1
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
3
|
Gong Y, Zhang Y, Li B, Xiao Y, Zeng Q, Xu K, Duan Y, He J, Ma H. Insight into Liver lncRNA and mRNA Profiling at Four Developmental Stages in Ningxiang Pig. BIOLOGY 2021; 10:310. [PMID: 33917834 PMCID: PMC8068270 DOI: 10.3390/biology10040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
Ningxiang pigs, a fat-type pig, are native to Ningxiang County in Hunan Province, with thousands of years of breeding history. This study aims to explore the expression profiles and functional networks on messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) in the liver. Liver tissue of Ningxiang piglets was collected at 30, 90, 150, and 210 days after birth (four development stages), and the mRNA and lncRNA expression was profiled. Compared to mRNA and lncRNA expression profiles, most differentially expressed mRNAs (DEmRNAs) were upregulated at 30 days; however, most DElncRNAs were downregulated at 210 days. Via Short Time-series Expression Miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), a complex interaction between mRNAs and lncRNAs was identified, indicating that lncRNAs may be a critical regulatory element for mRNAs. One module of genes in particular (module profile 4) was related to fibril organization, vasculogenesis, GTPase activator activity, and regulation of kinase activity. The mRNAs and lncRNAs in module profile 4 had a similar pattern of expression, indicating that they have functional and regulatory relationships. Only CAV1, PACSIN2, and CDC42 in the particular mRNA profile 4 were the target genes of lncRNAs in that profile, which shows the possible regulatory relationship between lncRNAs and mRNAs. The expression of these genes and lncRNAs in profile 4 was the highest at 30 days, and it is believed that these RNAs may play a critical role during the suckling period in order to meet the dietary requirements of piglets. In the lncRNA-mRNA co-expression network, the identified gene hubs and associated lncRNAs were shown to be involved in saccharide, lipid, and glucose metabolism, which may play an important role in the development and health of the liver. This result will lead to further investigation of liver lncRNA functions at various stages of development in Ningxiang pigs.
Collapse
Affiliation(s)
- Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
- Ningxiang Pig Farm of Dalong Livestock Technology Co. Ltd., Ningxiang 410600, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, China; (K.X.); (Y.D.)
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, China; (K.X.); (Y.D.)
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| |
Collapse
|
4
|
Deng G, Li Y, Ma S, Gao Z, Zeng T, Chen L, Ye H, Yang M, Shi H, Yao X, Zeng Z, Chen Y, Song Y, Liu B, Gao L. Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress. Free Radic Biol Med 2020; 148:151-161. [PMID: 31877357 DOI: 10.1016/j.freeradbiomed.2019.12.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a new regulated cells death manner defined as results of iron-dependent accumulation of lipid peroxidation. However, the specific mechanisms of regulating ferroptosis remain unclear. In our present study, we demonstrated that Caveolin-1 (Cav-1) played a central role in protecting hepatocytes against ferroptosis in autoimmunity-mediated hepatitis (AIH). The down-regulated Cav-1 in liver tissues, accompanied by ferroptotic events and RNS production, were contributed to the outcome of ConA-induced hepatic damage, which were rescued by ferrostatin-1 (an inhibitor of ferroptosis) in vivo and in vitro. Additionally, Cav-1 deficiency aggravated ConA-induced hepatocellular death and ferroptosis associated with excessive nitrogen stress response. Short hairpin RNA of Cav-1 in hepatocytes promoted ferroptosis and nitrative stress in response to erastin in vitro, which was ameliorated by Cav-1 over-expression. Meanwhile, administration of the iNOS inhibitor (1400W) or ONOO- scavenger (Fe-TMPyP), diminished reactive nitrogen species (RNS), remarkably reduced hepatocytes ferroptosis and attenuated ConA-induced liver damage. Furthermore, immune inhibition by gadolinium chloride (GdCl3), a well-known Kupffer cell depletor, elevated hepatic Cav-1 but inhibited ferroptosis and nitrative stress under ConA exposure. In conclusion, these data revealed a novel molecular mechanism of ferroptosis with the Cav-1 regulation was essential for pathogenesis of ConA-induced hepatitis. Downstream of Cav-1, RNS-mediated ferroptosis was a pivotal step that drives the execution of acute immune-mediated hepatic damage.
Collapse
Affiliation(s)
- Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuoyi Ma
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Zhuowei Gao
- Shunde Hospital, Guangzhou University of Chinese Medicine, Foshan, 528333, Guangdong, China; Shunde Hospital, Southern Medical University, Foshan, 528308, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Limei Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Haixin Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaofen Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhiyun Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuhong Song
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Bing Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Cav-1 deficiency promotes liver fibrosis in carbon tetrachloride (CCl 4)-induced mice by regulation of oxidative stress and inflammation responses. Biomed Pharmacother 2018; 102:26-33. [PMID: 29549726 DOI: 10.1016/j.biopha.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022] Open
Abstract
Caveolin-1 (Cav-1), as a membrane protein involved in the formation of caveolae, binds steroid receptors and endothelial nitric oxide synthase, limiting its translocation and activation. In the present study, we investigated the role of Cav-1 in the progression of hepatic fibrosis induced by carbon tetrachloride (CCl4) in murine animals. Therefore, the wild type (WT) and Cav-1-knockout (Cav-1-/-) mice were used in our study and subjected to CCl4. The results indicated that CCl4 induced the decrease of Cav-1 expression in liver tissue samples. And Cav-1-/- intensified CCl4-triggered hepatic injury, evidenced by the stronger hepatic histological alterations, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and liver terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. CCl4 led to oxidative stress, supported by the reduced superoxide dismutase (SOD) activity and glutathione (GSH) levels, as well as enhanced malondialdehyde (MDA) and O2- levels in liver samples. And the process was intensified by Cav-1-/-. Additionally, CCl4-caused hepatic inflammation was aggregated by Cav-1-/- via further increasing the secretion of pro-inflammatory cytokines. Moreover, CCl4-caused fibrosis was strengthened by Cav-1-/-, which was evidenced by the up-regulation of α-smooth muscle actin (α-SMA), collagen alpha 1 type 1 (Col1A1), lysyl oxidase (Lox) and transforming growth factor-β1 (TGF-β1) in liver tissues. Similar results were observed in TGF-β1-stimulated hepatic stellate cells (HSCs) and LX-2 cells without Cav-1 expressions that in vitro, suppressing Cav-1 further accelerated TGF-β1-induced oxidative stress, inflammation and fibrosis development. In conclusion, our results indicated that Cav-1 played an important role in CCl4-induced hepatic injury, which may be used as potential therapeutic target for hepatic fibrosis treatment.
