1
|
Cho JH, Kim HG, Huang M, Wang S, Liu S, Lu A, McCrocklin K, Zhang Y, Fang Z, Wang J, Liu W, Wan J, Dong XC. The PNPLA3 148M variant exacerbates alcohol-induced liver injury and tumorigenesis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00154-3. [PMID: 40350061 DOI: 10.1016/j.ajpath.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Patatin-like phospholipase domain-containing 3 (PNPLA3) protein 148M variant is strongly associated with cirrhosis and hepatocellular carcinoma (HCC); however, the underlying mechanisms remain elusive. This study aimed to elucidate the role of the PNPLA3148M variant in the alcohol-related HCC development. Control and humanized PNPLA3148M transgenic mice were fed with an ethanol-containing diet for 12 weeks. The animals were examined for liver tumors. After the alcohol feeding, the PNPLA3148M mice had 2-fold higher liver cancer incidence rates and larger tumor sizes than that in the control mice. Cancer stem cell markers in the PNPLA3148M mouse livers were elevated relative to that in the control mouse livers. Alcohol detoxification was impaired in the PNPLA3148M mouse livers. Hepatic oxidative stress and DNA damage were elevated in the PNPLA3148M mice. Wnt/β-catenin and Yes-associated protein (YAP) and WW domain containing transcription regulator 1 (WWTR1/TAZ) were activated in the PNPLA3148M mouse livers. Our data suggest that the PNPLA3148M variant has a strong interaction with alcohol in the HCC development through attenuation of alcohol detoxification and promotion of oncogenic pathways. Targeting the PNPLA3148M variant might be useful for the prevention or treatment of alcohol-associated HCC in patients carrying this variant.
Collapse
Affiliation(s)
- Jung-Hyo Cho
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of East & West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Center for Diabetes and Metabolic Diseases, Indiana University, Indianapolis, IN 46202, USA; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Shen Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Alex Lu
- Park Tudor School, Indianapolis, IN 46240, USA
| | - Kyle McCrocklin
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN 46202, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Zhigang Fang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Juexin Wang
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jun Wan
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Center for Diabetes and Metabolic Diseases, Indiana University, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Li H, Zhou Y, Cai C, Liang H, Li X, Huang M, Fan S, Bi H. Fenofibrate induces liver enlargement in aging mice via activating the PPARα-YAP signaling pathway. Chem Biol Interact 2025; 405:111286. [PMID: 39442682 DOI: 10.1016/j.cbi.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fenofibrate is a clinically prescribed drug for treating hypertriglyceridemia, which is also a classic peroxisome proliferator-activated receptor α (PPARα) agonist. We previously reported that fenofibrate induced liver enlargement in adult mice partially through activation of the yes-associated protein (YAP) signaling pathway. However, the effects of fenofibrate on liver enlargement and the YAP signaling pathway in aging mice remain unclear. In this study, D-galactose-induced aging mice, naturally aging mice, and senescence-accelerated mice P8 (SAMP8) were used to investigate the effects of aging on fenofibrate-induced liver enlargement and YAP signaling activation. The results showed that fenofibrate-induced liver enlargement in aging mice was consistent with that of adult mice. The effects of fenofibrate on hepatocyte enlargement around the central vein (CV) area and hepatocyte proliferation around the portal vein (PV) area were comparable between adult and aging mice. There was no significant difference in the upregulation of PPARα downstream proteins between the two groups following fenofibrate treatment. Fenofibrate treatment also increased the expression of proliferation-related proteins and activated the YAP signaling pathway to a similar degree in both groups. In summary, these results demonstrate that the fenofibrate-induced liver enlargement and activation of the YAP pathway are consistent between adult and aging mice, indicating that the effects of fenofibrate on promoting liver enlargement and its activation of the PPARα and YAP pathway were independent of aging. These findings offer a new perspective for the clinical use of fenofibrate in elderly patients and provide a new insight for the role of PPARα in liver enlargement.
Collapse
Affiliation(s)
- Huilin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chenghui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hangfei Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Wang P, Pan J, Gong S, Zhang Z, Li B. Yes-associated protein inhibition ameliorates carbon tetrachloride-induced acute liver injury in mice by reducing VDR. Chem Biol Interact 2024; 399:111139. [PMID: 38992766 DOI: 10.1016/j.cbi.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Carbon tetrachloride (CCl4) has a wide range of toxic effects, especially causing acute liver injury (ALI), in which rapid compensation for hepatocyte loss ensures liver survival, but proliferation of surviving hepatocytes (known as endoreplication) may imply impaired residual function. Yes-associated protein (YAP) drives hepatocytes to undergo endoreplication and ploidy, the underlying mechanisms of which remain a mystery. In the present study, we uncover during CCl4-mediated ALI accompanied by increased hepatocytes proliferation and YAP activation. Notably, bioinformatics analyses elucidate that hepatic-specific deletion of YAP substantially ameliorated CCl4-induced hepatic proliferation, effectively decreased the vitamin D receptor (VDR) expression. Additionally, a mouse model of acute liver injury substantiated that inhibition of YAP could suppress hepatocytes proliferation via VDR. Furthermore, we also disclosed that the VDR agonist nullifies CCl4-induced ALI alleviated by the YAP inhibitor in vivo. Importantly, hepatocytes were isolated from mice, and it was spotlighted that the anti-proliferative impact of the YAP inhibitor was abolished by the activation of VDR within these hepatocytes. Similarly, primary hepatic stellate cells (HSCs) were isolated and it was manifested that YAP inhibitor suppressed HSC activation via VDR during acute liver injury. Our findings further elucidate the YAP's role in ALI and may provide new avenues for protection against CCl4-drived acute liver injury.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jinjing Pan
- Department of Clinical Nutrition, Sheyang County People's Hospital, Yancheng, 224300, China
| | - Shiyi Gong
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Galanopoulou O, Tachmatzidi EC, Deligianni E, Botskaris D, Nikolaou KC, Gargani S, Dalezios Y, Chalepakis G, Talianidis I. Endonucleosis mediates internalization of cytoplasm into the nucleus. Nat Commun 2024; 15:5843. [PMID: 38992049 PMCID: PMC11239883 DOI: 10.1038/s41467-024-50259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Setd8 regulates transcription elongation, mitotic DNA condensation, DNA damage response and replication licensing. Here we show that, in mitogen-stimulated liver-specific Setd8-KO mice, most of the hepatocytes are eliminated by necrosis but a significant number of them survive via entering a stage exhibiting several senescence-related features. Setd8-deficient hepatocytes had enlarged nuclei, chromosomal hyperploidy and nuclear engulfments progressing to the formation of intranuclear vesicles surrounded by nuclear lamina. These vesicles contain glycogen, cytoplasmic proteins and even entire organelles. We term this process "endonucleosis". Intranuclear vesicles are absent in hepatocytes of Setd8/Atg5 knockout mice, suggesting that the process requires the function of the canonical autophagy machinery. Endonucleosis and hyperploidization are temporary, early events in the surviving Setd8-deficient cells. Larger vesicles break down into microvesicles over time and are eventually eliminated. The results reveal sequential events in cells with extensive DNA damage, which function as part of survival mechanisms to prevent necrotic death.
