor in the pathogenesis of fatty liver diseases (FLD), such as nonalcoholic fatty liver disease (NAFLD) and alcohol-associated liver diseases (ALDs). The NLRP3 inflammasome is widely present in the hepatic parenchymal and non-parenchymal cells, which are assembled and activated by sensing intracellular and extracellular danger signals resulting in the matures of IL-1β/IL-18 and pyroptosis. Moreover, the aberrant activation of the NLRP3 inflammasome is considered the main factor to drives immune outbreaks in relation to hepatic injury, inflammation, steatosis, and fibrosis. Therefore, inhibition of NLRP3 inflammasome may be a promising therapeutic target for FLD. Currently, accumulating evidence has revealed that a number of traditional Chinese medicines (TCM) exert beneficial effects on liver injury via inhibiting the NLRP3 inflammasome activation. Here, we summarized the mechanism of NLRP3 inflammasomes in the progression of FLD, and TCM exerts beneficial effects on FLD via positive modulation of inflammation. We describe that TCM is a promising valuable resource for the prevention and treatment agents against FLD and has the potential to be developed into clinical drugs.
Collapse
Affiliation(s)
- Tingting Liu
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Guizhou, China
| | - Guang Xu
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Longxin Liang
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Zhaofang Bai
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| |
Collapse
|
13
|
Mzyk P, Hernandez H, Le T, Ramirez JR, McDowell CM. Toll-Like Receptor 4 Signaling in the Trabecular Meshwork. Front Cell Dev Biol 2022; 10:936115. [PMID: 35912101 PMCID: PMC9335276 DOI: 10.3389/fcell.2022.936115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Primary open-angle glaucoma is one of the leading causes of blindness worldwide. With limited therapeutics targeting the pathogenesis at the trabecular meshwork (TM), there is a great need for identifying potential new targets. Recent evidence has implicated Toll-like receptor 4 (TLR4) and it is signaling pathway in augmenting the effects of transforming growth factor beta-2 (TGFβ2) and downstream extracellular matrix production. In this review, we examine the role of TLR4 signaling in the trabecular meshwork and the interplay between endogenous activators of TLR4 (damage-associated molecular patterns (DAMPs)), extracellular matrix (ECM), and the effect on intraocular pressure.
Collapse
Affiliation(s)
- Philip Mzyk
- University of Wisconsin-Madison, Madison, WI, United States
| | | | - Thanh Le
- University of Houston-Victoria, Victoria, TX, United States
| | | | | |
Collapse
|
14
|
Ander SE, Li FS, Carpentier KS, Morrison TE. Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream. PLoS Pathog 2022; 18:e1010474. [PMID: 35511797 PMCID: PMC9070959 DOI: 10.1371/journal.ppat.1010474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.
Collapse
Affiliation(s)
- Stephanie E. Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Frances S. Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kathryn S. Carpentier
- Department of Natural Sciences, Greensboro College, Greensboro, North Carolina, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
15
|
Luo W, Ye L, Hu XT, Wang MH, Wang MX, Jin LM, Xiao ZX, Qian JC, Wang Y, Zuo W, Huang LJ, Liang G. MD2 deficiency prevents high-fat diet-induced AMPK suppression and lipid accumulation through regulating TBK1 in non-alcoholic fatty liver disease. Clin Transl Med 2022; 12:e777. [PMID: 35343085 PMCID: PMC8958353 DOI: 10.1002/ctm2.777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most predominant form of liver diseases worldwide. Recent evidence shows that myeloid differentiation factor 2 (MD2), a protein in innate immunity and inflammation, regulates liver injury in models of NAFLD. Here, we investigated a new mechanism by which MD2 participates in the pathogenesis of experimental NAFLD. METHODS Wild-type, Md2-/- and bone marrow reconstitution mice fed with high-fat diet (HFD) were used to identify the role of hepatocyte MD2 in NAFLD. Transcriptomic RNA-seq and pathway enrich analysis were performed to explore the potential mechanisms of MD2. In vitro, primary hepatocytes and macrophages were cultured for mechanistic studies. RESULTS Transcriptome analysis and bone marrow reconstitution studies showed that hepatocyte MD2 may participate in regulating lipid metabolism in models with NAFLD. We then discovered that Md2 deficiency in mice prevents HFD-mediated suppression of AMP-activated protein kinase (AMPK). This preservation of AMPK in Md2-deficient mice was associated with normalized sterol regulatory element binding protein 1 (SREBP1) transcriptional program and a lack of lipid accumulation in both hepatocytes and liver. We then showed that hepatocyte MD2 links HFD to AMPK/SREBP1 through TANK binding kinase 1 (TBK1). In addition, MD2-increased inflammatory factor from macrophages induces hepatic TBK1 activation and AMPK suppression. CONCLUSION Hepatocyte MD2 plays a pathogenic role in NAFLD through TBK1-AMPK/SREBP1 and lipid metabolism pathway. These studies provide new insight into a non-inflammatory function of MD2 and evidence for the important role of MD2 in NALFD.
Collapse
Affiliation(s)
- Wu Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lin Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue-Ting Hu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mei-Hong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min-Xiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei-Ming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Jian-Chang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zuo
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China
| | - Li-Jiang Huang
- Affiliated Xiangshan Hospital, Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Gut microbiome alteration as a diagnostic tool and associated with inflammatory response marker in primary liver cancer. Hepatol Int 2022; 16:99-111. [DOI: 10.1007/s12072-021-10279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
|
17
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
18
|
The Gut Microbiota-Derived Immune Response in Chronic Liver Disease. Int J Mol Sci 2021; 22:ijms22158309. [PMID: 34361075 PMCID: PMC8347749 DOI: 10.3390/ijms22158309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
In chronic liver disease, the causative factor is important; however, recently, the intestinal microbiome has been associated with the progression of chronic liver disease and the occurrence of side effects. The immune system is affected by the metabolites of the microbiome, and diet is the primary regulator of the microbiota composition and function in the gut–liver axis. These metabolites can be used as therapeutic material, and postbiotics, in the future, can increase or decrease human immunity by modulating inflammation and immune reactions. Therefore, the excessive intake of nutrients and the lack of nutrition have important effects on immunity and inflammation. Evidence has been published indicating that microbiome-induced chronic inflammation and the consequent immune dysregulation affect the development of chronic liver disease. In this research paper, we discuss the overall trend of microbiome-derived substances related to immunity and the future research directions.
Collapse
|
19
|
Kessoku T, Kobayashi T, Tanaka K, Yamamoto A, Takahashi K, Iwaki M, Ozaki A, Kasai Y, Nogami A, Honda Y, Ogawa Y, Kato S, Imajo K, Higurashi T, Hosono K, Yoneda M, Usuda H, Wada K, Saito S, Nakajima A. The Role of Leaky Gut in Nonalcoholic Fatty Liver Disease: A Novel Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158161. [PMID: 34360923 PMCID: PMC8347478 DOI: 10.3390/ijms22158161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver directly accepts blood from the gut and is, therefore, exposed to intestinal bacteria. Recent studies have demonstrated a relationship between gut bacteria and nonalcoholic fatty liver disease (NAFLD). Approximately 10–20% of NAFLD patients develop nonalcoholic steatohepatitis (NASH), and endotoxins produced by Gram-negative bacilli may be involved in NAFLD pathogenesis. NAFLD hyperendotoxicemia has intestinal and hepatic factors. The intestinal factors include impaired intestinal barrier function (leaky gut syndrome) and dysbiosis due to increased abundance of ethanol-producing bacteria, which can change endogenous alcohol concentrations. The hepatic factors include hyperleptinemia, which is associated with an excessive response to endotoxins, leading to intrahepatic inflammation and fibrosis. Clinically, the relationship between gut bacteria and NAFLD has been targeted in some randomized controlled trials of probiotics and other agents, but the results have been inconsistent. A recent randomized, placebo-controlled study explored the utility of lubiprostone, a treatment for constipation, in restoring intestinal barrier function and improving the outcomes of NAFLD patients, marking a new phase in the development of novel therapies targeting the intestinal barrier. This review summarizes recent data from studies in animal models and randomized clinical trials on the role of the gut–liver axis in NAFLD pathogenesis and progression.