Collapse
|
6
|
Singh S, Liu S, Rockey DC. Caveolin-1 is upregulated in hepatic stellate cells but not sinusoidal endothelial cells after liver injury. Tissue Cell 2016; 48:126-32. [PMID: 26847875 DOI: 10.1016/j.tice.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 01/03/2023]
Abstract
Sinusoidal endothelial cells (SEC) and hepatic stellate cells (HSC) are closely associated specialized vascular cells residing in the hepatic sinusoid. These cells have been shown to play important roles in many different pathophysiologic processes, in particular in liver fibrosis/cirrhosis and portal hypertension. Caveolin-1 functions as a scaffolding protein, and has a variety of functions including in many disease states, such as liver cirrhosis. Although previous studies have shown that in the injured rat liver, caveolin-1 is upregulated, the precise cells in which remains unclear. Therefore, the purpose of this study was to clarify the cell type (or types) in which caveolin-1 is expressed in normal and injured rat liver. We have utilized both detailed immunohistochemical labeling with cell specific markers as well as cell isolation techniques (isolating sinusoidal endothelial cells, HSCs, and hepatocytes) in normal and injured (bile duct ligation) rat liver. We show here that in the normal liver caveolin-1 is expressed predominantly in HSCs and SECs but after liver injury there is upregulation of caveolin-1 in HSCs, but not in SECs. These data have functional implications for the cells in which caveolin-1 is regulated.
Collapse
Affiliation(s)
- Shweta Singh
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Songling Liu
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Don C Rockey
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States.
| |
Collapse
|
7
|
Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, Han C, Li X, Leng Z, Li Y, Ji X, Zou W, Liu J. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep 2015; 13:1487-94. [PMID: 26717806 PMCID: PMC4732856 DOI: 10.3892/mmr.2015.4743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/25/2015] [Indexed: 12/20/2022] Open
Abstract
Human adipose-derived stem cells (hADSCs), widely present in the adult human body, are an emerging and attractive tool for the establishment of stem cell-based therapies for the treatment of liver disease. However, the mechanism underlying hADSCs hepatic differentiation remains to be elucidated. Caveolin-1 (Cav-1), a 21–24 kDa membrane structural protein, is important in liver regeneration and development. In the present study, fluorescence immuno-cytochemistry and western blotting were used to analyze the expression levels of Cav-1 and evaluate its effects on the hepatic differentiation of hADSCs. The results revealed that primary hADSCs preserved the ability to proliferate and differentiate into hepatocyte-like cells. As demonstrated by semiquantitative reverse transcription-polymerase chain reaction, hepatocyte-inducing factors significantly increased the expression of Cav-1 in a time-dependent manner, as indicated by increased expression levels of the albumin (ALB) and α-fetoprotein (AFP) markers. In addition the expression levels of ALB and HNF1A significantly decreased following small interfering RNA-mediated knockdown of Cav-1. The mitogen-activated protein kinase (MAPK) signaling pathway was activated during hepatic differentiation and inhibited following Cav-1 knockdown. These results suggested that Cav-1 may regulate the hepatocyte-like differentiation of hADSCs by modulating mitogen-activated protein kinase kinase/MAPK signaling. The results of the present study will provide experimental and theoretical basis for further clinical studies on stem cell transplantation in the treatment of liver disease.
Collapse
Affiliation(s)
- Xin Guan
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Nan Wang
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Fenggong Cui
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Yang Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Peng Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jingyuan Zhao
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Han
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoyan Li
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhiqian Leng
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ying Li
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaofei Ji
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wei Zou
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Jing Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
8
|
Rey-Barroso J, Alvarez-Barrientos A, Rico-Leo E, Contador-Troca M, Carvajal-Gonzalez JM, Echarri A, Del Pozo MA, Fernandez-Salguero PM. The Dioxin receptor modulates Caveolin-1 mobilization during directional migration: role of cholesterol. Cell Commun Signal 2014; 12:57. [PMID: 25238970 PMCID: PMC4172968 DOI: 10.1186/s12964-014-0057-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/05/2014] [Indexed: 01/16/2023] Open
Abstract
Background Adhesion and migration are relevant physiological functions that must be regulated by the cell under both normal and pathological conditions. The dioxin receptor (AhR) has emerged as a transcription factor regulating both processes in mesenchymal, epithelial and endothelial cells. Indirect results suggest that AhR could cooperate not only with additional transcription factors but also with membrane-associated proteins to drive such processes. Results In this study, we have used immortalized and primary dermal fibroblasts from wild type (AhR+/+) and AhR-null (AhR−/−) mice to show that AhR modulates membrane distribution and mobilization of caveolin-1 (Cav-1) during directional cell migration. AhR co-immunoprecipitated with Cav-1 and a fraction of both proteins co-localized to detergent-resistant membrane microdomains (DRM). Consistent with a role of AhR in the process, AhR−/− cells had a significant reduction in Cav-1 in DRMs. Moreover, high cell density reduced AhR nuclear levels and moved Cav-1 from DRMs to the soluble membrane in AhR+/+ but not in AhR−/− cells. Tyrosine-14 phosphorylation had a complex role in the mechanism since its upregulation reduced Cav-1 in DRMs in both AhR+/+ and AhR−/−cells, despite the lower basal levels of Y14-Cav-1 in the null cells. Fluorescence recovery after photobleaching revealed that AhR knock-down blocked Cav-1 transport to the plasma membrane, a deficit possibly influencing its depleted levels in DRMs. Membrane distribution of Cav-1 in AhR-null fibroblasts correlated with higher levels of cholesterol and with disrupted membrane microdomains, whereas addition of exogenous cholesterol changed the Cav-1 distribution of AhR+/+ cells to the null phenotype. Consistently, higher cholesterol levels enhanced caveolae-dependent endocytosis in AhR-null cells. Conclusions These results suggest that AhR modulates Cav-1 distribution in migrating cells through the control of cholesterol-enriched membrane microdomains. Our study also supports the likely possibility of membrane-related, transcription factor independent, functions of AhR. