1
|
Ding Q, Cao W, Ge X, Cao F, Song Q, Jin Y, Sun T, Fang H, Li J, Li S. SMPD3 Inhibition Contributes to Nicotinamide-Ameliorated Hepatic Steatosis in Chronic Alcohol-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40404566 DOI: 10.1021/acs.jafc.5c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Alcohol-associated liver disease (ALD) is characterized by the reduction of hepatic nicotinamide adenine dinucleotide (NAD+), which exacerbates hepatic steatosis. The present study was conducted to investigate the protective role of nicotinamide (NAM), a foodborne precursor of NAD+ biosynthesis, in ALD. C57BL/6N mice were employed to establish the ALD model and were administered NAM by gavage. Our results showed that NAM supplementation significantly ameliorated alcohol-induced NAD+ reduction and lipid accumulation in both mice liver and cultured AML-12 hepatocytes and improved lipid metabolism-associated gene disorders. Alcohol-induced liver injury and oxidative stress were also blocked by NAM administration. Further transcriptomics analysis and validation revealed that alcohol-stimulated sphingomyelin phosphodiesterase 3 (SMPD3) was significantly reversed by NAM, along with the reduction of hepatic ceramide levels. Importantly, SMPD3 was upregulated in the livers of ALD patients. Genetically silencing SMPD3 alleviated alcohol-induced lipid accumulation in hepatocytes. ChIP assay identified SMPD3 as a direct downstream target of hypoxia-inducible factor 1 alpha (HIF-1α). Liver-specific Hif1α knockdown reduced the level of hepatic SMPD3 expression in mice. Activation of HIF-1α abolished the prevention of intrahepatic liver lipid deposition by NAM, while SMPD3 knockdown reversed HIF-1α activation-stimulated lipid accumulation, indicating that a HIF-1α-regulated SMPD3 pathway was involved in the beneficial role of NAM. NAM improved liver oxidative stress, while antioxidant MitoQ administration rescued HIF-1α/SMPD3 activation in ALD mice, implying that the antioxidant effect of NAM contributed to its inhibitory role on the HIF-1α/SMPD3 pathway. In conclusion, NAM ameliorates chronic alcohol intake-induced hepatic steatosis by inhibiting SMPD3. This study provides new insights into the mechanistic understanding of ALD and highlights NAM as a therapeutic choice for ALD treatment.
Collapse
Affiliation(s)
- Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Wenjing Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Xinxuan Ge
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Feiwei Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Yue Jin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Tianchi Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haoyi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Jiaxin Li
- Division of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
2
|
Chen Y, Zhang D, Wu Y, Jiang W, Guo L, Pan D, He Q, Yin Z, Sun L, Wang S. Chronic intermittent hypoxia alleviates alcohol-related liver injury via downregulation of hepatic hypoxia-inducible factor-2α. Am J Physiol Gastrointest Liver Physiol 2025; 328:G610-G623. [PMID: 40243734 DOI: 10.1152/ajpgi.00283.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/17/2024] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Alcohol-related liver disease (ALD) is one of the leading causes of alcohol-related morbidity and mortality worldwide. Unfortunately, limited therapeutic options are currently available, due to the complex risk factors involved as well as the lack of information on the molecular mechanisms driving its progression. Interestingly, chronic, excessive alcohol intake has been reported to exacerbate the severity of obstructive sleep apnea (OSA), a respiratory disorder typically characterized by chronic intermittent hypoxia (CIH). However, this relationship between alcohol-enhanced OSA and ALD development/progression remains to be elucidated. As an approach to investigate this relationship, in vivo Gao-binge ALD and CIH mouse models were established. Alcohol-related liver injury, hepatic steatosis, inflammation, and oxidative stress were then assessed in these models. In addition, lipopolysaccharide (LPS) and ethanol-cotreated mouse normal hepatocyte cell line AML12 served as an in vitro model to investigate the mechanisms through which CIH affects ethanol-induced liver injury. CIH intervention ameliorated alcohol-related liver injury, reduced hepatic lipid accumulation and oxidative stress, and alleviated liver inflammation. Mechanistically, in the liver of these Gao-binge mice, CIH intervention inhibited alcohol-induced upregulation and activation of hypoxia-inducible factor 2α (HIF-2α), a protein which plays a key role in hepatic lipid metabolism and liver injury. Similar to these effects observed in response to CIH intervention, treatment of Gao-binge mice with the selective inhibitor of HIF-2α, PT2385, alleviated alcohol-related liver injury and steatosis while inhibiting oxidative stress and inflammation. Additional findings from our in vitro model revealed that CIH downregulated HIF-2α by promoting calpains protein expression, thereby reducing the accumulation of lipid droplets and decreasing reactiveoxygenspecies (ROS) production in AML12 cells co-challenged with LPS and ethanol. The above results provide important, new evidence that reconceptualizes the role of alcohol-enhanced OSA in ALD progression. Moreover, these findings can serve as the foundation for the development of HIF-2α inhibitors for use in the prevention and treatment of ALD.NEW & NOTEWORTHY Chronic intermittent hypoxia (CIH) intervention mitigated hepatic lipid accumulation and reduced hepatic injury, inflammation, and oxidative stress in alcohol-related liver disease (ALD) mice. CIH alleviates ALD and is likely linked to the downregulation of hypoxia-inducible factor 2α (HIF-2α) expression mediated by calpains. This study presents a new possibility for ALD treatment and lays a theoretical foundation for the clinical treatment of ALD.
Collapse
Affiliation(s)
- Yunling Chen
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
- Medical School, Nankai University, Tianjin, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Dongyuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yunxiao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Wenshan Jiang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
| | - Luoting Guo
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
| | - Di Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Qiao He
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Zhaoqing Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Lichao Sun
- Emergency Department, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Shuanglian Wang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
3
|
Zehetner L, Széliová D, Kraus B, Hernandez Bort JA, Zanghellini J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab Eng 2025; 91:103-118. [PMID: 40220853 DOI: 10.1016/j.ymben.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
HEK293 cells are a versatile cell line extensively used in the production of recombinant proteins and viral vectors, notably Adeno-associated virus (AAV) (Bulcha et al., 2021). Despite their high transfection efficiency and adaptability to various culture conditions, challenges remain in achieving sufficient yields of active viral particles. This study presents a comprehensive multi-omics analysis of two HEK293 strains under good manufacturing practice conditions, focusing on the metabolic and cellular responses during AAV production. The investigation included lipidomic, exometabolomic, and transcriptomic profiling across different conditions and time points. Genome-scale metabolic models (GSMMs) were reconstructed for these strains to elucidate metabolic shifts and identify potential bottlenecks in AAV production. Notably, the study revealed significant differences between a High-producing (HP) and a Low-producing (LP) HEK293 strains, highlighting pseudohypoxia in the LP strain. Key findings include the identification of hypoxia-inducible factor 1-alpha (HIF-1α) as a critical regulator in the LP strain, linking pseudohypoxia to poor AAV productivity. Inhibition of HIF-1α resulted in immediate cessation of cell growth and a 2.5-fold increase in viral capsid production, albeit with a decreased number of viral genomes, impacting the full-to-empty particle ratio. This trade-off is significant because it highlights a key challenge in AAV production: achieving a balance between capsid assembly and genome packaging to optimize the yield of functional viral vectors. Overall this suggests that while HIF-1α inhibition enhances capsid assembly, it simultaneously hampers nucleotide synthesis via the pentose phosphate pathway (PPP), necessary for nucleotide synthesis, and therefore for AAV genome replication.
Collapse
Affiliation(s)
- L Zehetner
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria; Doctoral School of Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - D Széliová
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - B Kraus
- Institute of Molecular Biotechnology, Institut für Molekulare Biotechnologie GmbH, Vienna, 1030, Austria
| | - J A Hernandez Bort
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, Vienna, 1100, Austria.
| | - J Zanghellini
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
4
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
5
|
Cui Y, Yang K, Guo C, Xia Z, Jiang B, Xue Y, Song B, Hu W, Zhang M, Wei Y, Zhang C, Zhang S, Fang J. Carbon monoxide as a negative feedback mechanism on HIF-1α in the progression of metabolic-associated fatty liver disease. Nitric Oxide 2024; 153:1-12. [PMID: 39369813 DOI: 10.1016/j.niox.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses various chronic liver conditions, yet lacks approved drugs. Hypoxia-inducible factor-1α (HIF-1α) is pivotal in MAFLD development. Our prior research highlighted the efficacy of the nano-designed carbon monoxide (CO) donor, targeting HIF-1α in a mouse hepatic steatosis model. Given heme oxygenase-1 (HO-1, a major downstream molecule of HIF-1α) as the primary source of intrinsic CO, we hypothesized that upregulation of HO-1/CO, responsive to HIF-1α, forms a negative feedback loop regulating MAFLD progression. In this study, we explored the potential negative feedback mechanism of CO on HIF-1α and its downstream effects on MAFLD advancement. HIF-1α emerges early in hepatic steatosis induced by a high-fat (HF) diet, triggering increased HO-1 and inflammation. SMA/CORM2 effectively suppresses HIF-1α and steatosis progression when administered within the initial week of HF diet initiation but loses impact later. In adipose tissues, concurrent metabolic dysfunction and inflammation with HIF-1α activation suggest adipose tissue expansion initiates HF-induced steatosis, triggering hypoxia and liver inflammation. Notably, in an in vitro study using mouse hepatocytes treated with fatty acids, downregulating HO-1 intensified HIF-1α induction at moderate fatty acid concentrations. However, this effect diminished at high concentrations. These results suggest the HIF-1α-HO-1-CO axis as a feedback loop under physiological and mild pathological conditions. Excessive HIF-1α upregulation in pathological conditions overwhelms the CO feedback loop. Additional CO application effectively suppresses HIF-1α and disease progression, indicating potential application for MAFLD control.
Collapse
Affiliation(s)
- Yingying Cui
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, 750000, China; Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Kai Yang
- Department of Medical Technology, Anhui Medical College, No.632, Furong Road, Hefei, Anhui Province, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Benchun Jiang
- Department of Gastricintestinal Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Mingjie Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Shichen Zhang
- Anhui Provincial Center for Maternal and Child Health Genetics, School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Anhui Provincial Center for Maternal and Child Health Genetics, School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, 230601, Anhui, China; Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan.
| |
Collapse
|
6
|
Xu M, Taylor MS, Hill BG, Li X, Rouchka EC, McClain CJ, Song M. Intestine epithelial-specific hypoxia-inducible factor-1α overexpression ameliorates western diet-induced MASLD. Hepatol Commun 2024; 8:e0572. [PMID: 39585307 PMCID: PMC11596589 DOI: 10.1097/hc9.0000000000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Intestine epithelial hypoxia-inducible factor-1α (HIF-1α) plays a critical role in maintaining gut barrier function. The aim of this study was to determine whether pharmacological or genetic activation of intestinal HIF-1α ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease. METHODS Metabolic effects of pharmacological activation of HIF-1α by dimethyloxalylglycine were evaluated in HIF-α luciferase reporter (ODD-luc) mice. Male and/or female intestinal epithelial-specific Hif1α overexpression mice (Hif1αLSL/LSL;VilERcre) and wild-type littermates (Hif1αLSL/LSL) were fed with regular chow diet, high fructose (HFr) or high-fat (60% Kcal) high-fructose diet (HFHFr) for 8 weeks. Metabolic phenotypes were profiled. RESULTS Dimethyloxalylglycine treatment led to increased intestine HIF-α luciferase activity and decreased blood glucose levels in HFr diet-fed male ODD-luc mice. Male Hif1αLSL/LSL;VilERcre mice exhibited markedly improved glucose tolerance compared to Hif1αLSL/LSL mice in response to HFr diet. Eight weeks HFHFr feeding led to obesity in both Hif1αLSL/LSL;VilERcre and Hif1αLSL/LSL mice. However, male Hif1αLSL/LSL;VilERcre mice exhibited markedly attenuated hepatic steatosis along with reduced liver size and liver weight compared to male Hif1αLSL/LSL mice. Moreover, HFHFr-induced systemic inflammatory responses were mitigated in male Hif1αLSL/LSL;VilERcre mice compared to male Hif1αLSL/LSL mice, and those responses were not evident in female mice. Ileum RNA-seq analysis revealed that glycolysis/gluconeogenesis was up in male Hif1αLSL/LSL;VilERcre mice, accompanied by increased epithelial cell proliferation. Moreover, an in vitro study showed that HIF stabilization enhances glycolysis in intestine organoids. CONCLUSIONS Our data provide evidence that pharmacological or genetic activation of intestinal HIF-1α markedly ameliorates western diet-induced metabolic dysfunction-associated steatotic liver disease in a sex-dependent manner. The underlying mechanism is likely attributed to HIF-1α activation-induced upregulation of glycolysis, which, in turn, leads to enhanced epithelial cell proliferation and augmented gut barrier function.
