1
|
Baby A, Patidar Y, Mukund A, Srivastava A, Kumar N, Sasturkar SV, Tevethia HV, Pamecha V. Correlation between sarcopenia and hypertrophy of the future liver remnant in patients undergoing portal vein embolization before liver resection. Br J Radiol 2025; 98:544-550. [PMID: 39799514 DOI: 10.1093/bjr/tqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/17/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVES To study the correlation between sarcopenia and hypertrophy of the future liver remnant (FLR) in patients undergoing portal vein embolization (PVE) before liver resection, and to assess the outcomes after resection. METHODS This retrospective study examined patients underwent PVE from May 2012 to May 2023. Demographic, clinical, and laboratory features were documented and total liver volumes and FLR volumes were measured before and 2-4 weeks after PVE. Degree of hypertrophy (DH), percentage hypertrophy (PH), and kinetic growth rate (KGR) of the FLR were calculated. Sarcopenia was defined using the skeletal muscle index (SMI) at the L3 vertebral level. Subcutaneous adipose index, visceral adipose index (VAI), cross-sectional area of psoas muscle at the largest diameter, and L3 vertebral level mean muscle attenuation (MA) were also assessed. RESULTS Forty patients were included in the analysis and the median age was 57.5 (IQR 51-64) and majority were males 27/40(67.5%). Twenty-two patients were non-sarcopenics and 18 were sarcopenics. All patients showed hypertrophy of FLR (P = 0.001). SMI demonstrated moderate positive correlations with DH (r = 0.46, P = 0.003), PH (r = 0.47, P = 0.002), and KGR (r = 0.44, P = 0.004). VAI showed weak positive correlations with DH (r = 0.22, P = 0.17), PH (r = 0.18, P = 0.27), and KGR (r = 0.14, P = 0.37). Pre-PVE FLR demonstrated a weak negative correlation with PH (r = -0.35, P = 0.03) and KGR (r = -0.12, P = 0.47). CONCLUSIONS Sarcopenia, specifically SMI, significantly correlates with FLR hypertrophy after PVE. Assessment of sarcopenia and body compartments prior to PVE could help in stratifying and treats patients with impaired FLR growth. ADVANCES IN KNOWLEDGE This study with data spanning over 11 years, is the first in the Indian population to demonstrate a significant correlation between SMI, a marker of sarcopenia, and FLR hypertrophy following PVE.
Collapse
Affiliation(s)
- Akhil Baby
- Department of Interventional Radiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Yashwant Patidar
- Department of Interventional Radiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Amar Mukund
- Department of Interventional Radiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Amol Srivastava
- Department of Interventional Radiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Niraj Kumar
- Department of Interventional Radiology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | - Harsh Vardhan Tevethia
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Viniyendra Pamecha
- Department of Hepatobiliary Surgery, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| |
Collapse
|
2
|
Li B, Liu S, Han W, Song P, Sun H, Cao X, Di G, Chen P. Aquaporin five deficiency suppresses fatty acid oxidation and delays liver regeneration through the transcription factor PPAR. J Biol Chem 2025; 301:108303. [PMID: 39947476 PMCID: PMC11930093 DOI: 10.1016/j.jbc.2025.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
After 70% partial hepatectomy (PHx), the metabolic pathways leading to hepatocyte lipid droplet accumulation during liver regeneration remain unclear. Aquaporin 5 (Aqp5) is an aquaporin that facilitates the transport of both water and hydrogen peroxide (H2O2). In this study, we observed delayed liver regeneration following PHx in Aqp5 knockout (Aqp5-/-) mice. Considering the role of Aqp5 in H2O2 transport, we hypothesized that deficiency in Aqp5 may induce oxidative stress and hepatocyte injury. Through the measurement of reactive oxygen species (ROS) and redox-related indices, we observed significant alterations in ROS levels as well as malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) concentrations in regenerating livers lacking Aqp5 compared to wild-type controls. Oil Red O and 4-hydroxynonenal (4-HNE) staining results indicated that Aqp5 deficiency caused lipid accumulation during liver regeneration. The transcriptome sequencing results showed that the PPAR pathway is inhibited during the liver regeneration process in Aqp5 gene-knockout mice. The administration of the WY-14643 agonist, which targets the PPAR pathway, significantly mitigated delayed liver regeneration by enhancing hepatocyte proliferation and reducing lipid accumulation caused by Aqp5 deficiency. Our findings highlight the crucial role of Aqp5 in regulating H2O2 levels and lipid metabolism through the PPAR pathway during liver regeneration.
Collapse
Affiliation(s)
- Bin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shixu Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hetong Sun
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xin Cao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Dong Q, Liu Z, Ma Y, Chen X, Wang X, Tang J, Ma K, Liang C, Wang M, Wu X, Liu Y, Zhou Y, Yang H, Gao M. Adipose tissue deficiency impairs transient lipid accumulation and delays liver regeneration following partial hepatectomy in male Seipin knockout mice. Clin Transl Med 2025; 15:e70238. [PMID: 39980067 PMCID: PMC11842221 DOI: 10.1002/ctm2.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Liver diseases pose significant health challenges, underscoring the importance of understanding liver regeneration mechanisms. Systemic adipose tissue is thought to be a primary source of lipids and energy during this process; however, empirical data on the effects of adipose tissue deficiency are limited. This study investigates the role of adipose tissue in liver regeneration, focusing on transient regeneration-associated steatosis (TRAS) and hepatocyte proliferation using a Seipin knockout mouse model that mimics severe human lipodystrophy. Additionally, the study explores therapeutic strategies through adipose tissue transplantation. METHODS Male Seipin knockout (Seipin-/-) and wild-type (WT) mice underwent 2/3 partial hepatectomy (PHx). Liver and plasma samples were collected at various time points post-surgery. Histological assessments, lipid accumulation analyses and measurements of hepatocyte proliferation markers were conducted. Additionally, normal adipose tissue was transplanted into Seipin-/- mice to evaluate the restoration of liver regeneration. RESULTS Seipin-/- mice exhibited significantly reduced liver regeneration rates and impaired TRAS, as evidenced by histological and lipid measurements. While WT mice demonstrated extensive hepatocyte proliferation at 48 and 72 h post-PHx, characterised by increased mitotic cells, elevated proliferating cell nuclear antigen and Ki67 expression, Seipin-/- mice showed delayed hepatocyte proliferation. Notably, adipose tissue transplantation into Seipin-/- mice restored TRAS and improved liver regeneration and hepatocyte proliferation. Conversely, liver-specific overexpression of Seipin in Seipin-/- mice did not affect TRAS or liver regeneration, indicating that the observed effects are primarily due to adipose tissue deficiency rather than hepatic Seipin itself. CONCLUSIONS Systemic adipose tissue is essential for TRAS and effective liver regeneration following PHx. Its deficiency impairs these processes, while adipose tissue transplantation can restore normal liver function. These findings underscore the critical role of adipose tissue in liver recovery and suggest potential therapeutic strategies for liver diseases associated with lipodystrophies. KEY POINTS Seipin-/- mice, which lack adipose tissue, exhibit significantly impaired TRAS and delayed liver regeneration following partial hepatectomy. Transplantation of normal adipose tissue into Seipin-/- mice restores TRAS and enhances liver regeneration, highlighting the essential role of adipose tissue in these processes. Liver-specific overexpression of Seipin has no effect on TRAS and liver regeneration in Seipin-/- mice.
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of Clinical LaboratoryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ziwei Liu
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of Clinical LaboratoryBethune International Peace HospitalShijiazhuangHebeiChina
| | - Yidan Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xin Chen
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of General SurgeryThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xiaowei Wang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jinye Tang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Kexin Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Chenxi Liang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
| | - Mengyu Wang
- Department of CardiologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoqin Wu
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yang Liu
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yaru Zhou
- Department of EndocrinologyThe Third Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Hongyuan Yang
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Mingming Gao
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education, The Key Laboratory of Vascular Biology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical UniversityShijiazhuangHebeiChina
- Department of Integrative Biology and PharmacologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
5
|
Li Y, Yang X, Li X, Wang S, Chen P, Ma T, Zhang B. Astragaloside IV and cycloastragenol promote liver regeneration through regulation of hepatic oxidative homeostasis and glucose/lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156165. [PMID: 39461202 DOI: 10.1016/j.phymed.2024.156165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/28/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The regenerative capacity of the liver is pivotal for mitigating various forms of liver injury and requires the rapid proliferation of hepatocytes. Aquaporin-9 (AQP9) provides vital support for hepatocyte proliferation by preserving hydrogen peroxide (H2O2) oxidative balance and glucose/lipid metabolism equilibrium within hepatocytes. Our previous study demonstrated that Radix Astragali (RA) decoction promotes liver regeneration by upregulating hepatic expression of AQP9, possibly via two major active constituents: astragaloside IV (AS-IV) and cycloastragenol (CAG). PURPOSE To verify that upregulated AQP9 expression in hepatocytes maintains liver oxidative balance and glucose/lipid metabolism homeostasis, and is the main pharmacological mechanism by which AS-IV and CAG promote liver regeneration. STUDY DESIGN/METHODS Effects of AS-IV and CAG on liver regeneration were scrutinized using a mouse model of 70 % partial hepatectomy (PHx). AQP9-targeted liver regeneration mediated by AS-IV and CAG was verified using AQP9 gene knockout mice (AQP9-/-). The AQP9 protein expression pattern in hepatocytes was determined using tdTomato-tagged AQP9 transgenic mice (AQP9-RFP). Potential mechanisms of AS-IV and CAG on liver regeneration were studied using real-time quantitative PCR, immunoblotting, staining with hematoxylin and eosin, oil red O, and periodic acid-Schiff, and immunofluorescence, immunohistochemistry, HyPerRed fluorescence, and biochemical analyses. RESULTS AS-IV and CAG promoted substantial liver regeneration and increased hepatic AQP9 expression in wild-type mice (AQP9+/+) following 70 % PHx, but had no discernible benefits in AQP9-/- mice. Both saponin compounds also helped maintain oxidative homeostasis by reducing levels of oxidative stress markers (reactive oxygen species [ROS], H2O2, and malondialdehyde) and elevating levels of ROS scavengers (glutathione and superoxide dismutase) in AQP9+/+ mice post-70 % PHx. This further activated the PI3K-AKT and insulin signaling pathways, thereby fostering liver regeneration. Furthermore, AS-IV and CAG both promoted hepatocyte glycerol uptake, increased gluconeogenesis, facilitated lipolysis, reduced glycolysis, and inhibited glycogen deposition, thus ensuring the energy supply required for liver regeneration. CONCLUSION This research is the first to demonstrate AS-IV and CAG as major active ingredients of RA that promote liver regeneration by upregulating hepatocyte AQP9 expression, improving hepatocyte glucose/lipid metabolism, and reducing oxidative stress damage, constituting a crucial pharmacological mechanism underlying the liver-protective effects of RA. The augmentation of hepatocyte AQP9 expression underscores an important aspect of the Qi-tonifying effect of RA. This study establishes AQP9 as an effective target for regulation of liver regeneration and provides a universal strategy for clinical drug intervention aimed at enhancing liver regeneration.
