1
|
Ding X, Jin S, Tian W, Zhang Y, Xu L, Zhang T, Chen Z, Niu F, Li Q. ROLE OF CASPASE-1/CASPASE-11-HMGB1-RAGE/TLR4 SIGNALING IN THE EXACERBATION OF EXTRAPULMONARY SEPSIS-INDUCED LUNG INJURY BY MECHANICAL VENTILATION. Shock 2025; 63:299-311. [PMID: 39228020 DOI: 10.1097/shk.0000000000002471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: Mechanical ventilation (MV) is a clinically important measure for respiratory support in critically ill patients. Although moderate tidal volume MV does not cause lung injury, it can further exacerbate lung injury in a pathological state such as sepsis. This pathological process is known as the "two-hit" theory, whereby an initial lung injury (e.g., infection, trauma, or sepsis) triggers an inflammatory response that activates immune cells, presenting the lung tissue in a fragile state and rendering it more susceptible to subsequent injury. The second hit occurs when MV is applied to lung tissue in a fragile state, and it is noteworthy that this MV is harmless to healthy lung tissue, further aggravating preexisting lung injury through unknown mechanisms. This interaction between initial injury and subsequent MV develops a malignant cycle significantly exacerbating lung injury and severely hampering patient prognosis. The two-hit theory is critical to understanding the complicated mechanisms of ventilator-associated lung injury and facilitates the subsequent development of targeted therapeutic strategies. Methods and Results: The cecum ligation and perforation mice model was used to mimic clinical sepsis patients. After 12 h, the mice were mechanically ventilated for 2 to 6 h. MV by itself did not lead to HMGB1 release, but significantly strengthened HMGB1 in plasma and cytoplasm of lung tissue in septic mice. Plasma and lung tissue activation of cytokines and chemokines, mitogen-activated protein kinase signaling pathway, neutrophil recruitment, and acute lung injury were progressively decreased in LysM HMGB1 -/- (Hmgb1 deletion in myeloid cells) and iHMGB1 -/- mice (inducible HMGB1 -/- mouse strain where the Hmgb1 gene was globally deleted after tamoxifen treatment). Compared with C57BL/6 mice, although EC-HMGB1 -/- (Hmgb1 deletion in endothelial cells) mice did not have lower levels of inflammation, neutrophil recruitment and lung injury were reduced. Compared with LysM HMGB1 -/- mice, EC-HMGB1 -/- mice had higher levels of inflammation but significantly lower neutrophil recruitment and lung injury. Overall, iHMGB1 -/- mice had the lowest levels of all the above indicators. The level of inflammation, neutrophil recruitment, and the degree of lung injury were decreased in RAGE -/- mice, and even the above indices were further decreased in TLR4/RAGE -/- mice. Levels of inflammation and neutrophil recruitment were decreased in caspase-11 -/- and caspase-1/11 -/- mice, but there was no statistical difference between these two gene knockout mice. Conclusions: These data show for the first time that the caspase-1/caspase-11-HMGB1-TLR4/RAGE signaling pathway plays a key role in mice model of sepsis-induced lung injury exacerbated by MV. Different species of HMGB1 knockout mice have different lung-protective mechanisms in the two-hit model, and location is the key to function. Specifically, LysM HMGB1 -/- mice due to the deletion of HMGB1 in myeloid cells resulted in a pulmonary-protective mechanism that was associated with a downregulation of the inflammatory response. EC-HMGB1 -/- mice are deficient in HMGB1 owing to endothelial cells, resulting in a distinct pulmonary-protective mechanism independent of the inflammatory response and more relevant to the improvement of alveolar-capillary permeability. iHMGB1 -/- mice, which are systemically HMGB1-deficient, share both of these lung-protective mechanisms.