Collapse
Affiliation(s)
- Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
- Department of Palliative Medicine, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Correspondence: ; Tel.: +81-45-787-2640; Fax: +81-45-784-3546
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
- Department of Palliative Medicine, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Atsushi Yamamoto
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Kota Takahashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
- Department of Palliative Medicine, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
- Department of Palliative Medicine, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo, Shimane 693-8501, Japan; (H.U.); (K.W.)
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo, Shimane 693-8501, Japan; (H.U.); (K.W.)
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.K.); (K.T.); (A.Y.); (K.T.); (M.I.); (A.O.); (Y.K.); (A.N.); (Y.H.); (Y.O.); (S.K.); (K.I.); (T.H.); (K.H.); (M.Y.); (S.S.); (A.N.)
| |
Collapse
|
20
|
Takeuchi M, Vidigal PT, Guerra MT, Hundt MA, Robert ME, Olave-Martinez M, Aoki S, Khamphaya T, Kersten R, Kruglov E, de la Rosa Rodriguez R, Banales JM, Nathanson MH, Weerachayaphorn J. Neutrophils interact with cholangiocytes to cause cholestatic changes in alcoholic hepatitis. Gut 2021; 70:342-356. [PMID: 33214166 PMCID: PMC7906004 DOI: 10.1136/gutjnl-2020-322540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & OBJECTIVES Alcoholic hepatitis (AH) is a common but life-threatening disease with limited treatment options. It is thought to result from hepatocellular damage, but the presence of cholestasis worsens prognosis, so we examined whether bile ducts participate in the pathogenesis of this disease. DESIGN Cholangiocytes derived from human bile ducts were co-cultured with neutrophils from patients with AH or controls. Loss of type 3 inositol 1,4,5-trisphosphate receptor (ITPR3), an apical intracellular calcium channel necessary for cholangiocyte secretion, was used to reflect cholestatic changes. Neutrophils in contact with bile ducts were quantified in liver biopsies from patients with AH and controls and correlated with clinical and pathological findings. RESULTS Liver biopsies from patients with AH revealed neutrophils in contact with bile ducts, which correlated with biochemical and histological parameters of cholestasis. Cholangiocytes co-cultured with neutrophils lost ITPR3, and neutrophils from patients with AH were more potent than control neutrophils. Biochemical and histological findings were recapitulated in an AH animal model. Loss of ITPR3 was attenuated by neutrophils in which surface membrane proteins were removed. RNA-seq analysis implicated integrin β1 (ITGB1) in neutrophil-cholangiocyte interactions and interference with ITGB1 on cholangiocytes blocked the ability of neutrophils to reduce cholangiocyte ITPR3 expression. Cell adhesion molecules on neutrophils interacted with ITGB1 to trigger RAC1-induced JNK activation, causing a c-Jun-mediated decrease in ITPR3 in cholangiocytes. CONCLUSIONS Neutrophils bind to ITGB1 on cholangiocytes to contribute to cholestasis in AH. This previously unrecognised role for cholangiocytes in this disease alters our understanding of its pathogenesis and identifies new therapeutic targets.
Collapse
Affiliation(s)
- Masahiro Takeuchi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paula T Vidigal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathological Anatomy and Forensic Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T Guerra
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Melanie A Hundt
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Olave-Martinez
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Satoshi Aoki
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tanaporn Khamphaya
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Remco Kersten
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randolph de la Rosa Rodriguez
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Michael H Nathanson
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jittima Weerachayaphorn
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Zhou Y, Hu L, Tang W, Li D, Ma L, Liu H, Zhang S, Zhang X, Dong L, Shen X, Chen S, Xue R, Zhang S. Hepatic NOD2 promotes hepatocarcinogenesis via a RIP2-mediated proinflammatory response and a novel nuclear autophagy-mediated DNA damage mechanism. J Hematol Oncol 2021; 14:9. [PMID: 33413510 PMCID: PMC7791875 DOI: 10.1186/s13045-020-01028-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Key hepatic molecules linking gut dysbiosis and hepatocarcinogenesis remain largely unknown. Gut-derived gut microbiota contains pathogen-associated molecular patterns (PAMPs) that may circulate into the liver and, consequently, be recognized by hepatic pattern recognition receptors (PRRs). NOD2, a general intracellular PRR, recognizes muramyl dipeptide (MDP), present in both gram (+) and gram (-) bacteria. Here, we investigated the role of NOD2 as a molecular sensor translating gut dysbiosis signaling into hepatocarcinogenesis. METHODS NOD2 expression was measured in clinical hepatocellular carcinoma (HCC) samples using qPCR (80 pairs), western blotting (30 pairs) and immunostaining (141 pairs). The role of NOD2 in hepatocarcinogenesis was examined in the hepatocyte-specific Nod2-knockout (Nod2△hep), Rip2-knockout (Rip2△hep), Lamin A/C-knockout (Lamn△hep) and Rip2/Lamin A/C double-knockout (Rip2/Lamn△hep) mice models of diethylnitrosamine (DEN)/CCl4-induced HCC. RESULTS NOD2 was upregulated and activated in HCC samples, and high NOD2 expression correlated with poor prognosis in HCC patients. Hepatic NOD2 deletion in vivo decreased DEN/CCl4-induced HCC by reducing the inflammatory response, DNA damage and genomic instability. NOD2 activation increased liver inflammation via RIP2-dependent activation of the MAPK, NF-κB and STAT3 pathways. Notably, a novel RIP2-independent mechanism was discovered, whereby NOD2 activation induces the nuclear autophagy pathway. We showed that NOD2 undergoes nuclear transport and directly binds to a component of nuclear laminae, lamin A/C, to promote its protein degradation, leading to impaired DNA damage repair and increased genomic instability. CONCLUSIONS We reveal a novel bridge, bacterial sensor NOD2, linking gut-derived microbial metabolites to hepatocarcinogenesis via induction of the inflammatory response and nuclear autophagy. Thus, we propose hepatic NOD2 as a promising therapeutic target against HCC.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, China
| | - Wenqing Tang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dongping Li
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijie Ma
- Department of General Surgery, Zhongshan Hospital (South), Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongchun Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaojie Zhang
- Department of Rheumatology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - She Chen
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Kessoku T, Kobayashi T, Imajo K, Tanaka K, Yamamoto A, Takahashi K, Kasai Y, Ozaki A, Iwaki M, Nogami A, Honda Y, Ogawa Y, Kato S, Higurashi T, Hosono K, Yoneda M, Okamoto T, Usuda H, Wada K, Kobayashi N, Saito S, Nakajima A. Endotoxins and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:770986. [PMID: 34777261 PMCID: PMC8586459 DOI: 10.3389/fendo.2021.770986] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. It occurs with a prevalence of up to 25%, of which 10-20% cases progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. The histopathology of NASH is characterized by neutrophilic infiltration, and endotoxins from gram-negative rods have been postulated as a contributing factor. Elevations in endotoxin levels in the blood can be classified as intestinal and hepatic factors. In recent years, leaky gut syndrome, which is characterized by impaired intestinal barrier function, has become a significant issue. A leaky gut may prompt intestinal bacteria dysbiosis and increase the amount of endotoxin that enters the liver from the portal vein. These contribute to persistent chronic inflammation and progressive liver damage. In addition, hepatic factors suggest that liver damage can be induced by low-dose endotoxins, which does not occur in healthy individuals. In particular, increased expression of CD14, an endotoxin co-receptor in the liver, may result in leptin-induced endotoxin hyper-responsiveness in obese individuals. Thus, elevated blood endotoxin levels contribute to the progression of NASH. The current therapeutic targets for NASH treat steatosis and liver inflammation and fibrosis. While many clinical trials are underway, no studies have been performed on therapeutic agents that target the intestinal barrier. Recently, a randomized placebo-controlled trial examined the role of the intestinal barrier in patients with NAFLD. To our knowledge, this study was the first of its kind and study suggested that the intestinal barrier may be a novel target in the future treatment of NAFLD.