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0057-7) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Gao L, Zhou Y, Zhong W, Zhao X, Chen C, Chen X, Gu Y, Chen J, Lv Z, Shen J. Caveolin-1 is essential for protecting against binge drinking-induced liver damage through inhibiting reactive nitrogen species. Hepatology 2014; 60:687-99. [PMID: 24710718 DOI: 10.1002/hep.27162] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/02/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Caveolin-1 (Cav-1) is known to participate in many diseases, but its roles in alcoholic liver injury remain unknown. In the present study, we aimed to explore the roles of Cav-1 in protecting hepatocytes from ethanol-mediated nitrosative injury. We hypothesized that Cav-1 could attenuate ethanol-mediated nitrosative stress and liver damage through regulating epidermal growth factor receptor/signal transducer and activator of transcription 3/inducible nitric oxide synthase (EGFR/STAT3/iNOS)-signaling cascades. Ethanol-fed mice had time- and dose-dependent increases of Cav-1 in serum and liver with peak increase at 12 hours. Compared to wild-type mice, Cav-1 deficiency mice revealed higher expression of iNOS, higher levels of nitrate/nitrite and peroxynitrite, and had more serious liver damage, accompanied with higher levels of cleaved caspase-3 and apoptotic cell death in liver, and higher levels of alanine aminotransferase and aspartate aminotransferase in serum. Furthermore, the results revealed that the ethanol-mediated Cav-1 increase was in an extracellular signal-regulated kinase-dependent manner, and Cav-1 protected hepatocytes from ethanol-mediated apoptosis by inhibiting iNOS activity and regulating EGFR- and STAT3-signaling cascades. In agreement with these findings, clinical trials in human subjects revealed that serum Cav-1 level was time dependently elevated and peak concentration was observed 12 hours after binge drinking. Alcohol-induced liver lesions were negatively correlated with Cav-1 level, but positively correlated with nitrate/nitrite level, in serum of binge drinkers. CONCLUSIONS Cav-1 could be a cellular defense protein against alcoholic hepatic injury through inhibiting reactive nitrogen species and regulating EGFR/STAT3/iNOS-signaling cascades.
Collapse
Affiliation(s)
- Lei Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Qiu Y, Liu S, Chen HT, Yu CH, Teng XD, Yao HT, Xu GQ. Upregulation of caveolin-1 and SR-B1 in mice with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2013; 12:630-636. [PMID: 24322749 DOI: 10.1016/s1499-3872(13)60099-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of liver diseases, with markedly increased prevalence. However, its mechanisms are not clear. The present study was undertaken to illustrate the role of caveolin-1 (cav1) and the scavenger receptor class B type 1 (SR-B1) in NAFLD. METHODS Adult male C57BL/6 mice were fed with a normal diet or high fat and cholesterol (HFC) diet for 14 weeks. The mice were sacrificed to collect plasma and harvest the liver; their plasma lipid concentration was measured. Hepatic cav1 and SR-B1 mRNA and protein expression were determined by real-time quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. In order to study cav1 and SR-B1 distribution and change in hepatocytes, immunohistochemical analysis was performed. RESULTS HFC diet increased plasma lipids, induced NAFLD and increased the liver/body weight ratio. Compared to the control mice (n=6), the mRNA and protein levels of cav1 and SR-B1 in liver tissue of the NAFLD mice (n=12) increased significantly (cav1 mRNA: 1.536+/-0.226 vs 0.980+/-0.272, P<0.05; protein: 0.643+/-0.240 vs 0.100+/-0.130, P<0.01; SR-B1 mRNA: 1.377+/-0.125 vs 0.956+/-0.151, P<0.01; protein: 2.156+/-0.507 vs 0.211+/-0.211, P<0.01). Furthermore, both cav1 and SR-B1 immunoreactivity increased and their distribution was also changed, mainly in the plasma membrane of hepatocytes, cytoplasm and membrane of lipid droplets and around. CONCLUSION NAFLD is associated with increased concentration of plasma lipids and upregulation of hepatic cav1 and SR-B1 gene and protein expressions, which indicate that cav1 and SR-B1 might play crucial roles in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
12
|
The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Res Ther 2013; 4:90. [PMID: 23899671 PMCID: PMC3854699 DOI: 10.1186/scrt276] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stem cells are an important resource for tissue repair and regeneration. While a great deal of attention has focused on derivation and molecular regulation of stem cells, relatively little research has focused on how the subcellular structure and composition of the cell membrane influences stem cell activities such as proliferation, differentiation and homing. Caveolae are specialized membrane lipid rafts coated with caveolin scaffolding proteins, which can regulate cholesterol transport and the activity of cell signaling receptors and their downstream effectors. Caveolin-1 is involved in the regulation of many cellular processes, including growth, control of mitochondrial antioxidant levels, migration and senescence. These activities are of relevance to stem cell biology, and in this review evidence for caveolin-1 involvement in stem cell biology is summarized. Altered stem and progenitor cell populations in caveolin-1 null mice suggest that caveolin-1 can regulate stem cell proliferation, and in vitro studies with isolated stem cells suggest that caveolin-1 regulates stem cell differentiation. The available evidence leads us to hypothesize that caveolin-1 expression may stabilize the differentiated and undifferentiated stem cell phenotype, and transient downregulation of caveolin-1 expression may be required for transition between the two. Such regulation would probably be critical in regenerative applications of adult stem cells and during tissue regeneration. We also review here the temporal changes in caveolin-1 expression reported during tissue repair. Delayed muscle regeneration in transgenic mice overexpressing caveolin-1 as well as compromised cardiac, brain and liver tissue repair and delayed wound healing in caveolin-1 null mice suggest that caveolin-1 plays an important role in tissue repair, but that this role may be negative or positive depending on the tissue type and the nature of the repair process. Finally, we also discuss how caveolin-1 quiescence-inducing activities and effects on mitochondrial antioxidant levels may influence stem cell aging.