Collapse
Affiliation(s)
- Ourania Galanopoulou
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Dept. of Biology University of Crete, Heraklion, Crete, Greece
| | - Evangelia C Tachmatzidi
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Dept. of Biology University of Crete, Heraklion, Crete, Greece
| | - Elena Deligianni
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dimitris Botskaris
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Dept. of Biology University of Crete, Heraklion, Crete, Greece
| | | | - Sofia Gargani
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Yannis Dalezios
- School of Medicine University of Crete, Heraklion, Crete, Greece
| | | | - Iannis Talianidis
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Hori T, Yokobori K, Moore R, Negishi M, Sueyoshi T. CAR requires Gadd45β to promote phenobarbital-induced mouse liver tumors in early stage. Front Oncol 2023; 13:1217847. [PMID: 37746289 PMCID: PMC10516603 DOI: 10.3389/fonc.2023.1217847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Phenobarbital (PB) is an archetypal substance used as a mouse hepatocellular carcinoma (HCC) promotor in established experimental protocols. Our previous results showed CAR is the essential factor for PB induced HCC promotion. Subsequent studies suggested Gadd45β, which is induced by PB through CAR activation, is collaborating with CAR to repress TNF-α induced cell death. Here, we used Gadd45β null mice (Gadd45β KO) treated with N-diethylnitrosamine (DEN) at 5 weeks of age and kept the mice with PB supplemented drinking water from 7 to 57 weeks old. Compared with wild type mice, Gadd45β KO mice developed no HCC in the PB treated group. Increases in liver weight were more prominent in wild type mice than KO mice. Microarray analysis of mRNA derived from mouse livers found multiple genes specifically up or down regulated in wild type mice but not null mice in DEN + PB groups. Further qPCR analysis confirmed two genes, Tgfbr2 and irisin/Fndc5, were up-regulated in PB treated wild type mice but no significant increase was observed in Gadd45β KO mice. We focused on these two genes because previous reports showed that hepatic Irisin/Fndc5 expression was significantly higher in HCC patients and that irisin binds to TGF-β receptor complex that includes TGFBR2 subunit. Our results revealed irisin peptide in cell culture media increased the growth rate of mouse hepatocyte-derived AML12 cells. Microarray analysis revealed that irisin-regulated genes in AML12 cells showed a significant association with the genes in the TGF-β pathway. Expression of irisin/Fndc5 and Tgfbr2 induced growth of human HCC cell line HepG2. Thus, Gadd45β plays an indispensable role in mouse HCC development regulating the irisin/Fndc5 and Tgfbr2 genes.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kosuke Yokobori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| |
Collapse
|
7
|
Stern S, Kurian R, Wang H. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metab Dispos 2022; 50:1010-1018. [PMID: 35236665 PMCID: PMC11022901 DOI: 10.1124/dmd.121.000483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) (NR1I3), a xenobiotic receptor, has long been considered a master mediator of drug disposition and detoxification. Accumulating evidence indicates that CAR also participates in various physiologic and pathophysiological pathways regulating the homeostasis of glucose, lipid, and bile acids, and contributing to cell proliferation, tissue regeneration and repair, as well as cancer development. The expression and activity of CAR can be regulated by various factors, including small molecular modulators, CAR interaction with other transcription factors, and naturally occurring genetic variants. Given that the influence of CAR has extended beyond the realm of drug metabolism and disposition and has expanded into a potential modulator of human diseases, growing efforts have centered on understanding its clinical relevance and impact on human pathophysiology. This review highlights the current information available regarding the contribution of CAR to various metabolic disorders and cancers and ponders the possible challenges that might arise from pursuing CAR as a potential therapeutic target for these diseases. SIGNIFICANCE STATEMENT: The growing importance of the constitutive androstane receptor (CAR) in glucose and lipid metabolism as well as its potential implication in cell proliferation emphasizes a need to keenly understand the biological function and clinical impact of CAR. This minireview captures the clinical relevance of CAR by highlighting its role in metabolic disorders and cancer development.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
8
|
Yoshinari K, Shizu R. Distinct Roles of the Sister Nuclear Receptors PXR and CAR in Liver Cancer Development. Drug Metab Dispos 2022; 50:1019-1026. [PMID: 35184041 DOI: 10.1124/dmd.121.000481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/08/2022] [Indexed: 02/13/2025] Open
Abstract
Pregnane X receptor (PXR) and constitutively active receptor/constitutive androstane receptor (CAR) are xenobiotic-responsible transcription factors belonging to the same nuclear receptor gene subfamily and highly expressed in the liver. These receptors are activated by a variety of chemicals and play pivotal roles in many liver functions, including xenobiotic metabolism and disposition. Phenobarbital, an enzyme inducer and liver tumor promoter, activates both rodent and human CAR but causes liver tumors only in rodents. Although the precise mechanism for phenobarbital/CAR-mediated liver tumor formation remains to be established, intracellular pathways, including the Hippo pathway/Yes-associated protein-TEA-domain family members system and β-catenin signaling, seem to be involved. In contrast to CAR, previous findings by our group suggest that PXR activation does not promote hepatocyte proliferation but it enhances the proliferation induced by various stimuli. Moreover, and surprisingly, PXR may have antitumor effects in both rodents and humans by targeting inflammatory cytokine signals, angiogenesis and epithelial-mesenchymal transition. In this review, we summarize the current knowledge on the associations of PXR and CAR with hepatocyte proliferation and liver tumorigenesis and their molecular mechanisms and species differences. SIGNIFICANCE STATEMENT: Pregnane X receptor and constitutively active receptor/constitutive androstane receptor have very similar functions in the gene regulation associated with xenobiotic disposition, as suggested by their identification as xenosensors for enzyme induction. In contrast, recent reports clearly suggest that these receptors play distinct roles in the control of hepatocyte proliferation and liver cancer development. Understanding these differences at the molecular level may help us evaluate the human safety of chemical compounds and develop novel drugs targeting liver cancers.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
9
|
Shaw RPH, Kolyvas P, Dang N, Hyon A, Bailey K, Anakk S. Loss of Hepatic Small Heterodimer Partner Elevates Ileal Bile Acids and Alters Cell Cycle-related Genes in Male Mice. Endocrinology 2022; 163:bqac052. [PMID: 35451003 PMCID: PMC9113360 DOI: 10.1210/endocr/bqac052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/19/2022]
Abstract
Small heterodimer partner (Shp) regulates several metabolic processes, including bile acid levels, but lacks the conserved DNA binding domain. Phylogenetic analysis revealed conserved genetic evolution of SHP, FXR, CYP7A1, and CYP8B1. Shp, although primarily studied as a downstream target of Farnesoid X Receptor (Fxr), has a distinct hepatic role that is poorly understood. Here, we report that liver-specific Shp knockout (LShpKO) mice have impaired negative feedback of Cyp7a1 and Cyp8b1 on bile acid challenge and demonstrate that a single copy of the Shp gene is sufficient to maintain this response. LShpKO mice also exhibit elevated total bile acid pool with ileal bile acid composition mimicking that of cholic acid-fed control mice. Agonistic activation of Fxr (GW4064) in the LShpKO did not alter the elevated basal expression of Cyp8b1 but lowered Cyp7a1 expression. We found that deletion of Shp led to an enrichment of distinct motifs and pathways associated with circadian rhythm, copper ion transport, and DNA synthesis. We confirmed increased expression of metallothionein genes that can regulate copper levels in the absence of SHP. LShpKO livers also displayed a higher basal proliferation that was exacerbated specifically with bile acid challenge either with cholic acid or 3,5-diethoxycarbonyl-1,4-dihydrocollidine but not with another liver mitogen, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene. Overall, our data indicate that hepatic SHP uniquely regulates certain proliferative and metabolic cues.
Collapse
Affiliation(s)
| | - Peter Kolyvas
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
| | - Nathanlown Dang
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
| | - Angela Hyon
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
| | - Keith Bailey
- Veterinary Diagnostic Laboratory, Urbana, IL 61801, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA
- Division of Nutritional Sciences, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Feng P, Zhang J, Zhang J, Liu X, Pan L, Chen D, Ji M, Lu F, Li P, Li G, Sun T, Li J, Ye J, Ji C. Deacetylation of YAP1 Promotes the Resistance to Chemo- and Targeted Therapy in FLT3-ITD+ AML Cells. Front Cell Dev Biol 2022; 10:842214. [PMID: 35656547 PMCID: PMC9152322 DOI: 10.3389/fcell.2022.842214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
The FLT3-ITD mutation occurs in about 30% of acute myeloid leukemia (AML) and is associated with poor prognosis. However, FLT3 inhibitors are only partially effective and prone to acquired resistance. Here, we identified Yes-associated protein 1 (YAP1) as a tumor suppressor in FLT3-ITD+ AML. YAP1 inactivation conferred FLT3-ITD+ AML cell resistance to chemo- and targeted therapy. Mass spectrometric assay revealed that DNA damage repair gene poly (ADP-ribose) polymerase 1 (PARP1) might be the downstream of YAP1, and the pro-proliferative effect by YAP1 knockdown was partly reversed via PARP1 inhibitor. Importantly, histone deacetylase 10 (HDAC10) contributed to decreased YAP1 acetylation levels through histone H3 lysine 27 (H3K27) acetylation, leading to the reduced nuclear accumulation of YAP1. Selective HDAC10 inhibitor chidamide or HDAC10 knockdown activated YAP1, enhanced DNA damage, and significantly attenuated FLT3-ITD+ AML cell resistance. In addition, combination chidamide with FLT3 inhibitors or chemotherapy agents synergistically inhibited growth and increased apoptosis of FLT3-ITD+ AML cell lines and acquired resistant cells from the relapse FLT3-ITD+ AML patients. These findings demonstrate that the HDAC10-YAP1-PARP1 axis maintains FLT3-ITD+ AML cells and targeting this axis might improve clinical outcomes in FLT3-ITD+ AML patients.
Collapse
Affiliation(s)
- Panpan Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lina Pan
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Chen
- Laboratory of Medical Chemistry, GIGA-Stem Cells, Faculty of Medicine, University of Liege, CHU, Liege, Belgium
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chunyan Ji, ; Jingjing Ye,
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chunyan Ji, ; Jingjing Ye,
| |
Collapse
|
11
|
Zhao P, Fan S, Gao Y, Huang M, Bi H. Nuclear Receptor-Mediated Hepatomegaly and Liver Regeneration: An Update. Drug Metab Dispos 2022; 50:636-645. [PMID: 35078806 DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2025] Open
Abstract
Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, are critical in cell growth, proliferation, differentiation, metabolism, and numerous biologic events. NRs have been reported to play important roles in hepatomegaly (liver enlargement) and liver regeneration by regulating target genes or interacting with other signals. In this review, the roles and involved molecular mechanisms of NRs in hepatomegaly and liver regeneration are summarized and the future perspectives of NRs in the treatment of liver diseases are discussed. SIGNIFICANCE STATEMENT: NRs play critical roles in hepatomegaly and liver regeneration, indicating the potential of NRs as targets to promote liver repair after liver injury. This paper reviews the characteristics and molecular mechanisms of NRs in regulating hepatomegaly and liver regeneration, providing more evidence for NRs in the treatment of related liver diseases.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| |
Collapse
|
12
|
Zhang W, Liu R, Zhang L, Wang C, Dong Z, Feng J, Luo M, Zhang Y, Xu Z, Lv S, Wei Q. Downregulation of miR-335 exhibited an oncogenic effect via promoting KDM3A/YAP1 networks in clear cell renal cell carcinoma. Cancer Gene Ther 2022; 29:573-584. [PMID: 33888871 PMCID: PMC9113937 DOI: 10.1038/s41417-021-00335-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer affecting many people worldwide. Although the 5-year survival rate is 65% in localized disease, after metastasis, the survival rate is <10%. Emerging evidence has shown that microRNAs (miRNAs) play a crucial regulatory role in the progression of ccRCC. Here, we show that miR-335, an anti-onco-miRNA, is downregulation in tumor tissue and inhibited ccRCC cell proliferation, invasion, and migration. Our studies further identify the H3K9me1/2 histone demethylase KDM3A as a new miR-335-regulated gene. We show that KDM3A is overexpressed in ccRCC, and its upregulation contributes to the carcinogenesis and metastasis of ccRCC. Moreover, with the overexpression of KDM3A, YAP1 was increased and identified as a direct downstream target of KDM3A. Enrichment of KDM3A demethylase on YAP1 promoter was confirmed by CHIP-qPCR and YAP1 was also found involved in the cell growth and metastasis inhibitory of miR-335. Together, our study establishes a new miR-335/KDM3A/YAP1 regulation axis, which provided new insight and potential targeting of the metastasized ccRCC.