Collapse
Affiliation(s)
- Yanghao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xu Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiang Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaodong Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peng Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tonghui Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Bo Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Xue H, Nie H, Huang Z, Lu B, Wei M, Xu H, Ji L. 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside promotes liver regeneration after partial hepatectomy in mice: The potential involvement of PPARα-mediated fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118513. [PMID: 38969151 DOI: 10.1016/j.jep.2024.118513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the principal bioactive compound contained in Polygonum multiflorum Thunb. (PMT), which is traditionally recorded to possess tonic and anti-aging efficacy. AIM OF THE STUDY To identify the TSG-provided promotion on liver regeneration (LR) following partial hepatectomy (PHx) in mice and to explicate its involved mechanism. MATERIALS AND METHODS The promotion of TSG on LR was evaluated by hematoxylin and eosin (H&E), 5-bromodeoxyuridinc (BrdU) and Ki-67 staining, and measuring the level of proliferating cell nuclear antigen (PCNA) and Cyclin D1 in mice with PHx at different time points. Gene Expression Omnibus (GEO, GSE15239) database and the label-free quantitative proteomics from liver of mice at 24 h after PHx were integrated to identify potential involved critical proteins, which were verified by Western-blot, Real-time polymerase chain reaction (RT-PCR), molecular docking and luciferase activity assay. Primary hepatocytes isolated from mice were used to investigate the TSG-provided promotion on proliferation in vitro. RESULTS TSG (20 mg/kg) promoted LR in mice after PHx. Results from RNA expression data from clinical samples and proteomic analysis from liver tissues indicated that peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid metabolism pathway were crucially associated with the TSG-provided promotion on LR. TSG enhanced the nuclear translocation of PPARα and the mRNA expression of a series of PPARα-regulated downstream genes. In addition, TSG lowered hepatic triglyceride (TG) and non-esterified fatty acid (NEFA) amounts and increased hepatic adenosine triphosphate (ATP) level in mice after PHx. TSG up-regulated the transcriptional activity of PPARα in vitro. Next results displayed that TSG promoted cell proliferation as well as ATP level in mice primary hepatocytes, which were abolished when PPARα was suppressed. Meanwhile, the cell viability was also elevated in mice primary hepatocytes treated with ATP. CONCLUSION Activating PPARα-mediated fatty acid β-oxidation (FAO) pathway led to the production of ATP, which contributed to the TSG-provided promotion on LR after PHx in mice.
Collapse
Affiliation(s)
- Haoyu Xue
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huizhong Nie
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Xiong J, Chen S, Liu J. Acute liver steatosis signals the chromatin for regeneration via MIER1. Metabol Open 2024; 23:100258. [PMID: 39351485 PMCID: PMC11440081 DOI: 10.1016/j.metop.2023.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2024] Open
Abstract
During liver regeneration, especially after a hepatectomy, hepatocytes experience significant lipid accumulation. These transiently accumulated lipids are generally believed to provide substrates for energy supply or membrane biomaterials for newly generated hepatocytes. Remarkably, a recent study found that acute lipid accumulation during regeneration can act as a signal for chromatin remodeling to regulate regeneration. Chen, Y.H., et al. identified MIER1 (mesoderm induction early response protein 1) as a crucial inhibitor of liver regeneration through in vivo CRISPR screening. MIER1 binds to and restrains cell cycle genes' expression. During liver regeneration, acute lipid accumulation suppresses MIER1 translation via the EIF2S pathway, resulting in transient down-regulation of MIER1 protein, which promotes cell cycle gene expression and liver regeneration. Interestingly, the researchers also found that the dynamic regulation of MIER1 was impaired in fatty and aging livers with chronic steatosis, while of knockout of MIER1 in these animals improved their regenerative capacity. In conclusion, this study provides valuable insights into the complex mechanisms underlying liver regeneration and highlights the potential therapeutic applications of targeting MIER1 for improving liver regeneration in disease states associated with impaired lipid homeostasis.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wang W, Qian J, Shang M, Qiao Y, Huang J, Gao X, Ye Z, Tong X, Xu K, Li X, Liu Z, Zhou L, Zheng S. Integrative analysis of the transcriptome and metabolome reveals the importance of hepatokine FGF21 in liver aging. Genes Dis 2024; 11:101161. [PMID: 39022127 PMCID: PMC11252782 DOI: 10.1016/j.gendis.2023.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 07/20/2024] Open
Abstract
Aging is a contributor to liver disease. Hence, the concept of liver aging has become prominent and has attracted considerable interest, but its underlying mechanism remains poorly understood. In our study, the internal mechanism of liver aging was explored via multi-omics analysis and molecular experiments to support future targeted therapy. An aged rat liver model was established with d-galactose, and two other senescent hepatocyte models were established by treating HepG2 cells with d-galactose and H2O2. We then performed transcriptomic and metabolomic assays of the aged liver model and transcriptome analyses of the senescent hepatocyte models. In livers, genes related to peroxisomes, fatty acid elongation, and fatty acid degradation exhibited down-regulated expression with aging, and the hepatokine Fgf21 expression was positively correlated with the down-regulation of these genes. In senescent hepatocytes, similar to the results found in aged livers, FGF21 expression was also decreased. Moreover, the expressions of cell cycle-related genes were significantly down-regulated, and the down-regulated gene E2F8 was the key cell cycle-regulating transcription factor. We then validated that FGF21 overexpression can protect against liver aging and that FGF21 can attenuate the declines in the antioxidant and regenerative capacities in the aging liver. We successfully validated the results from cellular and animal experiments using human liver and blood samples. Our study indicated that FGF21 is an important target for inhibiting liver aging and suggested that pharmacological prevention of the reduction in FGF21 expression due to aging may be used to treat liver aging-related diseases.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Mingge Shang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinxin Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhou Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinyu Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
9
|
Wu D, van de Graaf SFJ. Maladaptive regeneration and metabolic dysfunction associated steatotic liver disease: Common mechanisms and potential therapeutic targets. Biochem Pharmacol 2024; 227:116437. [PMID: 39025410 DOI: 10.1016/j.bcp.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/β-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.
Collapse
Affiliation(s)
- Dandan Wu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands.
| |
Collapse
|
10
|
Gongye X, Xia P, Ma T, Chai Y, Chen Z, Zhu Y, Qu C, Liu J, Guo WW, Zhang M, Liu Y, Tian M, Yuan Y. Liver Extracellular Vesicles and Particles Enriched β-Sitosterol Effectively Promote Liver Regeneration in Mice. Int J Nanomedicine 2024; 19:8117-8137. [PMID: 39139504 PMCID: PMC11319097 DOI: 10.2147/ijn.s465346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Background The liver's regenerative capacity allows it to repair itself after injury. Extracellular vesicles and particles (EVPs) in the liver's interstitial space are crucial for signal transduction, metabolism, and immune regulation. Understanding the role and mechanism of liver-derived EVPs in regeneration is significant, particularly after partial hepatectomy, where the mechanisms remain unclear. Methods A 70% hepatectomy model was established in mice, and EVPs were isolated and characterized using electron microscopy, nanocharacterization, and Western blot analysis. Combined metabolomic and transcriptomic analyses revealed β-sitosterol enrichment in EVPs and activation of the Hedgehog signaling pathway during regeneration. The role of β-sitosterol in EVPs on the Hedgehog pathway and its targets were identified using qRT-PCR, Western blot analysis. The regulation of carnitine synthesis by this pathway was determined using a dual luciferase assay. The effect of a β-sitosterol diet on liver regeneration was verified in mice. Results After 70% hepatectomy, the liver successfully regenerated without liver failure or death. At 24 hours post-surgery, tissue staining showed transient regeneration-associated steatosis (TRAS), with increased Ki67 positivity at 48 hours. EVPs displayed a spherical lipid bilayer structure with particle sizes of 70-130 nm. CD9, CD63, and CD81 in liver-derived EVPs were confirmed. Transcriptomic and metabolomic analyses showed EVPs supplementation significantly promoted carnitine synthesis and fatty acid oxidation. Tissue staining confirmed accelerated TRAS resolution and enhanced liver regeneration with EVP supplementation. Mass spectrometry identified β-sitosterol in EVPs, which binds to Smo protein, activating the Hedgehog pathway. This led to the nuclear transport of Gli3, stimulating Setd5 transcription and inducing carnitine synthesis, thereby accelerating fatty acid oxidation. Mice with increased β-sitosterol intake showed faster TRAS resolution and liver regeneration compared to controls. Conclusion Liver-derived EVPs promote regeneration after partial hepatectomy. β-sitosterol from EVPs accelerates fatty acid oxidation and promotes liver regeneration by activating Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Tianyin Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yibo Chai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yimin Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Jie Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Wing Wa Guo
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
11
|
Wang X, Menezes CJ, Jia Y, Xiao Y, Venigalla SSK, Cai F, Hsieh MH, Gu W, Du L, Sudderth J, Kim D, Shelton SD, Llamas CB, Lin YH, Zhu M, Merchant S, Bezwada D, Kelekar S, Zacharias LG, Mathews TP, Hoxhaj G, Wynn RM, Tambar UK, DeBerardinis RJ, Zhu H, Mishra P. Metabolic inflexibility promotes mitochondrial health during liver regeneration. Science 2024; 384:eadj4301. [PMID: 38870309 PMCID: PMC11232486 DOI: 10.1126/science.adj4301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial β-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.