Collapse
|
13
|
Obayashi Y, Campbell JS, Fausto N, Yeung RS. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration. Biochem Biophys Res Commun 2013; 437:146-50. [DOI: 10.1016/j.bbrc.2013.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 01/20/2023]
|
14
|
Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Rep 2013; 4:238-47. [DOI: 10.1016/j.celrep.2013.06.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 03/04/2013] [Accepted: 06/14/2013] [Indexed: 12/14/2022] Open
|
15
|
Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS One 2012. [PMID: 23049990 DOI: 10.1371/journal.pone0046242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1(-/-) mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1(-/-) adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1(+/+) mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1(-/-) mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.
Collapse
|
16
|
Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model. PLoS One 2012; 7:e46242. [PMID: 23049990 PMCID: PMC3458842 DOI: 10.1371/journal.pone.0046242] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022] Open
Abstract
Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1−/− mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1−/− adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1+/+ mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1−/− mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.
Collapse
|
17
|
Xu C, Yang Y, Yang J, Chen X, Wang G. Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration. Cell Mol Biol Lett 2012; 17:274-88. [PMID: 22396140 PMCID: PMC6275568 DOI: 10.2478/s11658-012-0011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/22/2012] [Indexed: 12/22/2022] Open
Abstract
To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12-15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5-7, 9-10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007, P.R. China.
| | | | | | | | | |
Collapse
|
18
|
Fernández-Rojo MA, Restall C, Ferguson C, Martel N, Martin S, Bosch M, Kassan A, Leong GM, Martin SD, McGee SL, Muscat GEO, Anderson RL, Enrich C, Pol A, Parton RG. Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology 2012; 55:1574-84. [PMID: 22105343 DOI: 10.1002/hep.24810] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022]
Abstract
UNLABELLED Caveolin-1 (CAV1) is a structural protein of caveolae involved in lipid homeostasis and endocytosis. Using newly generated pure Balb/C CAV1 null ((Balb/C)CAV1-/-) mice, CAV1-/- mice from Jackson Laboratories ((JAX)CAV1-/-), and CAV1-/- mice developed in the Kurzchalia Laboratory ((K)CAV1-/-), we show that under physiological conditions CAV1 expression in mouse tissues is necessary to guarantee an efficient progression of liver regeneration and mouse survival after partial hepatectomy. Absence of CAV1 in mouse tissues is compensated by the development of a carbohydrate-dependent anabolic adaptation. These results were supported by extracellular flux analysis of cellular glycolytic metabolism in CAV1-knockdown AML12 hepatocytes, suggesting cell autonomous effects of CAV1 loss in hepatic glycolysis. Unlike in (K)CAV1-/- livers, in (JAX)CAV1-/- livers CAV1 deficiency is compensated by activation of anabolic metabolism (pentose phosphate pathway and lipogenesis) allowing liver regeneration. Administration of 2-deoxy-glucose in (JAX)CAV1-/- mice indicated that liver regeneration in (JAX)CAV1-/- mice is strictly dependent on hepatic carbohydrate metabolism. Moreover, with the exception of regenerating (JAX)CAV1-/- livers, expression of CAV1 in mice is required for efficient hepatic lipid storage during fasting, liver regeneration, and diet-induced steatosis in the three CAV1-/- mouse strains. Furthermore, under these conditions CAV1 accumulates in the lipid droplet fraction in wildtype mouse hepatocytes. CONCLUSION Our data demonstrate that lack of CAV1 alters hepatocyte energy metabolism homeostasis under physiological and pathological conditions.
Collapse
|
19
|
Morais C, Ebrahem Q, Anand-Apte B, Parat MO. Altered angiogenesis in caveolin-1 gene-deficient mice is restored by ablation of endothelial nitric oxide synthase. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1702-14. [PMID: 22322296 DOI: 10.1016/j.ajpath.2011.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 01/01/2023]
Abstract
Caveolin-1 is an essential structural protein of caveolae, specialized plasma membrane organelles highly abundant in endothelial cells, where they regulate multiple functions including angiogenesis. Caveolin-1 exerts a tonic inhibition of endothelial nitric oxide synthase (eNOS) activity. Accordingly, caveolin-1 gene-disrupted mice have enhanced eNOS activity as well as increased systemic nitric oxide (NO) levels. We hypothesized that excess eNOS activity, secondary to caveolin deficiency, would mediate the decreased angiogenesis observed in caveolin-1 gene-disrupted mice. We tested tumor angiogenesis in mice lacking either one or both proteins, using in vitro, ex vivo, and in vivo assays. We show that endothelial cell migration, tube formation, cell sprouting from aortic rings, tumor growth, and angiogenesis are all significantly impaired in both caveolin-1-null and eNOS-null mice. We further show that these parameters were either partially or fully restored in double knockout mice that lack both caveolin-1 and eNOS. Furthermore, the effects of genetic ablation of eNOS are mimicked by the administration of the NOS inhibitor N-nitro-L-arginine methyl ester hydrochloride (L-NAME), including the reversal of the caveolin-1-null mouse angiogenic phenotype. This study is the first to demonstrate the detrimental effects of unregulated eNOS activity on angiogenesis, and shows that impaired tumor angiogenesis in caveolin-1-null mice is, at least in part, the result of enhanced eNOS activity.
Collapse
Affiliation(s)
- Christudas Morais
- University of Queensland School of Pharmacy, Woolloongabba, Australia
| | | | | | | |
Collapse
|
20
|
Functional Relationships between Lipid Metabolism and Liver Regeneration. Int J Hepatol 2012; 2012:549241. [PMID: 22319652 PMCID: PMC3272806 DOI: 10.1155/2012/549241] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022] Open
Abstract
The regenerative capacity of the liver is well known, and the mechanisms that regulate this process have been extensively studied using experimental model systems including surgical resection and hepatotoxin exposure. The response to primary mitogens has also been used to investigate the regulation of hepatocellular proliferation. Such analyses have identified many specific cytokines and growth factors, intracellular signaling events, and transcription factors that are regulated during and necessary for normal liver regeneration. Nevertheless, the nature and identities of the most proximal events that initiate hepatic regeneration as well as those distal signals that terminate this process remain unknown. Here, we review the data implicating acute alterations in lipid metabolism as important determinants of experimental liver regeneration and propose a novel metabolic model of regeneration based on these data. We also discuss the association between chronic hepatic steatosis and impaired regeneration in animal models and humans and consider important areas for future research.