Collapse
Affiliation(s)
| | | | - Weitian Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhe Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Tong Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Fangfang Niu
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
2
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 PMCID: PMC11639863 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Foelsch K, Pelczar P, Zierz E, Kondratowicz S, Qi M, Mueller C, Alawi M, Huebener S, Clauditz T, Gagliani N, Huber S, Huebener P. Intestinal Epithelia and Myeloid Immune Cells Shape Colitis Severity and Colorectal Carcinogenesis via High-mobility Group Box Protein 1. J Crohns Colitis 2024; 18:1122-1133. [PMID: 38285546 DOI: 10.1093/ecco-jcc/jjae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND High-mobility group box protein 1 [HMGB1] is a ubiquitous nucleoprotein with immune-regulatory properties following cellular secretion or release in sterile and in infectious inflammation. Stool and serum HMGB1 levels correlate with colitis severity and colorectal cancer [CRC] progression, yet recent reports indicate that HMGB1 mainly operates as an intracellular determinant of enterocyte fate during colitis, and investigations into the roles of HMGB1 in CRC are lacking. METHODS Using mice with conditional HMGB1-knockout in enterocytes [Hmgb1ΔIEC] and myeloid cells [Hmgb1ΔLysM], respectively, we explored functions of HMGB1 in pathogenetically diverse contexts of colitis and colitis-associated CRC. RESULTS HMGB1 is overexpressed in human inflammatory bowel disease and gastrointestinal cancers, and HMGB1 protein localises in enterocytes and stromal cells in colitis and CRC specimens from humans and rodents. As previously described, enterocyte HMGB1 deficiency aggravates severe chemical-induced intestinal injury, but not Citrobacter rodentium or T cell transfer colitis in mice. HMGB1-deficient enterocytes and organoids do not exhibit deviant apoptotic or autophagic activity, altered proliferative or migratory capacity, abnormal intestinal permeability, or aberrant DSS-induced organoid inflammation in vitro. Instead, we observed altered in vivo reprogramming of both intestinal epithelia and infiltrating myeloid cells in Hmgb1ΔIEC early during colitis, suggesting HMGB1-mediated paracrine injury signalling. Hmgb1ΔIEC had higher CRC burden than wild types in the Apc+/min model, whereas inflammatory CRC was attenuated in Hmgb1ΔLysM. Cellular and molecular phenotyping of Hmgb1ΔIEC and Hmgb1ΔLysM cancers indicates context-dependent transcriptional modulation of immune signalling and extracellular matrix remodelling via HMGB1. CONCLUSION Enterocytes and myeloid cells context-dependently regulate host responses to severe colitis and maladaptive intestinal wound healing via HMGB1.
Collapse
Affiliation(s)
- Katharina Foelsch
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Zierz
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Kondratowicz
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minyue Qi
- Bioinformatics Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Mueller
- Bioinformatics Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Huebener
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Huebener
- Department of Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
5
|
Ge X, Han H, Desert R, Das S, Song Z, Komakula SSB, Chen W, Athavale D, Lantvit D, Nieto N. A Protein Complex of Liver Origin Activates a Pro-inflammatory Program That Drives Hepatic and Intestinal Injury in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101362. [PMID: 38788899 PMCID: PMC11296289 DOI: 10.1016/j.jcmgh.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND & AIMS There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induced a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | | | - Wei Chen
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Dipti Athavale
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
6
|
Nakano R, Chogahara I, Ohira M, Imaoka K, Sato S, Bekki T, Sato K, Imaoka Y, Marlen D, Tanaka Y, Ohdan H. Atherosclerosis Deteriorates Liver Ischemia/Reperfusion Injury Via Interferon Regulatory Factor-1 Overexpression in a Murine Model. Transplant Proc 2024; 56:678-685. [PMID: 38433025 DOI: 10.1016/j.transproceed.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Abdominal aortic calcification (AAC) is associated with cardiovascular-related mortality, along with an elevated risk of coronary, cerebrovascular, and cardiovascular events. Notably, AAC is strongly associated with poor overall and recurrence free survival posthepatectomy for hepatocellular carcinoma. Despite the acknowledged significance of atherosclerosis in systemic inflammation, its response to ischemia/reperfusion injury (IRI) remains poorly elucidated. In this study, we aimed to clarify the impact of atherosclerosis on the liver immune system using a warm IRI mouse model. METHODS Injury was induced in an atherosclerotic mouse model (ApoE-/-) or C57BL/6J wild-type (WT) mice through 70% clamping for 1 hour and analyzed after 6 hours of reperfusion. RESULTS Elevated serum levels of aspartate and alanine aminotransferase, along with histological assessment, indicated considerable damage in the livers of ApoE-/- mice than that in WT mice. This indicates a substantial contribution of atherosclerosis to IRI. Furthermore, T and natural killer (NK) cells in ApoE-/- mouse livers displayed a more inflammatory phenotype than those in WT mouse livers. Reverse transcription-polymerase chain reaction analysis revealed a significant upregulation of interleukin (IL)-15 and its transcriptional regulator, interferon regulatory factor-1 (IRF-1) in ApoE-/- mouse livers compared with that in WT mouse livers. CONCLUSIONS These findings suggest that in an atherosclerotic mouse model, atherosclerosis can mirror intrahepatic immunity, particularly activating liver NK and T cells through IL-15 production, thereby exacerbating hepatic damage. The upregulation of IL-15 expression is associated with IRF-1 overexpression.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Ichiya Chogahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan; Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Minami-ku, Hiroshima, Japan.