Collapse
Affiliation(s)
- Xun Wang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuemeng Jia
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Xiao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Feng Cai
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liming Du
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica Sudderth
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D Shelton
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claire B Llamas
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Keshvari S, Masson JJR, Ferrari-Cestari M, Bodea LG, Nooru-Mohamed F, Tse BWC, Sokolowski KA, Batoon L, Patkar OL, Sullivan MA, Ebersbach H, Stutz C, Parton RG, Summers KM, Pettit AR, Hume DA, Irvine KM. Reversible expansion of tissue macrophages in response to macrophage colony-stimulating factor (CSF1) transforms systemic lipid and carbohydrate metabolism. Am J Physiol Endocrinol Metab 2024; 326:E149-E165. [PMID: 38117267 DOI: 10.1152/ajpendo.00347.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023]
Abstract
Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jesse J R Masson
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Fathima Nooru-Mohamed
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, Queensland, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Cian Stutz
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim M Summers
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Dai XM, Long ZT, Zhu FF, Li HJ, Xiang ZQ, Wu YC, Liang H, Wang Q, Zhu Z. Expression profiles of lncRNAs, miRNAs, and mRNAs during the proliferative phase of liver regeneration in mice with liver fibrosis. Genomics 2023; 115:110707. [PMID: 37722434 DOI: 10.1016/j.ygeno.2023.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
The role of lncRNAs in the regeneration of fibrotic liver is unclear. To address this issue, we established a 70% hepatectomy model of liver fibrosis in mice, used high-throughput sequencing technology to obtain the expression profiles of lncRNAs, miRNAs, and mRNAs, and constructed a lncRNA-miRNA-mRNA regulatory network. A total of 1329 lncRNAs, 167 miRNAs, and 6458 mRNAs were differentially expressed. On this basis, a lncRNA-miRNA-mRNA ceRNA regulatory network consisting of 38 DE lncRNAs, 24 DE miRNAs, and 299 DE mRNAs was constructed, and a transcription factor (TF) - mRNA regulatory network composed of 20 TFs and 98 DE mRNAs was built. Through the protein network analysis, a core protein interaction network composed of 20 hub genes was derived. Furthermore, Xist/miR-144-3p/Cdc14b and Snhg3/miR-365-3p/Map3k14 axes in the ceRNA regulatory network were verified by Real-Time quantitative PCR. Therefore, we concluded that these new insights may further our understanding of liver regeneration.
Collapse
Affiliation(s)
- Xiao-Ming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhang-Tao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Feng-Feng Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hua-Jian Li
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi-Qiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ya-Chen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Liang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qian Wang
- The First Affiliated Hospital, Department of Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Education and Training, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
14
|
Wang Q, Long Z, Zhu F, Li H, Xiang Z, Liang H, Wu Y, Dai X, Zhu Z. Integrated analysis of lncRNA/circRNA-miRNA-mRNA in the proliferative phase of liver regeneration in mice with liver fibrosis. BMC Genomics 2023; 24:417. [PMID: 37488484 PMCID: PMC10364436 DOI: 10.1186/s12864-023-09478-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Non-coding RNAs play important roles in liver regeneration; however, their functions and mechanisms of action in the regeneration of fibrotic liver have not been elucidated. We aimed to clarify the expression patterns and regulatory functions of lncRNAs, circRNAs, miRNAs, and mRNAs in the proliferative phase of fibrotic liver regeneration. METHODS Based on a mouse model of liver fibrosis with 70% hepatectomy, whole-transcriptome profiling was performed using high-throughput sequencing on samples collected at 0, 12, 24, 48, and 72 h after hepatectomy. Hub genes were selected by weighted gene co-expression network analysis and subjected to enrichment analysis. Integrated analysis was performed to reveal the interactions of differentially expressed (DE) lncRNAs, circRNAs, miRNAs, and mRNAs, and to construct lncRNA-mRNA cis- and trans-regulatory networks and lncRNA/circRNA-miRNA-mRNA ceRNA regulatory networks. Real-Time quantitative PCR was used to validate part of the ceRNA network. RESULTS A total of 1,329 lncRNAs, 48 circRNAs, 167 miRNAs, and 6,458 mRNAs were differentially expressed, including 812 hub genes. Based on these DE RNAs, we examined several mechanisms of ncRNA regulatory networks, including lncRNA cis and trans interactions, circRNA parental genes, and ceRNA pathways. We constructed a cis-regulatory core network consisting of 64 lncRNA-mRNA pairs (53 DE lncRNAs and 58 hub genes), a trans-regulatory core network consisting of 103 lncRNA-mRNA pairs (18 DE lncRNAs and 85 hub genes), a lncRNA-miRNA-mRNA ceRNA core regulatory network (20 DE lncRNAs, 12 DE miRNAs, and 33 mRNAs), and a circRNA-miRNA-mRNA ceRNA core regulatory network (5 DE circRNAs, 5 DE miRNAs, and 39 mRNAs). CONCLUSIONS These results reveal the expression patterns of lncRNAs, circRNAs, miRNAs, and mRNAs in the proliferative phase of fibrotic liver regeneration, as well as core regulatory networks of mRNAs and non-coding RNAs underlying liver regeneration. The findings provide insights into molecular mechanisms that may be useful in developing new therapeutic approaches to ameliorate diseases that are characterized by liver fibrosis, which would be beneficial for the prevention of liver failure and treatment of liver cancer.
Collapse
Affiliation(s)
- Qian Wang
- The First Affiliated Hospital, Department of Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fengfeng Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huajian Li
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiqiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Liang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yachen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Education and Training, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
15
|
Zhou X, Huang G, Wang L, Zhao Y, Li J, Chen D, Wei L, Chen Z, Yang B. L-carnitine promotes liver regeneration after hepatectomy by enhancing lipid metabolism. J Transl Med 2023; 21:487. [PMID: 37474946 PMCID: PMC10360338 DOI: 10.1186/s12967-023-04317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Lipid metabolism plays an important role in liver regeneration, but its regulation still requires further research. In this study, lipid metabolites involved in mouse liver regeneration at different time points were sequenced and analyzed to study their influence on liver regeneration and its mechanism. METHODS Our experiment was divided into two parts. The first part examined lipid metabolites during liver regeneration in mice. In this part, lipid metabolites were sequentially analyzed in the livers of 70% mouse hepatectomy models at 0, 1, 3and 7 days after operation to find the changes of lipid metabolites in the process of liver regeneration. We screened L-carnitine as our research object through metabolite detection. Therefore, in the second part, we analyzed the effects of carnitine on mouse liver regeneration and lipid metabolism during liver regeneration. We divided the mouse into four groups: control group (70% hepatectomy group); L-carnitine group (before operation) (L-carnitine were given before operation); L-carnitine group (after operation)(L-carnitine were given after operation) and L-carnitine + perhexiline maleate (before operation) group. Weighing was performed at 24 h, 36 and 48 h in each group, and oil red staining, HE staining and MPO staining were performed. Tunnel fluorescence staining, Ki67 staining and serological examination. RESULTS Sequencing analysis of lipid metabolites in 70% of mouse livers at different time points after hepatectomy showed significant changes in carnitine metabolites. The results showed that, compared with the control group the mouse in L-carnitine group (before operation) at 3 time points, the number of fat drops in oil red staining was decreased, the number of Ki67 positive cells was increased, the number of MPO positive cells was decreased, the number of Tunnel fluorescence positive cells was decreased, and the liver weight was increased. Serum enzymes were decreased. Compared with control group, L-carnitine group (after operation) showed similar trends in all indexes at 36 and 48 h as L-carnitine group (before operation). L-carnitine + perhexiline maleate (before operation) group compared with control group, the number of fat drops increased, the number of Ki67 positive cells decreased, and the number of MPO positive cells increased at 3 time points. The number of Tunnel fluorescent positive cells increased and serum enzyme increased. However, both liver weights increased. CONCLUSION L-carnitine can promote liver cell regeneration by promoting lipid metabolism and reduce aseptic inflammation caused by excessive lipid accumulation.