Collapse
Affiliation(s)
- Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Madison S. Taylor
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Bradford G. Hill
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
| | - Eric C. Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Liang N, Yuan X, Zhang L, Shen X, Zhong S, Li L, Li R, Xu X, Chen X, Yin C, Guo S, Ge J, Zhu M, Tao Y, Chen S, Qian Y, Dalbeth N, Merriman TR, Terkeltaub R, Li C, Xia Q, Yin H. Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH. LIFE METABOLISM 2024; 3:loae018. [PMID: 39872146 PMCID: PMC11749550 DOI: 10.1093/lifemeta/loae018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 01/29/2025]
Abstract
Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout groups compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope-labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5'-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from the blood to the liver and activation of urate biosynthesis. Our findings were further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors. Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.
Collapse
Affiliation(s)
- Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Medicine, Tung Biomedical Science Center, State Key Laboratory of Marine Pollution (SKLMP), The Shenzhen Research Institute and Futian Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Xuan Yuan
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266003, China
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Medicine, Tung Biomedical Science Center, State Key Laboratory of Marine Pollution (SKLMP), The Shenzhen Research Institute and Futian Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhao Yin
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuyuan Guo
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Ge
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert Terkeltaub
- VA San Diego Healthcare System, San Diego, La Jolla, CA 92037, United States
- School of Medicine, University of California San Diego, La Jolla, CA 92037, United States
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266003, China
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Medicine, Tung Biomedical Science Center, State Key Laboratory of Marine Pollution (SKLMP), The Shenzhen Research Institute and Futian Research Institute, City University of Hong Kong, Hong Kong 999077, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Kwon YS, Cho YE, Kim Y, Koh M, Hwang S. Dimethyloxalylglycine Suppresses SREBP1c and Lipogenic Gene Expressions in Hepatocytes Independently of HIF1A. Curr Issues Mol Biol 2024; 46:2386-2397. [PMID: 38534767 DOI: 10.3390/cimb46030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Dimethyloxalylglycine (DMOG) is a representative inhibitor of the prolyl hydroxylase domain (PHD), which mediates the degradation of hypoxia-inducible factor-1-alpha (HIF1A). DMOG exerts its pharmacological effects via the canonical pathway that involves PHD inhibition; however, it remains unclear whether DMOG affects lipogenic gene expression in hepatocytes. We aimed to elucidate the effects of DMOG on sterol regulatory element-binding protein-1c (SREBP1c), a master regulator of fatty acid synthesis in hepatocytes. DMOG treatment inhibited SREBP1c mRNA and protein expression in HepG2 and AML12 hepatocytes and reduced the transcript levels of SREBP1c-regulated lipogenic genes. A luciferase reporter assay revealed that DMOG inhibited the transcriptional activity of SREBP1c. Moreover, DMOG suppressed SREBP1c expression in mice liver. Mechanistically, treatment with DMOG enhanced the expression of HIF1A and insulin-induced gene 2 (INSIG2), which inhibits the activation of SREBP1c. However, HIF1A or INSIG2 knockdown failed to reverse the inhibitory effect of DMOG on SREBP1c expression, suggesting a redundant role of HIF1A and INSIG2 in terms of repressing SREBP1c. DMOG did not function through the canonical pathway involving inhibition of SREBP1c by PHD, highlighting the presence of non-canonical pathways that mediate its anti-lipogenic effect.
Collapse
Affiliation(s)
- Yong Seong Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Ding Q, Guo R, Hao L, Song Q, Fu A, Lai S, Xu T, Zhuge H, Chang K, Chen Y, Wei H, Ren D, Sun Z, Song Z, Dou X, Li S. Hepatic TRPC3 loss contributes to chronic alcohol consumption-induced hepatic steatosis and liver injury in mice. LIFE METABOLISM 2024; 3:load050. [PMID: 39871879 PMCID: PMC11749259 DOI: 10.1093/lifemeta/load050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2025]
Abstract
Emerging evidence discloses the involvement of calcium channel protein in the pathological process of liver diseases. Transient receptor potential cation channel subfamily C member 3 (TRPC3), a ubiquitously expressed non-selective cation channel protein, controls proliferation, inflammation, and immune response via operating calcium influx in various organs. However, our understanding on the biofunction of hepatic TRPC3 is still limited. The present study aims to clarify the role and potential mechanism(s) of TRPC3 in alcohol-associated liver disease (ALD). We recently found that TRPC3 expression plays an important role in the disease process of ALD. Alcohol exposure led to a significant reduction of hepatic TRPC3 in patients with alcohol-related hepatitis (AH) and ALD models. Antioxidants (N-acetylcysteine and mitoquinone) intervention improved alcohol-induced suppression of TRPC3 via a miR-339-5p-involved mechanism. TRPC3 loss robustly aggravated the alcohol-induced hepatic steatosis and liver injury in mouse liver; this was associated with the suppression of Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2)/AMP-activated protein kinase (AMPK) and dysregulation of genes related to lipid metabolism. TRPC3 loss also enhanced hepatic inflammation and early fibrosis-like change in mice. Replenishing hepatic TRPC3 effectively reversed chronic alcohol-induced detrimental alterations in ALD mice. Briefly, chronic alcohol exposure-induced TRPC3 reduction contributes to the pathological development of ALD via suppression of the CAMKK2/AMPK pathway. Oxidative stress-stimulated miR-339-5p upregulation contributes to alcohol-reduced TRPC3. TRPC3 is the requisite and a potential target to defend alcohol consumption-caused ALD.
Collapse
Affiliation(s)
- Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Ai Fu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shanglei Lai
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yanli Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Haibin Wei
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Daxi Ren
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
10
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Jung E, Baek EB, Hong EJ, Kang JH, Park S, Park S, Hong EJ, Cho YE, Ko JW, Won YS, Kwon HJ. TXNIP in liver sinusoidal endothelial cells ameliorates alcohol-associated liver disease via nitric oxide production. Int J Biol Sci 2024; 20:606-620. [PMID: 38169654 PMCID: PMC10758096 DOI: 10.7150/ijbs.90781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor β-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.
Collapse
Affiliation(s)
- Eunhye Jung
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Bok Baek
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jee Hyun Kang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Suyoung Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sehee Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Eun Cho
- Andong National University, Andong 36729, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Hyo-Jung Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
12
|
Yuan F, Xia GQ, Cai JN, Lv X, Dai M. Hesperitin attenuates alcoholic steatohepatitis by regulating TLR4/NF-κB signaling in mice. Anal Biochem 2023; 682:115339. [PMID: 37805041 DOI: 10.1016/j.ab.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
In the peel of citrus (Rutaceae) fruit, hesperitin (Hesp), a flavanone glycoside chemical, is found naturally. Hesp has been found to have a wide range of pharmacological actions, including anti-inflammatory, antioxidant, antiviral, and anticancer properties, according to earlier research. However, nothing is known regarding its function in alcoholic liver steatosis and inflammation. In this study, we employed a network pharmacology approach to identify the TLR4 signaling pathway as a primary target of Hesp for the treatment of alcoholic steatohepatitis (ASH). Molecular docking results showed that Hesp bound to the representative target TLR4 and exhibited good affinity. In addition, Hesp inhibits the TLR4 target and consequently the NF-κB signaling pathway, which in turn slows the evolution of alcoholic steatohepatitis, according to further in vitro and in vivo tests. The results of this study preliminarily indicate that Hesp is an ideal drug candidate for the treatment of ASH.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Pharmacy, Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guo-Qing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jun-Nan Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| | - Meng Dai
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
13
|
Cui Y, Guo C, Xia Z, Xue Y, Song B, Hu W, He X, Liang S, Wei Y, Zhang C, Wang H, Xu D, Zhang S, Fang J. Exploring the therapeutic potential of a nano micelle containing a carbon monoxide-releasing molecule for metabolic-associated fatty liver disease by modulating hypoxia-inducible factor-1α. Acta Biomater 2023; 169:500-516. [PMID: 37574157 DOI: 10.1016/j.actbio.2023.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses a spectrum of chronic liver diseases, including steatohepatitis, cirrhosis, and liver cancer. Despite the increasing prevalence and severity of MAFLD, no approved pharmacological interventions are currently available. Hypoxia-inducible factor-1α (HIF-1α) has emerged as a crucial early mediator in the pathogenesis of MAFLD. Previously, we demonstrated the potent anti-inflammatory properties of the nano-designed carbon monoxide (CO) donor, styrene maleic acid copolymer (SMA) encapsulating CO-releasing molecule (SMA/CORM2), which effectively suppressed HIF-1α in various inflammatory disorders. Here, we investigated the therapeutic potential of SMA/CORM2 in a mouse model of MAFLD induced by a high-fat methionine- and choline-deficient (HF-MCD) diet. Following 4 weeks of HF-MCD diet consumption, we observed pronounced hepatic lipid accumulation accompanied by disrupted lipid metabolism, polarization of macrophages towards the pro-inflammatory M1 phenotype, activation of the NLRP3 inflammasome, and upregulation of the TGF-β fibrosis signaling pathway. Notably, the early and upstream event driving these pathological changes was the upregulation of HIF-1α. Treatment with SMA/CORM2 (10 mg/kg, three times per week) led to a significant increase in CO levels in both the circulation and liver, resulting in remarkable suppression of HIF-1α expression even before the onset of apparent pathological changes induced by the HF-MCD diet. Consequently, SMA/CORM2 administration exerted a significantly protective and therapeutic effect on MAFLD. In vitro studies using hepatocytes treated with high concentrations of fatty acids further supported these findings, as knockdown of HIF-1α using short hairpin RNA (shRNA) elicited similar effects to SMA/CORM2 treatment. Collectively, our results highlight the therapeutic potential of SMA/CORM2 in the management of MAFLD through suppression of HIF-1α. We anticipate that SMA/CORM2, with its ability to modulate HIF-1α expression, may hold promise for future applications in the treatment of MAFLD. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is a crucial gaseous signaling molecule that plays a vital role in maintaining homeostasis and is a potential target for treating many inflammatory diseases. Developing drug delivery systems that can deliver CO stably and target specific tissues is of great interest. Our team previously developed a nano micellar CO donor, SMA/CORM2, which exhibits superior bioavailability to native CORM2 and shows therapeutic potential in many inflammatory disease models. In this study, we showed that SMA/CORM2, through controlled CO release, significantly ameliorated steatohepatitis and liver fibrosis induced by an HF-MCD diet by suppressing an HIF-1α mediated inflammatory cascade. These findings provide new insight into the anti-inflammatory function of CO and a promising approach for controlling metabolic-associated fatty liver disease.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Peking University First Hispital Ningxia Women and Children's Hosptical (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan 750000, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shimin Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Shichen Zhang
- School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
14
|
Liu XQ, Wang JJ, Wu X, Liu ZN, Wu BM, Lv XW. Blocking ATP-P1Rs axis attenuate alcohol-related liver fibrosis. Life Sci 2023; 328:121896. [PMID: 37385371 DOI: 10.1016/j.lfs.2023.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
AIMS The aim of this study was to explore the fibrogenic effects of ATP-P1Rs axis and ATP-P2Rs axis on alcohol-related liver fibrosis (ALF). MATERIALS AND METHODS C57BL/6J CD73 knock out (KO) mice were used in our study. 8-12 weeks male mice were used as an ALF model in vivo. In conclusion, after one week of adaptive feeding, 5 % alcohol liquid diet was given for 8 weeks. High-concentration alcohol (31.5 %, 5 g/kg) was administered by gavage twice weekly, and 10 % CCl4 intraperitoneal injections (1 ml/kg) were administered twice weekly for the last two weeks. The mice in the control group were injected intraperitoneally with an equivalent volume of normal saline. Fasting for 9 h after the last injection, blood samples were collected, and related indicators were tested. In vitro, rat hepatic stellate cells (HSCs) were treated with 200 μM acetaldehyde to establish an alcoholic liver fibrosis for 48 h, then tested related indicators. KEY FINDINGS We found that both adenosine receptors including adenosine A1, A2A, A2B, A3 receptors (A1R, A2AR, A2BR, A3R) and ATP receptors including P2X7, P2Y2 receptors (P2X7R, P2Y2R) were expressed increased in ALF. After CD73 was knocked out, we found that adenosine receptors expression decreased, ATP expression increased, and fibrosis degree decreased. SIGNIFICANCE Based on the research, we discovered that adenosine plays a more important role in ALF. Therefore, blocking the ATP-P1Rs axis represented a potential treatment for ALF, and CD73 will become a potential therapeutic target.