Collapse
Affiliation(s)
- Wenqiang Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Ruiyu Liu
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lin Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Chao Wang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Ziyan Dong
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Jiasheng Feng
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Mayao Luo
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Yifan Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Zhuofan Xu
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Shidong Lv
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Qiang Wei
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| |
Collapse
|
13
|
Fan S, Gao Y, Qu A, Jiang Y, Li H, Xie G, Yao X, Yang X, Zhu S, Yagai T, Tian J, Wang R, Gonzalez FJ, Huang M, Bi H. YAP-TEAD mediates PPAR α-induced hepatomegaly and liver regeneration in mice. Hepatology 2022; 75:74-88. [PMID: 34387904 DOI: 10.1002/hep.32105] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor α (PPARα, NR1C1) is a ligand-activated nuclear receptor involved in the regulation of lipid catabolism and energy homeostasis. PPARα activation induces hepatomegaly and plays an important role in liver regeneration, but the underlying mechanisms remain unclear. APPROACH AND RESULTS In this study, the effect of PPARα activation on liver enlargement and regeneration was investigated in several strains of genetically modified mice. PPARα activation by the specific agonist WY-14643 significantly induced hepatomegaly and accelerated liver regeneration after 70% partial hepatectomy (PHx) in wild-type mice and Pparafl/fl mice, while these effects were abolished in hepatocyte-specific Ppara-deficient (PparaΔHep ) mice. Moreover, PPARα activation promoted hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. Mechanistically, PPARα activation regulated expression of yes-associated protein (YAP) and its downstream targets (connective tissue growth factor, cysteine-rich angiogenic inducer 61, and ankyrin repeat domain 1) as well as proliferation-related proteins (cyclins A1, D1, and E1). Binding of YAP with the PPARα E domain was critical for the interaction between YAP and PPARα. PPARα activation further induced nuclear translocation of YAP. Disruption of the YAP-transcriptional enhancer factor domain family member (TEAD) association significantly suppressed PPARα-induced hepatomegaly and hepatocyte enlargement and proliferation. In addition, PPARα failed to induce hepatomegaly in adeno-associated virus-Yap short hairpin RNA-treated mice and liver-specific Yap-deficient mice. Blockade of YAP signaling abolished PPARα-induced hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. CONCLUSIONS This study revealed a function of PPARα in regulating liver size and liver regeneration through activation of the YAP-TEAD signaling pathway. These findings have implications for understanding the physiological functions of PPARα and suggest its potential for manipulation of liver size and liver regeneration.
Collapse
Affiliation(s)
- Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinpeng Yao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuguang Zhu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianing Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ruimin Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Wang Z, Jiang T, Aji T, Aimulajiang K, Liu Y, Lv G, Wen H. Netrin-1 promotes liver regeneration possibly by facilitating vagal nerve repair after partial hepatectomy in mice. Cell Signal 2021; 91:110227. [PMID: 34954393 DOI: 10.1016/j.cellsig.2021.110227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Hepatic regeneration after hepatectomy is a great concern in clinical practice. Recently, the neuronal guidance protein netrin-1 has been reported to enhance regeneration after nerve injury. The goal of this study was to preliminarily investigate whether netrin-1 stimulates vagus nerve regeneration to promote liver regeneration after partial hepatectomy in mice. The expression of netrin-1 in murine remnant livers after partial hepatectomy (PHx) was evaluated in initial studies. C57BL/6 mice that received exogenous netrin-1 after PHx were used to examine liver regeneration. PHx was performed in wild-type mice after adeno-associated virus injection (Ntn1 gene silencing) to detect the impact of endogenous netrin-1. After PHx and hepatic branch vagotomy (HV), the mice were injected with or without netrin-1 to evaluate the effects on hepatic regeneration and vagal nerve recovery. Significant reductions in netrin-1 at the transcript and protein levels in murine liver tissue after hepatectomy were observed. Subsequent studies of netrin-1 administration revealed the promotion of hepatocyte proliferation and specific growth factors contributing to liver repair and a decrease in hepatic-specific injury enzymes. Furthermore, the opposite results were observed in the netrin-1 knockdown group. HV delayed liver regeneration after PHx. However, this retardation was reversed by exogenous netrin-1 supplementation. In addition, the results of nerve growth and vagal nerve repair in the remnant liver suggested that netrin-1 promoted vagal nerve regeneration after hepatectomy. Netrin-1 accelerates liver regeneration after partial hepatectomy in mice, and the potential mechanism is related to the promotion of vagus nerve repair and regeneration.
Collapse
Affiliation(s)
- Zongding Wang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Tiemin Jiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Tuerganaili Aji
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China
| | - Yanshi Liu
- Department of Micro-repair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China.
| |
Collapse
|
15
|
Bhushan B, Molina L, Koral K, Stoops JW, Mars WM, Banerjee S, Orr A, Paranjpe S, Monga SP, Locker J, Michalopoulos GK. Yes-Associated Protein Is Crucial for Constitutive Androstane Receptor-Driven Hepatocyte Proliferation But Not for Induction of Drug Metabolism Genes in Mice. Hepatology 2021; 73:2005-2022. [PMID: 32794202 PMCID: PMC7885729 DOI: 10.1002/hep.31521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Constitutive androstane receptor (CAR) agonists, such as 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), are known to cause robust hepatocyte proliferation and hepatomegaly in mice along with induction of drug metabolism genes without any associated liver injury. Yes-associated protein (Yap) is a key transcription regulator that tightly controls organ size, including that of liver. Our and other previous studies suggested increased nuclear localization and activation of Yap after TCPOBOP treatment in mice and the potential role of Yap in CAR-driven proliferative response. Here, we investigated a direct role of Yap in CAR-driven hepatomegaly and hepatocyte proliferation using hepatocyte-specific Yap-knockout (KO) mice. APPROACH AND RESULTS Adeno-associated virus 8-thyroxine binding globulin promoter-Cre recombinase vector was injected to Yap-floxed mice for achieving hepatocyte-specific Yap deletion followed by TCPOBOP treatment. Yap deletion did not decrease protein expression of CAR or CAR-driven induction of drug metabolism genes (including cytochrome P450 [Cyp] 2b10, Cyp2c55, and UDP-glucuronosyltransferase 1a1 [Ugt1a1]). However, Yap deletion substantially reduced TCPOBOP-induced hepatocyte proliferation. TCPOBOP-driven cell cycle activation was disrupted in Yap-KO mice because of delayed (and decreased) induction of cyclin D1 and higher expression of p21, resulting in decreased phosphorylation of retinoblastoma protein. Furthermore, the induction of other cyclins, which are sequentially involved in progression through cell cycle (including cyclin E1, A2, and B1), and important mitotic regulators (such as Aurora B kinase and polo-like kinase 1) was remarkably reduced in Yap-KO mice. Microarray analysis revealed that 26% of TCPOBOP-responsive genes that were mainly related to proliferation, but not to drug metabolism, were altered by Yap deletion. Yap regulated these proliferation genes through alerting expression of Myc and forkhead box protein M1, two critical transcriptional regulators of CAR-mediated hepatocyte proliferation. CONCLUSIONS Our study revealed an important role of Yap signaling in CAR-driven hepatocyte proliferation; however, CAR-driven induction of drug metabolism genes was independent of Yap.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Laura Molina
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Kelly Koral
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - John W. Stoops
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Wendy M. Mars
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Swati Banerjee
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Anne Orr
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Shirish Paranjpe
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Satdarshan P. Monga
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Joseph Locker
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - George K. Michalopoulos
- Department of Pathology and Pittsburgh Liver Research CenterSchool of MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
16
|
MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer. Biomedicines 2021; 9:biomedicines9040347. [PMID: 33808155 PMCID: PMC8067275 DOI: 10.3390/biomedicines9040347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Liver cancer is one of the most common cancers worldwide, and its prevalence and mortality rate are increasing due to the lack of biomarkers and effective treatments. The Hippo signaling pathway has long been known to control liver size, and genetic depletion of Hippo kinases leads to liver cancer in mice through activation of the downstream effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Both YAP and TAZ not only reprogram tumor cells but also alter the tumor microenvironment to exert carcinogenic effects. Therefore, understanding the mechanisms of YAP/TAZ-mediated liver tumorigenesis will help overcome liver cancer. For decades, small noncoding RNAs, microRNAs (miRNAs), have been reported to play critical roles in the pathogenesis of many cancers, including liver cancer. However, the interactions between miRNAs and Hippo-YAP/TAZ signaling in the liver are still largely unknown. Here, we review miRNAs that influence the proliferation, migration and apoptosis of tumor cells by modulating Hippo-YAP/TAZ signaling during hepatic tumorigenesis. Previous findings suggest that these miRNAs are potential biomarkers and therapeutic targets for the diagnosis, prognosis, and treatment of liver cancer.
Collapse
|
17
|
Constitutive androstane receptor induced-hepatomegaly and liver regeneration is partially via yes-associated protein activation. Acta Pharm Sin B 2021; 11:727-737. [PMID: 33777678 PMCID: PMC7982502 DOI: 10.1016/j.apsb.2020.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
The constitutive androstane receptor (CAR, NR3I1) belongs to nuclear receptor superfamily. It was reported that CAR agonist TCPOBOP induces hepatomegaly but the underlying mechanism remains largely unknown. Yes-associated protein (YAP) is a potent regulator of organ size. The aim of this study is to explore the role of YAP in CAR activation-induced hepatomegaly and liver regeneration. TCPOBOP-induced CAR activation on hepatomegaly and liver regeneration was evaluated in wild-type (WT) mice, liver-specific YAP-deficient mice, and partial hepatectomy (PHx) mice. The results demonstrate that TCPOBOP can increase the liver-to-body weight ratio in wild-type mice and PHx mice. Hepatocytes enlargement around central vein (CV) area was observed, meanwhile hepatocytes proliferation was promoted as evidenced by the increased number of KI67+ cells around portal vein (PV) area. The protein levels of YAP and its downstream targets were upregulated in TCPOBOP-treated mice and YAP translocation can be induced by CAR activation. Co-immunoprecipitation results suggested a potential protein–protein interaction of CAR and YAP. However, CAR activation-induced hepatomegaly can still be observed in liver-specific YAP-deficient (Yap–/–) mice. In summary, CAR activation promotes hepatomegaly and liver regeneration partially by inducing YAP translocation and interaction with YAP signaling pathway, which provides new insights to further understand the physiological functions of CAR.