| | - Kouki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Saki Sato
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tomoaki Bekki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Koki Sato
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Doskali Marlen
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
7
|
Tang D, Kang R, Zeh HJ, Lotze MT. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol 2023; 23:824-841. [PMID: 37322174 DOI: 10.1038/s41577-023-00894-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Fifty years since the initial discovery of HMGB1 in 1973 as a structural protein of chromatin, HMGB1 is now known to regulate diverse biological processes depending on its subcellular or extracellular localization. These functions include promoting DNA damage repair in the nucleus, sensing nucleic acids and inducing innate immune responses and autophagy in the cytosol and binding protein partners in the extracellular environment and stimulating immunoreceptors. In addition, HMGB1 is a broad sensor of cellular stress that balances cell death and survival responses essential for cellular homeostasis and tissue maintenance. HMGB1 is also an important mediator secreted by immune cells that is involved in a range of pathological conditions, including infectious diseases, ischaemia-reperfusion injury, autoimmunity, cardiovascular and neurodegenerative diseases, metabolic disorders and cancer. In this Review, we discuss the signalling mechanisms, cellular functions and clinical relevance of HMGB1 and describe strategies to modify its release and biological activities in the setting of various diseases.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael T Lotze
- Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
WEN JY, PENG HX, WANG D, WEN ZM, LIU YT, QU J, CUI HX, WANG YY, DU YL, WANG T, GENG C, XU B. Lipopolysaccharides protect mesenchymal stem cell against cardiac ischemia-reperfusion injury by HMGB1/STAT3 signaling. J Geriatr Cardiol 2023; 20:801-812. [PMID: 38098470 PMCID: PMC10716610 DOI: 10.26599/1671-5411.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) is a serious and irreversible injury. Bone marrow-derived mesenchymal stem cells (MSCs) is considered to be a potential therapy for I/R injury due to the paracrine effects. High-mobility group box 1 (HMGB1) is a novel mediator in MSC and regulates the response of inflammation injury. Signal Transduction and Transcription Activator 3 (STAT3) is a critical transcription factor and important for release of paracrine factors. However, the relationship between HMGB1 and STAT3 in paracrine effect of MSC remains unknown. METHODS In vitro, hypoxia/reoxygenation injury model was established by AnaeroPack System and examined by Annexin V flow cytometry, CCK8 assay and morphology observation. Detection of apoptotic proteins and protein expression of HMGB1 and STAT3 by Western blot. RESULTS The conditioned medium of MSCs with or without LPS pretreatment was cocultured with H9C2 cells for 24 h before hypoxia treatment and MSC showed obvious cardiomyocytes protect role, as evidence by decreased apoptosis rate and improved cells viability, and LPS pretreated MSC exhibited better protect role than untreated MSC. However, such effect was abolished in HMGB1 deficiency group, silencing HMGB1 decreased the secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor (IGF), cell viability, and the expression of STAT3. Furthermore, STAT3 silence attenuated the protective effect of LPS in MSC. CONCLUSIONS These findings suggested that LPS improved MSC-mediated cardiomyocytes protection by HMGB1/STAT3 signaling.