Collapse
Affiliation(s)
- Xue-Qi Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun-Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhen-Ni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Bao-Ming Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Gao F, Yao Q, Zhu J, Chen W, Feng X, Feng B, Wu J, Pacak K, Rosenblum J, Yu J, Zhuang Z, Cao H, Li L. A novel HIF2A mutation causes dyslipidemia and promotes hepatic lipid accumulation. Pharmacol Res 2023; 194:106851. [PMID: 37453673 PMCID: PMC10735172 DOI: 10.1016/j.phrs.2023.106851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor responsible for regulating genes related to angiogenesis and metabolism. This study aims to explore the effect of a previously unreported mutation c.C2473T (p.R825S) in the C-terminal transactivation domain (CTAD) of HIF-2α that we detected in tissue of patients with liver disease. We sequenced available liver and matched blood samples obtained during partial liver resection or liver transplantation performed for clinical indications including hepatocellular carcinoma and liver failure. In tandem, we constructed cell lines and a transgenic mouse model bearing the corresponding identified mutation in HIF-2α from which we extracted primary hepatocytes. Lipid accumulation was evaluated in these cells and liver tissue from the mouse model using Oil Red O staining and biochemical measurements. We identified a mutation in the CTAD of HIF-2α (c.C2473T; p.R825S) in 5 of 356 liver samples obtained from patients with hepatopathy and dyslipidemia. We found that introduction of this mutation into the mouse model led to an elevated triglyceride level, lipid droplet accumulation in liver of the mutant mice and in their extracted primary hepatocytes, and increased transcription of genes related to hepatic fatty acid transport and synthesis in the mutant compared to the control groups. In mutant mice and cells, the protein levels of nuclear HIF-2α and its target perilipin-2 (PLIN2), a lipid droplet-related gene, were also elevated. Decreased lipophagy was observed in mutant groups. Our study defines a subpopulation of dyslipidemia that is caused by this HIF-2α mutation. This may have implications for personalized treatment.
Collapse
Affiliation(s)
- Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jared Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Building 37 Room 100, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China.
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Building 37 Room 100, 37 Convent Drive, Bethesda, MD 20892, USA.
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| |
Collapse
|
16
|
Malnassy G, Keating CR, Gad S, Bridgeman B, Perera A, Hou W, Cotler SJ, Ding X, Choudhry M, Sun Z, Koleske AJ, Qiu W. Inhibition of Abelson Tyrosine-Protein Kinase 2 Suppresses the Development of Alcohol-Associated Liver Disease by Decreasing PPARgamma Expression. Cell Mol Gastroenterol Hepatol 2023; 16:685-709. [PMID: 37460041 PMCID: PMC10520367 DOI: 10.1016/j.jcmgh.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND & AIMS Alcohol-associated liver disease (ALD) represents a spectrum of alcohol use-related liver diseases. Outside of alcohol abstinence, there are currently no Food and Drug Administration-approved treatments for advanced ALD, necessitating a greater understanding of ALD pathogenesis and potential molecular targets for therapeutic intervention. The ABL-family proteins, including ABL1 and ABL2, are non-receptor tyrosine kinases that participate in a diverse set of cellular functions. We investigated the role of the ABL kinases in alcohol-associated liver disease. METHODS We used samples from patients with ALD compared with healthy controls to elucidate a clinical phenotype. We established strains of liver-specific Abl1 and Abl2 knockout mice and subjected them to the National Institute on Alcohol Abuse and Alcoholism acute-on-chronic alcohol feeding regimen. Murine samples were subjected to RNA sequencing, AST, Oil Red O staining, H&E staining, Western blotting, and quantitative polymerase chain reaction to assess phenotypic changes after alcohol feeding. In vitro modeling in HepG2 cells as well as primary hepatocytes from C57BL6/J mice was used to establish this mechanistic link of ALD pathogenesis. RESULTS We demonstrate that the ABL kinases are highly activated in ALD patient liver samples as well as in liver tissues from mice subjected to an alcohol feeding regimen. We found that the liver-specific knockout of Abl2, but not Abl1, attenuated alcohol-induced steatosis, liver injury, and inflammation. Subsequent RNA sequencing and gene set enrichment analyses of mouse liver tissues revealed that relative to wild-type alcohol-fed mice, Abl2 knockout alcohol-fed mice exhibited numerous pathway changes, including significantly decreased peroxisome proliferator activated receptor (PPAR) signaling. Further examination revealed that PPARγ, a previously identified regulator of ALD pathogenesis, was induced upon alcohol feeding in wild-type mice, but not in Abl2 knockout mice. In vitro analyses revealed that shRNA-mediated knockdown of ABL2 abolished the alcohol-induced accumulation of PPARγ as well as subsequent lipid accumulation. Conversely, forced overexpression of ABL2 resulted in increased PPARγ protein expression. Furthermore, we demonstrated that the regulation of hypoxia inducible factor 1 subunit alpha (HIF1α) by ABL2 is required for alcohol-induced PPARγ expression. Furthermore, treatment with ABL kinase inhibitors attenuated alcohol-induced PPARγ expression, lipid droplet formation, and liver injury. CONCLUSIONS On the basis of our current evidence, we propose that alcohol-induced ABL2 activation promotes ALD through increasing HIF1α and the subsequent PPARγ expression, and ABL2 inhibition may serve as a promising target for the treatment of ALD.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Claudia R Keating
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Shaimaa Gad
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Bryan Bridgeman
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Scott J Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Mashkoor Choudhry
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
17
|
Anand SK, Ahmad MH, Sahu MR, Subba R, Mondal AC. Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cell Mol Neurobiol 2023; 43:1885-1904. [PMID: 36436159 PMCID: PMC11412203 DOI: 10.1007/s10571-022-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Alcohol consumption is known to cause several brain anomalies. The pathophysiological changes associated with alcohol intoxication are mediated by various factors, most notable being inflammation. Alcohol intoxication may cause inflammation through several molecular mechanisms in multiple organs, including the brain, liver and gut. Alcohol-induced inflammation in the brain and gut are intricately connected. In the gut, alcohol consumption leads to the weakening of the intestinal barrier, resulting in bacteria and bacterial endotoxins permeating into the bloodstream. These bacterial endotoxins can infiltrate other organs, including the brain, where they cause cognitive dysfunction and neuroinflammation. Alcohol can also directly affect the brain by activating immune cells such as microglia, triggering the release of pro-inflammatory cytokines and neuroinflammation. Since alcohol causes the death of neural cells, it has been correlated to an increased risk of neurodegenerative diseases. Besides, alcohol intoxication has also negatively affected neural stem cells, affecting adult neurogenesis and causing hippocampal dysfunctions. This review provides an overview of alcohol-induced brain anomalies and how inflammation plays a crucial mechanistic role in alcohol-associated pathophysiology.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Rhea Subba
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
18
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
19
|
Shi C, Zhang Z, Xu R, Zhang Y, Wang Z. Contribution of HIF-1α/BNIP3-mediated autophagy to lipid accumulation during irinotecan-induced liver injury. Sci Rep 2023; 13:6528. [PMID: 37085612 PMCID: PMC10121580 DOI: 10.1038/s41598-023-33848-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
Irinotecan is a topoisomerase I inhibitor which has been widely used to combat several solid tumors, whereas irinotecan therapy can induce liver injury. Liver injury generally leads to tissue hypoxia, and hypoxia-inducible factor-1α (HIF-1α), a pivotal transcription factor, mediates adaptive pathophysiological responses to lower oxygen condition. Previous studies have reported a relationship between HIF-1α and autophagy, and autophagy impairment is a common characteristic in a variety of diseases. Here, irinotecan (50 mg/kg) was employed on mice, and HepG2 and L-02 cells were cultured with irinotecan (10, 20 and 40 μM). In vivo study, we found that irinotecan treatment increased final liver index, serum aminotransferase level and hepatic lipid accumulation. Impaired autophagic flux and activation of HIF-1α/BNIP3 pathway were also demonstrated in the liver of irinotecan-treated mice. Moreover, irinotecan treatment significantly deteriorated hepatic oxidative stress, evidenced by increased MDA and ROS contents, as well as decreased GSH-Px, SOD and CAT contents. Interestingly, protein levels of NLRP3, cleaved-caspase 1 and IL-1β were enhanced in the liver of mice injected with irinotecan. In vitro study, irinotecan-treated HepG2 and L-02 cells also showed impaired autophagic flux, while HIF-1α inhibition efficaciously removed the accumulated autophagosomes induced by irinotecan. Additionally, irinotecan treatment aggravated lipid accumulation in HepG2 and L-02 cells, and HIF-1α inhibition reversed the effect of irinotecan. Furthermore, HIF-1α inhibition weakened irinotecan-induced NLRP3 inflammasome activation in HepG2 cells. Taken together, our results suggest that irinotecan induces liver injury by orchestrating autophagy via HIF-1α/BNIP3 pathway, and HIF-1α inhibition could alleviate irinotecan-induced lipid accumulation in HepG2 and L-02 cells, which will provide a new clue and direction for the prevention of side effects of clinical chemotherapy drugs.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Yan Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China.
| |
Collapse
|
20
|
Price JR, Hagrass H, Filip AB, McGill MR. LDH and the MELD-LDH in Severe Acute Liver Injury and Acute Liver Failure: Preliminary Confirmation of a Novel Prognostic Score for Risk Stratification. J Appl Lab Med 2023; 8:504-513. [PMID: 36759930 DOI: 10.1093/jalm/jfac137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is a devastating condition with high mortality. Currently, liver transplantation is the only life-saving treatment, but the decision to transplant is difficult due to the rapid progression of ALF and persistent shortage of donor organs. Biomarkers that predict death better than current prognostics could help. To our surprise, proteomics recently revealed that lactate dehydrogenase (LDH) is prognostic in ALF by itself and in a novel form of the model for end-stage liver disease (MELD) score called the MELD-LDH. The purpose of this study was to confirm our proteomics results in a larger population. METHODS We reviewed laboratory data from 238 patients admitted to the University of Arkansas for Medical Sciences Medical Center with a diagnosis of ALF and biochemical evidence of acute liver failure over a 12-year period, as well as subset of 170 patients with encephalopathy. RESULTS LDH was strikingly elevated in the nonsurvivors at the time of peak injury. Receiver operating characteristic (ROC) curve analyses revealed that LDH by itself could discriminate between survivors and nonsurvivors on the first day of hospitalization, although not as well as the MELD and MELD-LDH scores that performed alike. Importantly, however, LDH by itself performed similarly to the MELD at the time of peak injury and the MELD-LDH score moderately outperformed both. The MELD-LDH score also had greater sensitivity and negative predictive value than the MELD and the King's College Criteria. CONCLUSIONS The results support our prior finding that LDH and the MELD-LDH score predict death and therefore transplant need in ALF patients.