Collapse
|
21
|
Pagano MA, Tibaldi E, Gringeri E, Brunati AM. Tyrosine phosphorylation and liver regeneration: A glance at intracellular transducers. IUBMB Life 2011; 64:27-35. [DOI: 10.1002/iub.576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/15/2011] [Indexed: 12/30/2022]
|
22
|
Mo S, Yang S, Cui Z. New glimpses of caveolin-1 functions in embryonic development and human diseases. FRONTIERS IN BIOLOGY 2011; 6:367. [PMID: 32215005 PMCID: PMC7089126 DOI: 10.1007/s11515-011-1132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from {itCaenorhabditis elegans} to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.
Collapse
Affiliation(s)
- Saijun Mo
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Shengli Yang
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Zongbin Cui
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|
23
|
Delgado-Coello B, Briones-Orta MA, Macías-Silva M, Mas-Oliva J. Cholesterol: recapitulation of its active role during liver regeneration. Liver Int 2011; 31:1271-84. [PMID: 21745289 DOI: 10.1111/j.1478-3231.2011.02542.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver regeneration is a compensatory hyperplasia produced by several stimuli that promotes proliferation in order to provide recovery of the liver mass and architecture. This process involves complex signalling cascades that receive feedback from autocrine and paracrine pathways, recognized by parenchymal as well as non-parenchymal cells. Nowadays the dynamic role of lipids in biological processes is widely recognized; however, a systematic analysis of their importance during liver regeneration is still missing. Therefore, in this review we address the role of lipids including the bioactive ones such as sphingolipids, but with special emphasis on cholesterol. Cholesterol is not only considered as a structural component but also as a relevant lipid involved in the control of the intermediate metabolism of different liver cell types such as hepatocytes, hepatic stellate cells and Kupffer cells. Cholesterol plays a significant role at the level of specific membrane domains, as well as modulating the expression of sterol-dependent proteins. Moreover, several enzymes related to the catabolism of cholesterol and whose activity is down regulated are related to the protection of liver tissue from toxicity during the process of regeneration. This review puts in perspective the necessity to study and understand the basic mechanisms involving lipids during the process of liver regeneration. On the other hand, the knowledge acquired in this area in the past years, can be considered invaluable in order to provide further insights into processes such as general organogenesis and several liver-related pathologies, including steatosis and fibrosis.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF Mexico
| | | | | | | |
Collapse
|
24
|
Mastrodonato M, Calamita G, Rossi R, Mentino D, Bonfrate L, Portincasa P, Ferri D, Liquori GE. Altered distribution of caveolin-1 in early liver steatosis. Eur J Clin Invest 2011; 41:642-651. [PMID: 21250982 DOI: 10.1111/j.1365-2362.2010.02459.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Caveolin-1, the main structural protein of caveolae, is involved in cholesterol homoeostasis, transcytosis, endocytosis and signal transduction and thought to play an important role in lipidogenesis. Little is known about the pathophysiological role of caveolin-1 in nonalcoholic fatty liver disease (NAFLD), a condition frequently associated with the metabolic syndrome and characterized by abnormal accumulation of intrahepatic triglycerides with a potentially harmful risk of evolution to liver fibrosis, cirrhosis and hepatocellular carcinoma. MATERIALS AND METHODS Liver steatosis (micro/macrovesicular) was induced in adult rats fed a choline-deficient diet for 14days and compared with a control normal diet. The expression and subcellular distribution of caveolin-1 was assessed using light and electron microscopy by immunohistochemical and immunocytochemical techniques and by Western blotting. RESULTS Caveolin-1 was mainly associated with the hepatocyte basolateral plasma membrane. Fatty hepatocytes were characterized by a significant increase in the expression of caveolin-1 around and within the lipid droplets as well as in the inner membrane of mitochondria. CONCLUSIONS Our data suggest the involvement of caveolin-1 in the case of abnormal lipogenesis and mitochondrial function typical of steatotic hepatocytes in NAFLD. Addressing the role played by caveolin-1 in liver membranes in NAFLD may help future therapeutic choices in a frequent metabolic liver disease.
Collapse
Affiliation(s)
- Maria Mastrodonato
- Department of Animal and Environmental Biology, Aldo Moro University, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Damrauer SM, Studer P, da Silva CG, Longo CR, Ramsey HE, Csizmadia E, Shrikhande GV, Scali ST, Libermann TA, Bhasin MK, Ferran C. A20 modulates lipid metabolism and energy production to promote liver regeneration. PLoS One 2011; 6:e17715. [PMID: 21437236 PMCID: PMC3060102 DOI: 10.1371/journal.pone.0017715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/10/2011] [Indexed: 01/18/2023] Open
Abstract
Background Liver Regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR) in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice. Methodology and Principal Findings We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20) and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV. Conclusion This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings support pursuit of A20-based therapies to improve patients’ outcomes in the context of extreme liver injury and extensive LR for tumor treatment or donation.