Collapse
Affiliation(s)
- Jing-Yi WEN
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Pharmacy, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hui-Xi PENG
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dan WANG
- Department of Pharmacy, Ordos Central Hospital, Ordos, Inner Mongolia, China
| | - Zhi-Min WEN
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu-Tong LIU
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jian QU
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hong-Xuan CUI
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu-Ying WANG
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan-Lin DU
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ting WANG
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Cong GENG
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bing XU
- Department of Clinical Pharmacy, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Song Z, Han H, Ge X, Das S, Desert R, Athavale D, Chen W, Komakula SSB, Lantvit D, Nieto N. Deficiency of neutrophil high-mobility group box-1 in liver transplant recipients exacerbates early allograft injury in mice. Hepatology 2023; 78:771-786. [PMID: 37016762 DOI: 10.1097/hep.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND AND AIMS Early allograft dysfunction (EAD) is a severe event leading to graft failure after liver transplant (LT). Extracellular high-mobility group box-1 (HMGB1) is a damage-associated molecular pattern that contributes to hepatic ischemia-reperfusion injury (IRI). However, the contribution of intracellular HMGB1 to LT graft injury remains elusive. We hypothesized that intracellular neutrophil-derived HMGB1 from recipients protects from post-LT EAD. APPROACH AND RESULTS We generated mice with conditional ablation or overexpression of Hmgb1 in hepatocytes, myeloid cells, or both. We performed LTs and injected lipopolysaccharide (LPS) to evaluate the effect of intracellular HMGB1 in EAD. Ablation of Hmgb1 in hepatocytes and myeloid cells of donors and recipients exacerbated early allograft injury after LT. Ablation of Hmgb1 from liver grafts did not affect graft injury; however, lack of Hmgb1 from recipient myeloid cells increased reactive oxygen species (ROS) and inflammation in liver grafts and exacerbated injury. Neutrophils lacking HMGB1 were more activated, showed enhanced pro-oxidant and pro-inflammatory signatures, and reduced biosynthesis and metabolism of inositol polyphosphates (InsPs). On LT reperfusion or LPS treatment, there was significant neutrophil mobilization and infiltration into the liver and enhanced production of ROS and pro-inflammatory cytokines when intracellular Hmgb1 was absent. Depletion of neutrophils using anti-Ly6G antibody attenuated graft injury in recipients with myeloid cell Hmgb1 ablation. CONCLUSIONS Neutrophil HMGB1 derived from recipients is central to regulate their activation, limits the production of ROS and pro-inflammatory cytokines, and protects from early liver allograft injury.
Collapse
Affiliation(s)
- Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Guo XX, Pu Q, Hu JJ, Chang XJ, Li AL, Li XY. The role of regulated necrosis in inflammation and ocular surface diseases. Exp Eye Res 2023:109537. [PMID: 37302745 DOI: 10.1016/j.exer.2023.109537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In recent decades, numerous types of regulated cell death have been identified, including pyroptosis, ferroptosis and necroptosis. Regulated necrosis is characterized by a series of amplified inflammatory responses that result in cell death. Therefore, it has been suggested to play an essential role in the pathogenesis of ocular surface diseases. The cell morphological features and molecular mechanisms of regulated necrosis are discussed in this review. Furthermore, it summarizes the role of ocular surface diseases, such as dry eye, keratitis, and cornea alkali burn, as potential disease prevention and treatment targets.