Collapse
Affiliation(s)
- Jake R Price
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Hoda Hagrass
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ari B Filip
- Department of Emergency Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR.,Department of Environmental Health Sciences, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
21
|
Cáceres-Ayala C, Mira RG, Acuña MJ, Brandan E, Cerpa W, Rebolledo DL. Episodic Binge-like Ethanol Reduces Skeletal Muscle Strength Associated with Atrophy, Fibrosis, and Inflammation in Young Rats. Int J Mol Sci 2023; 24:ijms24021655. [PMID: 36675170 PMCID: PMC9861047 DOI: 10.3390/ijms24021655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Binge Drinking (BD) corresponds to episodes of ingestion of large amounts of ethanol in a short time, typically ≤2 h. BD occurs across all populations, but young and sports-related people are especially vulnerable. However, the short- and long-term effects of episodic BD on skeletal muscle function have been poorly explored. Young rats were randomized into two groups: control and episodic Binge-Like ethanol protocol (BEP) (ethanol 3 g/kg IP, 4 episodes of 2-days ON-2-days OFF paradigm). Muscle function was evaluated two weeks after the last BEP episode. We found that rats exposed to BEP presented decreased muscle strength and increased fatigability, compared with control animals. Furthermore, we observed that skeletal muscle from rats exposed to BEP presented muscle atrophy, evidenced by reduced fiber size and increased expression of atrophic genes. We also observed that BEP induced fibrotic and inflammation markers, accompanied by mislocalization of nNOSµ and high levels of protein nitration. Our findings suggest that episodic binge-like ethanol exposure alters contractile capacity and increases fatigue by mechanisms involving atrophy, fibrosis, and inflammation, which remain for at least two weeks after ethanol clearance. These pathological features are common to several neuromuscular diseases and might affect muscle performance and health in the long term.
Collapse
Affiliation(s)
- Constanza Cáceres-Ayala
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - María José Acuña
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7780272, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Waldo Cerpa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (W.C.); (D.L.R.)
| |
Collapse
|
22
|
Diclofenac Disrupts the Circadian Clock and through Complex Cross-Talks Aggravates Immune-Mediated Liver Injury-A Repeated Dose Study in Minipigs for 28 Days. Int J Mol Sci 2023; 24:ijms24021445. [PMID: 36674967 PMCID: PMC9863319 DOI: 10.3390/ijms24021445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
Diclofenac effectively reduces pain and inflammation; however, its use is associated with hepato- and nephrotoxicity. To delineate mechanisms of injury, we investigated a clinically relevant (3 mg/kg) and high-dose (15 mg/kg) in minipigs for 4 weeks. Initially, serum biochemistries and blood-smears indicated an inflammatory response but returned to normal after 4 weeks of treatment. Notwithstanding, histopathology revealed drug-induced hepatitis, marked glycogen depletion, necrosis and steatosis. Strikingly, the genomic study revealed diclofenac to desynchronize the liver clock with manifest inductions of its components CLOCK, NPAS2 and BMAL1. The > 4-fold induced CRY1 expression underscored an activated core-loop, and the dose dependent > 60% reduction in PER2mRNA repressed the negative feedback loop; however, it exacerbated hepatotoxicity. Bioinformatics enabled the construction of gene-regulatory networks, and we linked the disruption of the liver-clock to impaired glycogenesis, lipid metabolism and the control of immune responses, as shown by the 3-, 6- and 8-fold induced expression of pro-inflammatory CXCL2, lysozyme and ß-defensin. Additionally, diclofenac treatment caused adrenocortical hypertrophy and thymic atrophy, and we evidenced induced glucocorticoid receptor (GR) activity by immunohistochemistry. Given that REV-ERB connects the circadian clock with hepatic GR, its > 80% repression alleviated immune responses as manifested by repressed expressions of CXCL9(90%), CCL8(60%) and RSAD2(70%). Together, we propose a circuitry, whereby diclofenac desynchronizes the liver clock in the control of the hepatic metabolism and immune response.
Collapse
|
23
|
Shen Y, Huang H, Wang Y, Yang R, Ke X. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol 2022; 74:127048. [PMID: 35963055 DOI: 10.1016/j.jtemb.2022.127048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Oxidative damage induced by ethanol and its metabolites is one of the factors that fuels the development of alcoholic liver disease (ALD). Selenium (Se) is an effective cofactor for glutathione peroxidase (GPx), and has antioxidant effects that improve ALD. In patients with ALD, ethanol-induced oxidative damage inhibits the synthesis of related Se-containing proteins such as: selenoprotein P (Sepp1), albumin (ALB), and GPx in the liver, thus decreasing the overall Se level in patients. Both Se deficiency and excess can affect the expression of GPx, resulting in damage to the antioxidant defense system. This damage enhances oxidative stress by increasing the levels of reactive oxygen species (ROS) in the body, which aggravates the inflammatory response, lipid metabolism disorder, and lipid peroxidation and worsens ALD symptoms. A cascade of oxidative damages caused by ALD will deplete selenium deposition in the body, stimulate the expression of Gpx1, Sepp1, and Gpx4, and thus mobilize systemic selenoproteins, which can restore GPx activity in the hepatocytes of ALD patients, reduce the levels of reactive oxygen species and alleviate oxidative stress, the inflammatory response, lipid metabolism disorder, and lipid peroxidation, thus helping to mitigate ALD. This review provides a reference for future ALD studies that evaluate the regulation of Se levels and contributes to studies on the potential pathological mechanisms of Se imbalance in ALD.
Collapse
Affiliation(s)
- Yingyan Shen
- Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial, Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu University of Traditional Chinese Medicine, Chendu, China
| | - Hanmei Huang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rongping Yang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China.
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Altered Cord Blood Lipid Concentrations Correlate with Birth Weight and Doppler Velocimetry of Fetal Vessels in Human Fetal Growth Restriction Pregnancies. Cells 2022; 11:cells11193110. [PMID: 36231072 PMCID: PMC9562243 DOI: 10.3390/cells11193110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Fetal growth restriction (FGR) is associated with short- and long-term morbidity, often with fetal compromise in utero, evidenced by abnormal Doppler velocimetry of fetal vessels. Lipids are vital for growth and development, but metabolism in FGR pregnancy, where fetuses do not grow to full genetic potential, is poorly understood. We hypothesize that triglyceride concentrations are increased in placentas and that important complex lipids are reduced in cord plasma from pregnancies producing the smallest babies (birth weight < 5%) and correlate with ultrasound Dopplers. Dopplers (umbilical artery, UA; middle cerebral artery, MCA) were assessed longitudinally in pregnancies diagnosed with estimated fetal weight (EFW) < 10% at ≥29 weeks gestation. For a subset of enrolled women, placentas and cord blood were collected at delivery, fatty acids were extracted and targeted lipid class analysis (triglyceride, TG; phosphatidylcholine, PC; lysophosphatidylcholine, LPC; eicosanoid) performed by LCMS. For this sub-analysis, participants were categorized as FGR (Fenton birth weight, BW ≤ 5%) or SGA "controls" (Fenton BW > 5%). FGRs (n = 8) delivered 1 week earlier (p = 0.04), were 29% smaller (p = 0.002), and had 133% higher UA pulsatility index (PI, p = 0.02) than SGAs (n = 12). FGR plasma TG, free arachidonic acid (AA), and several eicosanoids were increased (p < 0.05); docosahexaenoic acid (DHA)-LPC was decreased (p < 0.01). Plasma TG correlated inversely with BW (p < 0.05). Plasma EET, non-esterified AA, and DHA correlated inversely with BW and directly with UA PI (p < 0.05). Placental DHA-PC and AA-PC correlated directly with MCA PI (p < 0.05). In fetuses initially referred for inadequate fetal growth (EFW < 10%), those with BW ≤ 5% demonstrated distinctly different cord plasma lipid profiles than those with BW > 5%, which correlated with Doppler PIs. This provides new insights into fetal lipidomic response to the FGR in utero environment. The impact of these changes on specific processes of growth and development (particularly fetal brain) have not been elucidated, but the relationship with Doppler PI may provide additional context for FGR surveillance, and a more targeted approach to nutritional management of these infants.
Collapse
|
25
|
Hernández-Bustabad A, Morales-Arraez D, González-Paredes FJ, Abrante B, Díaz-Flores F, Abreu-González P, de la Barreda R, Quintero E, Hernández-Guerra M. Chronic intermittent hypoxia promotes early intrahepatic endothelial impairment in rats with nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2022; 323:G362-G374. [PMID: 35916415 DOI: 10.1152/ajpgi.00300.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive disease that ranges from simple steatosis to cirrhosis. Obstructive sleep apnea syndrome (OSAS) and chronic intermittent hypoxia (CIH) are implicated in the pathogenesis of NAFLD. However, the overlapping consequences of CIH on liver sinusoidal endothelial function over time in NAFLD are largely unknown. We explored endothelial dysfunction in a rat model of NAFLD with a high-fat diet exposed to CIH [12 h/day, every 30 s to fractional concentration of oxygen ([Formula: see text] 8%-10%]. The livers were isolated and perfused, and the endothelial function was determined by testing the vasodilation of the liver circulation to increased concentrations of acetylcholine and von Willebrand factor (vWF) and intercellular adhesion molecule 1 (ICAM-1) expression. Phosphorylated endothelial nitric oxide synthase (p-eNOS), cGMP, and oxidative stress were assessed to determine nitric oxide bioavailability. Inflammation and fibrosis were evaluated by transaminases, myeloperoxidase activity, hydroxyproline, and histological evaluation. Hypoxia-inducible factors (HIFs) were studied as a marker of hypoxia and after a second insult with acetaminophen. CIH exposure provoked typical systemic features of OSAS and provoked a decreased response in vasodilation to acetylcholine. This was associated with increased oxidative stress and reduced p-eNOS and cGMP. The microcirculation impairment due to CIH preceded significant hepatic inflammation and fibrotic changes, despite the presence of HIF expression. In conclusion, CIH exacerbates endothelial dysfunction in NAFLD rats associated with increased oxidative stress and reduced nitric oxide bioavailability. This occurs before inflammation and fibrosis establish. Our results suggest that with CIH endothelial dysfunction should be considered an early target.NEW & NOTEWORTHY We believe the findings are of relevance because we demonstrate that chronic intermittent hypoxia further augments impaired hepatic endothelial dysfunction in nonalcoholic fatty liver disease rats. Because obstructive sleep apnea syndrome is associated with systemic endothelial dysfunction in cardiovascular disorders, and chronic intermittent hypoxia is an independent and reversible risk factor for hypertension and coronary artery disease, we hypothesized that this entity may be of potential relevance in the pathophysiology of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
| | - Dalia Morales-Arraez
- Liver Unit, University Hospital of the Canary Islands, San Cristóbal de La Laguna, Spain
| | - Francisco Javier González-Paredes
- Department of Internal Medicine, Institute of Biomedical Technologies and Canarian Biomedical Research Centre, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Beatriz Abrante
- Department of Internal Medicine, Institute of Biomedical Technologies and Canarian Biomedical Research Centre, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Felicitas Díaz-Flores
- Central Laboratory Department, University Hospital of the Canary Islands, San Cristóbal de La Laguna, Spain
| | - Pedro Abreu-González
- Physiology Department, University Hospital of the Canary Islands, San Cristóbal de La Laguna, Spain
| | - Raquel de la Barreda
- Liver Unit, University Hospital of the Canary Islands, San Cristóbal de La Laguna, Spain
| | - Enrique Quintero
- Liver Unit, University Hospital of the Canary Islands, San Cristóbal de La Laguna, Spain
| | - Manuel Hernández-Guerra
- Liver Unit, University Hospital of the Canary Islands, San Cristóbal de La Laguna, Spain.,Department of Internal Medicine, Institute of Biomedical Technologies and Canarian Biomedical Research Centre, University of La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
26
|
Yao H, Gao Y, Han J, Wang Y, Cai J, Rui Y, Ge X. MKK4 Knockdown Plays a Protective Role in Hemorrhagic Shock-Induced Liver Injury through the JNK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5074153. [PMID: 36164393 PMCID: PMC9509254 DOI: 10.1155/2022/5074153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Hemorrhagic shock (HS) triggers tissue hypoxia and organ failure during severe blood loss, and the liver is sensitive to HS. Mitogen-activated protein kinase kinase 4 (MKK4) activates the c-Jun NH2-terminal kinase (JNK) pathway, and its expression is upregulated in the serum of HS patients and mouse livers at 1 h post-HS. However, the function of MKK4 in HS-induced liver injury is unclear. The role of MKK4 was investigated in vivo using rat models of HS. Before HS, lentivirus harboring shRNA against MKK4 was injected into rats via the tail vein to knock down MKK4 expression. HS was induced by bloodletting via intubation of the femoral artery followed by resuscitation. The results showed that MKK4 knockdown reduced HS-induced apoptosis in the liver by decreasing Bax expression and the cleavage of caspase 3 and promoting Bcl-2 expression. Moreover, the generation of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in the liver was promoted, while superoxide dismutase (SOD) activity was inhibited by HS. However, the effect of HS on oxidative stress was abrogated by MKK4 knockdown. Furthermore, MKK4 knockdown restored MMP and complex I and complex III activities and promoted ATP production, suggesting that HS-induced mitochondrial dysfunction in the liver was ameliorated by MKK4 knockdown. The inhibitory effect of MKK4 knockdown on the phosphorylation and activation of the JNK/c-Jun pathway was confirmed. Overall, MKK4 knockdown may suppress oxidative stress and subsequent apoptosis and improve mitochondrial function in the liver upon HS by inhibiting the JNK pathway. The MKK4/JNK axis was shown to be a therapeutic target for HS-induced liver injury in this study.