Collapse
Affiliation(s)
- Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China.
| |
Collapse
|
16
|
Ma JT, Xia S, Zhang BK, Luo F, Guo L, Yang Y, Gong H, Yan M. The pharmacology and mechanisms of traditional Chinese medicine in promoting liver regeneration: A new therapeutic option. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154893. [PMID: 37236047 DOI: 10.1016/j.phymed.2023.154893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The liver is renowned for its remarkable regenerative capacity to restore its structure, size and function after various types of liver injury. However, in patients with end-stage liver disease, the regenerative capacity is inhibited and liver transplantation is the only option. Considering the limitations of liver transplantation, promoting liver regeneration is suggested as a new therapeutic strategy for liver disease. Traditional Chinese medicine (TCM) has a long history of preventing and treating various liver diseases, and some of them have been proven to be effective in promoting liver regeneration, suggesting the therapeutic potential in liver diseases. PURPOSE This review aims to summarize the molecular mechanisms of liver regeneration and the pro-regenerative activity and mechanism of TCM formulas, extracts and active ingredients. METHODS We conducted a systematic search in PubMed, Web of Science and the Cochrane Library databases using "TCM", "liver regeneration" or their synonyms as keywords, and classified and summarized the retrieved literature. The PRISMA guidelines were followed. RESULTS Forty-one research articles met the themes of this review and previous critical studies were also reviewed to provide essential background information. Current evidences indicate that various TCM formulas, extracts and active ingredients have the effect on stimulating liver regeneration through modulating JAK/STAT, Hippo, PI3K/Akt and other signaling pathways. Besides, the mechanisms of liver regeneration, the limitation of existing studies and the application prospect of TCM to promote liver regeneration are also outlined and discussed in this review. CONCLUSION This review supports TCM as new potential therapeutic options for promoting liver regeneration and repair of the failing liver, although extensive pharmacokinetic and toxicological studies, as well as elaborate clinical trials, are still needed to demonstrate safety and efficacy.
Collapse
Affiliation(s)
- Jia-Ting Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Fen Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| |
Collapse
|
17
|
Chen Y, Chen L, Wu X, Zhao Y, Wang Y, Jiang D, Liu X, Zhou T, Li S, Wei Y, Liu Y, Hu C, Zhou B, Qin J, Ying H, Ding Q. Acute liver steatosis translationally controls the epigenetic regulator MIER1 to promote liver regeneration in a study with male mice. Nat Commun 2023; 14:1521. [PMID: 36934083 PMCID: PMC10024732 DOI: 10.1038/s41467-023-37247-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The early phase lipid accumulation is essential for liver regeneration. However, whether this acute lipid accumulation can serve as signals to direct liver regeneration rather than simply providing building blocks for cell proliferation remains unclear. Through in vivo CRISPR screening, we identify MIER1 (mesoderm induction early response 1) as a key epigenetic regulator that bridges the acute lipid accumulation and cell cycle gene expression during liver regeneration in male animals. Physiologically, liver acute lipid accumulation induces the phosphorylation of EIF2S1(eukaryotic translation initiation factor 2), which consequently attenuated Mier1 translation. MIER1 downregulation in turn promotes cell cycle gene expression and regeneration through chromatin remodeling. Importantly, the lipids-EIF2S1-MIER1 pathway is impaired in animals with chronic liver steatosis; whereas MIER1 depletion significantly improves regeneration in these animals. Taken together, our studies identify an epigenetic mechanism by which the early phase lipid redistribution from adipose tissue to liver during regeneration impacts hepatocyte proliferation, and suggest a potential strategy to boost liver regeneration.
Collapse
Affiliation(s)
- Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaoshan Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Dacheng Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Xuzhou Medical University, Xuzhou, Shandong, 276000, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
| |
Collapse
|
18
|
Barnhart BK, Kan T, Srivastava A, Wessner CE, Waters J, Ambelil M, Eisenbrey JR, Hoek JB, Vadigepalli R. Longitudinal ultrasound imaging and network modeling in rats reveal sex-dependent suppression of liver regeneration after resection in alcoholic liver disease. Front Physiol 2023; 14:1102393. [PMID: 36969577 PMCID: PMC10033530 DOI: 10.3389/fphys.2023.1102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Liver resection is an important surgical technique in the treatment of cancers and transplantation. We used ultrasound imaging to study the dynamics of liver regeneration following two-thirds partial hepatectomy (PHx) in male and female rats fed via Lieber-deCarli liquid diet protocol of ethanol or isocaloric control or chow for 5–7 weeks. Ethanol-fed male rats did not recover liver volume to the pre-surgery levels over the course of 2 weeks after surgery. By contrast, ethanol-fed female rats as well as controls of both sexes showed normal volume recovery. Contrary to expectations, transient increases in both portal and hepatic artery blood flow rates were seen in most animals, with ethanol-fed males showing higher peak portal flow than any other experimental group. A computational model of liver regeneration was used to evaluate the contribution of physiological stimuli and estimate the animal-specific parameter intervals. The results implicate lower metabolic load, over a wide range of cell death sensitivity, in matching the model simulations to experimental data of ethanol-fed male rats. However, in the ethanol-fed female rats and controls of both sexes, metabolic load was higher and in combination with cell death sensitivity matched the observed volume recovery dynamics. We conclude that adaptation to chronic ethanol intake has a sex-dependent impact on liver volume recovery following liver resection, likely mediated by differences in the physiological stimuli or cell death responses that govern the regeneration process. Immunohistochemical analysis of pre- and post-resection liver tissue validated the results of computational modeling by associating lack of sensitivity to cell death with lower rates of cell death in ethanol-fed male rats. Our results illustrate the potential for non-invasive ultrasound imaging to assess liver volume recovery towards supporting development of clinically relevant computational models of liver regeneration.
Collapse
Affiliation(s)
- Benjamin K. Barnhart
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Toshiki Kan
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Corinne E. Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John Waters
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Manju Ambelil
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jan B. Hoek
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- *Correspondence: Rajanikanth Vadigepalli,
| |
Collapse
|
19
|
Birrer DL, Kachaylo E, Breuer E, Linecker M, Kron P, Ungethüm U, Hagedorn C, Steiner R, Kälin C, Borrego LB, Dufour JF, Foti M, Hornemann T, Clavien PA, Humar B. Normalization of lipid oxidation defects arising from hypoxia early posthepatectomy prevents liver failure in mouse. Am J Transplant 2023; 23:190-201. [PMID: 36804129 DOI: 10.1016/j.ajt.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 01/13/2023]
Abstract
Surgical liver failure (SLF) develops when a marginal amount of hepatic mass is left after surgery, such as following excessive resection. SLF is the commonest cause of death due to liver surgery; however, its etiology remains obscure. Using mouse models of standard hepatectomy (sHx) (68%, resulting in full regeneration) or extended hepatectomy (eHx) (86%/91%, causing SLF), we explored the causes of early SLF related to portal hyperafflux. Assessing the levels of HIF2A with or without oxygenating agent inositol trispyrophosphate (ITPP) indicated hypoxia early after eHx. Subsequently, lipid oxidation (PPARA/PGC1α) was downregulated and associated with persisting steatosis. Mild oxidation with low-dose ITPP reduced the levels of HIF2A, restored downstream PPARA/PGC1α expression along with lipid oxidation activities (LOAs), and normalized steatosis and other metabolic or regenerative SLF deficiencies. Promotion of LOA with L-carnitine likewise normalized the SLF phenotype, and both ITPP and L-carnitine markedly raised survival in lethal SLF. In patients who underwent hepatectomy, pronounced increases in serum carnitine levels (reflecting LOA) were associated with better recovery. Lipid oxidation thus provides a link between the hyperafflux of O2-poor portal blood, the metabolic/regenerative deficits, and the increased mortality typifying SLF. Stimulation of lipid oxidation-the prime regenerative energy source-particularly through L-carnitine may offer a safe and feasible way to reduce SLF risks in the clinic.
Collapse
Affiliation(s)
- Dominique Lisa Birrer
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Ekaterina Kachaylo
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Eva Breuer
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Michael Linecker
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Philipp Kron
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Udo Ungethüm
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Catherine Hagedorn
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Regula Steiner
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Carola Kälin
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Lucia Bautista Borrego
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Jean-Francois Dufour
- University Clinic for Visceral Surgery and Medicine and Hepatology, Department of BioMedical Research, University of Berne, Berne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Pierre-Alain Clavien
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Bostjan Humar
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Qu X, Wen Y, Jiao J, Zhao J, Sun X, Wang F, Gao Y, Tan W, Xia Q, Wu H, Kong X. PARK7 deficiency inhibits fatty acid β-oxidation via PTEN to delay liver regeneration after hepatectomy. Clin Transl Med 2022; 12:e1061. [PMID: 36149763 PMCID: PMC9505755 DOI: 10.1002/ctm2.1061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background & aims Transient regeneration–associated steatosis (TRAS) is a process of temporary hepatic lipid accumulation and is essential for liver regeneration by providing energy generated from fatty acid β‐oxidation, but the regulatory mechanism underlying TRAS remains unknown. Parkinsonism‐associated deglycase (Park7)/Dj1 is an important regulator involved in various liver diseases. In nonalcoholic fatty liver diseased mice, induced by a high‐fat diet, Park7 deficiency improves hepatic steatosis, but its role in liver regeneration remains unknown Methods Park7 knockout (Park7−/−), hepatocyte‐specific Park7 knockout (Park7△hep) and hepatocyte‐specific Park7‐Pten double knockout mice were subjected to 2/3 partial hepatectomy (PHx) Results Increased PARK7 expression was observed in the regenerating liver of mice at 36 and 48 h after PHx. Park7−/− and Park7△hep mice showed delayed liver regeneration and enhanced TRAS after PHx. PPARa, a key regulator of β‐oxidation, and carnitine palmitoyltransferase 1a (CPT1a), a rate‐limiting enzyme of β‐oxidation, had substantially decreased expression in the regenerating liver of Park7△hep mice. Increased phosphatase and tensin homolog (PTEN) expression was observed in the liver of Park7△hep mice, which might contribute to delayed liver regeneration in these mice because genomic depletion or pharmacological inhibition of PTEN restored the delayed liver regeneration by reversing the downregulation of PPARa and CPT1a and in turn accelerating the utilization of TRAS in the regenerating liver of Park7△hep mice Conclusion Park7/Dj1 is a novel regulator of PTEN‐dependent fatty acid β‐oxidation, and increasing Park7 expression might be a promising strategy to promote liver regeneration.
