1
|
Villanueva C, Tripathi D, Bosch J. Preventing the progression of cirrhosis to decompensation and death. Nat Rev Gastroenterol Hepatol 2025; 22:265-280. [PMID: 39870944 DOI: 10.1038/s41575-024-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur. In recent years, innovative studies have provided evidence supporting new strategies to prevent decompensation in cACLD. These studies have yielded major advances, including the development of noninvasive tests (NITs) to identify patients with CSPH with reasonable confidence, the demonstration that aetiological therapies can prevent disease progression and even achieve regression of cirrhosis, and the finding that non-selective β-blockers can effectively prevent decompensation in patients with cACLD and CSPH, mainly by reducing the risk of ascites, the most frequent decompensating event. Here, we review the evidence supporting new strategies to manage cACLD to prevent decompensation and the caveats for their implementation, from patient selection using NITs to ancillary therapies.
Collapse
Affiliation(s)
- Càndid Villanueva
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.
| | - Dhiraj Tripathi
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham Health Partners, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jaume Bosch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain
- Department of Visceral Surgery and Medicine (Hepatology), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Wang X, Li J, Nong J, Deng X, Chen Y, Wu P, Huang X. Curcumol Attenuates Portal Hypertension and Collateral Shunting Via Inhibition of Extrahepatic Angiogenesis in Cirrhotic Rats. Biochem Genet 2025; 63:281-297. [PMID: 38438779 DOI: 10.1007/s10528-024-10684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024]
Abstract
Liver cirrhosis can cause disturbances in blood circulation in the liver, resulting in impaired portal blood flow and ultimately increasing portal venous pressure. Portal hypertension induces portal-systemic collateral formation and fatal complications. Extrahepatic angiogenesis plays a crucial role in the development of portal hypertension. Curcumol is a sesquiterpenoid derived from the rhizome of Curcumae Rhizoma and has been confirmed to alleviate liver fibrosis by inhibiting angiogenesis. Therefore, our study was designed to explore the effects of curcumol on extrahepatic angiogenesis and portal hypertension. To induce cirrhosis, Sprague Dawley rats underwent bile duct ligation (BDL) surgery. Rats received oral administration with curcumol (30 mg/kg/d) or vehicle (distilled water) starting on day 15 following surgery, when BDL-induced liver fibrosis had developed. The effect of curcumol was assessed on day 28, which is the typical time of BDL-induced cirrhosis. The results showed that curcumol markedly reduced portal pressure in cirrhotic rats. Curcumol inhibited abnormal splanchnic inflow, mitigated liver injury, improved liver fibrosis, and attenuated portal-systemic collateral shunting in cirrhotic rats. These protective effects were partially attributed to the inhibition on mesenteric angiogenesis by curcumol. Mechanically, curcumol partially reversed the BDL-induced activation of the JAK2/STAT3 signaling pathway in cirrhotic rats. Collectively, curcumol attenuates portal hypertension in liver cirrhosis by suppressing extrahepatic angiogenesis through inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinyuan Wang
- Development of Planning Division, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Juan Li
- Development of Pediatric, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jiao Nong
- Development of Education, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xin Deng
- Basic Medical College, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yiping Chen
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China
| | - Peibin Wu
- Achievement Transformation and Social Service Office, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiabing Huang
- Development of Emergency, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.28 Wangyuan Road, Qingxiu District, Nanning, 530000, China.
| |
Collapse
|
3
|
Porada M, Bułdak Ł. From Pathophysiology to Practice: Evolving Pharmacological Therapies, Clinical Complications, and Pharmacogenetic Considerations in Portal Hypertension. Metabolites 2025; 15:72. [PMID: 39997697 PMCID: PMC11857179 DOI: 10.3390/metabo15020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Portal hypertension is a major complication of chronic liver diseases, leading to serious issues such as esophageal variceal bleeding. The increase in portal vein pressure is driven by both an organic component and a functional component, including tonic contraction of hepatic stellate cells. These processes result in a pathological rise in intrahepatic vascular resistance, stemming from partial impairment of hepatic microcirculation, which is further exacerbated by abnormalities in extrahepatic vessels, including increased portal blood flow. Objectives: This review aims to provide a comprehensive overview of the evolving pharmacological therapies for portal hypertension, with consideration and discussion of pathophysiological mechanisms, clinical complications, and pharmacogenetic considerations, highlighting potential directions for future research. Methods: A review of recent literature was performed to evaluate current knowledge and potential therapeutic strategies in portal hypertension. Results: For over 35 years, non-selective beta-blockers have been the cornerstone therapy for portal hypertension by reducing portal vein inflow as an extrahepatic target, effectively preventing decompensation and variceal hemorrhages. However, since not all patients exhibit an adequate response to non-selective beta-blockers (NSBBs), and some may not tolerate NSBBs, alternative or adjunctive therapies that enhance the effects of NSBBs on portal pressure are being investigated in preclinical and early clinical studies. Conclusions: A better understanding of pharmacogenetic factors and pathophysiological mechanisms could lead to more individualized and effective treatments for portal hypertension. These insights highlight potential directions for future research.
Collapse
Affiliation(s)
- Michał Porada
- Students’ Scientific Society, Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
4
|
De Gaetano V, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Management of Portal Hypertension in Patients with Hepatocellular Carcinoma on Systemic Treatment: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:1388. [PMID: 38611066 PMCID: PMC11011056 DOI: 10.3390/cancers16071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The management of CSPH in patients undergoing systemic treatment for HCC has emerged as a critical concern due to the absence of reliable diagnostic criteria and uncertainties surrounding therapeutic approaches. This review aims to underscore the primary pathophysiological aspects linking HCC and PH, while also addressing the current and emerging clinical strategies for the management of portal hypertension. A review of studies from January 2003 to June 2023 was conducted using the PubMed database and employing MeSH terms, such as "hepatocellular carcinoma", "immune checkpoint inhibitors", "systemic therapy", "portal hypertension", "variceal bleeding" and "tyrosine kinase inhibitors". Despite promising results of tyrosine kinase inhibitors in animal models for PH and fibrosis, only Sorafenib has demonstrated similar effects in human studies, whereas Lenvatinib appears to promote PH development. The impact of Atezolizumab/Bevacizumab on PH remains uncertain, with an increasing risk of bleeding related to Bevacizumab in patients with prior variceal hemorrhage. Given the absence of specific guidelines, endoscopic surveillance during treatment is advisable, and primary and secondary prophylaxis of variceal bleeding should adhere to the Baveno VII recommendations. Furthermore, in patients with advanced HCC, refinement of diagnostic criteria for CSPH and guidelines for its surveillance are warranted.
Collapse
Affiliation(s)
- Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| |
Collapse
|
5
|
Tavabie OD, Salehi S, Aluvihare VR. The challenges and potential of microRNA-based therapy for patients with liver failure syndromes and hepatocellular carcinoma. Expert Opin Ther Targets 2024; 28:179-191. [PMID: 38487923 DOI: 10.1080/14728222.2024.2331598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Morbidity and mortality from liver disease continues to rise worldwide. There are currently limited curative treatments for patients with liver failure syndromes, encompassing acute liver failure and decompensated cirrhosis states, outside of transplantation. Whilst there have been improvements in therapeutic options for patients with hepatocellular carcinoma (HCC), there remain challenges necessitating novel therapeutic agents. microRNA have long been seen as potential therapeutic targets but there has been limited clinical translation. AREAS COVERED We will discuss the limitations of conventional non-transplant management of patients with liver failure syndromes and HCC. We will provide an overview of microRNA and the challenges in developing and delivering microRNA-based therapeutic agents. We will finally provide an overview of microRNA-based therapeutic agents which have progressed to clinical trials. EXPERT OPINION microRNA have great potential to be developed into therapeutic agents due to their association with critical biological processes which govern health and disease. Utilizing microRNA sponges to target multiple microRNA associated with specific biological processes may improve their therapeutic efficacy. However, there needs to be significant improvements in delivery systems to ensure the safe delivery of microRNA to target sites and minimize systemic distribution. This currently significantly impacts the clinical translation of microRNA-based therapeutic agents.
Collapse
Affiliation(s)
| | - Siamak Salehi
- Institute of Liver Studies, King's College Hospital, London, UK
| | | |
Collapse
|
6
|
Luo S, Luo R, Lu H, Zhang R, Deng G, Luo H, Yu X, Wang C, Zhang H, Zhang Y, Huang W, Sun J, Liu Y, Huang F, Lei Z. Activation of cGAS-STING signaling pathway promotes liver fibrosis and hepatic sinusoidal microthrombosis. Int Immunopharmacol 2023; 125:111132. [PMID: 37951190 DOI: 10.1016/j.intimp.2023.111132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Inflammation plays an essential role in the development liver fibrosis.The Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is a central cytoplasmic DNA sensor which can recognize cytoplasmic DNA, known to trigger stimulator of interferon genes (STING) and downstream proinflammatory factors. Here, we investigated the role of cGAS-STING signaling pathway in the pathogenesis of liver fibrosis.Differentially expressed genes (DEGs) in human liver tissue were identified using RNA-Seq analysis. As models of liver fibrosis, chronic Carbon tetrachloride (CCl4) exposure were applied in cGAS-knockout mice. LX-2 cells were co-cultured with human liver sinusoidal endothelial cells (LSECs) to explore the underlying mechanisms of hepatic sinusoidal microthrombosis in an inflammatory microenvironment. The endoscopic ultrasound-guided portal vein pressure gradient (EUS-PPG) method was used to analyze the associations between hepatic sinusoidal microthrombosis and PPG in patients with liver fibrosis and portal hypertension (PTH). The RNA-seq analysis results showed that DEGs were enriched in inflammation and endothelial cell activation. The upregulation of the cGAS-STING signaling exacerbated liver fibrosis and intrahepatic inflammation. It also exacerbated LSECs impairment and increased the contribution of hepatic sinusoidal microthrombosis to liver fibrosis in vivo and in vitro. Prothrombotic mediators and proinflammatory factors were associated with PPG in patients with liver fibrosis and portal hypertension. Therefore, activating cGAS-STING signaling pathway promotes liver fibrosis and hepatic sinusoidal microthrombosis, which may lead to increased portal vein pressure.