Collapse
Affiliation(s)
- Xiao-Xiao Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing-Jie Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xue-Jiao Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ao-Ling Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
13
|
SIRT7 affects autophagy and activation of hepatic stellate cells by regulating the acetylation level of high mobility group protein 1. Immunobiology 2023; 228:152323. [PMID: 36753789 DOI: 10.1016/j.imbio.2022.152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Preventing the progression of hepatic fibrosis is an important strategy to improve the prognosis of liver disease. The purpose of this study was to investigate the role of sirtuin7 (SIRT7) and high mobility group box 1 (HMGB1) acetylation in the occurrence and development of hepatic fibrosis. MATERIALS AND METHODS Hepatic fibrosis mice model was induced by CCl4. TGF-β1 was used to activated quiescent hepatic stellate cell (qHSC) into activated HSC (aHSC). Hematoxylin-eosin evaluated hepatic fibrosis in vivo, and the distribution of α-smooth muscle actin (α-SMA) or HMGB1 was detected by immunohistochemistry or immunofluorescence. The expressions of SIRT7, autophagy related proteins, and HSC activation-related proteins were detected by Western blot. Immunoprecipitation detected the acetylation level of HMGB1. Lysine mutants of HMGB1 were constructed in vitro to explore the acetylation sites of HMGB1. RESULTS Hepatocyte autophagy and activation levels were enhanced in CCl4 group or aHSC group, and the acetylation level of HMGB1 was increased. Nuclear transfer of HMGB1 occurred in aHSC, and HMGB1was mainly distributed in cytoplasm. The expression of SIRT7 in CCl4 group or aHSC group was most significantly decreased, and knockdown of SIRT7 leads to increased levels of HSCs autophagy and activation. Overexpression of SIRT7 or interference of HMGB1 alone in aHSC can reduce the level of autophagy and activation of aHSC. However, continued overexpression of SIRT7 in shHMGB1-aHSC could not reduce the autophagy and activation levels of aHSC. Among the 11 Flag-HMGB1 mutants, the acetylation level of K86R-Flag-HMGB1 was the lowest. The acetylation level of K86R-Flag-HMGB1 did not change due to SIRT7 downregulation. CONCLUSION This study proved that SIRT7 can directly target the K86R site of HMGB1 and participate in regulating the expression and distribution of HMGB1, thus affecting the autophagy and activation level of HSCs.
Collapse
|
14
|
Zhao ZB, Marschner JA, Iwakura T, Li C, Motrapu M, Kuang M, Popper B, Linkermann A, Klocke J, Enghard P, Muto Y, Humphreys BD, Harris HE, Romagnani P, Anders HJ. Tubular Epithelial Cell HMGB1 Promotes AKI-CKD Transition by Sensitizing Cycling Tubular Cells to Oxidative Stress: A Rationale for Targeting HMGB1 during AKI Recovery. J Am Soc Nephrol 2023; 34:394-411. [PMID: 36857499 PMCID: PMC10103235 DOI: 10.1681/asn.0000000000000024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 10/22/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.
Collapse
Affiliation(s)
- Zhi Bo Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Julian A. Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Takamasa Iwakura
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Manga Motrapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Meisi Kuang
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU München, Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Klocke
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Helena Erlandsson Harris
- Departments of Rheumatology and of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio" and Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
15
|
Zhao Z, Li G, Wang Y, Li Y, Xu H, Liu W, Hao W, Yao Y, Zeng R. Cytoplasmic HMGB1 induces renal tubular ferroptosis after ischemia/reperfusion. Int Immunopharmacol 2023; 116:109757. [PMID: 36731154 DOI: 10.1016/j.intimp.2023.109757] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
As a damage-associated molecular pattern molecule, high-mobility group box 1 (HMGB1) is well-studied and is released from injured tubular epithelial cells to trigger cell death. However, the role of intracellular HMGB1 induced cell death during acute kidney injury (AKI) is poorly understood. We showed that cytosolic HMGB1 induced ferroptosis by binding to acyl-CoA synthetase long-chain family member 4 (ACSL4), the driver of ferroptosis, following renal ischemia/reperfusion (I/R). Both mouse and human kidneys with acute tubular injury were characterized by nucleocytoplasmic translocation of HMGB1in tubular cells. Pharmacological inhibition of HMGB1 nucleocytoplasmic translocation and deletion of HMGB1 in tubular epithelial cells in mice inhibited I/R-induced AKI, tubular ferroptosis, and inflammation compared to those in controls. Co-immunoprecipitation and serial section staining confirmed the interaction between HMGB1 and ACSL4. Taken together, our results demonstrated that cytoplasmic HMGB1 is essential for exacerbating inflammation-associated cellular injury by activating renal tubular ferroptosis via ACSL4 after I/R injury. These findings indicate that cytoplasmic HMGB1 is a regulator of ferroptosis and a promising therapeutic target for AKI.