Collapse
Affiliation(s)
- Xiaoye Qu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Junzhe Jiao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Weifeng Tan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| |
Collapse
|
21
|
Zuñiga-Aguilar E, Ramírez-Fernández O. Fibrosis and hepatic regeneration mechanism. Transl Gastroenterol Hepatol 2022; 7:9. [PMID: 35243118 PMCID: PMC8826211 DOI: 10.21037/tgh.2020.02.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 11/26/2023] Open
Abstract
Liver cirrhosis is the final stage of continuous hepatic inflammatory activity derived by viral, metabolic or autoimmune origin. In the last years, cirrhosis was considered a unique and static condition; recently was accepted some patients subgroups with different liver injury degrees that coexist under the same diagnosis, with implications about the natural disease history. The liver growth factor (LGF) is a potent in vivo and in vitro mitogenic agent and an inducer of hepatic regeneration (HR) through the hepatocytes DNA synthesis. The clinical implications of the LGF levels in cirrhosis, are not clear and even with having a fundamental role in the liver regeneration processes, the studies suggest that it could be a cirrhosis severity marker, in acute liver failure and in chronic hepatitis. Its role as predictor of mortality in fulminant hepatic insufficiency patients has been suggested. HR is one of the most enigmatic and fascinating biological phenomena. The rapid volume and liver function restoration after a major hepatectomy (>70%) or severe hepatocellular damage and its strict regulation of tissue damage response after the cessation, is an exclusive property of the liver. HR is the clinical applications fundament, such as extensive hepatic resections (>70% of the liver parenchyma), segmental transplantation or living donor transplantation, sequential hepatectomies, isolated portal embolization or associated with in situ hepatic transection, temporary artificial support in acute liver failure and the possible cell therapy clinical applications.
Collapse
Affiliation(s)
- Esmeralda Zuñiga-Aguilar
- Universidad Autonoma de Ciudad Juárez, Depto de Ingeniería Eléctrica y Computación, Ciudad Juárez, Chih., México
| | - Odin Ramírez-Fernández
- Tecnologico Nacional de Mexico, Depto. De Ciencias Basicas, Tlalnepantla de Baz, Mexico
- Facultad de Medicina, HIPAM, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| |
Collapse
|
22
|
Weighted Gene Coexpression Network Analysis in Mouse Livers following Ischemia-Reperfusion and Extensive Hepatectomy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:3897715. [PMID: 35003298 PMCID: PMC8736699 DOI: 10.1155/2021/3897715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
In mouse models, the recovery of liver volume is mainly mediated by the proliferation of hepatocytes after partial hepatectomy that is commonly accompanied with ischemia-reperfusion. The identification of differently expressed genes in liver following partial hepatectomy benefits the better understanding of the molecular mechanisms during liver regeneration (LR) with appliable clinical significance. Briefly, studying different gene expression patterns in liver tissues collected from the mice group that survived through extensive hepatectomy will be of huge critical importance in LR than those collected from the mice group that survived through appropriate hepatectomy. In this study, we performed the weighted gene coexpression network analysis (WGCNA) to address the central candidate genes and to construct the free-scale gene coexpression networks using the identified dynamic different expressive genes in liver specimens from the mice with 85% hepatectomy (20% for seven-day survial rate) and 50% hepatectomy (100% for seven-day survial rate under ischemia-reperfusion condition compared with the sham group control mice). The WGCNA combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses pinpointed out the apparent distinguished importance of three gene expression modules: the blue module for apoptotic process, the turquoise module for lipid metabolism, and the green module for fatty acid metabolic process in LR following extensive hepatectomy. WGCNA analysis and protein-protein interaction (PPI) network construction highlighted FAM175B, OGT, and PDE3B were the potential three hub genes in the previously mentioned three modules. This work may help to provide new clues to the future fundamental study and treatment strategy for LR following liver injury and hepatectomy.
Collapse
|
23
|
Wang H, Chan TW, Vashisht AA, Drew BG, Calkin AC, Harris TE, Wohlschlegel JA, Xiao X, Reue K. Lipin 1 modulates mRNA splicing during fasting adaptation in liver. JCI Insight 2021; 6:e150114. [PMID: 34494556 PMCID: PMC8492312 DOI: 10.1172/jci.insight.150114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023] Open
Abstract
Lipin 1 regulates cellular lipid homeostasis through roles in glycerolipid synthesis (through phosphatidic acid phosphatase activity) and transcriptional coactivation. Lipin 1-deficient individuals exhibit episodic disease symptoms that are triggered by metabolic stress, such as stress caused by prolonged fasting. We sought to identify critical lipin 1 activities during fasting. We determined that lipin 1 deficiency induces widespread alternative mRNA splicing in liver during fasting, much of which is normalized by refeeding. The role of lipin 1 in mRNA splicing was largely independent of its enzymatic function. We identified interactions between lipin 1 and spliceosome proteins, as well as a requirement for lipin 1 to maintain homeostatic levels of spliceosome small nuclear RNAs and specific RNA splicing factors. In fasted Lpin1-/- liver, we identified a correspondence between alternative splicing of phospholipid biosynthetic enzymes and dysregulated phospholipid levels; splicing patterns and phospholipid levels were partly normalized by feeding. Thus, lipin 1 influences hepatic lipid metabolism through mRNA splicing, as well as through enzymatic and transcriptional activities, and fasting exacerbates the deleterious effects of lipin 1 deficiency on metabolic homeostasis.
Collapse
Affiliation(s)
- Huan Wang
- Human Genetics, David Geffen School of Medicine at UCLA
| | | | - Ajay A Vashisht
- Biological Chemistry, University of California, Los Angeles, California, USA
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Thurl E Harris
- Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - James A Wohlschlegel
- Biological Chemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute and
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program and.,Molecular Biology Institute and.,Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine at UCLA,,Molecular Biology Institute and
| |
Collapse
|
24
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
25
|
Donepudi AC, Smith GJ, Aladelokun O, Lee Y, Toro SJ, Pfohl M, Slitt AL, Wang L, Lee JY, Schuetz JD, Manautou JE. Lack of Multidrug Resistance-associated Protein 4 Prolongs Partial Hepatectomy-induced Hepatic Steatosis. Toxicol Sci 2021; 175:301-311. [PMID: 32142150 DOI: 10.1093/toxsci/kfaa032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance-associated protein 4 (Mrp4) is an efflux transporter involved in the active transport of several endogenous and exogenous chemicals. Previously, we have shown that hepatic Mrp4 expression increases following acetaminophen overdose. In mice, these increases in Mrp4 expression are observed specifically in hepatocytes undergoing active proliferation. From this, we hypothesized that Mrp4 plays a key role in hepatocyte proliferation and that lack of Mrp4 impedes liver regeneration following liver injury and/or tissue loss. To evaluate the role of Mrp4 in these processes, we employed two-third partial hepatectomy (PH) as an experimental liver regeneration model. In this study, we performed PH-surgery on male wildtype (C57BL/6J) and Mrp4 knockout mice. Plasma and liver tissues were collected at 24, 48, and 72 h postsurgery and evaluated for liver injury and liver regeneration endpoints, and for PH-induced hepatic lipid accumulation. Our results show that lack of Mrp4 did not alter hepatocyte proliferation and liver injury following PH as evaluated by Ki-67 antigen staining and plasma alanine aminotransferase levels. To our surprise, Mrp4 knockout mice exhibited increased hepatic lipid content, in particular, di- and triglyceride levels. Gene expression analysis showed that lack of Mrp4 upregulated hepatic lipin1 and diacylglycerol O-acyltransferase 1 and 2 gene expression, which are involved in the synthesis of di- and triglycerides. Our observations indicate that lack of Mrp4 prolonged PH-induced hepatic steatosis in mice and suggest that Mrp4 may be a novel genetic factor in the development of hepatic steatosis.
Collapse
Affiliation(s)
| | | | | | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06226
| | | | - Marisa Pfohl
- Department of Biomedical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Angela L Slitt
- Department of Biomedical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06226
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | |
Collapse
|
26
|
Denbo JW, Kim BJ, Vauthey JN, Tzeng CW, Ma J, Huang SY, Chun YS, Katz MHG, Aloia TA. Overall Body Composition and Sarcopenia Are Associated with Poor Liver Hypertrophy Following Portal Vein Embolization. J Gastrointest Surg 2021; 25:405-410. [PMID: 31997073 DOI: 10.1007/s11605-020-04522-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/16/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE To explore whether body composition and/or sarcopenia are associated with liver hypertrophy following portal vein embolization (PVE) in patients with colorectal liver metastases (CLM). METHODS Patients with CLM who underwent right PVE prior to a planned right hepatectomy were identified from the institutional liver database from 2004 to 2014. Patients were excluded due to previous liver-directed therapy/hepatectomy, right PVE + segment IV embolization, or planned 2-stage hepatectomy. Advanced imaging software was used to measure body compartment volumes (cm2), which were standardized to height (m2) to create an index: skeletal muscle index (SMI), subcutaneous adipose index (SAI), and visceral adipose index (VAI). SMI, gender, and body mass index (BMI) were used to define sarcopenia. The main outcome of interest was hypertrophy of the future liver remnant (FLR) following PVE, which was reported as degree of hypertrophy (DH) and kinetic growth rate (KGR). RESULTS Patients were evenly divided into three KGR groups: lower third (KGR:0.7-2.0%), middle third (KGR:2.0-4.1%), and upper third (KGR:4.2-12.3%). Patients in the lower third KGR group had a lower VAI (31.0 vs 53.0 vs 54.5 cm2/m2, p = 0.042) and were more commonly sarcopenic (60%) compared to the upper third (20%, p = 0.025). Eighteen patients (40%) met criteria for sarcopenia. Sarcopenic patients had a lower VAI (29.1 vs 57.4 cm2/m2, p = 0.004), lesser degree of hypertrophy (8.3% vs 15.2%, p = 0.009), and lower KGR (2.0% vs 4.0%, p = 0.012). CONCLUSION Sarcopenia and associated body composition indices are strongly associated with clinically relevant impaired liver regeneration, which may result in increased liver-specific complications following hepatectomy for CLM.