Collapse
Affiliation(s)
- Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
- *Correspondence: Takaomi Kessoku,
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Yamamoto
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Takahashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Noritoshi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Oncology, Yokohama City University Hospital, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
23
|
3D-Hepatocyte Culture Applied to Parasitology: Immune Activation of Canine Hepatic Spheroids Exposed to Leishmania infantum. Biomedicines 2020; 8:biomedicines8120628. [PMID: 33352885 PMCID: PMC7766187 DOI: 10.3390/biomedicines8120628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The application of innovative three-dimensional (3D) spheroids cell culture strategy to Parasitology offers the opportunity to closely explore host–parasite interactions. Here we present a first report on the application of 3D hepatic spheroids to unravel the immune response of canine hepatocytes exposed to Leishmania infantum. The liver, usually considered a major metabolic organ, also performs several important immunological functions and constitutes a target organ for L. infantum infection, the etiological agent of canine leishmaniasis (CanL), and a parasitic disease of major veterinary and public health concern. 3D hepatic spheroids were able to sense and immunologically react to L. infantum parasites, generating an innate immune response by increasing nitric oxide (NO) production and enhancing toll-like receptor (TLR) 2 and interleukin-10 gene expression. The immune response orchestrated by canine hepatocytes also lead to the impairment of several cytochrome P450 (CYP450) with possible implications for liver natural xenobiotic metabolization capacity. The application of meglumine antimoniate (MgA) increased the inflammatory response of 3D hepatic spheroids by inducing the expression of Nucleotide oligomerization domain (NOD) -like receptors 1 and NOD2 and TLR2, TLR4, and TLR9 and enhancing gene expression of tumour necrosis factor α. It is therefore suggested that hepatocytes are key effector cells and can activate and orchestrate the immune response to L. infantum parasites.
Collapse
|
24
|
Ronca V, Mancuso C, Milani C, Carbone M, Oo YH, Invernizzi P. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis. J Leukoc Biol 2020; 108:659-671. [PMID: 32349179 DOI: 10.1002/jlb.5mr0320-200r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by the destruction of the small and medium bile ducts. Its pathogenesis is still unknown. Despite the genome wide association study findings, the therapies targeting the cytokines pathway, tested so far, have failed. The concept of the biliary epithelium as a key player of the PBC pathogenesis has emerged over the last few years. It is now well accepted that the biliary epithelial cells (BECs) actively participate to the genesis of the damage. The chronic stimulation of BECs via microbes and bile changes the cell phenotype toward an active state, which, across the production of proinflammatory mediators, can recruit, retain, and activate immune cells. The consequent immune system activation can in turn damage BECs. Thus, the crosstalk between both innate and adaptive immune cells and the biliary epithelium creates a paracrine loop responsible for the disease progression. In this review, we summarize the evidence provided in literature about the role of BECs and the immune system in the pathogenesis of PBC. We also dissect the relationship between the immune system and the BECs, focusing on the unanswered questions and the future potential directions of the translational research and the cellular therapy in this area.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Clara Mancuso
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Milani
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Ye Htun Oo
- National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
25
|
Liu WC, Chen PH, Chen LW. Supplementation of endogenous Ahr ligands reverses insulin resistance and associated inflammation in an insulin-dependent diabetic mouse model. J Nutr Biochem 2020; 83:108384. [PMID: 32512500 DOI: 10.1016/j.jnutbio.2020.108384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/11/2020] [Accepted: 03/26/2020] [Indexed: 01/10/2023]
Abstract
Aryl-hydrocarbon receptor (Ahr) plays an important role in the regulation of intestinal homeostasis. Diabetes is characterized by vascular complications and intestinal dysfunction. We aimed at understanding the relationship between intestinal defense impairment and inflammation in diabetes and effects of Ahr ligands on diabetes-induced insulin resistance, endovascular inflammation, and intercellular adhesion molecule (ICAM) and flavin mono-oxygenase (FMO3) expression. Effects of Ahr ligands, such as tryptophan (Trp) and indole-3-carbinol (I3C) on intestinal barrier and inflammation of Ins2Akita mice were examined. Myeloid differentiation primary response 88 (MYD88) is the adaptor for inflammatory signaling pathways. Ins2Akita-MyD88-/- mice were used to study the role of MyD88. Ins2Akita mice demonstrated decreased Ahr and regenerating islet-derived 3-β (Reg3β) expression, and increased Klebsiella pneumoniae translocation. Ins2Akita mice demonstrated increased inducible nitric oxide synthase (iNOS) expression of intestine; ICAM, iNOS, interleukin 1 beta (IL-1β), and FMO3 expression of liver; and ICAM, iNOS, and FMO3 expression in aorta. Trp and I3C decreased diabetes-induced translocation and increased Ahr and Reg3β expression of intestine. Ahr ligands reduced diabetes-induced ICAM and FMO3 expression in liver and aorta; IL-6, tumor necrosis factor alpha (TNF-α), and iNOS expression in Kupffer cells; plasma IL-6 and TNF-α levels; dipeptidyl peptidase (DPP4) activity; and insulin insensitivity. Ins2Akita-MyD88-/- mice demonstrated decreased expression of p-NF-κB of liver and ICAM of aorta compared with Ins2Akita mice. Altogether, our data suggest that diabetes induces ICAM and FMO3 expression through the decrease in intestinal defense and MyD88. Ahr ligands reverse diabetes-induced intestinal defense impairment, insulin insensitivity, FMO3/ICAM expression, and systemic inflammation.
Collapse
Affiliation(s)
- Wen-Chung Liu
- Department of Surgery, Kaohsiung Veterans General Hospital, No.386, Ta-chung 1(st) Road, Kaohsiung, 813, Taiwan; School of Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Pei-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, No.386, Ta-chung 1(st) Road, Kaohsiung, 813, Taiwan
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, No.386, Ta-chung 1(st) Road, Kaohsiung, 813, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, No.70, Lien-Hai Road, Kaohsiung, 804, Taiwan.
| |
Collapse
|
26
|
Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer 2019; 7:267. [PMID: 31627733 PMCID: PMC6798343 DOI: 10.1186/s40425-019-0749-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and confers a poor prognosis. Beyond standard systemic therapy with multikinase inhibitors, recent studies demonstrate the potential for robust and durable responses from immune checkpoint inhibition in subsets of HCC patients across disease etiologies. The majority of HCC arises in the context of chronic inflammation and from within a fibrotic liver, with many cases associated with hepatitis virus infections, toxins, and fatty liver disease. Many patients also have concomitant cirrhosis which is associated with both local and systemic immune deficiency. Furthermore, the liver is an immunologic organ in itself, which may enhance or suppress the immune response to cancer arising within it. Here, we explore the immunobiology of the liver from its native state to chronic inflammation, fibrosis, cirrhosis and then to cancer, and summarize how this unique microenvironment may affect the response to immunotherapy.