Collapse
Affiliation(s)
- Scott M. Damrauer
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Studer
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cleide G. da Silva
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher R. Longo
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Haley E. Ramsey
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eva Csizmadia
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gautam V. Shrikhande
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Salvatore T. Scali
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Manoj K. Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MKB) (MB); (CF) (CF)
| | - Christiane Ferran
- Division of Vascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MKB) (MB); (CF) (CF)
| |
Collapse
|
26
|
Abstract
IMPORTANCE OF THE FIELD Currently, 170 million people worldwide are affected by the HCV. Chronic HCV infection is amongst the leading causes of chronic liver disease and its complications such as cirrhosis and hepatocellular carcinoma, making it the most common reason for liver transplantation. The current standard of treatment for HCV is pegylated IFN-α plus ribavirin. This treatment, when administered for the standard duration, allows sustained virological response (SVR) in ∼ 50% of patients infected with HCV and about 40% for HCV genotype 1, the most prevalent form of HCV in the US. SVR rates for populations with co-morbidities (patients with chronic renal disease) and certain ethnic backgrounds (African Americans and Hispanics) are lower. Given the high prevalence and relatively low cure rates of current antiviral therapy, the burden of HCV is enormous. AREAS COVERED IN THIS REVIEW Faced with this urgent and growing medical need, research into novel therapeutic compounds for the treatment of HCV is a rapidly growing industry. Several novel compounds are in advanced stages of clinical development, such as HCV protease inhibitors (particularly those against NS3-4A protease), HCV polymerase inhibitors (including both nucleoside and non-nucleoside analogs) and cyclophilin inhibitors. WHAT THE READER WILL GAIN HCV treatment has seen many advances in the last decade and the discovery process has been fraught with both successes and disappointments. Through a process of rigorous research, the current late stage novel HCV therapeutics seem to have overcome some of the obstacles met by their early predecessors and offer the promise of meeting the shortfalls of the current standard of treatment. TAKE HOME MESSAGE Data from clinical trials are encouraging and suggest that combination therapies of these novel agents may have the potential to shorten treatment duration and increase viral clearance when used in conjunction with pegylated IFN-α and ribavirin.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
| | | |
Collapse
|
27
|
Woudenberg J, Rembacz KP, van den Heuvel FAJ, Woudenberg-Vrenken TE, Buist-Homan M, Geuken M, Hoekstra M, Deelman LE, Enrich C, Henning RH, Moshage H, Faber KN. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology 2010; 51:1744-53. [PMID: 20146263 DOI: 10.1002/hep.23460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. CONCLUSION Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.
Collapse
Affiliation(s)
- Jannes Woudenberg
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martín-Sanz P, Mayoral R, Casado M, Boscá L. COX-2 in liver, from regeneration to hepatocarcinogenesis: what we have learned from animal models? World J Gastroenterol 2010; 16:1430-1435. [PMID: 20333781 PMCID: PMC2846246 DOI: 10.3748/wjg.v16.i12.1430] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/15/2010] [Accepted: 01/22/2010] [Indexed: 02/06/2023] Open
Abstract
The use of animals lacking genes or expressing genes under the control of cell-specific promoters has significantly increased our knowledge of the genetic and molecular basis of physiopathology, allowing testing of functional hypotheses and validation of biochemical and pharmacologic approaches in order to understand cell function. However, with unexpected frequency, gene knockout animals and, more commonly, animal models of transgenesis give experimental support to even opposite conclusions on gene function. Here we summarize what we learned on the role of cyclooxygenase 2 (COX-2) in liver and revise the results obtained in 3 independent models of mice expressing a COX-2 transgene specifically in the hepatocyte. Upon challenge with pro-inflammatory stimuli, the animals behave very differently, some transgenic models having a protective effect but others enhancing the injury. In addition, one transgene exerts differential effects on normal liver physiology depending on the transgenic animal model used.
Collapse
|
29
|
Mayoral R, Valverde ÁM, Llorente Izquierdo C, González-Rodríguez Á, Boscá L, Martín-Sanz P. Impairment of transforming growth factor beta signaling in caveolin-1-deficient hepatocytes: role in liver regeneration. J Biol Chem 2010; 285:3633-3642. [PMID: 19966340 PMCID: PMC2823504 DOI: 10.1074/jbc.m109.072900] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/04/2009] [Indexed: 02/05/2023] Open
Abstract
Caveolin-1 (Cav-1) is the main structural protein of caveolae and plays an important role in various cellular processes such as vesicular transport, cholesterol homeostasis, and signal transduction pathways. The expression and functional role of Cav-1 have been reported in liver and in hepatocyte cell lines, in human cirrhotic liver, and in hepatocellular carcinomas. Previous studies demonstrated that Cav-1 was dispensable for liver regeneration, because Cav-1(-/-) animals survived and fully regenerated liver function and size after partial hepatectomy. In this study, we have investigated the mechanisms by which the lack of Cav-1 accelerates liver regeneration after partial hepatectomy. The data show that transforming growth factor beta (TGF-beta) signaling is impaired in regenerating liver of Cav-1(-/-) mice and in hepatocytes derived from these animals. TGF-beta receptors I and II do not colocalize in the same membrane fraction in the hepatocytes derived from Cav-1(-/-) mice, as Smad2/3 signaling decreased in the absence of Cav-1 at the time that the transcriptional corepressor SnoN accumulates. Accordingly, the expression of TGF-beta target genes, such as plasminogen activator inhibitor-1, is decreased due to the presence of the high levels of SnoN. Moreover, hepatocyte growth factor inhibited TGF-beta signaling in the absence of Cav-1 by increasing SnoN expression. Taken together, these data might help to unravel why Cav-1-deficient mice exhibit an accelerated liver regeneration after partial hepatectomy and add new insights on the molecular mechanisms controlling the initial commitment to hepatocyte proliferation.
Collapse
Affiliation(s)
- Rafael Mayoral
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid; the Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Villarroel 170, 08036 Barcelona, and
| | - Ángela M Valverde
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid; the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Mallorca 183, 08036 Barcelona, Spain
| | - Cristina Llorente Izquierdo
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid
| | - Águeda González-Rodríguez
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid; the Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Mallorca 183, 08036 Barcelona, Spain
| | - Lisardo Boscá
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid; the Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Villarroel 170, 08036 Barcelona, and
| | - Paloma Martín-Sanz
- From the Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid; the Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Villarroel 170, 08036 Barcelona, and.
| |
Collapse
|
30
|
Gardner CR, Gray JP, Joseph LB, Cervelli J, Bremer N, Kim Y, Mishin V, Laskin JD, Laskin DL. Potential role of caveolin-1 in acetaminophen-induced hepatotoxicity. Toxicol Appl Pharmacol 2010; 245:36-46. [PMID: 20100502 DOI: 10.1016/j.taap.2010.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 01/18/2023]
Abstract
Caveolin-1 (Cav-1) is a membrane scaffolding protein, which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1(-/-)) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1(-/-) mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1(-/-) mice is not due to alterations in antioxidant defense. In wild-type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1beta, and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1(-/-) mice. Although expression of tumor necrosis factor-alpha, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1(-/-) mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed, which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury.