Collapse
Key Words
- ALB, albumin
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- ANKRD1, ankyrin repeat domain 1
- AST, aspartate transaminase
- AhR, aryl hydrocarbon receptor
- CAR, constitutive androstane receptor
- CCNA1, cyclin A1
- CCND1, cyclin D1
- CCNE1, cyclin E1
- CITCO, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime
- CTGF, connective tissue growth factor
- CTNNB1, β-catenin
- CV, central vein
- CYR61, cysteine-rich angiogenic inducer 61
- Co-IP, co-immunoprecipitation
- Constitutive androstane receptor
- EGFR, epidermal growth factor receptor
- FOXM1, forkhead box M1
- FXR, farnesoid X receptor
- H&E, haematoxylin and eosin
- Hepatomegaly
- Liver enlargement
- Liver regeneration
- Nuclear receptors
- PHx, partial hepatectomy
- PPARα, peroxisome proliferators-activated receptor alpha
- PV, portal vein
- Partial hepatectomy
- Protein–protein interaction
- TBA, total bile acid
- TBIL, total bilirubin
- TCPOBOP, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene
- TEAD, TEA domain family member
- YAP, yes-associated protein
- Yes-associated protein
Collapse
|
18
|
Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166101. [PMID: 33600998 DOI: 10.1016/j.bbadis.2021.166101] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two nuclear receptors that are well-known for their roles in xenobiotic detoxification by regulating the expression of drug-metabolizing enzymes and transporters. In addition to metabolizing drugs and other xenobiotics, the same enzymes and transporters are also responsible for the production and elimination of numerous endogenous chemicals, or endobiotics. Moreover, both PXR and CAR are highly expressed in the liver. As such, it is conceivable that PXR and CAR have major potentials to affect the pathophysiology of the liver by regulating the homeostasis of endobiotics. In recent years, the physiological functions of PXR and CAR in the liver have been extensively studied. Emerging evidence has suggested the roles of PXR and CAR in energy metabolism, bile acid homeostasis, cell proliferation, to name a few. This review summarizes the recent progress in our understanding of the roles of PXR and CAR in liver physiology.
Collapse
Affiliation(s)
- Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory M Young
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Kitagawa K, Moriya K, Kaji K, Saikawa S, Sato S, Nishimura N, Namisaki T, Akahane T, Mitoro A, Yoshiji H. Atorvastatin Augments Gemcitabine-Mediated Anti-Cancer Effects by Inhibiting Yes-Associated Protein in Human Cholangiocarcinoma Cells. Int J Mol Sci 2020; 21:7588. [PMID: 33066548 PMCID: PMC7589854 DOI: 10.3390/ijms21207588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CCA) is associated with high mortality rates because of its resistance to conventional gemcitabine-based chemotherapy. Hydroxy-methyl-glutaryl-coenzyme A reductase inhibitors (statins) reportedly exert anti-cancer effects in CCA and lower the risk of CCA; however, the underlying mechanism of these effects remains unclear. The proliferative and oncogenic activities of the transcriptional co-activator Yes-associated protein (YAP) are driven by its association with the TEA domain (TEAD) of transcription factors; thereby, upregulating genes that promote cell growth, inhibit apoptosis, and confer chemoresistance. This study investigated the effects of atorvastatin in combination with gemcitabine on the progression of human CCA associated with YAP oncogenic regulation. Both atorvastatin and gemcitabine concentration-dependently suppressed the proliferation of HuCCT-1 and KKU-M213 human CCA cells. Moreover, both agents induced cellular apoptosis by upregulating the pro-apoptotic marker BAX and downregulating the anti-apoptotic markers MCL1 and BCL2. Atorvastatin also significantly decreased the mRNA expression of the TEAD target genes CTGF, CYR61, ANKRD1, and MFAP5 in both CCA cell lines. A xenograft tumor growth assay indicated that atorvastatin and gemcitabine potently repressed human CCA cell-derived subcutaneous tumor growth by inhibiting YAP nuclear translocation and TEAD transcriptional activation. Notably, the anti-cancer effects of the individual agents were significantly enhanced in combination. These results indicate that gemcitabine plus atorvastatin could serve as a potential novel treatment option for CCA.
Collapse
Affiliation(s)
| | - Kei Moriya
- Department of Gastroenterology and Hepatology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.K.); (K.K.); (S.S.); (S.S.); (N.N.); (T.N.); (T.A.); (A.M.); (H.Y.)
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shizu R, Yoshinari K. Nuclear receptor CAR-mediated liver cancer and its species differences. Expert Opin Drug Metab Toxicol 2020; 16:343-351. [PMID: 32202166 DOI: 10.1080/17425255.2020.1746268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The nuclear receptor CAR plays an important role in the regulation of hepatic responses to xenobiotic exposure, including the induction of hepatocyte proliferation and chemical carcinogenesis. Phenobarbital, a well-known liver cancer promoter, has been found to promote hepatocyte proliferation via CAR activation. However, the molecular mechanisms by which CAR induces liver carcinogenesis remain unknown. In addition, it is believed that CAR-mediated liver carcinogenesis shows a species difference; phenobarbital treatment induces hepatocyte proliferation and liver cancer in rodents but not in humans. However, the mechanisms are also unknown.Areas covered: Several reports indicate that the key oncogenic signaling pathways Wnt/β-catenin and Hippo/YAP are involved in CAR-mediated liver carcinogenesis. We introduce current data about the possible molecular mechanisms involved in CAR-mediated liver carcinogenesis and species differences by focusing on these two signaling pathways.Expert opinion: CAR may activate both the Wnt/β-catenin and Hippo/YAP signaling pathways. The synergistic activation of both signaling pathways seems to be important for CAR-mediated liver cancer development. Low homology between the ligand binding domains of human CAR and rodent CAR might cause species differences in the interactions with proteins that control the Wnt/β-catenin and Hippo/YAP pathways as well as liver cancer induction.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
21
|
Yoshinari K. Role of Nuclear Receptors PXR and CAR in Xenobiotic-Induced Hepatocyte Proliferation and Chemical Carcinogenesis. Biol Pharm Bull 2020; 42:1243-1252. [PMID: 31366862 DOI: 10.1248/bpb.b19-00267] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear receptors pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR) are xenobiotic-responsible transcriptional factors that belong to the same subfamily and are expressed abundantly in the liver. They play crucial roles in various liver functions including xenobiotic disposition and energy metabolism. CAR is also involved in xenobiotic-induced hepatocyte proliferation and hepatocarcinogenesis in rodents. However, there are some open questions on the association between chemical carcinogenesis and these nuclear receptors. These include the molecular mechanism for CAR-mediated hepatocyte proliferation and hepatocarcinogenesis. Another important question is whether PXR is associated with hepatocyte proliferation. We have recently reported a novel and unique function of PXR associated with murine hepatocyte proliferation: PXR activation alone does not induce hepatocyte proliferation but accelerates hepatocyte proliferation induced by various types of stimuli including CAR- or peroxisome proliferator-activated receptor alpha activating compounds, liver injury, and growth factors. We have also reported a role of yes-associated protein (YAP), a transcriptional cofactor controlling organ size and cell growth under the Hippo pathway, in CAR-mediated hepatocyte proliferation in mice. In this review, I will introduce our recent results as well as related studies on the roles of PXR and CAR in xenobiotic-induced hepatocyte proliferation and their molecular mechanisms.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
22
|
Liu Y, Lu T, Zhang C, Xu J, Xue Z, Busuttil RW, Xu N, Xia Q, Kupiec-Weglinski JW, Ji H. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury. J Hepatol 2019; 71:719-730. [PMID: 31201834 PMCID: PMC6773499 DOI: 10.1016/j.jhep.2019.05.029] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury (IRI) is a major complication of hemorrhagic shock, liver resection and transplantation. YAP, a key downstream effector of the Hippo pathway, is essential for determining cell fate and maintaining homeostasis in the liver. We aimed to elucidate its role in IRI. METHODS The role of YAP/Hippo signaling was systematically studied in biopsy specimens from 60 patients after orthotopic liver transplantation (OLT), and in a mouse model of liver warm IRI. Human biopsy specimens were collected after 2-10 h of cold storage and 3 h post-reperfusion, before being screened by western blot. In the mouse model, the role of YAP was probed by activating or inhibiting YAP prior to ischemia-reperfusion. RESULTS In human biopsies, high post-OLT YAP expression was correlated with well-preserved histology and improved hepatocellular function at postoperative day 1-7. In mice, the ischemia insult (90 min) triggered intrinsic hepatic YAP expression, which peaked at 1-6 h of reperfusion. Activation of YAP protected the liver against IR-stress, by promoting regenerative and anti-oxidative gene induction, while diminishing oxidative stress, necrosis/apoptosis and the innate inflammatory response. Inhibition of YAP aggravated hepatic IRI and suppressed repair/anti-oxidative genes. In mouse hepatocyte cultures, activating YAP prevented hypoxia-reoxygenation induced stress. Interestingly, YAP activation suppressed extracellular matrix synthesis and diminished hepatic stellate cell (HSC) activation, whereas YAP inhibition significantly delayed hepatic repair, potentiated HSC activation, and enhanced liver fibrosis at 7 days post-IRI. Notably, YAP activation failed to protect Nrf2-deficient livers against IR-mediated damage, leading to extensive fibrosis. CONCLUSION Our novel findings document the crucial role of YAP in IR-mediated hepatocellular damage and liver fibrogenesis, providing evidence of a potential therapeutic target for the management of sterile liver inflammation in transplant recipients. LAY SUMMARY In the clinical arm, graft YAP expression negatively correlated with liver function and tissue damage after human liver transplantation. YAP activation attenuated hepatocellular oxidative stress and diminished the innate immune response in mouse livers following ischemia-reperfusion injury. In the mouse model, YAP inhibited hepatic stellate cell activation, and abolished injury-mediated fibrogenesis up to 7 days after the ischemic insult.