Collapse
Affiliation(s)
- Shaobin Luo
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Rongkun Luo
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Huanyuan Lu
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Rui Zhang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Gang Deng
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Hongwu Luo
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Xiao Yu
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Changfa Wang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Hui Zhang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Yuping Zhang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Wei Huang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Jichun Sun
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Yinghong Liu
- The Third Xiangya Hospital of Central South University, Surgery Center, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Feizhou Huang
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China
| | - Zhao Lei
- The Third Xiangya Hospital of Central South University, Department of Hepatopancreatobiliary Surgery, 138 Tongzipo Road, Changsha City, Hunan Province, China.
| |
Collapse
|
7
|
Ke Q, He J, Huang X, Li L, Liu J, Guo W. Spontaneous portosystemic shunts outside the esophago-gastric region: Prevalence, clinical characteristics, and impact on mortality in cirrhotic patients: A systematic review and meta-analysis. Eur J Intern Med 2023; 112:77-85. [PMID: 36990875 DOI: 10.1016/j.ejim.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Spontaneous portosystemic shunt (SPSS) other than esophago-gastric varices is one of the consequences of cirrhosis-induced portal hypertension (PHT), but its role is not fully understood. Therefore, we conducted a systematic review and meta-analysis to determine the prevalence and clinical characteristics of SPSS (excluding esophago-gastric varices) and its impact on mortality in patients with cirrhosis. METHODS Eligible studies were identified from MedLine, PubMed, Embase, Web of Science, and Cochrane Library between Jan 1, 1980 and Sep 30, 2022. Outcome indicators were SPSS prevalence, liver function, decompensated events, and overall survival (OS). RESULTS Totally, 2015 studies were reviewed, of which 19 studies recruiting 6884 patients were included. On pooled analysis, the prevalence of SPSS was 34.2% (26.6%∼42.1%). SPSS patients had significantly higher Child-Pugh scores and grades and Model for End-stage Liver Disease scores (all P<0.05). Moreover, SPSS patients experienced a higher incidence of decompensated events, including hepatic encephalopathy, portal vein thrombosis, and hepatorenal syndrome (all P<0.05). Additionally, SPSS patients had significantly shorter OS than the non-SPSS group (P<0.05). CONCLUSIONS In patients with cirrhosis, SPSS outside the esophago-gastric region is common, characterized by severe impairment of liver function, high rates of decompensated events, including HE, PVT, and hepatorenal syndrome, as well as a high mortality rate.
Collapse
Affiliation(s)
- Qiao Ke
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 420, Fuma Road, Fuzhou, Fujian 350014, China; Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, No. 312, Xihong Road, Fuzhou, Fujian 350025, China
| | - Jian He
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 420, Fuma Road, Fuzhou, Fujian 350014, China
| | - Xinhui Huang
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 420, Fuma Road, Fuzhou, Fujian 350014, China
| | - Ling Li
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 420, Fuma Road, Fuzhou, Fujian 350014, China
| | - Jingfeng Liu
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 420, Fuma Road, Fuzhou, Fujian 350014, China; Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, No. 312, Xihong Road, Fuzhou, Fujian 350025, China.
| | - Wuhua Guo
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 420, Fuma Road, Fuzhou, Fujian 350014, China.
| |
Collapse
|
8
|
Shan J, Megarbane A, Chouchane A, Karthik D, Temanni R, Romero AR, Hua H, Pan C, Chen X, Subramanian M, Saad C, Mbarek H, Mehawej C, Chouery E, Abuaqel SW, Dömling A, Remadi S, Yaghi C, Li P, Chouchane L. Genetic predisposition to porto-sinusoidal vascular disorder: A functional genomic-based, multigenerational family study. Hepatology 2023; 77:501-511. [PMID: 35989577 PMCID: PMC9869943 DOI: 10.1002/hep.32735] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Porto-sinusoidal vascular disorder (PSVD) is a group of liver vascular diseases featuring lesions encompassing the portal venules and sinusoids unaccompanied by cirrhosis, irrespective of the presence/absence of portal hypertension. It can occur secondary to coagulation disorders or insult by toxic agents. However, the cause of PSVD remains unknown in most cases. Hereditary cases of PSVD are exceptionally rare, but they are of particular interest and may unveil genetic alterations and molecular mechanisms associated with the disease. APPROACH AND RESULTS We performed genome sequencing of four patients and two healthy individuals of a large multigenerational Lebanese family with PSVD and identified a heterozygous deleterious variant (c.547C>T, p.R183W) of FCH and double SH3 domains 1 ( FCHSD1 ), an uncharacterized gene, in patients. This variant segregated with the disease, and its pattern of inheritance was suggestive of autosomal dominant with variable expressivity. RNA structural modelling of human FCHSD1 suggests that the C-to-T substitution at position 547, corresponding to FCHSD1R183W , may increase both messenger RNA (mRNA) and protein stability and its interaction with MTOR-associated protein, LST8 homolog, a key protein of the mechanistic target of rapamycin (mTOR pathway). These predictions were substantiated by biochemical analyses, which showed that FCHSD1R183W induced high FCHSD1 mRNA stability, overexpression of FCHSD1 protein, and an increase in mTORC1 activation. This human FCHSD1 variant was introduced into mice through CRISPR/Cas9 genome editing. Nine out of the 15 mice carrying the human FCHSD1R183W variant mimicked the phenotype of human PSVD, including splenomegaly and enlarged portal vein. CONCLUSIONS Aberrant FCHSD1 structure and function leads to mTOR pathway overactivation and may cause PSVD.
Collapse
Affiliation(s)
- Jingxuan Shan
- Genetic Intelligence Laboratory , Weill Cornell Medicine-Qatar , Qatar Foundation , Doha , Qatar.,Department of Genetic Medicine , Weill Cornell Medicine , New York , New York , USA
| | - André Megarbane
- Department of Human Genetics , Gilbert and Rose-Marie Chagoury School of Medicine , Lebanese American University , Beirut , Lebanon.,Institut Jérôme Lejeune , CRB BioJeL , Paris , France
| | - Aziz Chouchane
- Faculta di Medicina e Chirurgia , Universita Cattolica del Sacro Cuero , Rome , Italy.,Institute of Pathology , University of Bern , Bern , Switzerland
| | - Deepak Karthik
- Genetic Intelligence Laboratory , Weill Cornell Medicine-Qatar , Qatar Foundation , Doha , Qatar
| | | | - Atilio Reyes Romero
- Drug Design Group, Department of Pharmacy , University of Groningen , Groningen , Netherlands
| | - Huiying Hua
- Department of Pediatrics , Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Chun Pan
- Department of Pediatrics , Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Xixi Chen
- Department of Pediatrics , Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Murugan Subramanian
- Genetic Intelligence Laboratory , Weill Cornell Medicine-Qatar , Qatar Foundation , Doha , Qatar
| | - Chadi Saad
- Genome Programme , Qatar Foundation Research, Development and Innovation , Qatar Foundation , Doha , Qatar
| | - Hamdi Mbarek
- Genome Programme , Qatar Foundation Research, Development and Innovation , Qatar Foundation , Doha , Qatar
| | - Cybel Mehawej
- Department of Human Genetics , Gilbert and Rose-Marie Chagoury School of Medicine , Lebanese American University , Beirut , Lebanon
| | - Eliane Chouery
- Department of Human Genetics , Gilbert and Rose-Marie Chagoury School of Medicine , Lebanese American University , Beirut , Lebanon
| | - Sirin W Abuaqel
- Genetic Intelligence Laboratory , Weill Cornell Medicine-Qatar , Qatar Foundation , Doha , Qatar
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy , University of Groningen , Groningen , Netherlands
| | | | - Cesar Yaghi
- Department of Gastroenterology , Hotel-Dieu de France Hospital , Faculty of Medicine, Saint Joseph University of Beirut , Beirut , Lebanon
| | - Pu Li
- Department of Pediatrics , Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory , Weill Cornell Medicine-Qatar , Qatar Foundation , Doha , Qatar.,Department of Genetic Medicine , Weill Cornell Medicine , New York , New York , USA.,Department of Microbiology and Immunology , Weill Cornell Medicine , New York , New York , USA
| |
Collapse
|
9
|
Wu G, Chen M, Fan Q, Li H, Zhao Z, Zhang C, Luo M. Transcriptome analysis of mesenteric arterioles changes and its mechanisms in cirrhotic rats with portal hypertension. BMC Genomics 2023; 24:20. [PMID: 36641445 PMCID: PMC9840839 DOI: 10.1186/s12864-023-09125-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Portal hypertension (PHT) is a major cause of liver cirrhosis. The formation of portosystemic collateral vessels and splanchnic vasodilation contribute to the development of hyperdynamic circulation, which in turn aggravates PHT and increases the risk of complications. To investigate the changes in mesenteric arterioles in PHT, cirrhotic rat models were established by ligating the common bile ducts. After 4 weeks, the cirrhotic rats suffered from severe PHT and splanchnic hyperdynamic circulation, characterized by increased portal pressure (PP), cardiac output (CO), cardiac index (CI), and superior mesenteric artery (SMA) flow. Mesenteric arterioles in cirrhotic rats displayed remarkable vasodilation, vascular remodeling, and hypocontractility. RNA sequencing was performed based on these findings. A total of 1,637 differentially expressed genes (DEGs) were detected, with 889 up-regulated and 748 down-regulated genes. Signaling pathways related to vascular changes were enriched, including the vascular endothelial growth factor (VEGF), phosphatidylinositol-3-kinase-AKT (PI3K-AKT), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway, among others. Moreover, the top ten hub genes were screened according to the degree nodes in the protein-protein interaction (PPI) network. Functional enrichment analyses indicated that the hub genes were involved in cell cycle regulation, mitosis, and cellular response to oxidative stress and nitric oxide (NO). In addition, promising candidate drugs for ameliorating PHT, such as resveratrol, were predicted based on hub genes. Taken together, our study highlighted remarkable changes in the mesenteric arterioles of cirrhotic rats with PHT. Transcriptome analyses revealed the potential molecular mechanisms of vascular changes in splanchnic hyperdynamic circulation.