Collapse
Affiliation(s)
- Hao Yao
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Yu Gao
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Jiahui Han
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Yan Wang
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Jimin Cai
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Yongjun Rui
- Department of Traumatic Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Xin Ge
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| |
Collapse
|
27
|
Takiyama T, Sera T, Nakamura M, Hoshino M, Uesugi K, Horike SI, Meguro-Horike M, Bessho R, Takiyama Y, Kitsunai H, Takeda Y, Sawamoto K, Yagi N, Nishikawa Y, Takiyama Y. A maternal high-fat diet induces fetal origins of NASH-HCC in mice. Sci Rep 2022; 12:13136. [PMID: 35907977 PMCID: PMC9338981 DOI: 10.1038/s41598-022-17501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal overnutrition affects offspring susceptibility to nonalcoholic steatohepatitis (NASH). Male offspring from high-fat diet (HFD)-fed dams developed a severe form of NASH, leading to highly vascular tumor formation. The cancer/testis antigen HORMA domain containing protein 1 (HORMAD1), one of 146 upregulated differentially expressed genes in fetal livers from HFD-fed dams, was overexpressed with hypoxia-inducible factor 1 alpha (HIF-1alpha) in hepatoblasts and in NASH-based hepatocellular carcinoma (HCC) in offspring from HFD-fed dams at 15 weeks old. Hypoxia substantially increased Hormad1 expression in primary mouse hepatocytes. Despite the presence of three putative hypoxia response elements within the mouse Hormad1 gene, the Hif-1alpha siRNA only slightly decreased hypoxia-induced Hormad1 mRNA expression. In contrast, N-acetylcysteine, but not rotenone, inhibited hypoxia-induced Hormad1 expression, indicating its dependency on nonmitochondrial reactive oxygen species production. Synchrotron-based phase-contrast micro-CT of the fetuses from HFD-fed dams showed significant enlargement of the liver accompanied by a consistent size of the umbilical vein, which may cause hypoxia in the fetal liver. Based on these findings, a maternal HFD induces fetal origins of NASH/HCC via hypoxia, and HORMAD1 is a potential therapeutic target for NASH/HCC.
Collapse
Affiliation(s)
- Takao Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Ryoichi Bessho
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuri Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kitsunai
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasutaka Takeda
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuki Sawamoto
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yumi Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
28
|
Wu KJ, Liu PP, Chen MY, Zhou MX, Liu X, Yang Q, Xu L, Gong Z. The Hepatoprotective Effect of Leonurine Hydrochloride Against Alcoholic Liver Disease Based on Transcriptomic and Metabolomic Analysis. Front Nutr 2022; 9:904557. [PMID: 35873419 PMCID: PMC9301321 DOI: 10.3389/fnut.2022.904557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive alcohol consumption can eventually progress to alcoholic liver disease (ALD). The underlying mechanism of ALD toxicity is primarily associated with oxidative damage. Many alkaloids have been reported to possess potential antioxidative efficacy, while the mechanism of their hepatoprotective activity against ALD is still not clear. In this study, eight alkaloids were selected from a monomer library of Traditional Chinese Medicine and evaluated for their antioxidant activity against ALD by the evaluation of Glutathione (GSH) and Malondialdehyde (MDA). The result suggested that Leonurine hydrochloride (LH) was a potent antioxidant that could reduce alcoholic liver damage. To further investigate the underlying mechanism of LH against ALD, the molecular pathway induced by LH was identified by RNA-seq analyses. Transcriptome data revealed the principal mechanism for the protective effect of LH against ALD might be attributed to the differentially expressed genes (DEGs) of PI3K-AKT, AMPK, and HIF-1 signaling pathways involved in the lipid metabolism. Given the hepatoprotective mechanism of LH is involved in lipid metabolism, the lipid metabolism induced by LH was further analyzed by UHPLC-MS/MS. Metabolome analysis indicated that LH significantly regulated glycerophospholipid metabolism including phosphatidylcholine, 1-acyl-sn-glycero-3-phosphocholine, phosphatidylethanolamine and 1-acyl-sn-glycero-3-phosphoethanolamine in the liver. Overall, this study revealed that the hepatoprotective mechanism of LH against alcoholic liver damage might be associated with the genes involved in glycerophospholipid metabolism.
Collapse
|
29
|
Xia QS, Wu F, Wu WB, Dong H, Huang ZY, Xu L, Lu FE, Gong J. Berberine reduces hepatic ceramide levels to improve insulin resistance in HFD-fed mice by inhibiting HIF-2α. Biomed Pharmacother 2022; 150:112955. [PMID: 35429745 DOI: 10.1016/j.biopha.2022.112955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Several studies have documented the effects of hypoxia and ceramides on lipid and glucose metabolism, resulting in insulin resistance. However, the roles of ceramide in hepatic hypoxia and hepatic insulin resistance remain to be clarified. This study aimed to explore the relationship between hypoxia, ceramide synthesis, and hepatic insulin resistance in high-fat diet (HFD)-fed mice. Given the interaction of hypoxia-inducible factors 2α(HIF-2α) and berberine determined using molecular docking, this study also assessed the pharmacological effects of berberine on the HIF-2α-ceramide-insulin resistance pathway. In the preliminary phase of the study, gradually aggravated hepatic hypoxia and varying levels of ceramides were observed with the development of type 2 diabetes mellitus (T2DM) due to increasing HIF-2α accumulation. Lipidomic analyses of animal and cell models revealed that berberine reduced hypoxia-induced ceramide production and attenuated ceramide-induced insulin resistance. This research provides timely and necessary evidence for the role of ceramide in hypoxia and insulin resistance in the liver. It also contributes to a better understanding of the pharmacological effects of berberine on ameliorating hypoxia and insulin resistance in T2DM therapy.
Collapse
Affiliation(s)
- Qing-Song Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wen-Bin Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao-Yi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
30
|
Czaja AJ. Examining micro-ribonucleic acids as diagnostic and therapeutic prospects in autoimmune hepatitis. Expert Rev Clin Immunol 2022; 18:591-607. [PMID: 35510750 DOI: 10.1080/1744666x.2022.2074839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Micro-ribonucleic acids modulate the immune response by affecting the post-transcriptional expression of genes that influence the proliferation and function of activated immune cells, including regulatory T cells. Individual expressions or patterns in peripheral blood and liver tissue may have diagnostic value, reflect treatment response, or become therapeutic targets. The goals of this review are to present the properties and actions of micro-ribonucleic acids, indicate the key individual expressions in autoimmune hepatitis, and describe prospective clinical applications in diagnosis and management. AREAS COVERED Abstracts were identified in PubMed using the search words "microRNAs", "microRNAs in liver disease", and "microRNAs in autoimmune hepatitis". The number of abstracts reviewed exceeded 2000, and the number of full-length articles reviewed was 108. EXPERT OPINION Individual micro-ribonucleic acids, miR-21, miR-122, and miR-155, have been associated with biochemical severity, histological grade of inflammation, and pivotal pathogenic mechanisms in autoimmune hepatitis. Antisense oligonucleotides that down-regulate deleterious individual gene expressions, engineered molecules that impair targeting of gene products, and drugs that non-selectively up-regulate the biogenesis of potentially deficient gene regulators are feasible treatment options. Micro-ribonucleic acids constitute an under-evaluated area in autoimmune hepatitis that promises to improve diagnosis, pathogenic concepts, and therapy.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
Hong DG, Song GY, Eom CB, Ahn JH, Kim SM, Shim A, Han YH, Roh YS, Han CY, Bae EJ, Ko HJ, Yang YM. Loss of ERdj5 exacerbates oxidative stress in mice with alcoholic liver disease via suppressing Nrf2. Free Radic Biol Med 2022; 184:42-52. [PMID: 35390453 DOI: 10.1016/j.freeradbiomed.2022.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Alcoholic liver disease is the major cause of chronic liver diseases. Excessive alcohol intake results in endoplasmic reticulum (ER) stress. ERdj5, a member of DNAJ family, is an ER-resident chaperone protein, whose role in alcoholic liver disease remains to be investigated. In this study, we aim to address the effect of ERdj5 on alcoholic liver disease and the underlying mechanism. Hepatic Dnajc10 (ERdj5) mRNA expression was elevated in both human and mouse alcoholic hepatitis. In mice subjected to chronic and binge ethanol feeding, ERdj5 levels were also markedly increased. Hepatic Dnajc10 correlated with Xbp1s mRNA. Tunicamycin, an ER stress inducer, increased ERdj5 levels. Dnajc10 knockout mice exhibited exacerbated alcohol-induced liver injury and hepatic steatosis. However, the macrophage numbers and chemokine levels were similar to those in wild-type mice. Depletion of Dnajc10 promoted oxidative stress. Ethanol feeding increased hepatic H2O2 levels, and these were further increased in Dnajc10 knockout mice. Additionally, Dnajc10-deficient hepatocytes produced large amounts of reactive oxygen species. Notably, Nrf2, a central regulator of oxidative stress, was decreased by depletion of Dnajc10 in the nuclear fraction of ethanol-treated mouse liver. Consistently, liver tissues from ethanol-fed Dnajc10 knockout mice had reduced expression of downstream antioxidant genes. Furthermore, hepatic glutathione content in the liver of knockout mice declined compared to wild-type mice. In conclusion, our results demonstrate that ethanol-induced ERdj5 may regulate the Nrf2 pathway and glutathione contents, and have protective effects on liver damage and alcohol-mediated oxidative stress in mice. These suggest that ERdj5 has the potential to protect against alcoholic liver disease.