Collapse
Affiliation(s)
- Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robin K Kelley
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Jiang X, Yang F, Zhao Q, Tian D, Tang Y. Protective effects of pentadecapeptide derived from Cyclaina sinensis against cyclophosphamide-induced hepatotoxicity. Biochem Biophys Res Commun 2019; 520:392-398. [PMID: 31607481 DOI: 10.1016/j.bbrc.2019.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Our study was aimed at investigating the hepatoprotective effects of pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclaina sinensis (SCSP) against cyclophosphamide (CTX)-induced hepatotoxicity in mice. Our results show that SCSP can significantly alleviate CTX-induced hepatotoxicity by decreasing the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG) and malondialdehyde (MDA), and increasing the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) in the liver. In addition, the levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) were also significantly decreased in the liver tissues when treated with SCSP. Moreover, the protein levels of the toll-like receptor 4 (TLR4)-mediated nuclear factor-kappa B (NF-κB) pathway and apoptosis-related proteins were also restored by SCSP treatment. Overall, our results suggest that SCSP can potentially improve the CTX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fei Yang
- Hangzhou Obstetrics & Gynecology Hospital, Hangzhou, 310008, China
| | - Qiaojun Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Diying Tian
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
28
|
Saha B, Tornai D, Kodys K, Adejumo A, Lowe P, McClain C, Mitchell M, McCullough A, Srinivasan D, Kroll-Desrosiers A, Barton B, Radaeva S, Szabo G. Biomarkers of Macrophage Activation and Immune Danger Signals Predict Clinical Outcomes in Alcoholic Hepatitis. Hepatology 2019; 70:1134-1149. [PMID: 30891779 PMCID: PMC6752989 DOI: 10.1002/hep.30617] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
Although mortality due to acute alcoholic hepatitis (AH) correlates with Model for End-Stage Liver Disease (MELD) scores, biomarkers are critically needed to manage this disease. Increases in inflammatory markers and macrophage activation are associated with acute AH and could be potential biomarkers of clinical events and/or mortality. We enrolled 89 clinically diagnosed AH patients in four US academic medical centers. Plasma from AH patients had a significant increase in gut microbial translocation indicators (endotoxin, bacterial 16S ribosomal DNA) and host response indicators (soluble cluster of differentiation 14 [sCD14] and lipopolysaccharide binding protein [LBP]) compared to controls. Patient MELD score and Glasgow Alcoholic Hepatitis score (GAHS) correlated with endotoxin levels. AH patients also had a significant increase in high mobility group protein 1 (HMGB1), a sterile danger signal molecule, and osteopontin (OPN), a multifunctional phosphoprotein involved in neutrophil activation, compared to controls. Increased levels of OPN positively correlated with increasing MELD score, GAHS, and LBP levels. Consistent with these results, AH patients had significantly increased circulating levels of macrophage activation (sCD163 and sCD206) markers compared to healthy controls, and sCD163 and sCD206 significantly and positively correlated with OPN, HMGB1, and LBP levels as well as with MELD score and GAHS. These findings indicate a connection between microbial translocation, immune cell activation, and AH severity. Plasma sCD14, OPN, sCD163, and sCD206 levels were significantly higher in nonsurvivors than survivors. In multivariate regression models, we identified sCD14, sCD163, and OPN as independent predictors of 90-day mortality, infection, and organ failure development, respectively. Conclusion: Our study suggests that sCD14, LBP, OPN, sCD163, and sCD206 are biomarkers to indicate severity and predict clinical outcomes in AH.
Collapse
Affiliation(s)
- Banishree Saha
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - David Tornai
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Adeyinka Adejumo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Craig McClain
- Department of Medicine, University of Louisville, Louisville, KY
| | - Mack Mitchell
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | - Aimee Kroll-Desrosiers
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
29
|
Leflunomide-induced liver injury in mice: Involvement of TLR4 mediated activation of PI3K/mTOR/NFκB pathway. Life Sci 2019; 235:116824. [DOI: 10.1016/j.lfs.2019.116824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023]
|
30
|
Foti RS, Biswas K, Aral J, Be X, Berry L, Cheng Y, Conner K, Falsey JR, Glaus C, Herberich B, Hickman D, Ikotun T, Li H, Long J, Huang L, Miranda LP, Murray J, Moyer B, Netirojjanakul C, Nixey TE, Sham K, Soto M, Tegley CM, Tran L, Wu B, Yin L, Rock DA. Use of Cryopreserved Hepatocytes as Part of an Integrated Strategy to Characterize In Vivo Clearance for Peptide-Antibody Conjugate Inhibitors of Nav1.7 in Preclinical Species. Drug Metab Dispos 2019; 47:1111-1121. [PMID: 31387871 DOI: 10.1124/dmd.119.087742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 02/13/2025] Open
Abstract
The identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described. A cryopreserved plated mouse hepatocyte assay was designed to measure the depletion of the peptide-antibody conjugates from the media, with a correlation being observed between percentage remaining in the media and in vivo clearance (Pearson r = -0.5525). Physicochemical (charge and hydrophobicity), receptor-binding [neonatal Fc receptor (FcRn)], and in vivo pharmacokinetic data were generated and compared with the results from our in vitro hepatocyte assay, which was hypothesized to encompass all of the aforementioned properties. Correlations were observed among hydrophobicity; FcRn binding; depletion rates from the hepatocyte assay; and ultimately, in vivo clearance. Subsequent studies identified potential roles for the low-density lipoprotein and mannose/galactose receptors in the association of the Nav1.7 peptide conjugates with mouse hepatocytes, although in vivo studies suggested that FcRn was still the primary receptor involved in determining the pharmacokinetics of the peptide conjugates. Ultimately, the use of the cryopreserved hepatocyte assay along with FcRn binding and hydrophobic interaction chromatography provided an efficient and integrated approach to rapidly triage molecules for advancement while reducing the number of in vivo pharmacokinetic studies. SIGNIFICANCE STATEMENT: Although multiple in vitro and in silico tools are available in small-molecule drug discovery, pharmacokinetic characterization of protein therapeutics is still highly dependent upon the use of in vivo studies in preclinical species. The current work demonstrates the combined use of cryopreserved hepatocytes, hydrophobic interaction chromatography, and neonatal Fc receptor binding to characterize a series of Nav1.7 peptide-antibody conjugates prior to conducting in vivo studies, thus providing a means to rapidly evaluate novel protein therapeutic platforms while concomitantly reducing the number of in vivo studies conducted in preclinical species.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Kaustav Biswas
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Jennifer Aral
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Xuhai Be
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Loren Berry
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Yuan Cheng
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Kip Conner
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - James R Falsey
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Charles Glaus
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Brad Herberich
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Dean Hickman
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Tayo Ikotun
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Hongyan Li
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Jason Long
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Liyue Huang
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Les P Miranda
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Justin Murray
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Bryan Moyer
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Chawita Netirojjanakul
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Thomas E Nixey
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Kelvin Sham
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Marcus Soto
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Christopher M Tegley
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Linh Tran
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Bin Wu
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Lin Yin
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)
| |
Collapse
|
31
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of cardiometabolic syndrome, which often also includes obesity, diabetes, and dyslipidemia. It is rapidly becoming the most prevalent liver disease worldwide. A sizable minority of NAFLD patients develop nonalcoholic steatohepatitis (NASH), which is characterized by inflammatory changes that can lead to progressive liver damage, cirrhosis, and hepatocellular carcinoma. Recent studies have shown that in addition to genetic predisposition and diet, the gut microbiota affects hepatic carbohydrate and lipid metabolism as well as influences the balance between pro‐inflammatory and anti‐inflammatory effectors in the liver, thereby impacting NAFLD and its progression to NASH. In this review, we will explore the impact of gut microbiota and microbiota‐derived compounds on the development and progression of NAFLD and NASH, and the unexplored factors related to potential microbiome contributions to this common liver disease.