Collapse
Affiliation(s)
- Guangbo Wu
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Min Chen
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Qiang Fan
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Hongjie Li
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Zhifeng Zhao
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Chihao Zhang
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Meng Luo
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
10
|
Yoshida H, Shimizu T, Yoshioka M, Matsushita A, Kawano Y, Ueda J, Kawashima M, Taniai N, Mamada Y. The Role of the Spleen in Portal Hypertension. J NIPPON MED SCH 2023; 90:20-25. [PMID: 36908126 DOI: 10.1272/jnms.jnms.2023_90-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
As liver disease progresses, intrahepatic vascular resistance increases (backward flow theory of portal hypertension) and collateral veins develop. Adequate portal hypertension is required to maintain portal flow into the liver through an increase in blood flow into the portal venous system (forward flow theory of portal hypertension). The splenic artery resistance index is significantly and selectively elevated in cirrhotic patients. In portal hypertension, a local hyperdynamic state occurs around the spleen. Splenomegaly is associated with a poor prognosis in cirrhosis and is caused by spleen congestion and by enlargement and hyperactivation of splenic lymphoid tissue. Hypersplenism can lead to thrombocytopenia caused by increased sequestering and breakdown of platelets in the spleen. The close relationship between the spleen and liver is reflected in the concept of the hepatosplenic axis. The spleen is a regulatory organ that maintains portal flow into the liver and is the key organ in the forward flow theory of portal hypertension. This review summarizes the literature on the role of the spleen in portal hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | - Junji Ueda
- Department of GI and HBP Surgery, Nippon Medical School
| | | | | | | |
Collapse
|
11
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
12
|
Adaptation of lenvatinib treatment in patients with hepatocellular carcinoma and portal vein tumor thrombosis. Cancer Chemother Pharmacol 2021; 89:11-20. [PMID: 34628536 DOI: 10.1007/s00280-021-04359-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of this study was to clarify the adaptation of lenvatinib treatment in patients with hepatocellular carcinoma (HCC) and portal vein tumor thrombosis (PVTT). METHOD Fifty-three patients with HCC were treated with lenvatinib. Before and after treatment blood sampling, patients were examined by computed tomography and ultrasonography. In patients with portal trunk invasion (Vp4), the analysis focused on the degree of occlusion due to the tumor in the portal trunk. In patients without major PVTT {ie, invasion of the primary branch of the portal vein [Vp3] or Vp4}, portal blood flow volume was measured by Doppler analysis; however, Doppler analysis is difficult to perform in patients with major PVTT, so the time from administration of the contrast agent to when it reached the primary branch of the portal vein (portal vein arrival time) was evaluated with the contrast agent Sonazoid. RESULTS Patients with Vp4 had a significantly worse prognosis than patients with Vp3 and a significant increase in Child-Pugh score at 2 months. Patients with major PVTT had a poor prognosis if the degree of occlusion of the portal trunk was 70% or more. In patients without major PVTT, portal blood flow was significantly decreased after administration of lenvatinib; and in patients with major PVTT, the hepatic artery and portal vein arrival times were significantly increased. CONCLUSION Lenvatinib treatment should be avoided in patients with Vp4 with a high degree of portal trunk occlusion because of concerns about decreased portal blood flow.
Collapse
|
13
|
Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep 2021; 3:100316. [PMID: 34337369 PMCID: PMC8318926 DOI: 10.1016/j.jhepr.2021.100316] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Portal hypertension, defined as increased pressure in the portal vein, develops as a consequence of increased intrahepatic vascular resistance due to the dysregulation of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), frequently arising from chronic liver diseases. Extrahepatic haemodynamic changes contribute to the aggravation of portal hypertension. The pathogenic complexity of portal hypertension and the unsuccessful translation of preclinical studies have impeded the development of effective therapeutics for patients with cirrhosis, while counteracting hepatic and extrahepatic mechanisms also pose a major obstacle to effective treatment. In this review article, we will discuss the following topics: i) cellular and molecular mechanisms of portal hypertension, focusing on dysregulation of LSECs, HSCs and hepatic microvascular thrombosis, as well as changes in the extrahepatic vasculature, since these are the major contributors to portal hypertension; ii) translational/clinical advances in our knowledge of portal hypertension; and iii) future directions.
Collapse
Key Words
- ACE2, angiogenesis-converting enzyme 2
- ACLF, acute-on-chronic liver failure
- AT1R, angiotensin II type I receptor
- CCL2, chemokine (C-C motif) ligand 2
- CCl4, carbon tetrachloride
- CLD, chronic liver disease
- CSPH, clinically significant portal hypertension
- Dll4, delta like canonical Notch ligand 4
- ECM, extracellular matrix
- EUS, endoscopic ultrasound
- FXR
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- HRS, hepatorenal syndrome
- HSC
- HSCs, hepatic stellate cells
- HVPG, hepatic venous pressure gradient
- Hsp90, heat shock protein 90
- JAK2, Janus kinase 2
- KO, knockout
- LSEC
- LSEC, liver sinusoidal endothelial cells
- MLCP, myosin light-chain phosphatase
- NET, neutrophil extracellular trap
- NO
- NO, nitric oxide
- NSBB
- NSBBs, non-selective beta blockers
- PDE, phosphodiesterase
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PKG, cGMP-dependent protein kinase
- Rho-kinase
- TIPS
- TIPS, transjugular intrahepatic portosystemic shunt
- VCAM1, vascular cell adhesion molecule 1
- VEGF
- VEGF, vascular endothelial growth factor
- angiogenesis
- eNOS, endothelial nitric oxide synthase
- fibrosis
- liver stiffness
- statins
- β-Arr2, β-arrestin 2
- β1-AR, β1-adrenergic receptor
- β2-AR, β2-adrenergic receptor
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure-EF Clif, Barcelona, Spain
| |
Collapse
|
14
|
Engelmann C, Clària J, Szabo G, Bosch J, Bernardi M. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction. J Hepatol 2021; 75 Suppl 1:S49-S66. [PMID: 34039492 PMCID: PMC9272511 DOI: 10.1016/j.jhep.2021.01.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Patients with acutely decompensated cirrhosis have a dismal prognosis and frequently progress to acute-on-chronic liver failure, which is characterised by hepatic and extrahepatic organ failure(s). The pathomechanisms involved in decompensation and disease progression are still not well understood, and as specific disease-modifying treatments do not exist, research to identify novel therapeutic targets is of the utmost importance. This review amalgamates the latest knowledge on disease mechanisms that lead to tissue injury and extrahepatic organ failure - such as systemic inflammation, mitochondrial dysfunction, oxidative stress and metabolic changes - and marries these with the classical paradigms of acute decompensation to form a single paradigm. With this detailed breakdown of pathomechanisms, we identify areas for future research. Novel disease-modifying strategies that break the vicious cycle are urgently required to improve patient outcomes.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Liver and Digestive Health, University College London, London, United Kingdom; Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain,Biochemistry and Molecular Genetics Service, Hospital ClínicIDIBAPS and CIBERehd, Spain,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jaume Bosch
- IDIBAPS and CIBERehd, University of Barcelona, Barcelona, Spain,Department for Biomedical Research (DBMR), Bern University, Bern, Switzerland
| | - Mauro Bernardi
- Department of Medical and Surgical Sciences; Alma Mater Studiorum – University of Bologna; Italy
| |
Collapse
|
15
|
Cross-talk between hepatic stellate cells and T lymphocytes in liver fibrosis. Hepatobiliary Pancreat Dis Int 2021; 20:207-214. [PMID: 33972160 DOI: 10.1016/j.hbpd.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibrosis results from inflammation and healing following injury. The imbalance between extracellular matrix (ECM) secretion and degradation leads to the ECM accumulation and liver fibrosis. This process is regulated by immune cells. T lymphocytes, including alpha beta (αβ) T cells, which have adaptive immune functions, and gamma delta (γδ) T cells, which have innate immune functions, are considered regulators of liver fibrosis. This review aimed to present the current understanding of the cross-talk between T lymphocytes and hepatic stellate cells (HSCs), which are the key cells in liver fibrosis. DATA SOURCES The keywords "liver fibrosis", "immune", and "T cells" were used to retrieve articles published in PubMed database before January 31, 2020. RESULTS The ratio of CD8+ (suppressor) T cells to CD4+ (helper) T cells is significantly higher in the liver than in the peripheral blood. T cells secrete a series of cytokines and chemokines to regulate the inflammation in the liver and the activation of HSCs to influence the course of liver fibrosis. In addition, HSCs also regulate the differentiation and proliferation of T cells. CONCLUSIONS The cross-talk between T cells and HSCs regulates liver fibrosis progression. The elucidation of this communication process will help us to understand the pathological process of liver fibrosis.
Collapse
|
16
|
Zhu J, Qiu J, Chen K, Wang W, Zheng S. Tea polyphenols and Levofloxacin alleviate the lung injury of hepatopulmonary syndrome in common bile duct ligation rats through Endotoxin -TNF signaling. Biomed Pharmacother 2021; 137:111263. [PMID: 33516071 DOI: 10.1016/j.biopha.2021.111263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND & AIMS Hepatopulmonary syndrome (HPS) is characterized by pulmonary vasodilation and arterial blood oxygen desaturation in patients with chronic liver disease. Generally, common bile duct ligation (CBDL) rats are a suitable experimental model for studying hepatopulmonary syndrome. Our previous study demonstrated that endotoxin surges markedly, followed by bacterial translocation and the loss of liver immune function in all the stages of CBDL, thereby contributing to the pathogenesis of HPS. However, the mechanisms behind the increase of the endotoxin and how to alleviate it have not yet been elucidated. Pulmonary injury induced by increased bilirubin, endotoxin, and inflammatory mediators occurs in the early and later stages of CBDL. This study assessed the effects of Tea polyphenols (TP) and Levofloxacin on endotoxin reduction and suppression of lung injury in HPS rats in the long and short term, respectively. METHODS Morphological change of pulmonary injury, HPS relative index, endotoxin concentration, and the activation extent of Malondialdehyde (MDA) and Myeloperoxidase (MPO) were evaluated in CBDL rats with or without TP and Levofloxacin for three weeks or six weeks. The inflammation factors of serum, lung tissue, and BALF were then compared at the same condition for the two time periods. This was followed by adoption of the network pharmacology approach, which was mainly composed of active component gathering, target prediction, HPS gene collection, network analysis, and gene enrichment analysis. Finally, the mRNA and protein levels of the inflammatory factors were studied and relative signaling expression was assessed using RT-PCR and Western blot analysis. RESULTS The obtained results indicated that the pulmonary injury manifestation was perceived and endotoxin, MDA, and MPO activation were markedly increased in the early and later stages of CBDL. TP and Levofloxacin treatment alleviated endotoxin infection and inflammation factor expression three weeks and six weeks after CBDL. In addition, Levofloxacin displayed a short time anti-bacterial effect, while TP exerted a long period function. TP and Levofloxacin also reduced TNF-α, TGF-β, IL-1β, PDGF-BB, NO, ICAM-1, and ET-1 expression on the mRNA or protein expression. With regard to the pharmacological mechanism, the network analysis indicated that 12 targets might be the therapeutic targets of TP and Levofloxacin on HPS, namely ET-1, NOs3, VEGFa, CCl2, TNF, Ptgs2, Hmox1, Alb, Ace, Cav1, and Mmp9. The gene enrichment analysis implied that TP and Levofloxacin probably benefited patients with HPS by modulating pathways associated with the AGE-RAGE signaling pathway, the TNF signaling pathway, the HIF-1 signaling pathway, the VEGF signaling pathway, and the IL-17 signaling pathway, Rheumatoid arthritis, Fluid shear stress, and atherosclerosis. Finally, the TNF-α level was mainly diminished on the protein level following CBDL. CONCLUSIONS TP and Levofloxacin could alleviate pulmonary injury for short and long period, respectively, while at the same time preventing endotoxin and the development of HPS in CBDL rats. These effects are possibly associated with the regulation of the Endotoxin -TNF-α pathways.