Collapse
Affiliation(s)
- Jason W Denbo
- Department of Gastrointestinal Surgery, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Bradford J Kim
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Jean-Nicolas Vauthey
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Ching-Wei Tzeng
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Jingfei Ma
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Y Huang
- Departments of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun S Chun
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Matthew H G Katz
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Thomas A Aloia
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Alvarez-Guaita A, Blanco-Muñoz P, Meneses-Salas E, Wahba M, Pollock AH, Jose J, Casado M, Bosch M, Artuch R, Gaus K, Lu A, Pol A, Tebar F, Moss SE, Grewal T, Enrich C, Rentero C. Annexin A6 Is Critical to Maintain Glucose Homeostasis and Survival During Liver Regeneration in Mice. Hepatology 2020; 72:2149-2164. [PMID: 32170749 DOI: 10.1002/hep.31232] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Liver regeneration requires the organized and sequential activation of events that lead to restoration of hepatic mass. During this process, other vital liver functions need to be preserved, such as maintenance of blood glucose homeostasis, balancing the degradation of hepatic glycogen stores, and gluconeogenesis (GNG). Under metabolic stress, alanine is the main hepatic gluconeogenic substrate, and its availability is the rate-limiting step in this pathway. Na+ -coupled neutral amino acid transporters (SNATs) 2 and 4 are believed to facilitate hepatic alanine uptake. In previous studies, we demonstrated that a member of the Ca2+ -dependent phospholipid binding annexins, Annexin A6 (AnxA6), regulates membrane trafficking along endo- and exocytic pathways. Yet, although AnxA6 is abundantly expressed in the liver, its function in hepatic physiology remains unknown. In this study, we investigated the potential contribution of AnxA6 in liver regeneration. APPROACH AND RESULTS Utilizing AnxA6 knockout mice (AnxA6-/- ), we challenged liver function after partial hepatectomy (PHx), inducing acute proliferative and metabolic stress. Biochemical and immunofluorescent approaches were used to dissect AnxA6-/- mice liver proliferation and energetic metabolism. Most strikingly, AnxA6-/- mice exhibited low survival after PHx. This was associated with an irreversible and progressive drop of blood glucose levels. Whereas exogenous glucose administration or restoration of hepatic AnxA6 expression rescued AnxA6-/- mice survival after PHx, the sustained hypoglycemia in partially hepatectomized AnxA6-/- mice was the consequence of an impaired alanine-dependent GNG in AnxA6-/- hepatocytes. Mechanistically, cytoplasmic SNAT4 failed to recycle to the sinusoidal plasma membrane of AnxA6-/- hepatocytes 48 hours after PHx, impairing alanine uptake and, consequently, glucose production. CONCLUSIONS We conclude that the lack of AnxA6 compromises alanine-dependent GNG and liver regeneration in mice.
Collapse
Affiliation(s)
- Anna Alvarez-Guaita
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Currently at Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Patricia Blanco-Muñoz
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elsa Meneses-Salas
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Abigail H Pollock
- Center for Vascular Research, The University of New South Wales, Sydney, NSW, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mercedes Casado
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Marta Bosch
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu and CIBERER, Barcelona, Spain
| | - Katharina Gaus
- Center for Vascular Research, The University of New South Wales, Sydney, NSW, Australia
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Albert Pol
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Francesc Tebar
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Stephen E Moss
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carlos Enrich
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Unit of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
28
|
Diet Modifies Pioglitazone's Influence on Hepatic PPAR γ-Regulated Mitochondrial Gene Expression. PPAR Res 2020; 2020:3817573. [PMID: 32963510 PMCID: PMC7501566 DOI: 10.1155/2020/3817573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
Pioglitazone (Pio) is a thiazolidinedione (TZD) insulin-sensitizing drug whose effects result predominantly from its modulation of the transcriptional activity of peroxisome proliferator-activated-receptor-gamma (PPARγ). Pio is used to treat human insulin-resistant diabetes and also frequently considered for treatment of nonalcoholic steatohepatitis (NASH). In both settings, Pio's beneficial effects are believed to result primarily from its actions on adipose PPARγ activity, which improves insulin sensitivity and reduces the delivery of fatty acids to the liver. Nevertheless, a recent clinical trial showed variable efficacy of Pio in human NASH. Hepatocytes also express PPARγ, and such expression increases with insulin resistance and in nonalcoholic fatty liver disease (NAFLD). Furthermore, mice that overexpress hepatocellular PPARγ and Pio-treated mice with extrahepatic PPARγ gene disruption develop features of NAFLD. Thus, Pio's direct impact on hepatocellular gene expression might also be a determinant of this drug's ultimate influence on insulin resistance and NAFLD. Previous studies have characterized Pio's PPARγ-dependent effects on hepatic expression of specific adipogenic, lipogenic, and other metabolic genes. However, such transcriptional regulation has not been comprehensively assessed. The studies reported here address that consideration by genome-wide comparisons of Pio's hepatic transcriptional effects in wildtype (WT) and liver-specific PPARγ-knockout (KO) mice given either control or high-fat (HFD) diets. The results identify a large set of hepatic genes for which Pio's liver PPARγ-dependent transcriptional effects are concordant with its effects on RXR-DNA binding in WT mice. These data also show that HFD modifies Pio's influence on a subset of such transcriptional regulation. Finally, our findings reveal a broader influence of Pio on PPARγ-dependent hepatic expression of nuclear genes encoding mitochondrial proteins than previously recognized. Taken together, these studies provide new insights about the tissue-specific mechanisms by which Pio affects hepatic gene expression and the broad scope of this drug's influence on such regulation.
Collapse
|
29
|
Caldez MJ, Bjorklund M, Kaldis P. Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. Hepatol Int 2020; 14:463-474. [PMID: 32578019 PMCID: PMC7366567 DOI: 10.1007/s12072-020-10066-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.
Collapse
Affiliation(s)
- Matias J Caldez
- WPI Immunology Frontiers Research Centre, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mikael Bjorklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute and 2nd Affiliated Hospital, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, 314400, Zhejiang, People's Republic of China
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
30
|
Burdick J, Sun Z. Pyruvate Dehydrogenase Kinase 4: A Key Mediator for Metabolic Regulation of Liver Regeneration. Hepatol Commun 2020; 4:475-477. [PMID: 32258943 PMCID: PMC7109337 DOI: 10.1002/hep4.1506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- James Burdick
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| | - Zhaoli Sun
- Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
31
|
Bao Q, Yu L, Chen D, Li L. Variation in the gut microbial community is associated with the progression of liver regeneration. Hepatol Res 2020; 50:121-136. [PMID: 31465626 DOI: 10.1111/hepr.13424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
AIM To highlight a potential dynamic interaction between intestinal bacteria (IB) and metabolites that might contribute to liver regeneration (LR). METHODS Male Sprague-Dawley rats were subjected to surgical removal of two-thirds of the liver and samples were collected over a 14-day period. Intestinal community and metabolic profiles were characterized to establish their potential interactions during liver regeneration. RESULTS Partial hepatectomy caused fluctuating changes in the gut microbiome, which paralleled the biological processes of LR. Briefly, the enhanced cell proliferation occurring within 30-48 h was associated with a decreased ratio of Firmicutes to Bacteroidetes reflected by a reduction in Ruminococcaceae and Lachnospiraceae, and an increase in Bacteroidaceae, Rikenellaceae, and Porphyromonadaceae, which was indicative of a lean phenotype. The microbiota derived from rats at 12-24 h and 3-14 days were characterized by elevated F/B ratios, suggesting the differing energy extract behaviors of microbiota during the course of LR. Functional changes of the shifted microbiota revealed by PICRUSt software confirmed the pyrosequencing results. The microbiome derived from hour 12 rats showed overpresentation of metabolism-related modules. In contrast, the microbiome derived from day 2 rats was functionally unique in "replication and repair", "amino acid metabolism," and "nucleoid metabolism." Upon examining the dynamic pattern of metabolic response, the specific pathways, including glycerophospholipid metabolism, taurine, and hypotaurine metabolism, were identified to be attributable to the systemic alterations in LR-related metabolism. Moreover, our data indicated that several key functional bacteria were strongly related to perturbations of the above pathways. CONCLUSION Gut flora could play a central role in manipulating metabolic responses in LR.
Collapse
Affiliation(s)
- Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
32
|
Cornide-Petronio ME, Jiménez-Castro MB, Gracia-Sancho J, Peralta C. New Insights into the Liver-Visceral Adipose Axis During Hepatic Resection and Liver Transplantation. Cells 2019; 8:1100. [PMID: 31540413 PMCID: PMC6769706 DOI: 10.3390/cells8091100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
In the last decade, adipose tissue has emerged as an endocrine organ with a key role in energy homeostasis. In addition, there is close crosstalk between the adipose tissue and the liver, since pro- and anti-inflammatory substances produced at the visceral adipose tissue level directly target the liver through the portal vein. During surgical procedures, including hepatic resection and liver transplantation, ischemia-reperfusion injury induces damage and regenerative failure. It has been suggested that adipose tissue is associated with both pathological or, on the contrary, with protective effects on damage and regenerative response after liver surgery. The present review aims to summarize the current knowledge on the crosstalk between the adipose tissue and the liver during liver surgery. Therapeutic strategies as well as the clinical and scientific controversies in this field are discussed. The different experimental models, such as lipectomy, to evaluate the role of adipose tissue in both steatotic and nonsteatotic livers undergoing surgery, are described. Such information may be useful for the establishment of protective strategies aimed at regulating the liver-visceral adipose tissue axis and improving the postoperative outcomes in clinical liver surgery.