Collapse
Affiliation(s)
- Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ga Yeon Song
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Bin Eom
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sun Myoung Kim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aeri Shim
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong-Hyun Han
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea; KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
32
|
Malherbe DC, Messaoudi I. Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Front Immunol 2022; 13:911951. [PMID: 35844518 PMCID: PMC9277054 DOI: 10.3389/fimmu.2022.911951] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Drinking alcohol, even in moderation, can affect the immune system. Studies have shown disproportionate effects of alcohol on circulating and tissue-resident myeloid cells (granulocytes, monocytes, macrophages, dendritic cells). These cells orchestrate the body's first line of defense against microbial challenges as well as maintain tissue homeostasis and repair. Alcohol's effects on these cells are dependent on exposure pattern, with acute drinking dampening but chronic drinking enhancing production of inflammatory mediators. Although chronic drinking is associated with heightened systemic inflammation, studies on tissue resident macrophage populations in several organs including the spleen, liver, brain, and lung have also shown compromised functional and metabolic capacities of these cells. Many of these effects are thought to be mediated by oxidative stress caused by alcohol and its metabolites which can directly impact the cellular epigenetic landscapes. In addition, since myeloid cells are relatively short-lived in circulation and are under constant repopulation from the bone marrow compartment, alcohol's effects on bone marrow progenitors and hematopoiesis are important for understanding the impact of alcohol systemically on these myeloid populations. Alcohol-induced disruption of progenitor, circulating, and tissue resident myeloid populations contribute to the increased susceptibility of patients with alcohol use disorders to viral and bacterial infections. In this review, we provide an overview of the impact of chronic alcohol consumption on the function of monocytes and macrophages in host defense, tissue repair and inflammation. We then summarize our current understanding of the mechanisms underlying alcohol-induced disruption and examine changes in transcriptome and epigenome of monocytes and mcrophages. Overall, chronic alcohol consumption leads to hyper-inflammation concomitant with decreased microbial and wound healing responses by monocytes/macrophages due to a rewiring of the epigentic and transcriptional landscape. However, in advanced alcoholic liver disease, myeloid cells become immunosuppressed as a response to the surrounding hyper-inflammatory milieu. Therefore, the effect of chronic alcohol on the inflammatory response depends on disease state and the immune cell population.
Collapse
|
33
|
HIF-1α modulates sex-specific Th17/Treg responses during hepatic amoebiasis. J Hepatol 2022; 76:160-173. [PMID: 34599999 DOI: 10.1016/j.jhep.2021.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS An invasive form of intestinal Entamoeba (E.) histolytica infection, which causes amoebic liver abscess, is more common in men than in women. Immunopathological mechanisms are responsible for the more severe outcome in males. Here, we used a mouse model of hepatic amoebiasis to investigate the contribution of hepatic hypoxia-inducible factor (HIF)-1α to T helper 17 (Th17)/regulatory T cell (Treg) responses in the context of the sex-specific outcome of liver damage. METHODS C57BL/6J mice were infected intrahepatically with E. histolytica trophozoites. HIF-1α expression was determined by qPCR, flow cytometry and immunohistochemistry. Tregs and Th17 cells were analysed by immunohistochemistry and flow cytometry. Finally, male and female hepatocyte-specific Hif1α knockout mice were generated, and the effect of HIF-1α on abscess development, the cytokine milieu, and Th17/Treg differentiation was examined. RESULTS E. histolytica infection increased hepatic HIF-1α levels, along with the elevated frequencies of hepatic Th17 and Treg cells. While the Th17 cell population was larger in male mice, Tregs characterised by increased expression of Foxp3 in female mice. Male mice displayed increased IL-6 expression, contributing to immunopathology; this increase in IL-6 expression declined upon deletion of hepatic HIF-1α. In both sexes, hepatic deletion of HIF-1α reduced the Th17 cell frequency; however, the percentage of Tregs was reduced in female mice only. CONCLUSIONS Hepatic HIF-1α modulates the sex-specific outcome of murine E. histolytica infection. Our results suggest that in male mice, Th17 cells can be modulated by hepatic HIF-1α via IL-6, indicating marked involvement in the immunopathology underlying abscess development. Strong expression of Foxp3 by hepatic Tregs from female mice suggests a potent immunosuppressive function, leading to initiation of liver regeneration. LAY SUMMARY Infection with the parasite Entamoeba histolytica activates immunopathological mechanisms in male mice, which lead to liver abscesses that are larger than those in female mice. In the absence of the protein HIF-1α in hepatocytes, abscess formation is reduced; moreover, the sex difference in abscess size is abolished. These results suggest that HIF-1α modulates the immune response involved in the induction of immunopathology, resulting in differential disease susceptibility in males and females.
Collapse
|
34
|
Sun FR, Wang BY. Alcohol and Metabolic-associated Fatty Liver Disease. J Clin Transl Hepatol 2021; 9:719-730. [PMID: 34722187 PMCID: PMC8516839 DOI: 10.14218/jcth.2021.00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
The diagnosis of metabolic-associated fatty liver disease is based on the detection of liver steatosis together with the presence of metabolic dysfunction. According to this new definition, the diagnosis of metabolic-associated fatty liver disease is independent of the amount of alcohol consumed. Actually, alcohol and its metabolites have various effects on metabolic-associated abnormalities during the process of alcohol metabolism. Studies have shown improved metabolic function in light to moderate alcohol drinkers. There are several studies focusing on the role of light to moderate alcohol intake on metabolic dysfunction. However, the results from studies are diverse, and the conclusions are often controversial. This review systematically discusses the effects of alcohol consumption, focusing on light to moderate alcohol consumption, obesity, lipid and glucose metabolism, and blood pressure.
Collapse
Affiliation(s)
| | - Bing-Yuan Wang
- Correspondence to: Bing-Yuan Wang, Department of Elderly Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China. ORCID: https://orcid.org/0000-0002-4233-6093. Tel: + 86-24-8328-3764, E-mail:
| |
Collapse
|
35
|
Han M, Böhlke M, Maher T, Kim J. Alcohol exposure increases manganese accumulation in the brain and exacerbates manganese-induced neurotoxicity in mice. Arch Toxicol 2021; 95:3665-3679. [PMID: 34590183 DOI: 10.1007/s00204-021-03166-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Environmental and occupational exposure to heavy metals remains one of the major concerns in public health. Increased levels of manganese (Mn) pollution are associated with profound neurotoxic effects, including neurobehavioral deficits and disturbances resembling Parkinson's disease. While Mn absorption is in part mediated by iron transporters, recent studies have shown that the levels of iron transporters are modified by alcohol and that chronic alcohol consumption increases body iron stores. However, it is largely unexplored whether alcohol exposure influences the transport and neurotoxicity of Mn. To address this question, we exposed mice to ethanol (10%; v/v) by drinking water for 4 weeks, during which period MnCl2 (5 mg/kg) or saline solutions were administered daily by intranasal instillation. Ethanol consumption in mice increased brain Mn levels in a dose-dependent manner after Mn instillation, determined by inductively-coupled plasma mass spectrometry, which was accompanied by up-regulation of iron transporters, as assessed by western blotting and qPCR. In addition, alcohol drinking increased hypoxic response and decreased hepcidin expression, providing the molecular mechanism of increased iron transporters and Mn uptake upon alcohol consumption. Moreover, brain dopamine levels, analyzed by HPLC, were decreased after intranasal Mn instillation, which was worsened by alcohol. Likewise, alcohol-Mn co-exposure synergistically altered dopaminergic protein expression. Finally, alcohol binge-drinking, which resembles alcohol drinking manner in humans, increased brain Mn content along with upregulation of iron transporters. Our study suggests that individuals who consume alcohol may have a higher risk of Mn neurotoxicity upon Mn exposure.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA, 01854, USA.
| |
Collapse
|
36
|
Kuwano A, Tanaka M, Suzuki H, Kurokawa M, Imoto K, Tashiro S, Goya T, Kohjima M, Kato M, Ogawa Y. Upregulated expression of hypoxia reactive genes in peripheral blood mononuclear cells from chronic liver disease patients. Biochem Biophys Rep 2021; 27:101068. [PMID: 34307908 PMCID: PMC8283323 DOI: 10.1016/j.bbrep.2021.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Liver fibrosis induces intrahepatic microcirculation disorder and hypoxic stress. Hypoxic stress has the potential for an increase in the possibility of more liver fibrosis and carcinogenesis. Liver biopsy is a standard method that evaluates of intrahepatic hypoxia, however, is invasive and has a risk of bleeding as a complication. Here, we investigated the hypoxia reactive gene expressions in peripheral blood mononuclear cells (PBMC) from chronic liver disease patients to evaluate intrahepatic hypoxia in a non-invasive manner. The subjects enrolled for this study were composed of 20 healthy volunteers (HV) and 48 patients with chronic liver disease (CLD). CLD patients contained 24 patients with chronic hepatitis(CH)and 24 patients with liver cirrhosis (LC). PBMC were isolated from heparinized peripheral blood samples. We measured the transcriptional expression of hypoxia reactive genes and inflammatory cytokines by quantitative RT-PCR. mRNA expression of adrenomedullin (AM), vascular endothelial growth factor A (VEGFA) superoxide dismutase (SOD), glutathione peroxidase (GPx) (p < 0.05), Interleukin-6 (IL-6), transforming growth factor-beta (TGF-β) and heme oxygenase-1 (HO-1) in CLD group were significantly higher than HV. AM mRNA expression is correlated with serum lactate dehydrogenase (LDH), serum albumin (Alb), IL6, and SOD mRNA expression. The hypoxia reactive gene expression in PBMCs from CLD patients was more upregulated than HV. Especially, angiogenic genes were notably upregulated and correlated with liver fibrosis. Here, we suggest that mRNA expression of AM in PBMCs could be the biomarker of intrahepatic hypoxia. The hypoxia reactive genes in PBMC were elevated in patients with chronic liver disease. •Angiogenic genes were upregulated and correlated with liver fibrosis in patients with chronic liver disease. •Adrenomedullin mRNA expression in PBMC was correlated with liver function. •mRNA expression of adrenomedullin in PBMC could be the biomarker of intrahepatic hypoxia.
Collapse
Key Words
- AM, Adrenomedullin
- ANGPTL4, Angiopoietin-like 4
- Adrenomedullin
- CH, chronic hepatitis
- CLD, chronic liver disease
- Chronic liver disease
- GPx, glutathione peroxidase
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HIF, hypoxia inducible factor
- HO-1, heme oxygenase -1
- HV, healthy volunteers
- IL-6, Interleukin-6
- Intrahepatic hypoxia
- LC, liver cirrhosis
- LDH, lactate dehydrogenase
- MCP-1, Monocyte chemoattractant protein-1
- PBMC, Peripheral blood mononuclear cells
- PT, prothrombin time
- Peripheral blood mononuclear cells
- ROS, reactive oxygen species
- SOD, Superoxide dismutase
- TGF-β, transforming growth factor-beta
- TNF-α, Tumor Necrosis Factor-α
- VEGF, vascular endothelial growth factor
- VEGFA, vascular endothelial growth factor A
- VEGFR2, vascular endothelial growth factor receptor 2
Collapse
Affiliation(s)
- Akifumi Kuwano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Hepatology, Iizuka Hospital, 3-83 Yoshio-machi, Iizuka, Fukuoka, 820-8505, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideo Suzuki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Miho Kurokawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shigeki Tashiro
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
37
|
PPARα agonist WY-14,643 induces adipose atrophy and fails to blunt chronic ethanol-induced hepatic fat accumulation in mice lacking adipose FGFR1. Biochem Pharmacol 2021; 192:114678. [PMID: 34265279 DOI: 10.1016/j.bcp.2021.114678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is mainly regulated by peroxisome proliferator-activated receptor α (PPARα) in liver. The PPARα-FGF21 axis protects against alcohol-related liver disease (ALD). FGF21 exerts its effect via FGF receptor 1 (FGFR1). However, liver specific FGFR1 abrogation had no effect on ALD. Adipose tissues highly express FGFR1. When adipocyte specific FGFR1 knockout (fgfr1adipoQ-cre) mice and corresponding normal control (fgfr1fl/fl) mice were fed with Lieber-DeCarli ethanol liquid diet for 3 weeks, liver triglyceride (TG) accumulation was increased in the fgfr1fl/fl mice to a greater extent than in the fgfr1adipoQ-cre mice. When PPARα agonist WY-14,643 was added in the liquid ethanol diet at 10 mg/L, the ethanol-induced liver TG accumulation was blunted in the fgfr1fl/fl mice but not in the fgfr1adipoQ-cre mice. There was no significant difference in WY-14,643-induced fatty acid oxidation, ethanol metabolism, and oxidative stress between the fgfr1fl/fl and fgfr1adipoQ-cre mice. Interestingly, adipose atrophy was induced by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. Serum free fatty acid was also decreased by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. These results suggest that WY-14,643 inhibits alcoholic fatty liver and regulates adipose tissue mass and fat mobilization from adipose tissues to liver in an adipocyte FGFR1-dependent manner.