Collapse
Affiliation(s)
- Jiyun Zhu
- Hepatobiliary Surgery Department, Ningbo First Hospital, Ningbo, People's Republic of China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Shanghai Renji Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Kaibo Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Wenbo Wang
- Hepatobiliary Surgery Department, Ningbo First Hospital, Ningbo, People's Republic of China.
| | - Siming Zheng
- Hepatobiliary Surgery Department, Ningbo First Hospital, Ningbo, People's Republic of China
| |
Collapse
|
17
|
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:217-233. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Persistent inflammation and hypoxia are strong stimulus for pathological angiogenesis and vascular remodeling, and are also the most important elements resulting in liver fibrosis. Sustained inflammatory process stimulates fibrosis to the end-point of cirrhosis and sinusoidal portal hypertension is an important feature of cirrhosis. Neovascularization plays a pivotal role in collateral circulation formation of portal vein, mesenteric congestion, and high perfusion. Imbalance of hepatic artery and portal vein blood flow leads to the increase of hepatic artery inflow, which is beneficial to the formation of nodules. Angiogenesis contributes to progression from liver fibrosis to cirrhosis and hepatocellular carcinoma (HCC) and anti-angiogenesis therapy can improve liver fibrosis, reduce portal pressure, and prolong overall survival of patients with HCC. Areas covers: This paper will try to address the difference of the morphological characteristics and mechanisms of neovascularization in the process from liver fibrosis to cirrhosis and HCC and further compare the different efficacy of anti-angiogenesis therapy in these three stages. Expert opinion: More in-depth understanding of the role of angiogenesis factors and the relationship between angiogenesis and other aspects of the pathogenesis and transformation may be the key to enabling future progress in the treatment of patients with liver fibrosis, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
18
|
Lu J, Zhao YL, Zhang XQ, Li LJ. The vascular endothelial growth factor signaling pathway regulates liver sinusoidal endothelial cells during liver regeneration after partial hepatectomy. Expert Rev Gastroenterol Hepatol 2021; 15:139-147. [PMID: 32902336 DOI: 10.1080/17474124.2020.1815532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Liver regeneration after partial hepatectomy is a very complex and well-regulated procedure. It utilizes all liver cell types, which are associated with signaling pathways involving growth factors, cytokines, and stimulatory and inhibitory feedback of several growth-related signals. Liver sinusoidal endothelial cells (LSECs) contribute to liver regeneration after partial hepatectomy. Vascular endothelial growth factor (VEGF) has various functions in LSECs. In this review, we summarize the relationship between VEGF and LSECs involving VEGF regulatory activity in the vascular endothelium. AREAS COVERED Maintenance of the fenestrated LSEC phenotype requires two VEGF pathways: VEGF stimulated-NO acting through the cGMP pathway and VEGF independent of nitric oxide (NO). The results suggest that VEGF is a key regenerating mediator of LSECs in the partial hepatectomy model. NO-independent pathway was also essential to the maintenance of the LSEC in liver regeneration. EXPERT OPINION Liver regeneration remains a fascinating and significative research field in recent years. The liver involved of molecular pathways except for LSEC-VEGF pathways that make the field of liver further depth studies should be put into effect to elaborate the undetermined confusions, which will be better to understand liver regeneration.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Ya-Lei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Xiao-Qian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| |
Collapse
|
19
|
Nardelli S, Riggio O, Gioia S, Puzzono M, Pelle G, Ridola L. Spontaneous porto-systemic shunts in liver cirrhosis: Clinical and therapeutical aspects. World J Gastroenterol 2020; 26:1726-1732. [PMID: 32351289 PMCID: PMC7183860 DOI: 10.3748/wjg.v26.i15.1726] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Spontaneous porto-systemic shunts (SPSS) are frequent in liver cirrhosis and their prevalence increases as liver function deteriorates, probably as a consequence of worsening portal hypertension, but without achieving an effective protection against cirrhosis' complications. Several types of SPSS have been described in the literature, each one associated with different clinical manifestations. In particular, recurrent or persistent hepatic encephalopathy is more frequent in patients with splenorenal shunt, while the presence of gastric varices and consequently the incidence of variceal bleeding is more common in gastrorenal shunt. In the advanced stage, the presence of large SPSS can lead to the so called "portosystemic shunt syndrome", characterized by a progressive deterioration of hepatic function, hepatic encephalopathy and, sometimes, portal vein thrombosis. The detection of SPSS in patients with liver cirrhosis is recommended in order to prevent or treat recurrent hepatic encephalopathy or variceal bleeding.
Collapse
Affiliation(s)
- Silvia Nardelli
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome 00185, Italy
| | - Oliviero Riggio
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome 00185, Italy
| | - Stefania Gioia
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome 00185, Italy
| | - Marta Puzzono
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome 00185, Italy
| | - Giuseppe Pelle
- Department of Interventional Radiology, Santa Maria Goretti Hospital, Latina 04100, Italy
| | - Lorenzo Ridola
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome 00185, Italy
| |
Collapse
|
20
|
Chang CC, Chuang CL, Hsin IF, Hsu SJ, Huang HC, Lee FY, Lee SD. A high-dose rapamycin treatment alleviates hepatopulmonary syndrome in cirrhotic rats. J Chin Med Assoc 2020; 83:32-40. [PMID: 31567652 DOI: 10.1097/jcma.0000000000000194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rapamycin is a type of immunosuppressive agent that acts through inhibition of mammalian target of rapamycin (mTOR). Hepatopulmonary syndrome (HPS) is a lethal complication in cirrhotic patients. It is characterized by hypoxia and increased intrapulmonary shunts, in which pulmonary inflammation and angiogenesis play important roles. The current study aimed to evaluate the effect of rapamycin on HPS using the experimental model of common bile duct ligation (CBDL)-induced cirrhosis in rats. METHODS The rats received low-dose (0.5 mg/kg), high-dose (2 mg/kg) rapamycin, or vehicle from the 15th to the 28th day post CBDL. Then the mortality rate, hemodynamics, biochemistry parameters, arterial blood gas and plasma levels of vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-α were evaluated on the 28th day post CBDL. Pulmonary histopathological stains were performed, and protein expression was examined. In parallel groups, the intrapulmonary shunts of CBDL rats were measured. RESULTS Compared with the control, a high-dose rapamycin treatment decreased portal pressure and improved hypoxia in CBDL rats. It also reduced the plasma level of VEGF and TNF-α and decreased intrapulmonary shunts. Meanwhile, it ameliorated pulmonary inflammation and angiogenesis and downregulated the protein expression of mTOR, P70S6K, nuclear factor kappa B (NFκB), VEGF, and VEGF receptor 2. In contrast, low-dose rapamycin did not attenuate intrapulmonary shunts despite ameliorating portal hypertension. CONCLUSION High-dose rapamycin ameliorates HPS in cirrhotic rats as evidenced by the alleviated hypoxia and decreased intrapulmonary shunts. Downregulation of the mTOR/P70S6K, NFκB, and VEGF signaling pathways might play a key role.
Collapse
Affiliation(s)
- Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Chiao-Lin Chuang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - I-Fang Hsin
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Endoscopy Center for Diagnosis and Treatment, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Lee JG, Sohn JH, Jeong JY, Kim TY, Kim SM, Cho YS, Kim Y. Combined effect of hepatic venous pressure gradient and liver stiffness on long-term mortality in patients with cirrhosis. Korean J Intern Med 2020; 35:88-98. [PMID: 30791681 PMCID: PMC6960044 DOI: 10.3904/kjim.2018.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Both hepatic venous pressure gradient (HVPG) and liver stiffness (LS) are useful tools for predicting mortality in patients with cirrhosis. We investigated the combined effect of HVPG and LS on long-term mortality in patients with cirrhosis. METHODS We retrospectively collected data from 103 patients with cirrhosis, whose HVPG and LS were measured between November 2009 and September 2013. The patients were divided into four groups according to the results of the HVPG and LS measurements. Long-term mortality and the risk factors for mortality were analyzed. RESULTS Of the 103 patients, 35 were in group 1 (low HVPG and low LS), 16 in group 2 (high HVPG and low LS), 24 in group 3 (low HVPG and high LS), and 28 in group 4 (high HVPG and high LS). Over a median follow-up of 47.3 months, 18 patients died. The mortality rate of patients in group 4 was significantly higher than in the other three groups (vs. group 1, p = 0.005; vs. group 2, p = 0.049; vs. group 3, p = 0.004), but there were no significant differences in survival between groups 1, 2, and 3. In multivariable analyses, both HVPG and LS were identified as independent risk factors for mortality (hazard ratio [HR], 1.127, p = 0.018; and HR, 1.062, p = 0.009, respectively). CONCLUSION In patients with cirrhosis, those with concurrent elevation of HVPG and LS had the highest long-term mortality rates. However, when either HVPG or LS alone was elevated, mortality did not increase significantly.