Collapse
Affiliation(s)
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| |
Collapse
|
33
|
Álvarez-Mercado AI, Gulfo J, Romero Gómez M, Jiménez-Castro MB, Gracia-Sancho J, Peralta C. Use of Steatotic Grafts in Liver Transplantation: Current Status. Liver Transpl 2019; 25:771-786. [PMID: 30740859 DOI: 10.1002/lt.25430] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
In the field of liver transplantation, the demand for adequate allografts greatly exceeds the supply. Therefore, expanding the donor pool to match the growing demand is mandatory. The present review summarizes current knowledge of the pathophysiology of ischemia/reperfusion injury in steatotic grafts, together with recent pharmacological approaches aimed at maximizing the utilization of these livers for transplantation. We also describe the preclinical models currently available to understand the molecular mechanisms controlling graft viability in this specific type of donor, critically discussing the heterogeneity in animal models, surgical methodology, and therapeutic interventions. This lack of common approaches and interventions makes it difficult to establish the pathways involved and the relevance of isolated discoveries, as well as their transferability to clinical practice. Finally, we discuss how new therapeutic strategies developed from experimental studies are promising but that further studies are warranted to translate them to the bedside.
Collapse
Affiliation(s)
- Ana I Álvarez-Mercado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Gulfo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Romero Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), Madrid, Spain
- Inter-Centre Unit of Digestive Diseases, Virgen del Rocio University Hospitals, Sevilla, Spain; Institute of Biomedicine of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Seville, Spain
| | | | - Jordi Gracia-Sancho
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), Madrid, Spain
- Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), Madrid, Spain
- Universidad Internacional de Cataluña, Barcelona, Spain
| |
Collapse
|
34
|
Omega-3 fatty acid supplementation does not influence liver regeneration in rats after partial hepatectomy. Clin Exp Hepatol 2018; 4:253-259. [PMID: 30603673 PMCID: PMC6311744 DOI: 10.5114/ceh.2018.80127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aim of the study In the initiation of liver regeneration, multiple stimulatory and inhibitory factors participate. In this study, we aimed to evaluate the effects of omega-3 fatty acids on liver regeneration after 30% partial hepatectomy in rats. Material and methods A total of 14 male Wistar Albino rats were included in this study. The animals were randomly allocated to two groups: the control group (n = 7) and the omega-3 group (n = 7). Rats in the control group were fed a standard rat chow and rats in the omega-3 group received 10 mg/kg/day omega-3 supplementation in addition to normal rat chow in the perioperative period. Rats were investigated seven days after 1/3 partial hepatectomy by liver weight change and hepatocyte proliferation. Results The mean liver regeneration rate was found to be slightly higher (p = 0.061) in the omega-3 group compared the control group. In addition, no significant difference was observed regarding binuclear hepatocyte ratio in pericentral and periportal areas between the two groups. However, livers from rats given omega-3 supplementation have less inflammatory cellular infiltrate in the portal space than livers from the control group. Conclusions Supplementation with omega-3 fatty acids showed no influence on the liver regeneration in rats undergoing 1/3 partial hepatectomy.
Collapse
|
35
|
Liver-specific Repin1 deficiency impairs transient hepatic steatosis in liver regeneration. Sci Rep 2018; 8:16858. [PMID: 30442920 PMCID: PMC6237840 DOI: 10.1038/s41598-018-35325-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Transient hepatic steatosis upon liver resection supposes functional relationships between lipid metabolism and liver regeneration. Repin1 has been suggested as candidate gene for obesity and dyslipidemia by regulating key genes of lipid metabolism and lipid storage. Herein, we characterized the regenerative potential of mice with a hepatic deletion of Repin1 (LRep1−/−) after partial hepatectomy (PH) in order to determine the functional significance of Repin1 in liver regeneration. Lipid dynamics and the regenerative response were analyzed at various time points after PH. Hepatic Repin1 deficiency causes a significantly decreased transient hepatic lipid accumulation. Defects in lipid uptake, as analyzed by decreased expression of the fatty acid transporter Cd36 and Fatp5, may contribute to attenuated and shifted lipid accumulation, accompanied by altered extent and chronological sequence of liver cell proliferation in LRep1−/− mice. In vitro steatosis experiments with primary hepatocytes also revealed attenuated lipid accumulation and occurrence of smaller lipid droplets in Repin1-deficient cells, while no direct effect on proliferation in HepG2 cells was observed. Based on these results, we propose that hepatocellular Repin1 might be of functional significance for early accumulation of lipids in hepatocytes after PH, facilitating efficient progression of liver regeneration.
Collapse
|
36
|
Atorvastatin provides a new lipidome improving early regeneration after partial hepatectomy in osteopontin deficient mice. Sci Rep 2018; 8:14626. [PMID: 30279550 PMCID: PMC6168585 DOI: 10.1038/s41598-018-32919-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
Osteopontin (OPN), a multifunctional cytokine that controls liver glycerolipid metabolism, is involved in activation and proliferation of several liver cell types during regeneration, a condition of high metabolic demands. Here we investigated the role of OPN in modulating the liver lipidome during regeneration after partial-hepatectomy (PH) and the impact that atorvastatin treatment has over regeneration in OPN knockout (KO) mice. The results showed that OPN deficiency leads to remodeling of phosphatidylcholine and triacylglycerol (TG) species primarily during the first 24 h after PH, with minimal effects on regeneration. Changes in the quiescent liver lipidome in OPN-KO mice included TG enrichment with linoleic acid and were associated with higher lysosome TG-hydrolase activity that maintained 24 h after PH but increased in WT mice. OPN-KO mice showed increased beta-oxidation 24 h after PH with less body weight loss. In OPN-KO mice, atorvastatin treatment induced changes in the lipidome 24 h after PH and improved liver regeneration while no effect was observed 48 h post-PH. These results suggest that increased dietary-lipid uptake in OPN-KO mice provides the metabolic precursors required for regeneration 24 h and 48 h after PH. However, atorvastatin treatment offers a new metabolic program that improves early regeneration when OPN is deficient.
Collapse
|
37
|
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium Signaling in Liver Injury and Regeneration. Front Med (Lausanne) 2018; 5:192. [PMID: 30023358 PMCID: PMC6039545 DOI: 10.3389/fmed.2018.00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simona Hankeova
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Ou-Yang Q, Lin XM, Zhu YJ, Zheng B, Li L, Yang YC, Hou GJ, Chen X, Luo GJ, Huo F, Leng QB, Gonzalez FJ, Jiang XQ, Wang HY, Chen L. Distinct role of nuclear receptor corepressor 1 regulated de novo fatty acids synthesis in liver regeneration and hepatocarcinogenesis in mice. Hepatology 2018; 67:1071-1087. [PMID: 28960380 PMCID: PMC6661113 DOI: 10.1002/hep.29562] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022]
Abstract
UNLABELLED It is urgent that the means to improve liver regeneration (LR) be found, while mitigating the concurrent risk of hepatocarcinogenesis (HCG). Nuclear receptor corepressor 1 (NCoR1) is a co-repressor of nuclear receptors, which regulates the expression level of metabolic genes; however, little is known about its potential contribution for LR and HCG. Here, we found that liver-specific NCoR1 knockout in mice (NCoR1Δhep ) dramatically enhances LR after partial hepatectomy and, surprisingly, blocks the process of diethylnitrosamine (DEN)-induced HCG. Both RNA-sequencing and metabolic assay results revealed improved expression of Fasn and Acc2 in NCoR1Δhep mice, suggesting the critical role of de novo fatty acid synthesis (FAS) in LR. Continual enhanced de novo FAS in NCoR1Δhep mice resulted in overwhelmed adenosine triphosphate ATP and nicotinamide adenine dinucleotide phosphate (NADPH) consumption and increased mitochondrial reactive oxygen species production, which subsequently attenuated HCG through inducing apoptosis of hepatocytes at an early stage after DEN administration. CONCLUSION NCoR1 functions as a negative modulator for hepatic de novo FAS and mitochondria energy adaptation, playing distinct roles in regeneration or carcinogenesis. (Hepatology 2018;67:1071-1087).