Collapse
|
38
|
Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells 2021; 10:cells10071764. [PMID: 34359934 PMCID: PMC8305108 DOI: 10.3390/cells10071764] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.
Collapse
|
39
|
Liu Y, Chen R, Li L, Dong R, Yin H, Wang Y, Yang A, Wang J, Li C, Wang D. The triterpenoids-enriched extracts from Antrodia cinnamomea mycelia attenuate alcohol-induced chronic liver injury via suppression lipid accumulation in C57BL/6 mice. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Mesquita I, Ferreira C, Moreira D, Kluck GEG, Barbosa AM, Torrado E, Dinis-Oliveira RJ, Gonçalves LG, Beauparlant CJ, Droit A, Berod L, Sparwasser T, Bodhale N, Saha B, Rodrigues F, Cunha C, Carvalho A, Castro AG, Estaquier J, Silvestre R. The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis. Cell Rep 2021; 30:4052-4064.e7. [PMID: 32209468 DOI: 10.1016/j.celrep.2020.02.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is considered a global regulator of cellular metabolism and innate immune cell functions. Intracellular pathogens such as Leishmania have been reported to manipulate host cell metabolism. Herein, we demonstrate that myeloid cells from myeloid-restricted HIF-1α-deficient mice and individuals with loss-of-function HIF1A gene polymorphisms are more susceptible to L. donovani infection through increased lipogenesis. Absence of HIF-1α leads to a defect in BNIP3 expression, resulting in the activation of mTOR and nuclear translocation of SREBP-1c. We observed the induction of lipogenic gene transcripts, such as FASN, and lipid accumulation in infected HIF-1α-/- macrophages. L. donovani-infected HIF-1α-deficient mice develop hypertriglyceridemia and lipid accumulation in splenic and hepatic myeloid cells. Most importantly, our data demonstrate that manipulating FASN or SREBP-1c using pharmacological inhibitors significantly reduced parasite burden. As such, genetic deficiency of HIF-1α is associated with increased lipid accumulation, which results in impaired host-protective anti-leishmanial functions of myeloid cells.
Collapse
Affiliation(s)
- Inês Mesquita
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carolina Ferreira
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Moreira
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - George Eduardo Gabriel Kluck
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Laboratory of Lipid and Lipoprotein Biochemistry, Medical Biochemistry Institute, Federal University of Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil
| | - Ana Margarida Barbosa
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Gafeira Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Charles-Joly Beauparlant
- Département de Médecine Moléculaire-Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire-Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Obere Zahlbacherstrasse, 6755131 Mainz, Germany
| | | | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Case Western Reserve University, Cleveland, OH 44106, USA; Trident Academy of Creative Technology, 751024 Bhubaneswar, Odisha, India
| | - Fernando Rodrigues
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jérôme Estaquier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; INSERM U1124, Université de Paris, 75006 Paris, France.
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain (MIRD), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
41
|
Dong W, Zhu Y, Zhang Y, Fan Z, Zhang Z, Fan X, Xu Y. BRG1 Links TLR4 Trans-Activation to LPS-Induced SREBP1a Expression and Liver Injury. Front Cell Dev Biol 2021; 9:617073. [PMID: 33816466 PMCID: PMC8012493 DOI: 10.3389/fcell.2021.617073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple organ failure is one of the most severe consequences in patients with septic shock. Liver injury is frequently observed during this pathophysiological process. In the present study we investigated the contribution of Brahma related gene 1 (BRG1), a chromatin remodeling protein, to septic shock induced liver injury. When wild type (WT) and liver conditional BRG1 knockout (LKO) mice were injected with lipopolysaccharide (LPS), liver injury was appreciably attenuated in the LKO mice compared to the WT mice as evidenced by plasma ALT/AST levels, hepatic inflammation and apoptosis. Of interest, there was a down-regulation of sterol response element binding protein 1a (SREBP1a), known to promote liver injury, in the LKO livers compared to the WT livers. BRG1 did not directly bind to the SREBP1a promoter. Instead, BRG1 was recruited to the toll-like receptor 4 (TLR4) promoter and activated TLR4 transcription. Ectopic TLR4 restored SREBP1a expression in BRG1-null hepatocytes. Congruently, adenovirus carrying TLR4 or SREBP1a expression vector normalized liver injury in BRG1 LKO mice injected with LPS. Finally, a positive correlation between BRG1 and TLR4 expression was detected in human liver biopsy specimens. In conclusion, our data demonstrate that a BRG1-TLR4-SREBP1a axis that mediates LPS-induced liver injury in mice.
Collapse
Affiliation(s)
- Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yangxi Zhang
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
42
|
Pasqualotto A, Ayres R, Longo L, Del Duca Lima D, Losch de Oliveira D, Alvares-da-Silva MR, Reverbel da Silveira T, Uribe-Cruz C. Chronic exposure to ethanol alters the expression of miR-155, miR-122 and miR-217 in alcoholic liver disease in an adult zebrafish model. Biomarkers 2021; 26:146-151. [PMID: 33435755 DOI: 10.1080/1354750x.2021.1874051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to evaluate the hepatic and circulating expression of miR-155, miR-122 and miR-217 in a model of chronic exposure to ethanol in adult zebrafish. METHODS Wild-type adult zebrafish were divided into two groups (n = 281): an EG (exposed to 0.5% v/v Ethanol in aquarium water) and a CG (without ethanol). After 28 days the animals were euthanized, followed by histopathological analysis, quantification of lipids, triglycerides and inflammatory cytokines in liver tissue. miR-155, miR-122 and miR-217 gene expression was quantified in liver tissue and serum. RESULTS We observed hepatic lesions and increased accumulation of hepatic lipids in the EG. The expression of il-1β was higher in the EG, but there were no differences in il-10 and tnf-α between groups. In the liver, expression of miR-122 and miR-155 was higher in the EG. The circulating expression of miR-155 and miR-217 was significantly higher in the EG. CONCLUSION Chronic exposure to ethanol in zebrafish leads to altered hepatic and circulating expression of miR-155, miR-122 and miR-217. This confirms its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Amanda Pasqualotto
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Del Duca Lima
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Alvares-da-Silva
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Themis Reverbel da Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
43
|
Mohapatra SR, Sadik A, Sharma S, Poschet G, Gegner HM, Lanz TV, Lucarelli P, Klingmüller U, Platten M, Heiland I, Opitz CA. Hypoxia Routes Tryptophan Homeostasis Towards Increased Tryptamine Production. Front Immunol 2021; 12:590532. [PMID: 33679737 PMCID: PMC7933006 DOI: 10.3389/fimmu.2021.590532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is the central hub for processing and maintaining homeostatic levels of dietary nutrients especially essential amino acids such as tryptophan (Trp). Trp is required not only to sustain protein synthesis but also as a precursor for the production of NAD, neurotransmitters and immunosuppressive metabolites. In light of these roles of Trp and its metabolic products, maintaining homeostatic levels of Trp is essential for health and well-being. The liver regulates global Trp supply by the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2), which degrades Trp down the kynurenine pathway (KP). In the current study, we show that isolated primary hepatocytes when exposed to hypoxic environments, extensively rewire their Trp metabolism by reducing constitutive Tdo2 expression and differentially regulating other Trp pathway enzymes and transporters. Mathematical modelling of Trp metabolism in liver cells under hypoxia predicted decreased flux through the KP while metabolic flux through the tryptamine branch significantly increased. In line, the model also revealed an increased accumulation of tryptamines under hypoxia, at the expense of kynurenines. Metabolic measurements in hypoxic hepatocytes confirmed the predicted reduction in KP metabolites as well as accumulation of tryptamine. Tdo2 expression in cultured primary hepatocytes was reduced upon hypoxia inducible factor (HIF) stabilisation by dimethyloxalylglycine (DMOG), demonstrating that HIFs are involved in the hypoxic downregulation of hepatic Tdo2. DMOG abrogated hepatic luciferase signals in Tdo2 reporter mice, indicating that HIF stability also recapitulates hypoxic rewiring of Trp metabolism in vivo. Also in WT mice HIF stabilization drove homeostatic Trp metabolism away from the KP towards enhanced tryptamine production, leading to enhanced levels of tryptamine in liver, serum and brain. As tryptamines are the most potent hallucinogens known, the observed upregulation of tryptamine in response to hypoxic exposure of hepatocytes may be involved in the generation of hallucinations occurring at high altitude. KP metabolites are known to activate the aryl hydrocarbon receptor (AHR). The AHR-activating properties of tryptamines may explain why immunosuppressive AHR activity is maintained under hypoxia despite downregulation of the KP. In summary our results identify hypoxia as an important factor controlling Trp metabolism in the liver with possible implications for immunosuppressive AHR activation and mental disturbances.
Collapse
Affiliation(s)
- Soumya R. Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Suraj Sharma
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Hagen M. Gegner
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Tobias V. Lanz
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Philippe Lucarelli
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christiane A. Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Wang Z, Li B, Jiang H, Ma Y, Bao Y, Zhu X, Xia H, Jin Y. IL-8 exacerbates alcohol-induced fatty liver disease via the Akt/HIF-1α pathway in human IL-8-expressing mice. Cytokine 2020; 138:155402. [PMID: 33352397 DOI: 10.1016/j.cyto.2020.155402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is a disease that causes liver damage due to chronic heavy drinking. AFLD is related to lipid accumulation in liver cells caused by alcohol intake. Interleukin-8 (IL-8) is an inflammatory cytokine associated with chemotaxis (deletion in mice) that has robust effects on the occurrence and development of disease by activating related signal transduction pathways to promote inflammation and cell proliferation. There is significantly increased IL-8 expression in liver disease, which may be related to the pathogenesis of AFLD. In this study, we used hydrodynamic injection to deliver the liver-specific expression vector pLIVE-hIL-8 into mice. We found that hIL-8 can exacerbate alcohol-induced fatty liver disease via the Akt/HIF-1α pathway. Exacerbated liver lipid degeneration in mice, which is characterized by excessive accumulation of triglycerides, and liver damage markers were significantly increased. Moreover, hIL-8 could increase the alcohol-induced release of ROS in fatty liver caused by alcohol and exacerbate fatty liver disease. The expression of liver lipid metabolism-related gene sterol regulatory element-binding protein-1c (SREBP-1c) was increased. Furthermore, the expression of peroxisome proliferator-activated receptor alpha (PPARα), which is related to liver fatty acid oxidation, was decreased. The findings obtained in this study of hIL-8 will help identify a potential target for the clinical treatment of AFLD.