Collapse
Affiliation(s)
| | - Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Oren Shibolet
- Department of Gastroenterology and Liver Disease, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Fabris L, Fiorotto R, Spirli C, Cadamuro M, Mariotti V, Perugorria MJ, Banales JM, Strazzabosco M. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019; 16:497-511. [PMID: 31165788 PMCID: PMC6661007 DOI: 10.1038/s41575-019-0156-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile duct epithelial cells, also known as cholangiocytes, regulate the composition of bile and its flow. Acquired, congenital and genetic dysfunctions in these cells give rise to a set of diverse and complex diseases, often of unknown aetiology, called cholangiopathies. New knowledge has been steadily acquired about genetic and congenital cholangiopathies, and this has led to a better understanding of the mechanisms of acquired cholangiopathies. This Review focuses on findings from studies on Alagille syndrome, polycystic liver diseases, fibropolycystic liver diseases (Caroli disease and congenital hepatic fibrosis) and cystic fibrosis-related liver disease. In particular, knowledge on the role of Notch signalling in biliary repair and tubulogenesis has been advanced by work on Alagille syndrome, and investigations in polycystic liver diseases have highlighted the role of primary cilia in biliary pathophysiology and the concept of biliary angiogenic signalling and its role in cyst growth and biliary repair. In fibropolycystic liver disease, research has shown that loss of fibrocystin generates a signalling cascade that increases β-catenin signalling, activates the NOD-, LRR- and pyrin domain-containing 3 inflammasome, and promotes production of IL-1β and other chemokines that attract macrophages and orchestrate the process of pericystic and portal fibrosis, which are the main mechanisms of progression in cholangiopathies. In cystic fibrosis-related liver disease, lack of cystic fibrosis transmembrane conductance regulator increases the sensitivity of epithelial Toll-like receptor 4 that sustains the secretion of nuclear factor-κB-dependent cytokines and peribiliary inflammation in response to gut-derived products, providing a model for primary sclerosing cholangitis. These signalling mechanisms may be targeted therapeutically and they offer a possibility for the development of novel treatments for acquired cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Romina Fiorotto
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Carlo Spirli
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | | | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA.
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
33
|
Yuan Z, Hasnat M, Liang P, Yuan Z, Zhang H, Sun L, Zhang L, Jiang Z. The role of inflammasome activation in Triptolide-induced acute liver toxicity. Int Immunopharmacol 2019; 75:105754. [PMID: 31352325 DOI: 10.1016/j.intimp.2019.105754] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023]
Abstract
Triptolide (TP), the major active compound derived from the traditional Chinese medicine Tripterygium wilfordii Hook. F, possesses an excellent pharmacological profile of immunomodulatory and anti-tumor activities. However, the application of TP was restricted due to its narrow therapeutic window and side effects, especially its hepatotoxicity. This study was designed to investigate the role of inflammasome in TP-induced acute liver toxicity. After the administration of TP at the dose of 600 μg/kg for 12 h or 24 h, we examined the serum biochemical parameters, liver histopathological changes, the expression of liver inflammatory factors, and the activation of NLRP3 inflammasome. Mice treated with TP displayed liver injury with a time-dependent increase of serum transaminases and activation of NLRP3 inflammasome, accompanied by the elevation of neutrophils infiltration. Further results implied that the activation of TLR4-Myd88-NF-κB pathway and oxidative stress induced by a single dose of TP (600 μg/kg) might participate in the activation of NLRP3 inflammasome. To investigate whether the activation of inflammasome participates in the liver damage induced by TP, a single dose of Ac-Yvad-Cmk (Caspase-1 inhibitor) was injected before TP administration. Ac-Yvad-Cmk pretreatment effectively prevented the increase of Cleaved Caspase-1 and inhibited the maturity of IL-1β. Additional studies revealed that Ac-Yvad-Cmk pretreatment decreased the recruitment of neutrophils and inhibited the production of massive pro-inflammatory factors. Taken together, our results revealed that activation of inflammasome aggravated the acute liver toxicity induced by TP. Inhibition of inflammasome could serve as a novel therapeutic target for the amelioration of TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Muhammad Hasnat
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall road, Lahore, 54600, Pakistan
| | - Peishi Liang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 21009, China.
| |
Collapse
|
34
|
Fiorotto R, Strazzabosco M. Pathophysiology of Cystic Fibrosis Liver Disease: A Channelopathy Leading to Alterations in Innate Immunity and in Microbiota. Cell Mol Gastroenterol Hepatol 2019; 8:197-207. [PMID: 31075352 PMCID: PMC6664222 DOI: 10.1016/j.jcmgh.2019.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutation of Cftr. CF-associated liver disease (CFLD) is a common nonpulmonary cause of mortality in CF and accounts for approximately 2.5%-5% of overall CF mortality. The peak of the disease is in the pediatric population, but a second wave of liver disease in CF adults has been reported in the past decade in association with an increase in the life expectancy of these patients. New drugs are available to correct the basic defect in CF but their efficacy in CFLD is not known. The cystic fibrosis transmembrane conductance regulator, expressed in the apical membrane of cholangiocytes, is a major determinant for bile secretion and CFLD classically has been considered a channelopathy. However, the recent findings of the cystic fibrosis transmembrane conductance regulator as a regulator of epithelial innate immunity and the possible influence of the intestinal disease with an altered microbiota on the liver complication have opened new mechanistic insights on the pathogenesis of CFLD. This review provides an overview of the current understanding of the pathophysiology of the disease and discusses a potential target for intervention.
Collapse
Affiliation(s)
- Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
35
|
Arab JP, Arrese M, Trauner M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:321-350. [PMID: 29414249 DOI: 10.1146/annurev-pathol-020117-043617] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide and an important risk factor for both hepatic and cardiometabolic mortality. The rapidly increasing prevalence of this disease and of its aggressive form nonalcoholic steatohepatitis (NASH) will require novel therapeutic approaches based on a profound understanding of its pathogenesis to halt disease progression to advanced fibrosis or cirrhosis and cancer. The pathogenesis of NAFLD involves a complex interaction among environmental factors (i.e., Western diet), obesity, changes in microbiota, and predisposing genetic variants resulting in a disturbed lipid homeostasis and an excessive accumulation of triglycerides and other lipid species in hepatocytes. Insulin resistance is a central mechanism that leads to lipotoxicity, endoplasmic reticulum stress, disturbed autophagy, and, ultimately, hepatocyte injury and death that triggers hepatic inflammation, hepatic stellate cell activation, and progressive fibrogenesis, thus driving disease progression. In the present review, we summarize the currently available data on the pathogenesis of NAFLD, emphasizing the most recent advances. A better understanding of NAFLD/NASH pathogenesis is crucial for the design of new and efficient therapeutic interventions.