Collapse
Affiliation(s)
- Qing Ou-Yang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Department of Hepatobiliary Surgery, Center of Liver Transplantation, General Hospital of Guangzhou Military Region, Guangzhou, China
| | - Xi-Meng Lin
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Jing Zhu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Liang Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Ying-Cheng Yang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guo-Jun Hou
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xin Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Gui-Juan Luo
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Feng Huo
- Department of Hepatobiliary Surgery, Center of Liver Transplantation, General Hospital of Guangzhou Military Region, Guangzhou, China
| | - Qi-Bin Leng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xiao-Qing Jiang
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
- Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
39
|
Liu HX, Rocha CS, Dandekar S, Wan YJY. Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. J Hepatol 2016; 64:641-50. [PMID: 26453969 PMCID: PMC4761311 DOI: 10.1016/j.jhep.2015.09.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/08/2015] [Accepted: 09/19/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS The pathways regulating liver regeneration have been extensively studied within the liver. However, the signaling contribution derived from the gut microbiota to liver regeneration is poorly understood. METHODS Microbiota and expression of hepatic genes in regenerating livers obtained from mice at 0h to 9days post 2/3 partial hepatectomy were temporally profiled to establish their interactive relationships. RESULTS Partial hepatectomy led to rapid changes in gut microbiota that was reflected in an increased abundance of Bacteroidetes S24-7 and Rikenellaceae and decreased abundance of Firmicutes Clostridiales, Lachnospiraceae, and Ruminococcaceae. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to infer biological functional changes of the shifted microbiota. RNA-sequencing data revealed 6125 genes with more than a 2-fold difference in their expression levels during regeneration. By analyzing their expression pattern, six uniquely expressed patterns were observed. In addition, there were significant correlations between hepatic gene expression profiles and shifted bacterial populations during regeneration. Moreover, hepatic metabolism and immune function were closely associated with the abundance of Ruminococcacea, Lachnospiraceae, and S24-7. Bile acid profile was analyzed because bacterial enzymes produce bile acids that significantly impact hepatocyte proliferation. The data revealed that specific bacteria were closely associated with the concentration of certain bile acids and expression of hepatic genes. CONCLUSIONS The presented data established, for the first time, an intimate relationship between intestinal microbiota and the expression of hepatic genes in regenerating livers.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA
| | - Clarissa Santos Rocha
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
40
|
Huang J, Schriefer AE, Cliften PF, Dietzen D, Kulkarni S, Sing S, Monga SPS, Rudnick DA. Postponing the Hypoglycemic Response to Partial Hepatectomy Delays Mouse Liver Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:587-99. [PMID: 26772417 DOI: 10.1016/j.ajpath.2015.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
All serious liver injuries alter metabolism and initiate hepatic regeneration. Recent studies using partial hepatectomy (PH) and other experimental models of liver regeneration implicate the metabolic response to hepatic insufficiency as an important source of signals that promote regeneration. Based on these considerations, the analyses reported here were undertaken to assess the impact of interrupting the hypoglycemic response to PH on liver regeneration in mice. A regimen of parenteral dextrose infusion that delays PH-induced hypoglycemia for 14 hours after surgery was identified, and the hepatic regenerative response to PH was compared between dextrose-treated and control mice. The results showed that regenerative recovery of the liver was postponed in dextrose-infused mice (versus vehicle control) by an interval of time comparable to the delay in onset of PH-induced hypoglycemia. The regulation of specific liver regeneration-promoting signals, including hepatic induction of cyclin D1 and S-phase kinase-associated protein 2 expression and suppression of peroxisome proliferator-activated receptor γ and p27 expression, was also disrupted by dextrose infusion. These data support the hypothesis that alterations in metabolism that occur in response to hepatic insufficiency promote liver regeneration, and they define specific pro- and antiregenerative molecular targets whose regenerative regulation is postponed when PH-induced hypoglycemia is delayed.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew E Schriefer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Dennis Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sakil Kulkarni
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sucha Sing
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P S Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
41
|
Huang J, Schriefer AE, Yang W, Cliften PF, Rudnick DA. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition. Epigenetics 2015; 9:1521-31. [PMID: 25482284 DOI: 10.4161/15592294.2014.983371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.
Collapse
Affiliation(s)
- Jiansheng Huang
- a Department of Pediatrics ; Washington University School of Medicine ; St. Louis , MO USA
| | | | | | | | | |
Collapse
|
42
|
Schweitzer GG, Chen Z, Gan C, McCommis KS, Soufi N, Chrast R, Mitra MS, Yang K, Gross RW, Finck BN. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice. J Lipid Res 2015; 56:848-58. [PMID: 25722343 DOI: 10.1194/jlr.m055962] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1(-/-) mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1(-/-) mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1(-/-) mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1(-/-) mice were not protected from intrahepatic accumulation of diacylglycerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload.
Collapse
Affiliation(s)
| | - Zhouji Chen
- Washington University School of Medicine, St. Louis, MO 63110
| | - Connie Gan
- Washington University School of Medicine, St. Louis, MO 63110
| | - Kyle S McCommis
- Washington University School of Medicine, St. Louis, MO 63110
| | - Nisreen Soufi
- Washington University School of Medicine, St. Louis, MO 63110
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Kui Yang
- Washington University School of Medicine, St. Louis, MO 63110
| | - Richard W Gross
- Washington University School of Medicine, St. Louis, MO 63110
| | - Brian N Finck
- Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
43
|
Maldonado EN, Delgado I, Furland NE, Buqué X, Iglesias A, Aveldaño MI, Zubiaga A, Fresnedo O, Ochoa B. The E2F2 transcription factor sustains hepatic glycerophospholipid homeostasis in mice. PLoS One 2014; 9:e112620. [PMID: 25396754 PMCID: PMC4232400 DOI: 10.1371/journal.pone.0112620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH) by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified “lipid metabolism regulation” as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2+/+) and E2F2 deficient (E2F2−/−) mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2+/+ and E2F2−/− mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2−/− mice resembles the phenotype of proliferating E2F2+/+ liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.
Collapse
Affiliation(s)
- Eduardo N. Maldonado
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Igotz Delgado
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Natalia E. Furland
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Xabier Buqué
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Ainhoa Iglesias
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Marta I. Aveldaño
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ana Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
- * E-mail:
| |
Collapse
|
44
|
Mendes-Braz M, Elias-Miró M, Kleuser B, Fayyaz S, Jiménez-Castro MB, Massip-Salcedo M, Gracia-Sancho J, Ramalho FS, Rodes J, Peralta C. The effects of glucose and lipids in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischaemia-reperfusion. Liver Int 2014; 34:e271-e289. [PMID: 24107124 DOI: 10.1111/liv.12348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/25/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Steatosis is a risk factor in partial hepatectomy (PH) under ischaemia-reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. Nutritional support strategies, as well as the role of peripheral adipose tissue as energy source for liver regeneration, remain poorly investigated. AIMS To investigate whether the administration of either glucose or a lipid emulsion could protect steatotic and non-steatotic livers against damage and regenerative failure in an experimental model of PH under I/R. The relevance of peripheral adipose tissue in liver regeneration following surgery is studied. METHODS Steatotic and non-steatotic rat livers were subjected to surgery and the effects of either glucose or lipid treatment on damage and regeneration, and part of the underlying mechanisms, were investigated. RESULTS In non-steatotic livers, treatment with lipids or glucose provided the same protection against damage, regeneration failure and ATP drop. Adipose tissue was not required to regenerate non-steatotic livers. In the presence of hepatic steatosis, lipid treatment, but not glucose, protected against damage and regenerative failure by induction of cell cycle, maintenance of ATP levels and elevation of sphingosine-1-phosphate/ceramide ratio and phospholipid levels. Peripheral adipose tissue was required for regenerating the steatotic liver but it was not used as an energy source. CONCLUSION Lipid treatment in non-steatotic livers provides the same protection as that afforded by glucose in conditions of PH under I/R, whereas the treatment with lipids is preferable to reduce the injurious effects of liver surgery in the presence of steatosis.
Collapse
Affiliation(s)
- Mariana Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lipid overloading during liver regeneration causes delayed hepatocyte DNA replication by increasing ER stress in mice with simple hepatic steatosis. J Gastroenterol 2014; 49:305-16. [PMID: 23512345 PMCID: PMC3925298 DOI: 10.1007/s00535-013-0780-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Impaired fatty liver regeneration has already been reported in many genetic modification models. However, in diet-induced simple hepatic steatosis, which showed similar phenotype with clinical pathology, whether liver regeneration is impaired or not remains unclear. In this study, we evaluated liver regeneration in mice with diet-induced simple hepatic steatosis, and focused on excess lipid accumulation occurring during liver regeneration. METHODS Mice were fed high fat diet (HFD) or control diet for 9-10 weeks. We analyzed intrahepatic lipid accumulation, DNA replication, and various signaling pathways including cell proliferation and ER stress during liver regeneration after partial hepatectomy. In addition, some of mice were pretreated with tauroursodeoxycholic acid (TUDCA), a chemical chaperone which alleviates ER stress, and then we estimated TUDCA effects on liver regeneration. RESULTS The peak of hepatocyte BrdU incorporation, the expression of proliferation cell nuclear antigen (PCNA) protein, and the expressions of cell cycle-related genes were observed in delayed time in HFD mice. The expression of phosphorylated Erk1/2 was also delayed in HFD mice. The amounts of liver triglyceride were at least twofold higher in HFD mice at each time point. Intrahepatic palmitic acid was increased especially in HFD mice. ER stress induced during liver regeneration was significantly higher in HFD mice. In HFD mice, pretreatment with TUDCA reduced ER stress and resulted in improvement of delayed liver regeneration. CONCLUSION In simple hepatic steatosis, lipid overloading occurring during liver regeneration might be caused ER stress and results in delayed hepatocyte DNA replication.
Collapse
|
46
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
47
|
Obayashi Y, Campbell JS, Fausto N, Yeung RS. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration. Biochem Biophys Res Commun 2013; 437:146-50. [DOI: 10.1016/j.bbrc.2013.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 01/20/2023]
|
48
|
Huang J, Barr E, Rudnick DA. Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration. Hepatology 2013; 57:1742-51. [PMID: 23258575 PMCID: PMC3825707 DOI: 10.1002/hep.26206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022]
Abstract
UNLABELLED The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. CONCLUSION The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Emily Barr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - David A. Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
,Department of Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
49
|
Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration. Cells 2012; 1:1261-1292. [PMID: 24710554 PMCID: PMC3901148 DOI: 10.3390/cells1041261] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 12/11/2022] Open
Abstract
Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF) and their receptors (MET and EGFR). In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size.
Collapse
Affiliation(s)
- Liang-I Kang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
50
|
Lagomarsino A. Liver regeneration in nonalcoholic fatty liver disease. Medwave 2012. [DOI: 10.5867/medwave.2012.11.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|