Collapse
Affiliation(s)
- Yuan Liu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Liver Surgery, Ren Ji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianfei Lu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Liver Surgery, Ren Ji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Jin Xu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Pancreatic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengze Xue
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Ning Xu
- Department of Liver Surgery, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Abe T, Amaike Y, Shizu R, Takahashi M, Kano M, Hosaka T, Sasaki T, Kodama S, Matsuzawa A, Yoshinari K. Role of YAP Activation in Nuclear Receptor CAR-Mediated Proliferation of Mouse Hepatocytes. Toxicol Sci 2019; 165:408-419. [PMID: 29893953 DOI: 10.1093/toxsci/kfy149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Constitutive androstane receptor (CAR) is a xenobiotic-responsive nuclear receptor that is highly expressed in the liver. CAR activation induces hepatocyte proliferation and hepatocarcinogenesis in rodents, but the mechanisms remain unclear. In this study, we investigated the association of CAR-dependent cell proliferation with Yes-associated protein (YAP), which is a transcriptional cofactor controlling organ size and cell growth through the interaction with various transcriptional factors including TEA domain family member (TEAD). In mouse livers, 1,4-bis-(2-[3,5-dichloropyridyloxy])benzene (TCPOBOP) (a mouse CAR [mCAR] activator) treatment increased the nuclear YAP accumulation and mRNA levels of YAP target genes as well as cell-cycle related genes along with liver hypertrophy and verteporfin (an inhibitor of YAP/TEAD interaction) cotreatment tended to attenuate them. Furthermore, in cell-based reporter gene assays, CAR activation enhanced the YAP/TEAD-dependent transcription. To investigate the role of YAP/TEAD activation in the CAR-dependent hepatocyte proliferation, we sought to establish an in vitro system completely reproducing CAR-dependent cell proliferation. Since CAR was only slightly expressed in cultured mouse primary hepatocytes compared with mouse livers and no proliferation was observed after treatment with TCPOBOP, we overexpressed CAR using mCAR expressing adenovirus (Ad-mCAR-V5) in mouse primary hepatocytes. Ad-mCAR-V5 infection and TCPOBOP treatment induced hepatocyte proliferation. Similar results were obtained with immortalized normal mouse hepatocytes as well. In the established in vitro system, CAR-dependent proliferation was strongly inhibited by Yap knockdown and completely abolished by verteporfin treatment. Our present results obtained in in vivo and in vitro experiments suggest that YAP/TEAD activation plays key roles in CAR-dependent proliferation of murine hepatocytes.
Collapse
Affiliation(s)
- Taiki Abe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan.,Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yuto Amaike
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryota Shizu
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Miki Takahashi
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Makoto Kano
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kouichi Yoshinari
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan.,Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
24
|
Abstract
Cancer is a serious health issue in the world due to a large body of cancer-related human deaths, and there is no current treatment available to efficiently treat the disease as the tumor is often diagnosed at a serious stage. Moreover, Cancer cells are often resistant to chemotherapy, radiotherapy, and molecular-targeted therapy. Upon further knowledge of mechanisms of tumorigenesis, aggressiveness, metastasis, and resistance to treatments, it is necessary to detect the disease at an earlier stage and for a better response to therapy. The hippo pathway possesses the unique capacity to lead to tumorigenesis. Mutations and altered expression of its core components (MST1/2, LATS1/2, YAP and TAZ) promote the migration, invasion, malignancy of cancer cells. The biological significance and deregulation of it have received a large body of interests in the past few years. Further understanding of hippo pathway will be responsible for cancer treatment. In this review, we try to discover the function of hippo pathway in different diversity of cancers, and discuss how Hippo pathway contributes to other cellular signaling pathways. Also, we try to describe how microRNAs, circRNAs, and ZNFs regulate hippo pathway in the process of cancer. It is necessary to find new therapy strategies for cancer.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
25
|
Bhushan B, Stoops JW, Mars WM, Orr A, Bowen WC, Paranjpe S, Michalopoulos GK. TCPOBOP-Induced Hepatomegaly and Hepatocyte Proliferation are Attenuated by Combined Disruption of MET and EGFR Signaling. Hepatology 2019; 69:1702-1718. [PMID: 29888801 PMCID: PMC6289897 DOI: 10.1002/hep.30109] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
TCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and epidermal growth factor receptor (EGFR), are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved using MET knockout (KO) mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFR inhibitor (EGFRi)], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP-induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in hepatocyte nuclear factor 4 alpha expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed the vast majority (~40%) of TCPOBOP-dependent genes primarily related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John W Stoops
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shirish Paranjpe
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
YAP and TAZ Heterogeneity in Primary Liver Cancer: An Analysis of Its Prognostic and Diagnostic Role. Int J Mol Sci 2019; 20:ijms20030638. [PMID: 30717258 PMCID: PMC6386931 DOI: 10.3390/ijms20030638] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Primary liver cancer comprises a diverse group of liver tumors. The heterogeneity of these tumors is seen as one of the obstacles to finding an effective therapy. The Hippo pathway, with its downstream transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), has a decisive role in the carcinogenesis of primary liver cancer. Therefore, we examined the expression pattern of YAP and TAZ in 141 patients with hepatocellular carcinoma keratin 19 positive (HCC K19+), hepatocellular carcinoma keratin 19 negative (HCC K19−), combined hepatocellular–cholangiocarcinoma carcinoma (cHCC-CCA), or cholangiocarcinoma (CCA). All cHCC-CCA and CCA patients showed high expression levels for YAP and TAZ, while only some patients of the HCC group were positive. Notably, we found that a histoscore of both markers is useful in the challenging diagnosis of cHCC-CCA. In addition, positivity for YAP and TAZ was observed in the hepatocellular and cholangiocellular components of cHCC-CCA, which suggests a single cell origin in cHCC-CCA. Within the K19− HCC group, our results demonstrate that the expression of YAP is a statistically significant predictor of poor prognosis when observed in the cytoplasm. Nuclear expression of TAZ is an even more specific and independent predictor of poor disease-free survival and overall survival of K19− HCC patients. Our results thus identify different levels of YAP/TAZ expression in various liver cancers that can be used for diagnostics.
Collapse
|
27
|
Kong B, Guo GL. Is This the Time to Reconsider the Names for Xenobiotic Nuclear Receptors? Hepatology 2019; 69:16-18. [PMID: 30113075 DOI: 10.1002/hep.30218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ.,VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ
| |
Collapse
|
28
|
Mattu S, Saliba C, Sulas P, Zavattari P, Perra A, Kowalik MA, Monga SP, Columbano A. High Frequency of β-Catenin Mutations in Mouse Hepatocellular Carcinomas Induced by a Nongenotoxic Constitutive Androstane Receptor Agonist. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2497-2507. [DOI: 10.1016/j.ajpath.2018.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
|
29
|
Serotonin and YAP/VGLL4 Balance Correlated with Progression and Poor Prognosis of Hepatocellular Carcinoma. Sci Rep 2018; 8:9739. [PMID: 29950605 PMCID: PMC6021381 DOI: 10.1038/s41598-018-28075-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
YAP-TEAD complex plays an important role in tumorigenesis. 5-HT is proved to upregulate YAP expression by our previous study and VGLL4 is found to compete with YAP for binding to TEAD in several of cancers. Here, we investigated whether 5-HT could affect progression and prognosis of hepatocellular carcinoma (HCC) patients and regulate YAP/VGLL4 balance. We found that 5-HT and YAP/VGLL4 ratio were higher in HCC patients and closely related with progression and poor prognosis. Furthermore, 5-HT level, YAP/VGLL4 ratio and tumor size were proved as independent risk factors of HCC patients in our study. Based on the independent risk factors, nomogram was established to exactly predict prognosis of HCC patients. Additionally, the study revealed that a higher total point of the nomogram was closely correlated with poorer prognosis. As a result, 5-HT might contribute to the progression and poor prognosis of hepatocellular carcinoma via regulating YAP/VGLL4 balance. Therefore, the established nomogram based on the independent risk factors may become an important part of HCC prediction system and YAP/VGLL4 balance may be a potential therapeutic target in future.
Collapse
|
30
|
|
31
|
Zhang S, Wang J, Wang H, Fan L, Fan B, Zeng B, Tao J, Li X, Che L, Cigliano A, Ribback S, Dombrowski F, Chen B, Cong W, Wei L, Calvisi DF, Chen X. Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:995-1006. [PMID: 29378174 DOI: 10.1016/j.ajpath.2017.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 02/05/2023]
Abstract
Primary liver cancer consists mainly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). A subset of human HCCs expresses a ICC-like gene signature and is classified as ICC-like HCC. The Hippo pathway is a critical regulator of normal and malignant liver development. However, the precise function(s) of the Hippo cascade along liver carcinogenesis remain to be fully delineated. The role of the Hippo pathway in a murine mixed HCC/ICC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated. The authors demonstrated the inactivation of Hippo in AKT/Ras liver tumors leading to nuclear localization of Yap and TAZ. Coexpression of AKT/Ras with Lats2, which activates Hippo, or the dominant negative form of TEAD2 (dnTEAD2), which blocks Yap/TAZ activity, resulted in delayed hepatocarcinogenesis and elimination of ICC-like lesions in the liver. Mechanistically, Notch2 expression was found to be down-regulated by the Hippo pathway in liver tumors. Overexpression of Lats2 or dnTEAD2 in human HCC cell lines inhibited their growth and led to the decreased expression of ICC-like markers, as well as Notch2 expression. Altogether, this study supports the key role of the Hippo cascade in regulating the differentiation status of liver tumors.