Collapse
Affiliation(s)
- Carol R Gardner
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
López-Fontal R, Zeini M, Través PG, Gómez-Ferrería M, Aranda A, Sáez GT, Cerdá C, Martín-Sanz P, Hortelano S, Boscá L. Mice lacking thyroid hormone receptor Beta show enhanced apoptosis and delayed liver commitment for proliferation after partial hepatectomy. PLoS One 2010; 5:e8710. [PMID: 20090848 PMCID: PMC2806828 DOI: 10.1371/journal.pone.0008710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/22/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of thyroid hormones and their receptors (TR) during liver regeneration after partial hepatectomy (PH) was studied using genetic and pharmacologic approaches. Roles in liver regeneration have been suggested for T3, but there is no clear evidence distinguishing the contribution of increased amounts of T3 from the modulation by unoccupied TRs. METHODOLOGY/PRINCIPAL FINDINGS Mice lacking TRalpha1/TRbeta or TRbeta alone fully regenerated liver mass after PH, but showed delayed commitment to the initial round of hepatocyte proliferation and transient but intense apoptosis at 48h post-PH, affecting approximately 30% of the remaining hepatocytes. Pharmacologically induced hypothyroidism yielded similar results. Loss of TR activity was associated with enhanced nitrosative stress in the liver remnant, due to an increase in the activity of the nitric oxide synthase (NOS) 2 and 3, caused by a transient decrease in the concentration of asymmetric dimethylarginine (ADMA), a potent NOS inhibitor. This decrease in the ADMA levels was due to the presence of a higher activity of dimethylarginineaminohydrolase-1 (DDAH-1) in the regenerating liver of animals lacking TRalpha1/TRbeta or TRbeta. DDAH-1 expression and activity was paralleled by the activity of FXR, a transcription factor involved in liver regeneration and up-regulated in the absence of TR. CONCLUSIONS/SIGNIFICANCE We report that TRs are not required for liver regeneration; however, hypothyroid mice and TRbeta- or TRalpha1/TRbeta-deficient mice exhibit a delay in the restoration of liver mass, suggesting a specific role for TRbeta in liver regeneration. Altered regenerative responses are related with a delay in the expression of cyclins D1 and E, and the occurrence of liver apoptosis in the absence of activated TRbeta that can be prevented by administration of NOS inhibitors. Taken together, these results indicate that TRbeta contributes significantly to the rapid initial round of hepatocyte proliferation following PH, and improves the survival of the regenerating liver at later times.
Collapse
Affiliation(s)
| | - Miriam Zeini
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paqui G. Través
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | | | - Ana Aranda
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - Guillermo T. Sáez
- Departamento de Bioquímica y Biología Molecular-Servicio de Análisis Clínicos, Hospital General Universitario, Valencia, Spain
| | - Concha Cerdá
- Departamento de Bioquímica y Biología Molecular-Servicio de Análisis Clínicos, Hospital General Universitario, Valencia, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Sonsoles Hortelano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
32
|
Lyn-mediated mitochondrial tyrosine phosphorylation is required to preserve mitochondrial integrity in early liver regeneration. Biochem J 2009; 425:401-12. [PMID: 19832701 DOI: 10.1042/bj20090902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Functional alterations in mitochondria such as overproduction of ROS (reactive oxygen species) and overloading of calcium, with subsequent change in the membrane potential, are traditionally regarded as pro-apoptotic conditions. Although such events occur in the early phases of LR (liver regeneration) after two-thirds PH (partial hepatectomy), hepatocytes do not undergo apoptosis but continue to proliferate until the mass of the liver is restored. The aim of the present study was to establish whether tyrosine phosphorylation, an emerging mechanism of regulation of mitochondrial function, participates in the response to liver injury following PH and is involved in contrasting mitochondrial pro-apoptotic signalling. Mitochondrial tyrosine phosphorylation, negligible in the quiescent liver, was detected in the early phases of LR with a trend similar to the events heralding mitochondrial apoptosis and was attributed to the tyrosine kinase Lyn, a member of the Src family. Lyn was shown to accumulate in an active form in the mitochondrial intermembrane space, where it was found to be associated with a multiprotein complex. Our results highlight a role for tyrosine phosphorylation in accompanying, and ultimately counteracting, mitochondrial events otherwise leading to apoptosis, hence conveying information required to preserve the mitochondrial integrity during LR.
Collapse
|
33
|
Berger K, Lindh R, Wierup N, Zmuda-Trzebiatowska E, Lindqvist A, Manganiello VC, Degerman E. Phosphodiesterase 3B is localized in caveolae and smooth ER in mouse hepatocytes and is important in the regulation of glucose and lipid metabolism. PLoS One 2009; 4:e4671. [PMID: 19262749 PMCID: PMC2650791 DOI: 10.1371/journal.pone.0004671] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes.