Collapse
Affiliation(s)
- Zhi Zhao
- Department of Nephrology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Guoli Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yinzheng Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Nephrology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Wenke Hao
- Department of Nephrology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
16
|
Lin L, Li J, Song Q, Cheng W, Chen P. The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e711. [PMID: 36301039 PMCID: PMC9552978 DOI: 10.1002/iid3.711] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with irreversible and continuous progression. It has become the fifth most burdensome disease and the third most deadly disease globally. Therefore, the prevention and treatment of COPD are urgent, and it is also important to clarify the pathogenesis of it. Smoking is the main and most common risk factor for COPD. Cigarette smoke (CS) can cause lung inflammation and other pathological mechanisms in the airways and lung tissue. Airway inflammation is one of the important mechanisms leading to the pathogenesis of COPD. Recent studies have shown that high mobility group box 1 (HMGB1) is involved in the occurrence and development of respiratory diseases, including COPD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein, which mainly exerts its activity by binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) and further participate in the process of airway inflammation. Studies have shown that the abnormal expression of HMGB1, RAGE, and TLR4 are related to inflammation in COPD. Herein, we discuss the roles of HMGB1, RAGE, and TLR4 in CS/cigarette smoke extract-induced inflammation in COPD, providing a new target for the diagnosis, treatment and prevention of COPD.
Collapse
Affiliation(s)
- Ling Lin
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Qing Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Wei Cheng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Research Unit of Respiratory DiseaseCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center of Respiratory DiseaseCentral South UniversityChangshaHunanChina
| |
Collapse
|
17
|
Athavale D, Song Z, Desert R, Han H, Das S, Ge X, Komakula SSB, Chen W, Gao S, Lantvit D, Guzman G, Nieto N. Ablation of high-mobility group box-1 in the liver reduces hepatocellular carcinoma but causes hyperbilirubinemia in Hippo signaling-deficient mice. Hepatol Commun 2022; 6:2155-2169. [PMID: 35344292 PMCID: PMC9315122 DOI: 10.1002/hep4.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Silencing the Hippo kinases mammalian sterile 20-like 1 and 2 (MST1/2) activates the transcriptional coactivator yes-associated protein (YAP) in human hepatocellular carcinoma (HCC). Hepatocyte-derived high-mobility group box-1 (HMGB1) regulates YAP expression; however, its contribution to HCC in the context of deregulated Hippo signaling is unknown. Here, we hypothesized that HMGB1 is required for hepatocarcinogenesis by activating YAP in Hippo signaling-deficient (Mst1/2ΔHep ) mice. Mst1/2ΔHep mice developed HCC within 3.5 months of age and had increased hepatic expression of HMGB1 and elevated YAP activity compared to controls. To understand the contribution of HMGB1, we generated Mst1/2&Hmgb1ΔHep mice. They exhibited decreased YAP activity, cell proliferation, inflammation, fibrosis, atypical ductal cell expansion, and HCC burden at 3.5 months compared to Mst1/2∆Hep mice. However, Mst1/2&Hmgb1ΔHep mice were smaller, developed hyperbilirubinemia, had more liver injury with intrahepatic biliary defects, and had reduced hemoglobin compared to Mst1/2ΔHep mice. Conclusion: Hepatic HMGB1 promotes hepatocarcinogenesis by regulation of YAP activity; nevertheless, it maintains intrahepatic bile duct physiology under Hippo signaling deficiency.