Collapse
Affiliation(s)
- Shanshan Zhang
- Tumor Immunology and Gene Therapy Center, Second Military Medical University, Shanghai, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Fan
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Biao Fan
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Billy Zeng
- Department of Pediatrics, University of California, San Francisco, California; Institute for Computational Health Sciences, University of California, San Francisco, California
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Xiaolei Li
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Cigliano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Bin Chen
- Department of Pediatrics, University of California, San Francisco, California; Institute for Computational Health Sciences, University of California, San Francisco, California
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Second Military Medical University, Shanghai, China
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.
| |
Collapse
|
32
|
A Large Set of miRNAs Is Dysregulated from the Earliest Steps of Human Hepatocellular Carcinoma Development. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:785-794. [PMID: 29248455 DOI: 10.1016/j.ajpath.2017.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023]
Abstract
Hepatocellular carcinoma (HCC) typically results from a stepwise process characterized by the development of premalignant lesions, such as low- or high-grade dysplastic nodules (LGDNs and HGDNs, respectively), in a cirrhotic setting. MicroRNAs (miRNAs) are small noncoding RNAs involved in post-transcriptional regulation of gene expression that can act as oncogenes or tumor suppressors. Whether and which miRNAs are involved in the early stages of HCC development remains elusive. Here, small-RNA sequencing was applied to profile miRNA expression in 55 samples (cirrhotic nodules; CNs), LGDNs, HGDNs, early HCCs, and small progressed HCCs, obtained from 17 patients bearing HCCs of different etiologies. An miRNA expression signature of 62 miRNAs distinguishing small progressed HCCs from matched CNs was identified. Interestingly, 52 of these miRNAs discriminated CNs from LGDNs/HGDNs, regardless of etiology, and remained modified along the tumorigenic process. Functional analysis of the predicted mRNA targets of deregulated miRNAs identified common modifications between the early and late stages of HCC development likely involved in the stepwise process of HCC development. Our results demonstrate that miRNA deregulation happens very early in HCC in humans, implying their crucial role in the tumorigenic process. The identification of miRNAs discriminating CNs from neoplastic nodules may have relevant translational implications in early diagnosis.
Collapse
|
33
|
Ghiso E, Migliore C, Ciciriello V, Morando E, Petrelli A, Corso S, De Luca E, Gatti G, Volante M, Giordano S. YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC. Neoplasia 2017; 19:1012-1021. [PMID: 29136529 PMCID: PMC5683041 DOI: 10.1016/j.neo.2017.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023] Open
Abstract
The Yes-associated protein (YAP) is a transcriptional co-activator upregulating genes that promote cell growth and inhibit apoptosis. The main dysregulation of the Hippo pathway in tumors is due to YAP overexpression, promoting epithelial to mesenchymal transition, cell transformation, and increased metastatic ability. Moreover, it has recently been shown that YAP plays a role in sustaining resistance to targeted therapies as well. In our work, we evaluated the role of YAP in acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in lung cancer. In EGFR-addicted lung cancer cell lines (HCC4006 and HCC827) rendered resistant to several EGFR inhibitors, we observed that resistance was associated to YAP activation. Indeed, YAP silencing impaired the maintenance of resistance, while YAP overexpression decreased the responsiveness to EGFR inhibitors in sensitive parental cells. In our models, we identified the AXL tyrosine kinase receptor as the main YAP downstream effector responsible for sustaining YAP-driven resistance: in fact, AXL expression was YAP dependent, and pharmacological or genetic AXL inhibition restored the sensitivity of resistant cells to the anti-EGFR drugs. Notably, YAP overactivation and AXL overexpression were identified in a lung cancer patient upon acquisition of resistance to EGFR TKIs, highlighting the clinical relevance of our in vitro results. The reported data demonstrate that YAP and its downstream target AXL play a crucial role in resistance to EGFR TKIs and suggest that a combined inhibition of EGFR and the YAP/AXL axis could be a good therapeutic option in selected NSCLC patients.
Collapse
Affiliation(s)
- Elena Ghiso
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy.
| | - Cristina Migliore
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Vito Ciciriello
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Elena Morando
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Annalisa Petrelli
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Simona Corso
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Emmanuele De Luca
- Thoracic Oncology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Gaia Gatti
- Pathology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Marco Volante
- University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy; Pathology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy.
| |
Collapse
|
34
|
Peng Y, Zhao Y, Ye T, Zhang Y, Wu Z, Xia Y, Zhang Y. Niu-Huang-Shen suppresses hepatocellular carcinoma cell growth and metastasis by regulating Yap1 expression. Exp Ther Med 2017; 14:5459-5463. [PMID: 29285076 PMCID: PMC5740766 DOI: 10.3892/etm.2017.5247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 07/14/2017] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers types. Niu-Huang-Shen (NHS), a Chinese medicine, has been reported to exert antipyretic, anti-inflammatory and vasodilatation effects. However, whether NHS has inhibitory effects on HCC cell phenotypes has remained elusive. In the present study, Cell Counting Kit-8, colony formation, fluorescence-activated cell sorting and Transwell assays were used to evaluate the effect of NHS on cell proliferation, migration and invasion. The results indicated that NHS suppressed cell proliferation and invasion, inhibited cell apoptosis, and induced cell cycle arrest. In addition, NHS significantly suppressed the mRNA and protein expression of Yes-associated protein (YAP). It was concluded that NHS downregulated YAP expression and inhibited the Hippo signaling pathway as well as HCC cell growth and invasion. NHS may be a novel potential therapeutic for HCC patients.
Collapse
Affiliation(s)
- Yanfang Peng
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yingqian Zhao
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Taisheng Ye
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yabing Zhang
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhaoyan Wu
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yukun Xia
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yingwen Zhang
- Department of Traditional Chinese Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
35
|
Pei Y, Sun X, Guo X, Yin H, Wang L, Tian F, Jing H, Liang X, Xu J, Shi P. FGF8 promotes cell proliferation and resistance to EGFR inhibitors via upregulation of EGFR in human hepatocellular carcinoma cells. Oncol Rep 2017; 38:2205-2210. [PMID: 28791365 DOI: 10.3892/or.2017.5887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), a member of the fibroblast growth factor (FGF) family, is upregulated in several human cancers, including HCC (HCC). Previous studies have demonstrated that FGF8 increased cell growth and invasion of tumor cells. In the present study we investigated whether FGF8 is involved in the cell proliferation and resistance to several drugs in human HCC cells. We stably overexpressed FGF8 by lentiviral transfection. In addition, we also added recombinant FGF8 instead of stably overexpressing FGF8 in human HCC cells. Stable overexpression of FGF8 or exogenous recombinant FGF8 resulted in significantly enhanced cell proliferation in human HCC cells. With the use of CellTiter-Glo assay for the determination of cell viability, we found that FGF8 increased the resistance to epidermal growth factor receptor (EGFR) inhibitors in human HCC cells. Additionally, the expression of EGFR was also upregulated by stably overexpressing FGF8 or exogenous recombinant FGF8. Yes-associated protein 1 (YAP1) was reported to upregulate the expression of EGFR. Moreover, we also found that FGF8 increased the expression of YAP1 and knockdown of YAP1 eliminated the upregulation of EGFR and the resistance to EGFR inhibition induced by FGF8. Our study provides evidence that FGF8 plays an important role in the resistance to EGFR inhibition of human HCC cells.
Collapse
Affiliation(s)
- Yuanmin Pei
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xueling Sun
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiwei Guo
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huashan Yin
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Le Wang
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fugu Tian
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hongxi Jing
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaobo Liang
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jun Xu
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengcheng Shi
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
36
|
Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2017. [PMID: 28621802 DOI: 10.1002/med.21455] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liver cancer is the second leading cause of cancer-related deaths, and hepatocellular carcinoma (HCC) is the most common type. Therefore, molecular targets are urgently required for the early detection of HCC and the development of novel therapeutic approaches. Glypican-3 (GPC3), an oncofetal proteoglycan anchored to the cell membrane, is normally detected in the fetal liver but not in the healthy adult liver. However, in HCC patients, GPC3 is overexpressed at both the gene and protein levels, and its expression predicts a poor prognosis. Mechanistic studies have revealed that GPC3 functions in HCC progression by binding to molecules such as Wnt signaling proteins and growth factors. Moreover, GPC3 has been used as a target for molecular imaging and therapeutic intervention in HCC. To date, GPC3-targeted magnetic resonance imaging, positron emission tomography, and near-infrared imaging have been investigated for early HCC detection, and various immunotherapeutic protocols targeting GPC3 have been developed, including the use of humanized anti-GPC3 cytotoxic antibodies, treatment with peptide/DNA vaccines, immunotoxin therapies, and genetic therapies. In this review, we summarize the current knowledge regarding the structure, function, and biology of GPC3 with a focus on its clinical potential as a diagnostic molecule and a therapeutic target in HCC immunotherapy.
Collapse
Affiliation(s)
- Fubo Zhou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
37
|
Sato Y, Katoh Y, Matsumoto M, Sato M, Ebina M, Itoh-Nakadai A, Funayama R, Nakayama K, Unno M, Igarashi K. Regulatory signatures of liver regeneration distilled by integrative analysis of mRNA, histone methylation, and proteomics. J Biol Chem 2017; 292:8019-8037. [PMID: 28302717 DOI: 10.1074/jbc.m116.774547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Indexed: 12/30/2022] Open
Abstract
The capacity of the liver to regenerate is likely to be encoded as a plasticity of molecular networks within the liver. By applying a combination of comprehensive analyses of the epigenome, transcriptome, and proteome, we herein depict the molecular landscape of liver regeneration. We demonstrated that histone H3 Lys-4 was trimethylated at the promoter regions of many loci, among which only a fraction, including cell-cycle-related genes, were transcriptionally up-regulated. A cistrome analysis guided by the histone methylation patterns and the transcriptome identified FOXM1 as the key transcription factor promoting liver regeneration, which was confirmed in vitro using a hepatocarcinoma cell line. The promoter regions of cell-cycle-related genes and Foxm1 acquired higher levels of trimethylated histone H3 Lys-4, suggesting that epigenetic regulations of these key regulatory genes define quiescence and regeneration of the liver cells. A quantitative proteome analysis of the regenerating liver revealed that conditional protein degradation also mediated regeneration-specific protein expression. These sets of informational resources should be useful for further investigations of liver regeneration.