Collapse
Affiliation(s)
- Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria;
| |
Collapse
|
36
|
Franca A, Filho ACML, Guerra MT, Weerachayaphorn J, dos Santos ML, Njei B, Robert M, Lima CX, Vidigal PVT, Banales JM, Ananthanarayanam M, Leite MF, Nathanson MH. Effects of Endotoxin on Type 3 Inositol 1,4,5-Trisphosphate Receptor in Human Cholangiocytes. Hepatology 2019; 69:817-830. [PMID: 30141207 PMCID: PMC6351171 DOI: 10.1002/hep.30228] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Clinical conditions that result in endotoxemia, such as sepsis and alcoholic hepatitis (AH), often are accompanied by cholestasis. Although hepatocellular changes in response to lipopolysaccharide (LPS) have been well characterized, less is known about whether and how cholangiocytes contribute to this form of cholestasis. We examined effects of endotoxin on expression and function of the type 3 inositol trisphosphate receptor (ITPR3), because this is the main intracellular Ca2+ release channel in cholangiocytes, and loss of it impairs ductular bicarbonate secretion. Bile duct cells expressed the LPS receptor, Toll-like receptor 4 (TLR4), which links to activation of nuclear factor-κB (NF-κB). Analysis of the human ITPR3 promoter revealed five putative response elements to NF-κB, and promoter activity was inhibited by p65/p50. Nested 0.5- and 1.0-kilobase (kb) deletion fragments of the ITPR3 promoter were inhibited by NF-κB subunits. Chromatin immunoprecipitation (ChIP) assay showed that NF-κB interacts with the ITPR3 promoter, with an associated increase in H3K9 methylation. LPS decreased ITPR3 mRNA and protein expression and also decreased sensitivity of bile duct cells to calcium agonist stimuli. This reduction was reversed by inhibition of TLR4. ITPR3 expression was decreased or absent in cholangiocytes from patients with cholestasis of sepsis and from those with severe AH. Conclusion: Stimulation of TLR4 by LPS activates NF-κB to down-regulate ITPR3 expression in human cholangiocytes. This may contribute to the cholestasis that can be observed in conditions such as sepsis or AH.
Collapse
Affiliation(s)
- Andressa Franca
- Federal University of Minas Gerais (UFMG), Belo Horizonte, MG
| | | | - Mateus T. Guerra
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Jittima Weerachayaphorn
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Basile Njei
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Marie Robert
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | | | | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | | | - M. Fatima Leite
- Federal University of Minas Gerais (UFMG), Belo Horizonte, MG
| | - Michael H. Nathanson
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
37
|
Dog hepatocytes are key effector cells in the liver innate immune response to Leishmania infantum. Parasitology 2018; 146:753-764. [PMID: 30561285 DOI: 10.1017/s0031182018002068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocytes constitute the majority of hepatic cells, and play a key role in controlling systemic innate immunity, via pattern-recognition receptors (PRRs) and by synthesizing complement and acute phase proteins. Leishmania infantum, a protozoan parasite that causes human and canine leishmaniasis, infects liver by establishing inside the Kupffer cells. The current study proposes the elucidation of the immune response generated by dog hepatocytes when exposed to L. infantum. Additionally, the impact of adding leishmanicidal compound, meglumine antimoniate (MgA), to parasite-exposed hepatocytes was also addressed. L. infantum presents a high tropism to hepatocytes, establishing strong membrane interactions. The possibility of L. infantum internalization by hepatocytes was raised, but not confirmed. Hepatocytes were able to recognize parasite presence, inducing PRRs [nucleotide oligomerization domain (NOD)1, NOD2 and Toll-like receptor (TLR)2] gene expression and generating a mix pro- and anti-inflammatory cytokine response. Reduction of cytochrome P 450s enzyme activity was also observed concomitant with the inflammatory response. Addition of MgA increased NOD2, TLR4 and interleukin 10 gene expression, indicating an immunomodulatory role for MgA. Hepatocytes seem to have a major role in coordinating liver's innate immune response against L. infantum infection, activating inflammatory mechanisms, but always balancing the inflammatory response in order to avoid cell damage.
Collapse
|
38
|
Roh YS, Kim JW, Park S, Shon C, Kim S, Eo SK, Kwon JK, Lim CW, Kim B. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2574-2588. [PMID: 30125542 DOI: 10.1016/j.ajpath.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Toll-like receptor 7 (TLR7) signaling regulates the production of type 1 interferons (IFNs) and proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, implicated in the control of regulatory T (Treg) cell activity. However, the mechanistic interplay between TLR7 signaling and Treg cells in nonalcoholic steatohepatitis (NASH) has not been elucidated. Our aim was to clarify the role of TLR7 signaling in the pathogenesis of NASH. Steatohepatitis was induced in wild-type (WT), TLR7-deficient, IFN-α/β receptor 1-deficient, and Treg cell-depleted mice. TLR7-deficient and IFN-α/β receptor 1-deficient mice were more protective to steatohepatitis than WT mice. Of interest, both TNF-α and type 1 IFN promoted apoptosis of Treg cells involved in the prevention of NASH. Indeed, Treg cell-depleted mice had aggravated steatohepatitis compared with WT mice. Finally, treatment with immunoregulatory sequence 661, an antagonist of TLR7, efficiently ameliorated NASH in vivo. These results demonstrate that TLR7 signaling can induce TNF-α production in Kupffer cells and type I IFN production in dendritic cells. These cytokines subsequently induce hepatocyte death and inhibit Treg cells activities, leading to the progression of NASH. Thus, manipulating the TLR7-Treg cell axis might be used as a novel therapeutic strategy to treat NASH.
Collapse
|
39
|
El-Bendary M, Neamatallah M, Elalfy H, Besheer T, Elkholi A, El-Diasty M, Elsareef M, Zahran M, El-Aarag B, Gomaa A, Elhammady D, El-Setouhy M, Hegazy A, Esmat G. The association of single nucleotide polymorphisms of Toll-like receptor 3, Toll-like receptor 7 and Toll-like receptor 8 genes with the susceptibility to HCV infection. Br J Biomed Sci 2018; 75:175-181. [PMID: 29947302 DOI: 10.1080/09674845.2018.1492186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) of Toll-like receptors (TLRs) are linked with functional modification of cytokine responses. In chronic hepatitis C virus (HCV) infection, studies of TLR polymorphisms have primarily targeted receptor pathways implicated in viral immune responses. We hypothesized that one or more variant(s) of TLR3, TLR7 and TLR8 are associated with different outcomes of HCV infection. MATERIALS & METHODS A total of 3368 subjects from 850 families were recruited and divided into three main groups categorized as chronic HCV CHC spontaneous viral clearance (SVC), and controls. All individuals were genotyped for three SNPs for TLR3, two SNPs for TLR7, and two SNPs for TLR8 using allelic discrimination real-time PCR. RESULTS Carriage of the C allele in three SNPs of TLR3 (rs3775290, rs3775291, and rs5743312), the C allele in TLR7 (rs3853839) in females only, and the C allele in TLR8 (rs3764879) in males only were significantly higher in SVC group than CHC group (P < 0.001), while carriage of the T allele in TLR7 (rs179008) in females only and the A allele in TLR8 (rs3764880) in both males and females were significantly higher in CHC infection more than SVC group (P < 0.001). CONCLUSION The C allele is protective of HCV in TLR3, TLR7 (rs3853839) in females only, and TLR8 (rs3764879) in males only, while risk of infection is linked to the T allele in TLR7 (rs179008) in females only and the A allele in TLR8 (rs3764880) in both sexes.