Collapse
Affiliation(s)
- Dipti Athavale
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zhuolun Song
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Romain Desert
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Hui Han
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sukanta Das
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Xiaodong Ge
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | - Wei Chen
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Shenglan Gao
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Daniel Lantvit
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Grace Guzman
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Natalia Nieto
- Department of PathologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Research Biologist, Research & Development Service, Jesse Brown Veterans Affairs Medical CenterChicagoIllinoisUSA
| |
Collapse
|
18
|
Sharma P, Yadav P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. HMGB3 inhibition by miR-142-3p/sh-RNA modulates autophagy and induces apoptosis via ROS accumulation and mitochondrial dysfunction and reduces the tumorigenic potential of human breast cancer cells. Life Sci 2022; 304:120727. [PMID: 35753437 DOI: 10.1016/j.lfs.2022.120727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
AIMS High mobility group box (HMGB) family proteins, HMGB1, HMGB2, HMGB3, and HMGB4 are oncogenic. The oncogenic nature of HMGB1 is characterized by its association with autophagy, ROS, and MMP. Since HMGB3 is its paralog, we hypothesized that it might also modulate autophagy, ROS, and MMP. Hence, we targeted HMGB3 using its shRNA or miR-142-3p and assessed the changes in autophagy, ROS, MMP, and tumorigenic properties of human breast cancer cells. MAIN METHODS Cell viability was assessed by resazurin staining and annexin-V/PI dual staining was used for confirming apoptosis. Colony formation, transwell migration, invasion and luciferase reporter (for miRNA-target validation) assays were also performed. ROS and MMP were detected using DHE and MitoTracker dyes, respectively. A zebrafish xenograft model was used to assess the role of miR-142-3p on in vivo metastatic potential of breast cancer cells. KEY FINDINGS Breast cancer tissues from Indian patients and TCGA samples exhibit overexpression of HMGB3. miR-142-3p binds to 3' UTR of HMGB3, leading to its downregulation that subsequently inhibits colony formation and induces apoptosis involving increased ROS accumulation and decreased MMP, phospho-mTOR and STAT3. Our findings show that HMGB3 is directly involved in the miR-142-3p-mediated disruption of autophagy and induction of apoptotic cell death via modulation of LC3, cleaved PARP and Bcl-xL. In addition, miR-142-3p inhibited migration, invasion and metastatic potential of breast cancer cells. SIGNIFICANCE Our findings highlighted the role of HMGB3, for the first time, in the modulation of autophagy and apoptosis in human breast cancer cells, and these results have therapeutic implications.
Collapse
Affiliation(s)
- Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Poonam Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
19
|
Wang R, Fu Y, Yao M, Cui X, Zhao Y, Lu X, Li Y, Lin Y, He S. The HN1/HMGB1 axis promotes the proliferation and metastasis of hepatocellular carcinoma and attenuates the chemosensitivity to oxaliplatin. FEBS J 2022; 289:6400-6419. [PMID: 35596723 DOI: 10.1111/febs.16531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Hematological and neurological expressed 1 (HN1) is closely associated with the proliferation and metastasis of various tumors. However, the physiological functions and clinical significance of HN1 in hepatocellular carcinoma (HCC) remain indistinct. In this study, we investigated the role of HN1 in the pathogenesis of HCC and the underlying mechanism using clinical data from HCC patients, in vitro experiments utilizing HCC cell lines and in vivo animal models. We demonstrated that the overexpressed HN1 in HCC was correlated with patients' adverse outcomes. The gain and loss of function experiments indicated that HN1 could promote the proliferation, migration, and invasion of HCC cells in vitro. Furthermore, we found that HN1 knockdown sensitized HCC cells to oxaliplatin. Mechanically, HN1 prevented HMGB1 protein from ubiquitination and degradation via the autophagy-lysosome pathway, which was related to the interaction between HN1 protein and TRIM28 protein. In the nucleus, the downregulation of HMGB1 followed by HN1 knockdown resulted in increased DNA damage and cell death in the oxaliplatin-treated HCC cells. In the cytoplasm, HN1 regulated autophagy via HMGB1. Furthermore, HN1 knockdown in combination with HMGB1 overexpression restored the aggressive phenotypes of HCC cells and the sensitivity of these cells to oxaliplatin. HN1 knockdown inhibited the tumor growth and metastasis, and promoted the anticancer efficiency of oxaliplatin in vivo. In conclusion, our data suggest that the HN1/HMGB1 axis plays an important role in the development/progression and chemotherapy of HCC. Our findings indicate that the HN1/HMGB1 axis may be a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Ruhua Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Menglin Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xiaomeng Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yarui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