Collapse
Affiliation(s)
- Jae Gon Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Joo Hyun Sohn
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
- Correspondence to Joo Hyun Sohn, M.D. Department of Internal Medicine, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri 11923, Korea Tel: +82-31-560-2225 Fax: +82-31-555-2998 E-mail:
| | - Jae Yoon Jeong
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Tae Yeob Kim
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sun Min Kim
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Young Seo Cho
- Department of Radiology, Hanyang University Guri Hospital, Guri, Korea
| | - Yongsoo Kim
- Department of Radiology, Hanyang University Guri Hospital, Guri, Korea
| |
Collapse
|
22
|
Ramirez-Pedraza M, Fernández M. Interplay Between Macrophages and Angiogenesis: A Double-Edged Sword in Liver Disease. Front Immunol 2019; 10:2882. [PMID: 31921146 PMCID: PMC6927291 DOI: 10.3389/fimmu.2019.02882] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
During chronic liver disease, macrophages support angiogenesis, not only by secreting proangiogenic growth factors and matrix-remodeling proteases, but also by physically interacting with the sprouting vasculature to assist the formation of complex vascular networks. In the liver, macrophages acquire specific characteristics becoming Kupffer cells and working to ensure protection and immunotolerance. Angiogenesis is another double-edged sword in health and disease and it is the biggest ally of macrophages allowing its dissemination. Angiogenesis and fibrosis may occur in parallel in several tissues as macrophages co-localize with newly formed vessels and secrete cytokines, interleukins, and growth factors that will activate other cell types in the liver such as hepatic stellate cells and liver sinusoidal endothelial cells, promoting extracellular matrix accumulation and fibrogenesis. Vascular endothelial growth factor, placental growth factor, and platelet-derived growth factor are the leading secreted factors driving pathological angiogenesis and consequently increasing macrophage infiltration. Tumor development in the liver has been widely linked to macrophage-mediated chronic inflammation in which epidermal growth factors, STAT3 and NF-kβ are some of the most relevant signaling molecules involved. In this article, we review the link between macrophages and angiogenesis at molecular and cellular levels in chronic liver disease.
Collapse
Affiliation(s)
- Marta Ramirez-Pedraza
- Angiogenesis in Liver Disease Research Group, IDIBAPS Biomedical Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mercedes Fernández
- Angiogenesis in Liver Disease Research Group, IDIBAPS Biomedical Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Hepatic and Digestive Disease (CIBEREHD), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Insights into the success and failure of systemic therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2019; 16:617-630. [PMID: 31371809 DOI: 10.1038/s41575-019-0179-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2019] [Indexed: 02/08/2023]
Abstract
Systemic treatment for hepatocellular carcinoma (HCC) has been boosted by the incorporation of new agents after many negative phase III trials in the decade since the approval of sorafenib. Sorafenib introduced the concept that targeting specific hallmarks of hepatocarcinogenesis could modify the dismal prognosis of this disease, with the drug remaining a cornerstone in the upfront therapy for advanced HCC. The design of clinical trials in this malignancy is complicated by important obstacles related to patient selection, prognostic assessment and the need for endpoints that correlate with improvement in survival outcomes. In addition, the currently used criteria to determine treatment response or progression might prevent physicians from making appropriate clinical judgements and interpreting evidence arising from trials. In this Review, we discuss the advances in systemic therapy for HCC and critically review trial designs in HCC. Although novel therapies, such as new targeted agents and immunotherapies, are being rapidly incorporated, it is paramount to design future clinical trials based on the lessons learned from past failures and successes.
Collapse
|
24
|
Abstract
This review chapter describes the current knowledge about the nature of pericytes in the gut, their interaction with endothelial cells in blood vessels, and their pathophysiological functions in the setting of chronic liver disease. In particular, it focuses on the role of these vascular cell types and related molecular signaling pathways in pathological angiogenesis associated with liver disease and in the establishment of the gut-vascular barrier and the potential implications in liver disease through the gut-liver axis.
Collapse
|
25
|
Zhang J, Chu M. Differential roles of VEGF: Relevance to tissue fibrosis. J Cell Biochem 2019; 120:10945-10951. [PMID: 30793361 DOI: 10.1002/jcb.28489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Excessive extracellular matrix deposition and pathological vascularization are characteristics of fibrosis, which compromises the normal functioning of organs. Although whether angiogenesis can be induced and can occur in parallel with the progression of fibrosis has not been definitely determined, angiogenesis undoubtedly plays a vital role in fibrosis. Since vascular endothelial growth factor (VEGF) is one of the most effective proangiogenic factors, VEGF-targeting interventions have been a focus for the development of therapeutic strategies against fibrosis. In this review, we will summarize the current knowledge of the role of VEGF and its relevant mechanisms in fibrotic biology. We especially expect to provide a comprehensive overview of the therapeutic potential of VEGF-targeted therapy strategies to restore vascular function in the organs affected by fibrosis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| |
Collapse
|
26
|
Ribera J, Rodríguez-Vita J, Cordoba B, Portolés I, Casals G, Casals E, Jiménez W, Puntes V, Morales-Ruiz M. Functionalized cerium oxide nanoparticles mitigate the oxidative stress and pro-inflammatory activity associated to the portal vein endothelium of cirrhotic rats. PLoS One 2019; 14:e0218716. [PMID: 31233564 PMCID: PMC6590813 DOI: 10.1371/journal.pone.0218716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS The occurrence of endothelial alterations in the liver and in the splanchnic vasculature of cirrhotic patients and experimental models of liver diseases has been demonstrated. However, the pathological role of the portal vein endothelium in this clinical context is scarcely studied and, therefore, deserves attention. In this context, we aimed to investigate whether pathological endothelial activation occurs in the portal vein of cirrhotic rats. METHODS Cirrhosis was induced in wistar rats by CCl4 inhalation. We generated immortalized endothelial cells from the portal vein of control (CT-iPVEC) and cirrhotic rats (CH-iPVEC) by retroviral transduction of the SV40 T antigen. We assessed differential gene expression and intracellular reactive oxygen species (ROS) levels in iPVECs and in portal veins of control and cirrhotic rats. Finally, we assessed the therapeutic effectiveness of cerium oxide nanoparticles (CeO2NP) on reversing PVEC activation and macrophage polarization. RESULTS CH-iPVECs overexpressed collagen-I, endothelin-1, TIMP-1, TIMP-2, IL-6 and PlGF genes. These results were consistent with the differential expression showed by whole portal veins from cirrhotic rats. In addition, CH-iPVECs showed a significant increase in intracellular ROS and the capacity of potentiating M1 polarization in macrophages. The treatment of CH-iPVECs with CeO2NPs blocked intracellular ROS formation and IL-6 and TIMP-2 gene overexpression. In agreement with the in vitro results, the chronic treatment of cirrhotic rats with CeO2NPs also resulted in the blockade of both ROS formation and IL-6 gene overexpression in whole portal veins. CONCLUSIONS Endothelial cells from portal vein of cirrhotic rats depicted an abnormal phenotype characterized by a differential gene expression and the induction of M1 polarization in macrophages. We identified the excess of intracellular reactive oxygen species (ROS) as a major contributor to this altered phenotype. In addition, we demonstrated the utility of the nanomaterial cerium oxide as an effective antioxidant capable of reverse some of these pathological features associated with the portal vein in the cirrhosis condition.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Juan Rodríguez-Vita
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- German Cancer Research Center, Heidelberg, Germany
| | - Bernat Cordoba
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Eudald Casals
- Catalan Institute of Nanotechnology (ICN), Bellaterra, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanotechnology (ICN), Bellaterra, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
27
|
Deng W, Duan M, Qian B, Zhu Y, Lin J, Zheng L, Zhang C, Qi X, Luo M. NADPH oxidase 1/4 inhibition attenuates the portal hypertensive syndrome via modulation of mesenteric angiogenesis and arterial hyporeactivity in rats. Clin Res Hepatol Gastroenterol 2019; 43:255-265. [PMID: 30413372 DOI: 10.1016/j.clinre.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
AIM NADPH oxidase (NOX)-derived reactive oxygen species (ROS) plays key roles in the development of portal hypertension (PHT) and represents a potential therapeutic method. The objective of this study was to investigate whether pharmacological inhibition of NADPH oxidase activity could ameliorate PHT in rats. METHOD PHT model was established by partial portal vein ligation (PPVL). Rats were treated with 30 mg/kg GKT137831 (the most specific Nox1/4 inhibitor) or vehicle daily by gavage for 14 days beginning at the day of PPVL or sham operation (SO). Hemodynamics, severity of portal-systemic shunting, vascular contractility, vascular endothelial growth factor (VEGF), VEGFR-2, CD31, AKT, phospho-AKT (p-AKT, at Ser473), endothelial nitric oxide synthase (eNOS), and phospho-eNOS (p-eNOS, at Ser1177) expressions were evaluated. Nitric oxide (NO) production and oxidative stress in mesenteric arteries, and hydrogen peroxide (H2O2) in both mesenteric tissues and arteries were measured. RESULT Inhibition of NOX1/4 with GKT137831 significantly decreased cardiac index, increased portal flow resistance, reduced portal pressure (PP), portal blood flow, mesenteric angiogenesis and portal-systemic shunting (PSS) in PPVL rats. GKT137831 reduced the production of H2O2, down regulated mesenteric angiogenesis markers (CD31, vascular endothelial growth factor (VEGF) and VEGFR-2 expression. Compared with controls), the mesenteric artery contraction to norepinephrine (NE) was impaired in PPVL rats, which was reversed by exposure to GKT137831. In addition, GKT137831 markedly decrease NADPH oxidase activity and ROS production in mesenteric arteries, and reduced NO production by decreasing the level of phosphor-AKT and eNOS. CONCLUSION Inhibition of NOX1/4 decreased PP, ameliorated hyperdynamic circulation, mesenteric angiogenesis and arterial hyporesonse in portal hypertensive rats. Pharmacological inhibition of NOX1/4 activity may be a potential treatment for PHT-related complications.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of Liver surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Ming Duan
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China
| | - Binbin Qian
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Yiming Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China
| | - Xiaoliang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, PR China.
| |
Collapse
|
28
|
Shafie F, Nabavizadeh F, Shafie Ardestani M, Panahi M, Adeli S, Samandari H, Ashabi G. Sorafenib-loaded PAMAM dendrimer attenuates liver fibrosis and its complications in bile-duct-ligated rats. Can J Physiol Pharmacol 2019; 97:691-698. [PMID: 31071278 DOI: 10.1139/cjpp-2019-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed the effect of sorafenib-loaded polyamidoamine (PAMAM) dendrimer on liver fibrosis induced by bile duct ligation (BDL). Male Wistar rats were divided into 9 groups: intact, sham, DMSO + BDL, BDL, sorafenib (30 mg/kg), sorafenib (60 mg/kg), PAMAM + BDL, sorafenib (30 mg/kg) + PAMAM + BDL, sorafenib (60 mg/kg) + PAMAM + BDL. BDL was induced and then rats were treated daily with sorafenib and (or) PAMAM for 4 weeks. Improvement of liver was detected via assessment of ascites formation, collagen deposition, liver blood flow, vascular endothelial growth factor level, and blood cells count. Sorafenib-loaded PAMAM dendrimer in both 30 and 60 mg/kg doses reduced ascites formation, reduced collagen deposition, and improved drug-induced hematological side effects of sorafenib alone in comparison with sorafenib-alone treatment. Sorafenib-loaded PAMAM dendrimer increased liver blood flow compared with sorafenib-received groups. Sorafenib-loaded PAMAM dendrimer reduced BDL-induced liver injury compared with sorafenib-received groups. Moreover, sorafenib-loaded PAMAM dendrimer decreased vascular endothelial growth factor level in serum and liver tissue in comparison with sorafenib-received groups. Sorafenib-loaded PAMAM dendrimer profoundly improved the therapeutic effects of sorafenib in BDL rats.