Collapse
Affiliation(s)
- M El-Bendary
- a Tropical Medicine and Hepatology Department, Faculty Of Medicine , Mansoura University , Mansoura , Egypt
| | - M Neamatallah
- b Medical Biochemistry Department, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - H Elalfy
- a Tropical Medicine and Hepatology Department, Faculty Of Medicine , Mansoura University , Mansoura , Egypt
| | - T Besheer
- a Tropical Medicine and Hepatology Department, Faculty Of Medicine , Mansoura University , Mansoura , Egypt
| | - A Elkholi
- c Gastroenterology Department , Health Insurance Hospital , Mansoura , Egypt
| | - M El-Diasty
- a Tropical Medicine and Hepatology Department, Faculty Of Medicine , Mansoura University , Mansoura , Egypt
| | - M Elsareef
- d Biochemistry Division, Chemistry Department, Faculty of Science , Menoufia University , Shebin El-Koom , Egypt
| | - M Zahran
- e Chemistry Department, Faculty of Science , Menoufia University , Shebin El-Koom , Egypt
| | - B El-Aarag
- d Biochemistry Division, Chemistry Department, Faculty of Science , Menoufia University , Shebin El-Koom , Egypt
| | - A Gomaa
- f Zoology Department, Faculty of Science , Alazhar University , Cairo , Egypt
| | - D Elhammady
- a Tropical Medicine and Hepatology Department, Faculty Of Medicine , Mansoura University , Mansoura , Egypt
| | - M El-Setouhy
- g Department of Community, Environmental, and Occupational Medicine, Faculty of Medicine , Ain-Shams University, Cairo, Egypt; Substance Abuse Research Center (SARC), Jazan University , Jazan , Kingdom of Saudi Arabia
| | - A Hegazy
- h Internal Medicine Department, Faculty of Medicine , Alazhar University , Cairo , Egypt
| | - G Esmat
- i Endemic Medicine and Endemic Hepatogastroenterology Department, Faculty of Medicine , Cairo University , Cairo , Egypt
| |
Collapse
|
40
|
Ya P, Xu H, Ma Y, Fang M, Yan X, Zhou J, Li F. Liver injury induced in Balb/c mice by PM2.5 exposure and its alleviation by compound essential oils. Biomed Pharmacother 2018; 105:590-598. [DOI: 10.1016/j.biopha.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
|
41
|
Silibinin Ameliorates O-GlcNAcylation and Inflammation in a Mouse Model of Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:ijms19082165. [PMID: 30042374 PMCID: PMC6121629 DOI: 10.3390/ijms19082165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying the progression to non-alcoholic steatohepatitis (NASH) remain to be elucidated. In the present study, we aimed to identify the proteins involved in the pathogenesis of liver tissue inflammation and to investigate the effects of silibinin, a natural polyphenolic flavonoid, on steatohepatitis. We performed comparative proteomic analysis using methionine and choline-deficient (MCD) diet-induced NASH model mice. Eighteen proteins were identified from the two-dimensional proteomic analysis, which are not only differentially expressed, but also significantly improved, by silibinin treatment. Interestingly, seven of these proteins, including keratin cytoskeletal 8 and 18, peroxiredoxin-4, and protein disulfide isomerase, are known to undergo GlcNAcylation modification, most of which are related to structural and stress-related proteins in NASH model animals. Thus, we primarily focused on how the GlcNAc modification of these proteins is involved in the progression to NASH. Remarkably, silibinin treatment alleviates the severity of hepatic inflammation along with O-GlcNAcylation in steatohepatitis. In particular, the reduction of inflammation by silibinin is due to the inhibition of the O-GlcNAcylation-dependent NF-κB-signaling pathway. Therefore, silibinin is a promising therapeutic agent for hyper-O-GlcNAcylation as well as NASH.
Collapse
|
42
|
Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2018; 63:563-576. [PMID: 29368124 DOI: 10.1007/s10620-017-4903-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) advanced to cirrhosis is often complicated by clinically significant portal hypertension, which is primarily caused by increased intrahepatic vascular resistance. Liver fibrosis has been identified as a critical determinant of this process. However, there is evidence that portal venous pressure may begin to rise in the earliest stages of NAFLD when fibrosis is far less advanced or absent. The biological and clinical significance of these early changes in sinusoidal homeostasis remains unclear. Experimental and human observations indicate that sinusoidal space restriction due to hepatocellular lipid accumulation and ballooning may impair sinusoidal flow and generate shear stress, increasingly disrupting sinusoidal microcirculation. Sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells are key partners of hepatocytes affected by NAFLD in promoting endothelial dysfunction through enhanced contractility, capillarization, adhesion and entrapment of blood cells, extracellular matrix deposition, and neovascularization. These biomechanical and rheological changes are aggravated by a dysfunctional gut-liver axis and splanchnic vasoregulation, culminating in fibrosis and clinically significant portal hypertension. We may speculate that increased portal venous pressure is an essential element of the pathogenesis across the entire spectrum of NAFLD. Improved methods of noninvasive portal venous pressure monitoring will hopefully give new insights into the pathobiology of NAFLD and help efforts to identify patients at increased risk for adverse outcomes. In addition, novel drug candidates targeting reversible components of aberrant sinusoidal circulation may prevent progression in NAFLD.
Collapse
|
43
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018. [PMID: 29474889 DOI: 10.1016/j.gpb.2017.06.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:33-49. [PMID: 29474889 PMCID: PMC6000254 DOI: 10.1016/j.gpb.2017.06.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
45
|
Strazzabosco M, Fiorotto R, Cadamuro M, Spirli C, Mariotti V, Kaffe E, Scirpo R, Fabris L. Pathophysiologic implications of innate immunity and autoinflammation in the biliary epithelium. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1374-1379. [PMID: 28754453 DOI: 10.1016/j.bbadis.2017.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
The most studied physiological function of biliary epithelial cells (cholangiocytes) is to regulate bile flow and composition, in particular the hydration and alkalinity of the primary bile secreted by hepatocytes. After almost three decades of studies it is now become clear that cholangiocytes are also involved in epithelial innate immunity, in inflammation, and in the reparative processes in response to liver damage. An increasing number of evidence highlights the ability of cholangiocyte to undergo changes in phenotype and function in response to liver damage. By participating actively to the immune and inflammatory responses, cholangiocytes represent a first defense line against liver injury from different causes. Indeed, cholangiocytes express a number of receptors able to recognize pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), such as Toll-like receptors (TLR), which modulate their pro-inflammatory behavior. Cholangiocytes can be both the targets and the initiators of the inflammatory process. Derangements of the signals controlling these mechanisms are at the basis of the pathogenesis of different cholangiopathies, both hereditary and acquired, such as cystic fibrosis-related liver disease and sclerosing cholangitis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Mario Strazzabosco
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA; International Center for Digestive Health, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Milan, Italy.
| | - Romina Fiorotto
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA; International Center for Digestive Health, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Milan, Italy
| | - Massimiliano Cadamuro
- International Center for Digestive Health, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Milan, Italy
| | - Carlo Spirli
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA; International Center for Digestive Health, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Milan, Italy
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Eleanna Kaffe
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Roberto Scirpo
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luca Fabris
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA; International Center for Digestive Health, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Milan, Italy; Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| |
Collapse
|
46
|
Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int 2017; 12:24-33. [PMID: 28550391 DOI: 10.1007/s12072-017-9798-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
The term gut-liver axis is used to highlight the close anatomical and functional relationship between the intestine and the liver. The intestine has a highly specialized epithelial membrane which regulates transport across the mucosa. Due to dysbiosis, impairment of the intestinal barrier and altered immunity status, bacterial products can reach the liver through the portal vein, where they are recognized by specific receptors, activate the immune system and lead to a proinflammatory response. Gut microbiota and bacterial translocation play an important role in the pathogenesis of chronic liver diseases, including alcoholic and non-alcoholic fatty liver disease, cirrhosis, and its complications, such as portal hypertension, spontaneous bacterial peritonitis and hepatic encephalopaty. The gut microbiota also plays a critical role as a modulator of bile acid metabolism which can also influence intestinal permeability and portal hypertension through the farnesoid-X receptor. On the other hand, cirrhosis and portal hypertension affect the microbiota and increase translocation, leading to a "chicken and egg" situation, where translocation increases portal pressure, and vice versa. A myriad of therapies targeting gut microbiota have been evaluated specifically in patients with chronic liver disease. Further studies targeting intestinal microbiota and its possible hemodynamic and metabolic effects are needed. This review summarizes the current knowledge about the role of gut microbiota in the pathogenesis of chronic liver diseases and portal hypertension.