Collapse
Affiliation(s)
- Karin Berger
- Department of Experimental Medical Sciences, Lund University, BMC C11, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
34
|
Chapter 4 The Biology of Caveolae. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:117-62. [DOI: 10.1016/s1937-6448(08)01804-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Vassilieva EV, Ivanov AI, Nusrat A. Flotillin-1 stabilizes caveolin-1 in intestinal epithelial cells. Biochem Biophys Res Commun 2008; 379:460-5. [PMID: 19121286 DOI: 10.1016/j.bbrc.2008.12.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/17/2008] [Indexed: 11/15/2022]
Abstract
Flotillins and caveolins represent two types of resident proteins associated with lipid rafts in mammalian cells, however, their possible cross-talk in regulating lipid raft functions remains poorly understood. In this report, we observed that siRNA-mediated down-regulation of flotillin-1 expression which disrupted lipid raft-mediated endocytosis of BODIPY FL C(5)-lactosylceramide also substantially decreased caveolin-1 level in SK-CO15 human intestinal epithelial cells. The decrease in caveolin-1 expression appeared to be specific for flotillin-1 knock-down and was not observed after down-regulation of flotillin-2. The decrease in caveolin-1 level in flotillin-1-depleted cells was not due to suppression of its mRNA synthesis and was not mimicked by cholesterol depletion of SK-CO15 cells. Furthermore, flotillin-1 dependent down-regulation of caveolin-1 was reversed after cell exposure to lysosomal inhibitor, chloroquine but not proteosomal inhibitor, MG262. Our data suggest that flotillin-1 regulates caveolin-1 level by preventing its lysosomal degradation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Elena V Vassilieva
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Whitehead Research Building, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
36
|
Newberry EP, Kennedy SM, Xie Y, Luo J, Stanley SE, Semenkovich CF, Crooke RM, Graham MJ, Davidson NO. Altered hepatic triglyceride content after partial hepatectomy without impaired liver regeneration in multiple murine genetic models. Hepatology 2008; 48:1097-105. [PMID: 18697204 PMCID: PMC2577767 DOI: 10.1002/hep.22473] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
UNLABELLED Liver regeneration is impaired following partial hepatectomy (PH) in mice with genetic obesity and hepatic steatosis and also in wild-type mice fed a high-fat diet. These findings contrast with other data showing that liver regeneration is impaired in mice in which hepatic lipid accumulation is suppressed by either pharmacologic leptin administration or by disrupted glucocorticoid signaling. These latter findings suggest that hepatic steatosis may actually be required for normal liver regeneration. We have reexamined this relationship using several murine models of altered hepatic lipid metabolism. Liver fatty acid (FA) binding protein knockout mice manifested reduced hepatic triglyceride (TG) content compared to controls, with no effect on liver regeneration or hepatocyte proliferation. Examination of early adipogenic messenger RNAs revealed comparable induction in liver from both genotypes despite reduced hepatic steatosis. Following PH, hepatic TG was reduced in intestine-specific microsomal TG transfer protein deleter mice, which fail to absorb dietary fat, increased in peroxisome proliferator activated receptor alpha knockout mice, which exhibit defective FA oxidation, and unchanged (from wild-type mice) in liver-specific FA synthase knockout mice in which endogenous hepatic FA synthesis is impaired. Hepatic TG increased in the regenerating liver in all models, even in animals in which lipid accumulation is genetically constrained. However, in no model -- and over a >90-fold range of hepatic TG content -- was liver regeneration significantly impaired following PH. CONCLUSION Although hepatic TG content is widely variable and increases during liver regeneration, alterations in neither exogenous or endogenous lipid metabolic pathways, demonstrated to promote or diminish hepatic steatosis, influence hepatocyte proliferation.
Collapse
Affiliation(s)
| | - Susan M. Kennedy
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO
| | - Yan Xie
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO
| | - Jianyang Luo
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO
| | - Susan E. Stanley
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO
| | - Clay F. Semenkovich
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO
| | | | | | - Nicholas O. Davidson
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO
| |
Collapse
|
37
|
Cai T, Wang H, Chen Y, Liu L, Gunning WT, Quintas LEM, Xie ZJ. Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. ACTA ACUST UNITED AC 2008; 182:1153-69. [PMID: 18794328 PMCID: PMC2542476 DOI: 10.1083/jcb.200712022] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase α1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase–depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool.
Collapse
Affiliation(s)
- Ting Cai
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Cogger VC, Arias IM, Warren A, McMahon AC, Kiss DL, Avery VM, Le Couteur DG. The response of fenestrations, actin, and caveolin-1 to vascular endothelial growth factor in SK Hep1 cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G137-G145. [PMID: 18497335 PMCID: PMC2494729 DOI: 10.1152/ajpgi.00069.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the regulation of fenestrations by vascular endothelial growth factor in liver sinusoidal endothelial cells, SK Hep1 cells were transfected with green fluorescence protein (GFP)-actin and GFP-caveolin-1. SK Hep1 cells had pores; some of which appeared to be fenestrations (diameter 55 +/- 28 nm, porosity 2.0 +/- 1.4%), rudimentary sieve plates, bristle-coated micropinocytotic vesicles and expressed caveolin-1, von Willebrand factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase and clathrin, but not CD31. There was avid uptake of formaldehyde serum albumin, consistent with endocytosis. Vascular endothelial growth factor caused an increase in porosity to 4.8 +/- 2.6% (P < 0.01) and pore diameter to 104 +/- 59 nm (P < 0.001). GFP-actin was expressed throughout the cells, whereas GFP-caveolin-1 had a punctate appearance; both responded to vascular endothelial growth factor by contraction toward the nucleus over hours in parallel with the formation of fenestrations. SK Hep1 cells resemble liver sinusoidal endothelial cells, and the vascular endothelial growth factor-induced formation of fenestration-like pores is preceded by contraction of actin cytoskeleton and attached caveolin-1 toward the nucleus.
Collapse
Affiliation(s)
- Victoria C. Cogger
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Irwin M. Arias
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Alessandra Warren
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Aisling C. McMahon
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Debra L. Kiss
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Vicky M. Avery
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - David G. Le Couteur
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| |
Collapse
|
39
|
Frank PG, Pavlides S, Cheung MWC, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 2008; 295:C242-8. [PMID: 18508910 DOI: 10.1152/ajpcell.00185.2008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lipoprotein metabolism plays an important role in the development of several human diseases, including coronary artery disease and the metabolic syndrome. A good comprehension of the factors that regulate the metabolism of the various lipoproteins is therefore key to better understanding the variables associated with the development of these diseases. Among the players identified are regulators such as caveolins and caveolae. Caveolae are small plasma membrane invaginations that are observed in terminally differentiated cells. Their most important protein marker, caveolin-1, has been shown to play a key role in the regulation of several cellular signaling pathways and in the regulation of plasma lipoprotein metabolism. In the present paper, we have examined the role of caveolin-1 in lipoprotein metabolism using caveolin-1-deficient (Cav-1(-/-)) mice. Our data show that, while Cav-1(-/-) mice show increased plasma triglyceride levels, they also display reduced hepatic very low-density lipoprotein (VLDL) secretion. Additionally, we also found that a caveolin-1 deficiency is associated with an increase in high-density lipoprotein (HDL), and these HDL particles are enriched in cholesteryl ester in Cav-1(-/-) mice when compared with HDL obtained from wild-type mice. Finally, our data suggest that a caveolin-1 deficiency prevents the transcytosis of LDL across endothelial cells, and therefore, that caveolin-1 may be implicated in the regulation of plasma LDL levels. Taken together, our studies suggest that caveolin-1 plays an important role in the regulation of lipoprotein metabolism by controlling their plasma levels as well as their lipid composition. Thus caveolin-1 may also play an important role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Philippe G Frank
- Kimmel Cancer Center, Department of Cancer Biology, and Biochemistry and Molecular Biology, and Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|