Collapse
Affiliation(s)
- Yoshihiro Sato
- From the Department of Biochemistry.,Department of Gastroenterological Surgery
| | - Yasutake Katoh
- From the Department of Biochemistry.,Center for Regulatory Epigenome and Diseases, and
| | | | - Masaki Sato
- From the Department of Biochemistry.,Department of Gastroenterological Surgery
| | - Masayuki Ebina
- From the Department of Biochemistry.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | | | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, and.,Department of Cell Proliferation, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Sendai 980-8575, Japan and
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, and.,Department of Cell Proliferation, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Sendai 980-8575, Japan and
| | | | - Kazuhiko Igarashi
- From the Department of Biochemistry, .,Center for Regulatory Epigenome and Diseases, and.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
38
|
Kazantseva YA, Pustylnyak YA, Pustylnyak VO. Role of Nuclear Constitutive Androstane Receptor in Regulation of Hepatocyte Proliferation and Hepatocarcinogenesis. BIOCHEMISTRY (MOSCOW) 2017; 81:338-47. [PMID: 27293091 DOI: 10.1134/s0006297916040040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of the constitutive androstane receptor (CAR) in hepatocytes occurs as a body adaptation in response to a number of external influences, and its functional activity is primarily related to induction of enzymes detoxifying xenobiotics. However, special attention was recently given to CAR due to the fact that its key role becomes unveiled in various physiological and pathophysiological processes occurring in the liver: gluconeogenesis, metabolism of fatty acids and bilirubin, hormonal regulation, proliferation of hepatocytes, and hepatocarcinogenesis. Here we review the main pathways and mechanisms that elevate hepatocyte proliferative activity related to CAR and whose disturbance may be a pivotal factor in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Y A Kazantseva
- Institute of Molecular Biology and Biophysics, Novosibirsk, 630117, Russia
| | | | | |
Collapse
|
39
|
A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun 2016; 7:13781. [PMID: 28000790 PMCID: PMC5187498 DOI: 10.1038/ncomms13781] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, but its molecular heterogeneity hampers the design of targeted therapies. Currently, the only therapeutic option for advanced HCC is Sorafenib, an inhibitor whose targets include RAF. Unexpectedly, RAF1 expression is reduced in human HCC samples. Modelling RAF1 downregulation by RNAi increases the proliferation of human HCC lines in xenografts and in culture; furthermore, RAF1 ablation promotes chemical hepatocarcinogenesis and the proliferation of cultured (pre)malignant mouse hepatocytes. The phenotypes depend on increased YAP1 expression and STAT3 activation, observed in cultured RAF1-deficient cells, in HCC xenografts, and in autochthonous liver tumours. Thus RAF1, although essential for the development of skin and lung tumours, is a negative regulator of hepatocarcinogenesis. This unexpected finding highlights the contribution of the cellular/tissue environment in determining the function of a protein, and underscores the importance of understanding the molecular context of a disease to inform therapy design.
The kinase RAF1 usually exerts pro-tumorigenic functions promoting proliferation in RAS-driven cancers. Here, the authors using a mouse model of HCC and clinical data describe an unexpected oncosuppressor role of RAF1 in hepatocarcinoma development linked to a gp130-dependent Stat3 activation and YAP1 regulation.
Collapse
|
40
|
de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol 2016; 98:2-10. [DOI: 10.1016/j.fct.2016.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 02/09/2023]
|
41
|
Wu Y, Zhang J, Zhang H, Zhai Y. Hepatitis B virus X protein mediates yes-associated protein 1 upregulation in hepatocellular carcinoma. Oncol Lett 2016; 12:1971-1974. [PMID: 27602122 DOI: 10.3892/ol.2016.4885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is implicated in the development of hepatocellular carcinoma (HCC). Yes-associated protein 1 (YAP) is an important proto-oncogene, which is a downstream effector molecule in the Hippo signaling pathway. The aim of the present study was to investigate the association between HBx expression in HCC samples and YAP expression in the Hippo pathway. A total of 20 pathologically confirmed HCC samples, 20 corresponding adjacent non-tumor liver tissues and 5 normal liver tissue samples were collected. The expression of HBx and YAP in the tissues was analyzed by quantitative reverse transcription-polymerase chain reaction and western blot analysis. The intensity and location of YAP expression were analyzed by immunohistochemistry. YAP mRNA and protein expression levels in HCC samples infected with HBV were significantly higher than those of normal liver tissues. Furthermore, YAP expression was positively correlated with HBx expression in HBV-positive HCC samples. Immunohistochemical staining revealed that YAP was predominantly expressed in the nuclei in HBV-positive HCC tissues. YAP expression was significantly decreased in the normal liver tissue and corresponding adjacent liver tissue when compared with the HCC tissues and by contrast to HCC tissues, YAP was predominantly located in the cytoplasm. In conclusion, these results indicate that the YAP gene is a key driver of HBx-induced liver cancer. Therefore, YAP may present a novel target in the treatment of HBV-associated HCC.
Collapse
Affiliation(s)
- Yuzhuo Wu
- Department of Infectious Diseases, Nanyang City Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huaihong Zhang
- Department of Infectious Diseases, Nanyang City Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Yufeng Zhai
- Department of Infectious Diseases, Nanyang City Central Hospital, Nanyang, Henan 473000, P.R. China
| |
Collapse
|
42
|
Abstract
The Hippo pathway is a signalling cascade conserved from Drosophila melanogaster to mammals. The mammalian core kinase components comprise MST1 and MST2, SAV1, LATS1 and LATS2 and MOB1A and MOB1B. The transcriptional co-activators YAP1 and TAZ are the downstream effectors of the Hippo pathway and regulate target gene expression. Hippo signalling has crucial roles in the control of organ size, tissue homeostasis and regeneration, and dysregulation of the Hippo pathway can lead to uncontrolled cell growth and malignant transformation. Mammalian intestine consists of a stem cell compartment as well as differentiated cells, and its ability to regenerate rapidly after injury makes it an excellent model system to study tissue homeostasis, regeneration and tumorigenesis. Several studies have established the important role of the Hippo pathway in these processes. In addition, crosstalk between Hippo and other signalling pathways provides tight, yet versatile, regulation of tissue homeostasis. In this Review, we summarize studies on the role of the Hippo pathway in the intestine on these physiological processes and the underlying mechanisms responsible, and discuss future research directions and potential therapeutic strategies targeting Hippo signalling in intestinal disease.
Collapse
|
43
|
Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells. Stem Cells Int 2016; 2016:4326194. [PMID: 27274734 PMCID: PMC4870370 DOI: 10.1155/2016/4326194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Collapse
|
44
|
Mattu S, Fornari F, Quagliata L, Perra A, Angioni MM, Petrelli A, Menegon S, Morandi A, Chiarugi P, Ledda-Columbano GM, Gramantieri L, Terracciano L, Giordano S, Columbano A. The metabolic gene HAO2 is downregulated in hepatocellular carcinoma and predicts metastasis and poor survival. J Hepatol 2016; 64:891-8. [PMID: 26658681 DOI: 10.1016/j.jhep.2015.11.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS l-2-Hydroxy acid oxidases are flavin mononucleotide-dependent peroxisomal enzymes, responsible for the oxidation of l-2-hydroxy acids to ketoacids, resulting in the formation of hydrogen peroxide. We investigated the role of HAO2, a member of this family, in rat, mouse and human hepatocarcinogenesis. METHODS We evaluated Hao2 expression by qRT-PCR in the following rodent models of hepatocarcinogenesis: the Resistant-Hepatocyte, the CMD and the chronic DENA rat models, and the TCPOBOP/DENA and TCPOBOP only mouse models. Microarray and qRT-PCR analyses were performed on two cohorts of human hepatocellular carcinoma (HCC) patients. Rat HCC cells were transduced by a Hao2 encoding lentiviral vector and grafted in mice. RESULTS Downregulation of Hao2 was observed in all investigated rodent models of hepatocarcinogenesis. Interestingly, Hao2 mRNA levels were also profoundly downregulated in early preneoplastic lesions. Moreover, HAO2 mRNA levels were strongly downregulated in two distinct series of human HCCs, when compared to both normal and cirrhotic peri-tumoral liver. HAO2 levels were inversely correlated with grading, overall survival and metastatic ability. Finally, exogenous expression of Hao2 in rat cells impaired their tumorigenic ability. CONCLUSION Our work identifies for the first time the oncosuppressive role of the metabolic gene Hao2. Indeed, its expression is severely decreased in HCC of different species and etiology, and its reintroduction in HCC cells profoundly impairs tumorigenesis. We also demonstrate that dysregulation of HAO2 is a very early event in the development of HCC and it may represent a useful diagnostic and prognostic marker for human HCC.
Collapse
Affiliation(s)
- Sandra Mattu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Luca Quagliata
- Institute of Pathology, University Hospital, Basel, Switzerland
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Annalisa Petrelli
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo (Torino), Italy
| | - Silvia Menegon
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo (Torino), Italy
| | - Andrea Morandi
- Department of Experimental and Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Paola Chiarugi
- Department of Experimental and Biomedical Sciences, University of Firenze, Firenze, Italy
| | | | | | | | - Silvia Giordano
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo (Torino), Italy.
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
45
|
Ruan T, He X, Yu J, Hang Z. MicroRNA-186 targets Yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncol Lett 2016; 11:2941-2945. [PMID: 27073580 DOI: 10.3892/ol.2016.4312] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), is one of leading causes of cancer-related mortality worldwide. Upregulation of the evolutionary conserved Hippo signaling pathway has been observed in HCC patients, and Yes-associated protein 1 (YAP1) has been reported to play a key role in HCC tumorigenesis. microRNAs (miRNAs) are a family of small non-coding RNAs, usually 21-25 nucleotides in length, and are essential in the regulation of gene expression. Abnormal miRNA expression has been implicated in the initiation and progression of numerous forms of cancers, including liver cancer. Here, we report the identification of a novel miRNA, miR-186, and its functions as an HCC tumor suppressor. We observed that miR-186 was downregulated in several HCC cell lines, and that it directly targets YAP1 mRNA. Overexpression of miR-186 in HCC cells significantly downregulates YAP1 mRNA and protein levels, leading to downregulation of the Hippo signaling pathway, which in turn severely inhibits HCC cell migration, invasion and proliferation. Our study is the first to report the direct involvement of miR-186 in downregulating YAP1 and, more significantly, inhibiting HCC tumorigenesis, and supports the role miR-186 as a potential therapeutic target in treating liver cancer.