Collapse
Affiliation(s)
- Zhihao Wang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Biao Li
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Haiyan Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Yuchen Ma
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Yanni Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Xiangyu Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China
| | - Hongguang Xia
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China
| | - Yong Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China.
| |
Collapse
|
45
|
Li F, Zhao C, Shao T, Liu Y, Gu Z, Jiang M, Li H, Zhang L, Gillevet PM, Puri P, Deng ZB, Chen SY, Barve S, Gobejishvili L, Vatsalya V, McClain CJ, Feng W. Cathelicidin-related antimicrobial peptide alleviates alcoholic liver disease through inhibiting inflammasome activation. J Pathol 2020; 252:371-383. [PMID: 33245573 DOI: 10.1002/path.5531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is associated with gut dysbiosis and hepatic inflammasome activation. While it is known that antimicrobial peptides (AMPs) play a critical role in the regulation of bacterial homeostasis in ALD, the functional role of AMPs in the alcohol-induced inflammasome activation is unclear. The aim of this study was to determine the effects of cathelicidin-related antimicrobial peptide (CRAMP) on inflammasome activation in ALD. CRAMP knockout (Camp-/-) and wild-type (WT) mice were subjected to binge-on-chronic alcohol feeding and synthetic CRAMP peptide was administered. Serum/plasma and hepatic tissue samples from human subjects with alcohol use disorder and/or alcoholic hepatitis were analyzed. CRAMP deficiency exacerbated ALD with enhanced inflammasome activation as shown by elevated serum interleukin (IL)-1β levels. Although Camp-/- mice had comparable serum endotoxin levels compared to WT mice after alcohol feeding, hepatic lipopolysaccharide (LPS) binding protein (LBP) and cluster of differentiation (CD) 14 were increased. Serum levels of uric acid (UA), a Signal 2 molecule in inflammasome activation, were positively correlated with serum levels of IL-1β in alcohol use disorder patients with ALD and were increased in Camp-/- mice fed alcohol. In vitro studies showed that CRAMP peptide inhibited LPS binding to macrophages and inflammasome activation stimulated by a combination of LPS and UA. Synthetic CRAMP peptide administration decreased serum UA and IL-1β concentrations and rescued the liver from alcohol-induced damage in both WT and Camp-/- mice. In summary, CRAMP exhibited a protective role against binge-on-chronic alcohol-induced liver damage via regulation of inflammasome activation by decreasing LPS binding and UA production. CRAMP administration may represent a novel strategy for treating ALD. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fengyuan Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Cuiqing Zhao
- Department of Medicine, University of Louisville, Louisville, KY, USA.,College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, PR China
| | - Tuo Shao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Mengwei Jiang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Huimin Li
- Department of Medicine, University of Louisville, Louisville, KY, USA.,School of Pharmaceutical Sciences, Jiujiang University, Jiujiang, PR China
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | | | - Puneet Puri
- Section of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA.,McGuire VA Medical Center, Richmond, VA, USA
| | - Zhong-Bin Deng
- Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Leila Gobejishvili
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Vatsalya Vatsalya
- Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.,Robley Rex VA Medical Center, Louisville, KY, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.,Department of Medicine, University of Louisville, Louisville, KY, USA.,Alcohol Research Center, University of Louisville, Louisville, KY, USA.,Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
46
|
Chen J, Argemi J, Odena G, Xu MJ, Cai Y, Massey V, Parrish A, Vadigepalli R, Altamirano J, Cabezas J, Gines P, Caballeria J, Snider N, Sancho-Bru P, Akira S, Rusyn I, Gao B, Bataller R. Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension. Sci Rep 2020; 10:15558. [PMID: 32968110 PMCID: PMC7512007 DOI: 10.1038/s41598-020-72172-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2-/- mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2-/- mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target.
Collapse
Affiliation(s)
- Jiegen Chen
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Gemma Odena
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Veronica Massey
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Austin Parrish
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jose Altamirano
- Hepatology-Internal Medicine Department, Hospital Quironsalud Barcelona, Barcelona, Spain
| | - Joaquin Cabezas
- Gastroenterology and Hepatology Department, Research Institute Valdecilla (IDIVAL), University Hospital Marques de Valdecilla, Santander, Spain
| | - Pere Gines
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Juan Caballeria
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Natasha Snider
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pau Sancho-Bru
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Ramon Bataller
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
47
|
Liu Y, Wang Z, Kong F, Teng L, Zheng X, Liu X, Wang D. Triterpenoids Extracted From Antrodia cinnamomea Mycelia Attenuate Acute Alcohol-Induced Liver Injury in C57BL/6 Mice via Suppression Inflammatory Response. Front Microbiol 2020; 11:1113. [PMID: 32719658 PMCID: PMC7350611 DOI: 10.3389/fmicb.2020.01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption causes liver injury–induced mortality. Here we systematically analyzed the structure of triterpenoids extracted from Antrodia cinnamomea mycelia (ACT) and investigated their protective effects against acute alcohol-induced liver injury in mice. Liquid chromatography–mass spectrometry and liquid chromatography with tandem mass spectrometry were performed to determine the structures of ACT constituents. Alcohol-induced liver injury was generated in C57BL/6 mice by oral gavage of 13 g/kg white spirit (a wine at 56% ABV). Mice were treated with either silibinin or ACT for 2 weeks. Liver injury markers and pathological signaling were then quantified with enzyme-linked immunosorbent assays, antibody array assays, and Western blots, and pathological examinations were performed using hematoxylin-eosin staining and periodic acid–Schiff staining. Triterpenoids extracted from A. cinnamomea mycelia contain 25 types of triterpenoid compounds. A 2-weeks alcohol consumption treatment caused significant weight loss, liver dyslipidemia, and elevation of alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, and alkaline phosphatase activities in the serum and/or liver. These effects were markedly reversed after 2-weeks ACT administration. Triterpenoids extracted from A. cinnamomea mycelia alleviated the organ structural changes and inflammatory infiltration of alcohol-damaged tissues. Triterpenoids extracted from A. cinnamomea mycelia inhibited proinflammatory cytokine levels and enhanced anti-inflammatory cytokine levels. Acute alcohol treatment promoted inflammation with significant correlations to hypoxia-inducible factor 1α (HIF-1α), which was reduced by ACT and was partially related to modulation of the protein kinase B (Akt)/70-kDa ribosomal protein S6 kinase phosphorylation (p70S6K) and Wnt/β-catenin signaling pathways. In conclusion, ACT protected against acute alcohol-induced liver damage in mice mainly through its suppression of the inflammatory response, which may be related to HIF-1α signaling.
Collapse
Affiliation(s)
- Yange Liu
- School of Life Sciences, Jilin University, Changchun, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhuqian Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Fange Kong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoyi Zheng
- Division of Nephrology, Stanford University School of Medicine, Stanford, CA, United States
| | - Xingkai Liu
- Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
48
|
Meng X, Tang GY, Zhao CN, Liu Q, Xu XY, Cao SY. Hepatoprotective effects of Hovenia dulcis seeds against alcoholic liver injury and related mechanisms investigated via network pharmacology. World J Gastroenterol 2020; 26:3432-3446. [PMID: 32655267 PMCID: PMC7327782 DOI: 10.3748/wjg.v26.i24.3432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a worldwide health problem, and natural products have been shown to improve ALD due to their antioxidant activities. Some parts of Hovenia dulcis (H. dulcis), such as roots, peduncles, and stems, provide health benefits. Nevertheless, the effects and mechanisms of H. dulcis seeds on ALD have not yet been fully elucidated.
AIM To determine H. dulcis antioxidant activity, evaluate its effects against ALD, and investigate the related mechanisms via network pharmacology.
METHODS The antioxidant activity of H. dulcis seed was determined by both ferric-reducing antioxidant power and trolox equivalent antioxidant capacity assays. The total phenolic and flavonoid contents were determined by Folin–Ciocalteu method and aluminum chloride colorimetry, respectively, and polysaccharide was determined by phenol-sulfuric acid method. The effects of H. dulcis seeds against alcoholic liver injury were investigated in mice with water extract pretreatment for 7 days followed by alcohol administration. Moreover, the mechanisms of action were explored with network pharmacology.
RESULTS The results showed that H. dulcis seeds possessed strong antioxidant activity (245.11 ± 10.17 μmol Fe2+/g by ferric-reducing antioxidant power and 284.35 ± 23.57 μmol TE/g by trolox equivalent antioxidant capacity) and contained remarkable phenols and flavonoids, as well as a few polysaccharides. H. dulcis seeds attenuated alcohol-induced oxidative liver injury, showing reduced serum alanine and aspartate aminotransferases, alkaline phosphatase, and triglyceride, elevated hepatic glutathione, increased activities of superoxide dismutase and catalase, and reduced malondialdehyde and hepatic triglyceride. The results of network pharmacology analysis indicated that kaempferol, stigmasterol, and naringenin were the main bioactive compounds in H. dulcis seeds and that modulation of oxidative stress, inflammation, gut-derived products, and apoptosis were underlying mechanisms of the protective effects of H. dulcis seeds on ALD.
CONCLUSION The results of this study demonstrate that H. dulcis seeds could be a good natural antioxidant source with protective effects on oxidative diseases such as ALD.
Collapse
Affiliation(s)
- Xiao Meng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Guo-Yi Tang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Cai-Ning Zhao
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Qing Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Xiao-Yu Xu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Shi-Yu Cao
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
49
|
Riopel M, Moon JS, Bandyopadhyay GK, You S, Lam K, Liu X, Kisseleva T, Brenner D, Lee YS. Inhibition of prolyl hydroxylases increases hepatic insulin and decreases glucagon sensitivity by an HIF-2α-dependent mechanism. Mol Metab 2020; 41:101039. [PMID: 32534258 PMCID: PMC7393408 DOI: 10.1016/j.molmet.2020.101039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Recent evidence indicates that inhibition of prolyl hydroxylase domain (PHD) proteins can exert beneficial effects to improve metabolic abnormalities in mice and humans. However, the underlying mechanisms are not clearly understood. This study was designed to address this question. Methods A pan-PHD inhibitor compound was injected into WT and liver-specific hypoxia-inducible factor (HIF)-2α KO mice, after onset of obesity and glucose intolerance, and changes in glucose and glucagon tolerance were measured. Tissue-specific changes in basal glucose flux and insulin sensitivity were also measured by hyperinsulinemic euglycemic clamp studies. Molecular and cellular mechanisms were assessed in normal and type 2 diabetic human hepatocytes, as well as in mouse hepatocytes. Results Administration of a PHD inhibitor compound (PHDi) after the onset of obesity and insulin resistance improved glycemic control by increasing insulin and decreasing glucagon sensitivity in mice, independent of body weight change. Hyperinsulinemic euglycemic clamp studies revealed that these effects of PHDi treatment were mainly due to decreased basal hepatic glucose output and increased liver insulin sensitivity. Hepatocyte-specific deletion of HIF-2α markedly attenuated these effects of PHDi treatment, showing PHDi effects are HIF-2α dependent. At the molecular level, HIF-2α induced increased Irs2 and cyclic AMP-specific phosphodiesterase gene expression, leading to increased and decreased insulin and glucagon signaling, respectively. These effects of PHDi treatment were conserved in human and mouse hepatocytes. Conclusions Our results elucidate unknown mechanisms for how PHD inhibition improves glycemic control through HIF-2α-dependent regulation of hepatic insulin and glucagon sensitivity. PHD inhibitor treatment improves glycemic control in obese glucose-intolerant mice. PHD inhibitor treatment decreases liver glucagon sensitivity in obese mice. The effects of PHD inhibition on glycemic control is hepatocyte HIF-2α-dependent. PHD inhibitor treatment stimulates HIF-2α-dependent cAMP-specific PDE expression. In human and mouse hepatocytes, PHD inhibitor treatment suppresses glucagon signaling.
Collapse
Affiliation(s)
- Matthew Riopel
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jae-Su Moon
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gautam K Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Seohee You
- Cardiovascular and Metabolism, Janssen Research & Development, Spring House, PA, USA
| | - Kevin Lam
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Xiao Liu
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Novo E, Bocca C, Foglia B, Protopapa F, Maggiora M, Parola M, Cannito S. Liver fibrogenesis: un update on established and emerging basic concepts. Arch Biochem Biophys 2020; 689:108445. [PMID: 32524998 DOI: 10.1016/j.abb.2020.108445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrogenesis is defined as a dynamic and highly integrated process occurring during chronic injury to liver parenchyma that can result in excess deposition of extracellular matrix (ECM) components (i.e., liver fibrosis). Liver fibrogenesis, together with chronic inflammatory response, is then primarily involved in the progression of chronic liver diseases (CLD) irrespective of the specific etiology. In the present review we will first offer a synthetic and updated overview of major basic concepts in relation to the role of myofibroblasts (MFs), macrophages and other hepatic cell populations involved in CLD to then offer an overview of established and emerging issues and mechanisms that have been proposed to favor and/or promote CLD progression. A special focus will be dedicated to selected issues that include emerging features in the field of cholangiopathies, the emerging role of genetic and epigenetic factors as well as of hypoxia, hypoxia-inducible factors (HIFs) and related mediators.
Collapse
Affiliation(s)
- Erica Novo
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Claudia Bocca
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Beatrice Foglia
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Francesca Protopapa
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Marina Maggiora
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Maurizio Parola
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy.
| | - Stefania Cannito
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| |
Collapse
|