Collapse
Affiliation(s)
- Juan P Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.,Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rosa M Martin-Mateos
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First ST SW, Rochester, MN, USA.
| |
Collapse
|
47
|
Lin SH, Chung PH, Wu YY, Fung CP, Hsu CM, Chen LW. Inhibition of nitric oxide production reverses diabetes-induced Kupffer cell activation and Klebsiella pneumonia liver translocation. PLoS One 2017; 12:e0177269. [PMID: 28493939 PMCID: PMC5426676 DOI: 10.1371/journal.pone.0177269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
Klebsiella pneumoniae (KP) is the most common pathogen of pyogenic liver abscess in East and Southeast Asia and diabetes mellitus (DM) is a major risk factor. The effect and mechanism of diabetes on KP liver abscess was examined in streptozotocin-induced diabetic mice and Akita mice (C57BL/6J-Ins2Akita). KP translocation to liver and plasma alaine transaminase levels were increased and liver clearance of KP was decreased in DM mice. Diabetic mice exhibited overgrowth of Enterococcus as well as E.coli and decreased lactobacilli/bifidas growth in intestine, increased intestinal iNOS protein and nitrite levels in portal vein, and increased IL-1β and TNF-α expression of Kupffer cells. Fructooligosaccharides (FOS) or dead L. salivarius (dLac) supplementation reversed diabetes-induced enteric dysbiosis, NO levels in portal vein, and KP translocation to liver. L-NAME treatment decreased intestinal iNOS protein expression as well as Kupffer cell activation and increased liver clearance of KP in DM mice. Dead E.coli (2×108 CFU/ml) feeding for one week induced iNOS and TLR4 expression of intestine in germ-free (GF) mice. Dead bacteria feeding induced IL-1β and TNF-α expression of Kupffer cells in GF mice but not in GF TLR4-/- mice. In conclusion, balance of intestinal microflora is important for preventing intestinal iNOS expression, Kupffer cell activation, and KP liver translocation in diabetes. Reversal of diabetes-induced enteric dysbiosis with FOS or dead L. salivarius decreases diabetes-induced intestinal iNOS expression and KP liver translocation. Diabetes induces Kupffer cell activation and KP liver translocation through enteric dysbiosis and nitric oxide production.
Collapse
Affiliation(s)
- Shu-Han Lin
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Hsuan Chung
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ying-Ying Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chang-Phone Fung
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Zayed RA, Omran D, Mokhtar DA, Zakaria Z, Ezzat S, Soliman MA, Mobarak L, El-Sweesy H, Emam G. Association of Toll-Like Receptor 3 and Toll-Like Receptor 9 Single Nucleotide Polymorphisms with Hepatitis C Virus Infection and Hepatic Fibrosis in Egyptian Patients. Am J Trop Med Hyg 2017; 96:720-726. [PMID: 28093541 DOI: 10.4269/ajtmh.16-0644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) are recognized as fundamental contributors to the immune system function against infections. Hepatitis C virus (HCV) infection represents a global health problem especially in Egypt having the highest HCV prevalence worldwide where HCV infection is a continuing epidemic. The aim of the present study was to investigate the possible association between genetic variation in TLR-3 and TLR-9 and HCV infection and hepatic fibrosis in chronic HCV-positive Egyptian patients. The present study included 100 naïve chronic HCV-positive patients and 100 age- and sex-matched healthy controls. Genotyping of TLR-3 (_7 C/A [rs3775296]), TLR-3 (c.1377C/T [rs3775290]) and TLR-9 (1237T/C [rs5743836]) were done by polymerase chain reaction restriction fragment length polymorphism technique. Frequency of polymorphic genotypes in TLR-3 (_7 C/A), TLR-3 (c.1377C/T) and TLR-9 (1237T/C) were not significantly different between studied HCV-positive patients and controls with P values 0.121, 0.112, and 0.683, respectively. TLR-3 c.1377 T-allele was associated with advanced stage of hepatic fibrosis (P = 0.003).
Collapse
Affiliation(s)
- Rania A Zayed
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Omran
- Department of Endemic Medicine and Hepato-gastroentrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doha A Mokhtar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Zinab Zakaria
- Department of Endemic Medicine and Hepato-gastroentrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sameera Ezzat
- Community Medicine Department, National Liver Institute, Menofia University, Menofia, Egypt
| | - Mohamed A Soliman
- Specialized Liver Unit, Kasr Alainy Hospital, Cairo University, Cairo, Egypt
| | - Lamiaa Mobarak
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Hossam El-Sweesy
- Tropical Medicine Department, Cairo Fatemic Hospital, Ministry of Health, Cairo, Egypt
| | - Ghada Emam
- Clinical Pathology Department, National Institute of Neuromotor System, Cairo, Egypt
| |
Collapse
|
49
|
Noor MT, Manoria P. Immune Dysfunction in Cirrhosis. J Clin Transl Hepatol 2017; 5:50-58. [PMID: 28507927 PMCID: PMC5411357 DOI: 10.14218/jcth.2016.00056] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis due to any etiology disrupts the homeostatic role of liver in the body. Cirrhosis-associated immune dysfunction leads to alterations in both innate and acquired immunity, due to defects in the local immunity of liver as well as in systemic immunity. Cirrhosis-associated immune dysfunction is a dynamic phenomenon, comprised of both increased systemic inflammation and immunodeficiency, and is responsible for 30% mortality. It also plays an important role in acute as well as chronic decompensation. Immune paralysis can accompany it, which is characterized by increase in anti-inflammatory cytokines and suppression of proinflammatory cytokines. There is also presence of increased gut permeability, reduced gut motility and altered gut flora, all of which leads to increased bacterial translocation. This increased bacterial translocation and consequent endotoxemia leads to increased blood stream bacterial infections that cause systemic inflammatory response syndrome, sepsis, multiorgan failure and death. The gut microbiota of cirrhotic patients has more pathogenic microbes than that of non-cirrhotic individuals, and this disturbs the homeostasis and favors gut translocation. Prompt diagnosis and treatment of such infections are necessary for better survival. We have reviewed the various mechanisms of immune dysfunction and its consequences in cirrhosis. Recognizing the exact pathophysiology of immune dysfunction will help treating clinicians in avoiding its complications in their patients and can lead to newer therapeutic interventions and reducing the morbidity and mortality rates.
Collapse
Affiliation(s)
- Mohd Talha Noor
- Department of Gastroenterology, Sri Aurobindo Medical College and Post Graduate Institute, Indore, India
- *Correspondence to: Mohd Talha Noor, Department of Gastroenterology, Sri Aurobindo Medical College and Post Graduate Institute, Indore 453 111, India. Tel: +91-7314231751, +91-8305421496, Fax: +91-7314231012, E-mail: ,
| | - Piyush Manoria
- Department of Gastroenterology, Sri Aurobindo Medical College and Post Graduate Institute, Indore, India
| |
Collapse
|
50
|
Aravalli RN, Steer CJ. Immune-Mediated Therapies for Liver Cancer. Genes (Basel) 2017; 8:E76. [PMID: 28218682 PMCID: PMC5333065 DOI: 10.3390/genes8020076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
In recent years, immunotherapy has gained renewed interest as an alternative therapeutic approach for solid tumors. Its premise is based on harnessing the power of the host immune system to destroy tumor cells. Development of immune-mediated therapies, such as vaccines, adoptive transfer of autologous immune cells, and stimulation of host immunity by targeting tumor-evasive mechanisms have advanced cancer immunotherapy. In addition, studies on innate immunity and mechanisms of immune evasion have enhanced our understanding on the immunology of liver cancer. Preclinical and clinical studies with immune-mediated therapies have shown potential benefits in patients with liver cancer. In this review, we summarize current knowledge and recent developments in tumor immunology by focusing on two main primary liver cancers: hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|