Collapse
Affiliation(s)
- Fatemeh Shafie
- a Department of Physiology, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- a Department of Physiology, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafie Ardestani
- b Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- c Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- d Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayat Samandari
- a Department of Physiology, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- a Department of Physiology, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Forner A, Da Fonseca LG, Díaz-González Á, Sanduzzi-Zamparelli M, Reig M, Bruix J. Controversies in the management of hepatocellular carcinoma. JHEP Rep 2019; 1:17-29. [PMID: 32039350 PMCID: PMC7001551 DOI: 10.1016/j.jhepr.2019.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
The management of hepatocellular carcinoma (HCC) has evolved considerably over the last decade. Surveillance of cirrhotic patients and refinements to imaging techniques have enabled a relevant proportion of patients to be diagnosed at an early stage, when effective therapies are feasible. Resection, transplantation and ablation are all options in patients with early stage HCC. Thus, there is some controversy regarding which is the best treatment approach in challenging scenarios. There have also been major developments in locoregional therapies, particularly in intra-arterial approaches. Finally, the systemic treatment for HCC has changed dramatically following the demonstration of a survival benefit with sorafenib; there are currently several first-line (sorafenib and lenvatinib) and second-line (regorafenib, cabozantinib and ramucirumab) treatments that have shown a survival benefit. Expectations for immune checkpoint inhibitors are high, with the results of the ongoing phase III trials eagerly awaited. In this review we discuss some of the controversies in the management of HCC, focussing in particular on systemic therapy.
Collapse
Affiliation(s)
- Alejandro Forner
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Leonardo G Da Fonseca
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
| | - Álvaro Díaz-González
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
| | - Marco Sanduzzi-Zamparelli
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
| | - María Reig
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| |
Collapse
|
30
|
Scheiner B, Ulbrich G, Mandorfer M, Reiberger T, Müller C, Waneck F, Trauner M, Kölblinger C, Ferlitsch A, Sieghart W, Peck-Radosavljevic M, Pinter M. Short- and long-term effects of transarterial chemoembolization on portal hypertension in patients with hepatocellular carcinoma. United European Gastroenterol J 2019; 7:850-858. [PMID: 31316789 PMCID: PMC6620878 DOI: 10.1177/2050640619840199] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Background Transarterial chemoembolization (TACE) affects hepatic perfusion, and might
have an impact on portal pressure in patients with hepatocellular carcinoma
(HCC). Objective The objective of this article is to report the secondary outcome “hepatic
hemodynamics” from the AVATACE trial, a prospective randomized,
placebo-controlled trial on the efficacy of conventional TACE in combination
with bevacizumab or placebo. Methods Hepatic venous pressure gradient (HVPG) was measured at baseline (prior to
first TACE), within nine days (“acute effects”), two months (“intermediate
effects”) and six months (“long-term effects”) after the first TACE. Results Of 28 patients with early-intermediate stage HCC, n = 20
(71%) had clinically significant portal hypertension (CSPH, HVPG ≥ 10 mmHg)
at baseline (median, 12 (interquartile range (IQR): 9–19) mmHg). TACE had
neither “acute effects” nor “intermediate effects” on HVPG. However, in 13
patients with available HVPG measurement at month 6, there was a significant
increase in HVPG (median, 16 (IQR: 11–19) mmHg) compared with baseline
(median, 10 (IQR: 5–12) mmHg; p = 0.007). Portal
hypertension-related complications occurred exclusively in patients with
CSPH (8 (40%) vs 0). Conclusions Repeated TACE was associated with a significant long-term increase in HVPG.
This should be considered when deciding whether to continue with TACE or
switch to systemic treatment, since CSPH drives the development of
complications.
Collapse
Affiliation(s)
- Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Liver Cancer (HCC) Study Group Vienna, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Gregor Ulbrich
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Christian Müller
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Liver Cancer (HCC) Study Group Vienna, Medical University of Vienna, Vienna, Austria
| | - Fredrik Waneck
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claus Kölblinger
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Radiology, Krankenhaus Barmherzige Schwestern Ried, Ried, Austria
| | - Arnulf Ferlitsch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine, Krankenhaus Barmherzige Brüder Wien, Vienna Austria
| | - Wolfgang Sieghart
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Liver Cancer (HCC) Study Group Vienna, Medical University of Vienna, Vienna, Austria
| | - Markus Peck-Radosavljevic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine and Gastroenterology, Hepatology, Endocrinology, Rheumatology and Nephrology including Centralized Emergency Department, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Liver Cancer (HCC) Study Group Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Ortiz GA, Garcia-Tsao G. Future Pharmacological Therapies of Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2019; 18:36-48. [PMID: 35722634 PMCID: PMC9205466 DOI: 10.1007/s11901-019-00448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE OF REVIEW To provide an overview of recent pharmacological treatments for portal hypertension evaluated in early clinical trials, with particular emphasis on the pathophysiological basis of their use. RECENT FINDINGS In patients with compensated cirrhosis, even small decreases in portal pressure (as small as 1 mmHg) are associated with a lower probability of decompensation. In patients with decompensated cirrhosis, portal pressure "response" to non-selective beta-blocker (NSBB) therapy is associated with a lower mortality. When present, significant portal hypertension persists even after elimination of the etiology of cirrhosis and this justifies the continued development of new drugs that target portal hypertension. SUMMARY Over several decades we have gained great depth in the understanding of portal hypertension, its mechanisms and complications. NSBBs, which act by reducing portal venous inflow (an extrahepatic target), are effective in reducing portal pressure and have been the mainstay of therapy for portal hypertension in the last 35 years -being effective in preventing decompensation and variceal hemorrhage. However, because not all patients will have a sufficient response to NSBB and some may be intolerant to NSBB, alternative drugs or drugs that will augment the effect of NSBB on portal pressure are being tested in pre-clinical and early-clinical trials. Many of these drugs target more than one of the intrahepatic or extrahepatic mechanisms implicated in the pathogenesis of portal hypertension in cirrhosis. Out of these proposed therapies, statins have emerged as the most promising new pharmacological therapy for the treatment of portal hypertension.
Collapse
Affiliation(s)
- Guillermo A. Ortiz
- Digestive Diseases Section, Department of Medicine, Yale University, New Haven, CT, USA
- Digestive Diseases Section, Department of Internal medicine, VA-CT Healthcare System, West Haven, CT, USA
| | - Guadalupe Garcia-Tsao
- Digestive Diseases Section, Department of Medicine, Yale University, New Haven, CT, USA
- Digestive Diseases Section, Department of Internal medicine, VA-CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
32
|
Xu W, Liu P, Mu YP. Research progress on signaling pathways in cirrhotic portal hypertension. World J Clin Cases 2018; 6:335-343. [PMID: 30283796 PMCID: PMC6163134 DOI: 10.12998/wjcc.v6.i10.335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 02/05/2023] Open
Abstract
Portal hypertension (PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient’s quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.
Collapse
Affiliation(s)
- Wen Xu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| | - Yong-Ping Mu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Shanghai 201203, China
- Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Shanghai University of TCM, Shanghai 201203, China
- Clinical key laboratory of TCM of Shanghai, Shanghai 201203, China
| |
Collapse
|
33
|
Garbuzenko DV, Arefyev NO, Kazachkov EL. Antiangiogenic therapy for portal hypertension in liver cirrhosis: Current progress and perspectives. World J Gastroenterol 2018; 24:3738-3748. [PMID: 30197479 PMCID: PMC6127663 DOI: 10.3748/wjg.v24.i33.3738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Developing medicines for hemodynamic disorders that are characteristic of cirrhosis of the liver is a relevant problem in modern hepatology. The increase in hepatic vascular resistance to portal blood flow and subsequent hyperdynamic circulation underlie portal hypertension (PH) and promote its progression, despite the formation of portosystemic collaterals. Angiogenesis and vascular bed restructurization play an important role in PH pathogenesis as well. In this regard, strategic directions in the therapy for PH in cirrhosis include selectively decreasing hepatic vascular resistance while preserving or increasing portal blood flow, and correcting hyperdynamic circulation and pathological angiogenesis. The aim of this review is to describe the mechanisms of angiogenesis in PH and the methods of antiangiogenic therapy. The PubMed database, the Google Scholar retrieval system, and the reference lists from related articles were used to search for relevant publications. Articles corresponding to the aim of the review were selected for 2000-2017 using the keywords: "liver cirrhosis", "portal hypertension", "pathogenesis", "angiogenesis", and "antiangiogenic therapy". Antiangiogenic therapy for PH was the inclusion criterion. In this review, we have described angiogenesis inhibitors and their mechanism of action in relation to PH. Although most of them were studied only in animal experiments, this selective therapy for abnormally growing newly formed vessels is pathogenetically reasonable to treat PH and associated complications.