Collapse
Affiliation(s)
- Tingyan Ruan
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Xiaoting He
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jun Yu
- Department of Thoracic Surgery, The Second People's Hospital of Wuxi, Wuxi, Jiangsu 214002, P.R. China
| | - Zhiqiang Hang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
46
|
Marti P, Stein C, Blumer T, Abraham Y, Dill MT, Pikiolek M, Orsini V, Jurisic G, Megel P, Makowska Z, Agarinis C, Tornillo L, Bouwmeester T, Ruffner H, Bauer A, Parker CN, Schmelzle T, Terracciano LM, Heim MH, Tchorz JS. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 2015; 62:1497-510. [PMID: 26173433 DOI: 10.1002/hep.27992] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/13/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED The Yes-associated protein (YAP)/Hippo pathway has been implicated in tissue development, regeneration, and tumorigenesis. However, its role in cholangiocarcinoma (CC) is not established. We show that YAP activation is a common feature in CC patient biopsies and human CC cell lines. Using microarray expression profiling of CC cells with overexpressed or down-regulated YAP, we show that YAP regulates genes involved in proliferation, apoptosis, and angiogenesis. YAP activity promotes CC growth in vitro and in vivo by functionally interacting with TEAD transcription factors (TEADs). YAP activity together with TEADs prevents apoptosis induced by cytotoxic drugs, whereas YAP knockdown sensitizes CC cells to drug-induced apoptosis. We further show that the proangiogenic microfibrillar-associated protein 5 (MFAP5) is a direct transcriptional target of YAP/TEAD in CC cells and that secreted MFAP5 promotes tube formation of human microvascular endothelial cells. High YAP activity in human CC xenografts and clinical samples correlates with increased MFAP5 expression and CD31(+) vasculature. CONCLUSIONS These findings establish YAP as a key regulator of proliferation and antiapoptotic mechanisms in CC and provide first evidence that YAP promotes angiogenesis by regulating the expression of secreted proangiogenic proteins.
Collapse
Affiliation(s)
- Patricia Marti
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Claudia Stein
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Tanja Blumer
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Yann Abraham
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Michael T Dill
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Monika Pikiolek
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Vanessa Orsini
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Giorgia Jurisic
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Philippe Megel
- Novartis Institutes for Biomedical Research, Oncology, Novartis Pharma AG, Basel, Switzerland
| | - Zuzanna Makowska
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Claudia Agarinis
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Luigi Tornillo
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Tewis Bouwmeester
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Heinz Ruffner
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Bauer
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Christian N Parker
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| | - Tobias Schmelzle
- Novartis Institutes for Biomedical Research, Oncology, Novartis Pharma AG, Basel, Switzerland
| | | | - Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for Biomedical Research, Developmental and Molecular Pathways, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
47
|
Wu J, Lei L, Gu D, Liu H, Wang S. CIZ1 is upregulated in hepatocellular carcinoma and promotes the growth and migration of the cancer cells. Tumour Biol 2015; 37:4735-42. [PMID: 26515335 DOI: 10.1007/s13277-015-4309-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, and the prognosis for the HCC remains very poor. Although dys-regulation of CIZ1 (Cip1 interacting zinc finger protein 1) has been observed in various cancer types, its expression and functions in HCC remain unknown. In this study, the mRNA level of CIZ1 in the HCC tissues were examined using real-time polymerase chain reaction, and the effects of CIZ1 on the growth, migration, and metastasis of HCC cells were examined by crystal violet assay, Boyden chamber assay, and in vivo image system, respectively. In addition, the molecular mechanisms were investigated by luciferase assay. Upregulation of CIZ1 in the clinical HCC samples was observed. Forced expression of CIZ1 promoted the growth and migration of HCC cells, while knocking down the expression of CIZ1 inhibited the growth, migration, and metastasis of HCC cells. Molecular mechanism studies revealed that CIZ1 activated YAP/TAZ signaling in HCC cells. Taken together, our study demonstrated the oncogenic roles of CIZ1 in HCC cells and CIZ1 might be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Jinsheng Wu
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Liu Lei
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Dianhua Gu
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Shaochuang Wang
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China.
| |
Collapse
|
48
|
Nguyen Q, Anders RA, Alpini G, Bai H. Yes-associated protein in the liver: Regulation of hepatic development, repair, cell fate determination and tumorigenesis. Dig Liver Dis 2015; 47:826-35. [PMID: 26093945 DOI: 10.1016/j.dld.2015.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
The liver is a vital organ that plays a major role in many bodily functions from protein production and blood clotting to cholesterol, glucose and iron metabolism and nutrition storage. Maintenance of liver homeostasis is critical for these essential bodily functions and disruption of liver homeostasis causes various kinds of liver diseases, some of which have high mortality rate. Recent research advances of the Hippo signalling pathway have revealed its nuclear effector, Yes-associated protein, as an important regulator of liver development, repair, cell fate determination and tumorigenesis. Therefore, a precise control of Yes-associated protein activity is critical for the maintenance of liver homeostasis. This review is going to summarize the discoveries on how the manipulation of Yes-associated protein activity affects liver homeostasis and induces liver diseases and the regulatory mechanisms that determine the Yes-associated protein activity in the liver. Finally, we will discuss the potential of targeting Yes-associated protein as therapeutic strategies in liver diseases.
Collapse
Affiliation(s)
- Quy Nguyen
- Research, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Digestive Diseases Research Center, BaylorScott&White Healthcare, Temple, TX, United States; Department of Internal Medicine and Medical Physiology, Texas A&M Health Science Center, Temple, TX, United States
| | - Haibo Bai
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Digestive Diseases Research Center, BaylorScott&White Healthcare, Temple, TX, United States; Department of Internal Medicine and Medical Physiology, Texas A&M Health Science Center, Temple, TX, United States.
| |
Collapse
|
49
|
Low-level expression of microRNA-375 predicts poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 37:2145-52. [PMID: 26349912 DOI: 10.1007/s13277-015-3841-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/24/2015] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs are predicted to play fundamental roles in the tumorigenesis of hepatocellular carcinoma (HCC). MiR-375 is frequently downregulated in HCC and acts as a tumor suppressor by targeting multiple oncogenes. The objective of this study was to evaluate miR-375 expression and its relevance to the prognosis of HCC. MiR-375 expression was measured in cancerous tissues using qRT-PCR and dichotomized based on a median cutoff. The association between miR-375 expression and clinicopathological parameters and prognosis was subsequently determined. Expression levels of miR-375 were detected in a cohort of 38 HCC patients who underwent curative surgery. No significant correlations were observed between miR-375 expression and clinicopathological parameters, such as gender, age, performance status, preoperative serum AFP level, histological grade, HBV-DNA copy number, ascites, cirrhosis, tumor size, number of tumor nodules, and macrovascular invasion. However, miR-375 expression differs across CLIP scores significantly (p < 0.05). A trend toward poorer disease-free survival (DFS) was observed in patients with lower miR-375 expression compared to those with higher miR-375 expression (p = 0.307). Multivariate analysis demonstrated that low miR-375 expression was an independent prognostic predictor for progression (p = 0.032, risk ratio 3.273). Subgroup analysis revealed that low expression of miR-375 was significantly associated with adverse DFS in patients with poorly differentiated histology, higher serum AFP level (≥400 ng/ml), and advanced tumor stage (CLIP score 1∼3) (p = 0.017, 0.009, and 0.024, respectively). Our study demonstrates that miR-375 expression is significantly correlated with DFS and may be a potential prognostic biomarker of disease progression in HCC.
Collapse
|
50
|
Lei CJ, Li L, Gao X, Zhang J, Pan QY, Long HC, Chen CZ, Ren DF, Zheng G. Hsa-miR-132 inhibits proliferation of hepatic carcinoma cells by targeting YAP. Cell Biochem Funct 2015; 33:326-33. [PMID: 26096363 DOI: 10.1002/cbf.3119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 01/22/2023]
Abstract
MicroRNAs and Yes-associated protein (YAP) play an important role in the occurrence and development of hepatic carcinomas. However, the interaction between microRNAs and YAP was seldom elucidated. In this study, we showed that miR-132 could target YAP gene by using dual-luciferase reporter system. Further quantitative polymerase chain reaction analysis and western blotting showed that miR-132 could significantly reduce the expression of YAP at mRNA and protein levels. Results of annexin V-fluorescein isothiocyanate, 5-ethynyl-2'-deoxyuridine staining and transwell assays showed that miR-132 significantly promoted the cell apoptosis and effectively inhibited the proliferation and invasion of hepatoma cells. These results indicated that miR-132 could inhibit the growth of hepatoma cells by targeting YAP gene and reducing its expression level. Taken together, results from this study would help us to understand the mechanisms for occurrence and development of hepatic carcinoma and provide new targets for diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Chang-Jiang Lei
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan, China
| | - Lei Li
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan, China
| | - Xia Gao
- Oncology Department, Fifth Hospital of Wuhan, Wuhan, China
| | - Jun Zhang
- Laboratory Medicine, Fifth Hospital of Wuhan, Wuhan, China
| | - Qing-Yun Pan
- Hanyang Affiliated Hospital of Wuhan University of Science & Technology, Wuhan, China
| | - Hao-Cheng Long
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan, China
| | - Chun-Zhou Chen
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan, China
| | - De-Fa Ren
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan, China
| | - Gang Zheng
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan, China
| |
Collapse
|