Collapse
Affiliation(s)
| | - Nikolay Olegovich Arefyev
- Department of Pathological Anatomy and Forensic Medicine, South Ural State Medical University, Chelyabinsk 454092, Russia
| | - Evgeniy Leonidovich Kazachkov
- Department of Pathological Anatomy and Forensic Medicine, South Ural State Medical University, Chelyabinsk 454092, Russia
| |
Collapse
|
34
|
Angiogenesis and Hepatic Fibrosis: Western and Chinese Medicine Therapies on the Road. Chin J Integr Med 2018; 24:713-720. [DOI: 10.1007/s11655-018-3007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2016] [Indexed: 02/07/2023]
|
35
|
Effect of sirolimus on liver cirrhosis and hepatic encephalopathy of common bile duct-ligated rats. Eur J Pharmacol 2018; 824:133-139. [PMID: 29444470 DOI: 10.1016/j.ejphar.2018.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 01/16/2023]
Abstract
Cirrhosis is often associated with portal hypertension and portal-systemic collateral vessels formation attributed to angiogenesis, which leads to severe complications as hepatic encephalopathy. Sirolimus has anti-fibrosis and anti-angiogenesis effects, but whether it influences the severity of portal-systemic collaterals and hepatic encephalopathy is unknown. This study was thus designed to address this issue in rats with common bile duct ligation-induced liver cirrhosis. Sham-operated rats were surgical controls. Rats were intraperitoneally administered with 0.5 and 2 mg/kg/day sirolimus or vehicle for 2 weeks. Four weeks post operations, motor activities, body weight, biochemistry and hemodynamic data were measured. The liver was dissected for histopathology, immunohistochemical stains and protein analysis. On the parallel cirrhotic groups, the portal-systemic shunting was determined. The results showed that the body weight gain was significantly lower in sirolimus-treated rats. Sirolimus reduced portal pressure and plasma levels of alanine aminotransferase, aspartate aminotransferase and ammonia, and attenuated hepatic inflammation and fibrosis in cirrhotic rats. In addition, the hepatic phosphorylated mammalian target of rapamycin (mTOR) and P70S6K protein expressions were significantly downregulated and endothelial nitric oxide synthase (eNOS) expression upregulated by sirolimus. Sirolimus did not influence portal-systemic shunting and motor activities of cirrhotic rats. In conclusion, sirolimus significantly improved hepatic inflammation and fibrosis accompanied by portal pressure reduction in cirrhotic rats, in which down-regulated mTOR/P70S6K and up-regulated eNOS expressions might play a role. However, sirolimus did not significantly change the severity of portal-systemic collaterals and motor activities, suggesting that the multifactorial pathogenesis of hepatic encephalopathy could not be fully overcome by sirolimus.
Collapse
|
36
|
Abstract
Portal hypertension develops as a result of increased intrahepatic vascular resistance often caused by chronic liver disease that leads to structural distortion by fibrosis, microvascular thrombosis, dysfunction of liver sinusoidal endothelial cells (LSECs), and hepatic stellate cell (HSC) activation. While the basic mechanisms of LSEC and HSC dysregulation have been extensively studied, the role of microvascular thrombosis and platelet function in the pathogenesis of portal hypertension remains to be clearly characterized. As a secondary event, portal hypertension results in splanchnic and systemic arterial vasodilation, leading to the development of a hyperdynamic circulatory syndrome and subsequently to clinically devastating complications including gastroesophageal varices and variceal hemorrhage, hepatic encephalopathy from the formation of portosystemic shunts, ascites, and renal failure due to the hepatorenal syndrome. This review article discusses: (1) mechanisms of sinusoidal portal hypertension, focusing on HSC and LSEC biology, pathological angiogenesis, and the role of microvascular thrombosis and platelets, (2) the mesenteric vasculature in portal hypertension, and (3) future directions for vascular biology research in portal hypertension.
Collapse
Affiliation(s)
- Matthew McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
37
|
Vettukattil JJ. Is the Hepatic Factor a miRNA that Maintains the Integrity of Pulmonary Microvasculature by Inhibiting the Vascular Endothelial Growth Factor? Curr Cardiol Rev 2017; 13:244-250. [PMID: 28494714 PMCID: PMC5633719 DOI: 10.2174/1573403x13666170510115628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Background: The “hepatic factor,” a molecule or group of molecules present in the hepatic venous blood, essential for the prevention of the development of pulmonary arteriovenous malfor-mations (PAVMs) and right-to-left shunting has been a conceptual enigma in the understanding of many related conditions. Methods: Patients with various forms of liver diseases including acute hepatic failure, and others with normal hepatic function like hereditary hemorrhagic telangiectasia (HHT), inflammatory and parasitic disorders, cardiogenic hepatopulmonary syndrome (cHPS) and skin disorders like Dyskeratosis con-genita are all known to cause PAVMs. Over a period of the last two decades our understanding of the pathogenesis of PAVMs has changed, but the mechanisms are still not clearly understood. The pres-ence of PAVMs once considered a contraindication for liver transplantation is now a cure for PAVMs in patients with HPS. Results: In this article the molecular mechanisms and the underlying pathogenesis of PAVMs are dis-cussed and the role of microRNA (miRNA) in its pathogenesis is favorably argued. Identifying and preventing or treating the underlying mechanisms will significantly influence the management of a large group of patients who at present cannot be effectively treated with a very poor prognosis. Progressive polycythemia, desaturation, stroke, and infection are serious complications of PAVMs. Conclusion: The clinical data and current understanding leads to the possible role of miRNA, which inhibits Vascular Endothelial Growth Factor (VEGF) synthesis as a pathogenic mechanism for the development of PAVMs.
Collapse
Affiliation(s)
- Joseph J Vettukattil
- Congenital Heart Center, Helen DeVos Children's Hospital, 100 Michigan NE (MC248), Grand Rapids, MI 49503, United States
| |
Collapse
|
38
|
Therapeutic siRNA targeting endothelial KDR decreases portosystemic collateralization in portal hypertension. Sci Rep 2017; 7:14791. [PMID: 29093528 PMCID: PMC5665956 DOI: 10.1038/s41598-017-14818-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023] Open
Abstract
Development of portosystemic collateral vessels and gastroesophageal varices is responsible for the most serious clinical consequences of portal hypertension, but effective clinical therapies are limited. Here we developed and investigated the therapeutic potential of an innovative liposomally-formulated short-interfering RNA (siRNA) technology based on clinical stage components, capable to attenuate production of the endothelial kinase insert domain receptor (KDR), which controls portosystemic collateralization and contributes to disease progression and aggravation. These siRNAs were first validated in vitro, and then, their therapeutic potential on portosystemic collateralization and pathological angiogenesis was tested in vivo in mouse models of portal hypertension (portal vein-ligation). siRNAKDR-lipoplexes efficiently transported siRNAKDR to vascular endothelial cells in mesenteric microvenules and portal vein of portal hypertensive mice, where collaterogenesis and angiogenesis take place. This systemic treatment significantly downregulated pathological KDR overexpression, without causing complete KDR knockout, preserving homeostatic baseline KDR levels and thus limiting adverse effects. siRNAKDR-lipoplex-induced endothelial-specific KDR knockdown drastically reduced by 73% the portosystemic collateralization, and impaired the pathologic angiogenic potential of vascular endothelial cells at different levels (cell proliferation, sprouting and remodeling). Targeting endothelial KDR with therapeutic siRNAKDR-lipoplexes could be a promising and plausible treatment modality for attenuating the formation of portosystemic collaterals in a clinical setting.
Collapse
|
39
|
Garcia-Pras E, Gallego J, Coch L, Mejias M, Fernandez-Miranda G, Pardal R, Bosch J, Mendez R, Fernandez M. Role and therapeutic potential of vascular stem/progenitor cells in pathological neovascularisation during chronic portal hypertension. Gut 2017; 66:1306-1320. [PMID: 26984852 DOI: 10.1136/gutjnl-2015-311157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pathological neovascularisation is intimately involved in portal hypertension (PH). Here, we determined the contribution of vascular stem/progenitor cells (VSPCs) to neovessel growth in PH and whether the RNA-binding protein cytoplasmic polyadenylation element binding protein-4 (CPEB4) was behind the mechanism controlling VSPC function. DESIGN To identify and monitor VSPCs in PH rats (portal vein-ligated), we used a combinatorial approach, including sphere-forming assay, assessment of self-renewal, 5-bromo-2'-desoxyuridine label retention technique, in vitro and in vivo stem/progenitor cell (SPC) differentiation and vasculogenic capability, cell sorting, as well as immunohistochemistry, immunofluorescence and confocal microscopy expression analysis. We also determined the role of CPEB4 on VSPC proliferation using genetically engineered mouse models. RESULTS We demonstrated the existence in the mesenteric vascular bed of VSPCs displaying capability to form cellular spheres in suspension culture, self-renewal ability, expression of molecules commonly found in SPCs, slow-cycling features, in addition to other cardinal properties exhibited by SPCs, like capacity to differentiate into endothelial cells and pericytes with remarkable vasculogenic activity. Such VSPCs showed, after PH induction, an early switch in proliferation, and differentiated in vivo into endothelial cells and pericytes, contributing, structurally and functionally, to abnormal neovessel formation. Quantification of VSPC-dependent neovessel formation in PH further illustrated the key role played by VSPCs. We also demonstrated that CPEB4 regulates the proliferation of the activated VSPC progeny upon PH induction. CONCLUSIONS These findings demonstrate that VSPC-derived neovessel growth (ie, vasculogenesis) and angiogenesis cooperatively stimulate mesenteric neovascularisation in PH and identify VSPC and CPEB4 as potential therapeutic targets.
Collapse
Affiliation(s)
- Ester Garcia-Pras
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Javier Gallego
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Laura Coch
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Marc Mejias
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Gonzalo Fernandez-Miranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jaime Bosch
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, CIBERehd, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Kao JT, Yu CJ, Feng CL, Tsai SM, Chen YL, Wu YY. IL-6 significantly correlates with p-STAT3 expression and presents high variceal bleeding with mortality in cirrhotic patients: A cross-sectional study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:286-296. [PMID: 25899133 DOI: 10.1016/j.jmii.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/06/2015] [Accepted: 03/05/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND/PURPOSE Effective mediators activate downstream transducers regulating inflammation and angiogenesis. Correlation among mediators IL-6, IL-27, TNF-α, and VEGF with STAT proteins at diverse clinical-pathologic stages of cirrhotic patients remains limited. METHODS Plasma mediators were assayed from 158 naïve liver cirrhosis (LC-total group) and 144 non-LC individuals. The LC-total group included 69 hepatitis B virus-infected (LC-HBV) patients, 40 hepatitis C virus-infected (LC-HCV) patients, and 49 patients without HBV-/HCV- infection (LC-NBNC). Another 144 non-LC individuals comprised 54 healthy persons (HG) and 90 chronic hepatitis patients (CH-total) as the control group. To correlate with plasma mediators, 52 paired liver tissues (CH: 41 and LC: 11 cases) served for p-STAT1 and p-STAT3 immunostaining. RESULTS Although IL-6, IL-27, TNF-α, and VEGF were expressed significantly in CH-total versus HG (p = 0.011, p < 0.001, p = 0.007, p = 0.004, respectively) and overall viral hepatitis patients versus HG (p < 0.001, p < 0.001, p < 0.001, p < 0.001, respectively), only IL-6 presented the strongest correlation in cirrhotic patients than noncirrhotic patients (LC-HBV vs. HG, p < 0.001, vs. CH-HBV, p = 0.001; LC-HCV vs. HG, p = 0.001, vs. CH-HCV, p = 0.031; LC-NBNC vs. HG, p < 0.001). Over-expressed IL-6 linked with poorer liver function (albumin: r = -0.346, p < 0.001; bilirubin: r = 0.271, p = 0.001; INR: r = 0.308, p < 0.001; Child-Turcotte-Pugh Classification C vs. A or B, p = 0.001, p = 0.007, respectively), variceal severity (p = 0.045), and bleeding (p = 0.047), as well as patients' mortality (p = 0.005). Furthermore, plasma IL-6 significantly correlated with tissues p-STAT3 expression (r = 0.737, p = 0.010) (IL-27: r = 0.078, p = 0.820; TNF-α: r = -0.145, p = 0.670; VEGF: r = 0.142, p = 0.678) in cirrhotic patients than noncirrhotic patients. CONCLUSION Over-expression of IL-6 reflects hepatic dysfunction and varices bleeding with mortality, as well as correlates p-STAT3 expression in cirrhotic patients.
Collapse
Affiliation(s)
- Jung-Ta Kao
- School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ju Yu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Lung Feng
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shu-Mei Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Li Chen
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of General Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ying Wu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Ma R, Chen J, Liang Y, Lin S, Zhu L, Liang X, Cai X. Sorafenib: A potential therapeutic drug for hepatic fibrosis and its outcomes. Biomed Pharmacother 2017; 88:459-468. [PMID: 28122312 DOI: 10.1016/j.biopha.2017.01.107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/16/2022] Open
|
43
|
Natarajan V, Harris EN, Kidambi S. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4097205. [PMID: 28293634 PMCID: PMC5331310 DOI: 10.1155/2017/4097205] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis.
Collapse
Affiliation(s)
- Vaishaali Natarajan
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
44
|
Abstract
In patients with advanced liver disease with portal hypertension, portal-systemic collaterals contribute to circulatory disturbance, gastrointestinal hemorrhage, hepatic encephalopathy, ascites, hepatopulmonary syndrome and portopulmonary hypertension. Angiogenesis has a pivotal role in the formation of portal-systemic shunts. Recent research has defined many of the mediators and mechanisms involved in this angiogenic process, linking the central roles of hepatic stellate cells and endothelial cells. Studies of animal models have demonstrated the potential therapeutic impact of drugs to inhibit angiogenesis in cirrhosis. For example, inhibition of VEGF reduces portal pressure, hyperdynamic splanchnic circulation, portosystemic collateralization and liver fibrosis. An improved understanding of the role of other angiogenic factors provides hope for a novel targeted therapy for portal hypertension with a tolerable adverse effect profile.
Collapse
Affiliation(s)
- Juan Cristóbal Gana
- Department of Pediatric Gastroenterology & Nutrition, Division of Pediatrics, Escuela de Medicina, Pontificia Universidad Católica de Chile. Chile
| | - Carolina A Serrano
- Department of Pediatric Gastroenterology & Nutrition, Division of Pediatrics, Escuela de Medicina, Pontificia Universidad Católica de Chile. Chile
| | - Simon C Ling
- Division of Gastroenterology, Hepatology & Nutrition, Department of Paediatrics, University of Toronto, and The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
45
|
|
46
|
Global Proteome Changes in Liver Tissue 6 Weeks after FOLFOX Treatment of Colorectal Cancer Liver Metastases. Proteomes 2016; 4:proteomes4040030. [PMID: 28248240 PMCID: PMC5260963 DOI: 10.3390/proteomes4040030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/17/2022] Open
Abstract
(1) Oxaliplatin-based chemotherapy for colorectal cancer liver metastasis is associated with sinusoidal injury of liver parenchyma. The effects of oxaliplatin-induced liver injury on the protein level remain unknown. (2) Protein expression in liver tissue was analyzed—from eight patients treated with FOLFOX (combination of fluorouracil, leucovorin, and oxaliplatin) and seven controls—by label-free liquid chromatography mass spectrometry. Recursive feature elimination–support vector machine and Welch t-test were used to identify classifying and relevantly changed proteins, respectively. Resulting proteins were analyzed for associations with gene ontology categories and pathways. (3) A total of 5891 proteins were detected. A set of 184 (3.1%) proteins classified the groups with a 20% error rate, but relevant change was observed only in 55 (0.9%) proteins. The classifying proteins were associated with changes in DNA replication (p < 0.05) through upregulation of the minichromosome maintenance complex and with the innate immune response (p < 0.05). The importance of DNA replication changes was supported by the results of Welch t-test (p < 0.05). (4) Six weeks after FOLFOX treatment, less than 1% of identified proteins showed changes in expression associated with DNA replication, cell cycle entry, and innate immune response. We hypothesize that the changes remain after recovery from FOLFOX treatment injury.
Collapse
|
47
|
Gao JH, Wen SL, Feng S, Yang WJ, Lu YY, Tong H, Liu R, Tang SH, Huang ZY, Tang YM, Yang JH, Xie HQ, Tang CW. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis 2016; 19:501-11. [PMID: 27380212 PMCID: PMC5026725 DOI: 10.1007/s10456-016-9522-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)–hypoxia-inducible factor-1α (HIF-1α)–vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK–HIF-1α–VEGF signaling pathway.
Collapse
Affiliation(s)
- Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shi-Lei Wen
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Shi Feng
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yao-Yao Lu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
48
|
Hsin IF, Lee JY, Huo TI, Lee FY, Huang HC, Hsu SJ, Wang SS, Ho HL, Lin HC, Lee SD. 2'-Hydroxyflavanone ameliorates mesenteric angiogenesis and portal-systemic collaterals in rats with liver fibrosis. J Gastroenterol Hepatol 2016; 31:1045-51. [PMID: 26474184 DOI: 10.1111/jgh.13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Portal-systemic collaterals lead to dreadful consequences in patients with cirrhosis. Angiogenesis participates in the development of liver fibrosis, hyperdynamic circulation, and portal-systemic collaterals. 2'-Hydroxyflavanone (2'-HF), one of the citrus fruits flavonoids, is known to have antiangiogenesis effect without adverse response. However, the relevant effects in liver fibrosis have not been surveyed. METHODS Male Wistar rats received thioacetamide (TAA, 100 mg/kg tiw, i.p.) for 6 weeks to induce liver fibrosis. On the 29th to 42nd day, rats randomly received 2'-HF (100 mg/kg, qod, i.p.) or vehicle (corn oil). On the 43rd day, after hemodynamic measurements, the followings were surveyed: (i) severity of collaterals; (ii) mesenteric angiogenesis; (iii) mesenteric proangiogenic factors protein expressions; (iv) Mesenteric vascular endothelial cells apoptosis; and (v) Mesenteric expressions of proteins regulating apoptosis. RESULTS Compared with the vehicle group, 2'-HF did not significantly change body weight, mean arterial pressure, heart rate, and portal pressure in TAA rats. 2'-HF significantly alleviated the severity of collaterals, but the mesenteric phospho-ERK, ERK, phospho-Akt, Akt, COX1, COX2, VEGF, and VEGFR-2 protein expressions were not altered. The apoptotic index of 2'-HF group was significantly higher and the mesenteric protein expressions of pro-apoptotic factors, NFkB 50, NFkB 65, Bax, phospho-p53, 17 kD cleaved caspase 3, and 17 kD casepase 3 were up-regulated. CONCLUSIONS 2'-HF does not influence the hemodynamics but alleviated the severity of collaterals in rats with liver fibrosis and early portal hypertension. This is, at least partly, attributed to enhanced apoptosis of mesenteric vascular endothelial cells.
Collapse
Affiliation(s)
- I-Fang Hsin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei, Taiwan
| | - Jing-Yi Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sun-Sang Wang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Medical Affair and Planning, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ling Ho
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
49
|
Chen Y, Wang W, Wang H, Li Y, Shi M, Li H, Yan J. Rapamycin Attenuates Splenomegaly in both Intrahepatic and Prehepatic Portal Hypertensive Rats by Blocking mTOR Signaling Pathway. PLoS One 2016; 11:e0141159. [PMID: 26734934 PMCID: PMC4703391 DOI: 10.1371/journal.pone.0141159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spleen enlargement is often detected in patients with liver cirrhosis, but the precise pathogenetic mechanisms behind the phenomenon have not been clearly elucidated. We investigated the pathogenetic mechanisms of splenomegaly in both portal hypertensive patients and rats, and tried to identify the possible therapy for this disease. METHODS Spleen samples were collected from portal hypertensive patients after splenectomy. Rat models of portal hypertension were induced by common bile duct ligation and partial portal vein ligation. Spleen samples from patients and rats were used to study the characteristics of splenomegaly by histological, immunohistochemical, and western blot analyses. Rapamycin or vehicle was administered to rats to determine the contribution of mTOR signaling pathway in the development of splenomegaly. RESULTS We found that not only spleen congestion, but also increasing angiogenesis, fibrogenesis, inflammation and proliferation of splenic lymphoid tissue contributed to the development of splenomegaly in portal hypertensive patients and rats. Intriguingly, splenomegaly developed time-dependently in portal hypertensive rat that accompanied with progressive activation of mTOR signaling pathway. mTOR blockade by rapamycin profoundly ameliorated splenomegaly by limiting lymphocytes proliferation, angiogenesis, fibrogenesis and inflammation as well as decreasing portal pressure. CONCLUSIONS This study provides compelling evidence indicating that mTOR signaling activation pathway plays a key role in the pathogenesis of splenomegaly in both portal hypertensive patients and rats. Therapeutic intervention targeting mTOR could be a promising strategy for patients with portal hypertension and splenomegaly.
Collapse
Affiliation(s)
- Yunyang Chen
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijie Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huakai Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongjian Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiqi Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
50
|
Abstract
The review of literature considers the principles of medical treatment for portal hypertension in liver cirrhosis, which are based on the current views of its development mechanisms. It describes both current pharmacotherapy methods for portal hypertension and drugs, the efficacy of which is being investigated.
Collapse
Affiliation(s)
- D V Garbuzenko
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| |
Collapse
|