20
|
Zhong H, Gui X, Hou L, Lv R, Jin Y. From Inflammation to Fibrosis: Novel Insights into the Roles of High Mobility Group Protein Box 1 in Schistosome-Induced Liver Damage. Pathogens 2022; 11:pathogens11030289. [PMID: 35335612 PMCID: PMC8951358 DOI: 10.3390/pathogens11030289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a chronic helminthic disease of both humans and animals and the second most prevalent parasitic disease after malaria. Through a complex migration process, schistosome eggs trapped in the liver can lead to the formation of granulomas and subsequent schistosome-induced liver damage, which results in high mortality and morbidity. Although praziquantel can eliminate mature worms and prevent egg deposition, effective drugs to reverse schistosome-induced liver damage are scarce. High mobility group box 1 (HMGB1) is a multifunctional cytokine contributing to liver injury, inflammation, and immune responses in schistosomiasis by binding to cell-surface Toll-like receptors and receptors for advanced glycation end products. HMGB1 is increased in the serum of patients with schistosomiasis and enables hepatic stellate cells to adopt a proliferative myofibroblast-like phenotype, which is crucial to schistosome-induced granuloma formation. Inhibition of HMGB1 was found to generate protective responses against fibrotic diseases in animal models. Clinically, HMGB1 presents a potential target for treatment of the chronic sequelae of schistosomiasis. Here, the pivotal role of HMGB1 in granuloma formation and schistosome-induced liver damage, as well the potential of HMGB1 as a therapeutic target, are discussed.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiang Gui
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ling Hou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030031, China
| | - Rongxue Lv
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: ; Tel./Fax: +86-021-34293150
| |
Collapse
|
21
|
Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6:407. [PMID: 34824200 PMCID: PMC8613465 DOI: 10.1038/s41392-021-00816-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection. Over decades, advanced understanding of host-microorganism interaction has gradually unmasked the genuine nature of sepsis, guiding toward new definition and novel therapeutic approaches. Diverse clinical manifestations and outcomes among infectious patients have suggested the heterogeneity of immunopathology, while systemic inflammatory responses and deteriorating organ function observed in critically ill patients imply the extensively hyperactivated cascades by the host defense system. From focusing on microorganism pathogenicity, research interests have turned toward the molecular basis of host responses. Though progress has been made regarding recognition and management of clinical sepsis, incidence and mortality rate remain high. Furthermore, clinical trials of therapeutics have failed to obtain promising results. As far as we know, there was no systematic review addressing sepsis-related molecular signaling pathways and intervention therapy in literature. Increasing studies have succeeded to confirm novel functions of involved signaling pathways and comment on efficacy of intervention therapies amid sepsis. However, few of these studies attempt to elucidate the underlining mechanism in progression of sepsis, while other failed to integrate preliminary findings and describe in a broader view. This review focuses on the important signaling pathways, potential molecular mechanism, and pathway-associated therapy in sepsis. Host-derived molecules interacting with activated cells possess pivotal role for sepsis pathogenesis by dynamic regulation of signaling pathways. Cross-talk and functions of these molecules are also discussed in detail. Lastly, potential novel therapeutic strategies precisely targeting on signaling pathways and molecules are mentioned.
Collapse
Affiliation(s)
- Yun-Yu Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bo-Tao Ning
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
22
|
Volmari A, Foelsch K, Zierz E, Yan K, Qi M, Bartels K, Kondratowicz S, Boettcher M, Reimers D, Nishibori M, Liu K, Schwabe RF, Lohse AW, Huber S, Mittruecker HW, Huebener P. Leukocyte-Derived High-Mobility Group Box 1 Governs Hepatic Immune Responses to Listeria monocytogenes. Hepatol Commun 2021; 5:2104-2120. [PMID: 34558858 PMCID: PMC8631102 DOI: 10.1002/hep4.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/08/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a nucleoprotein with proinflammatory functions following cellular release during tissue damage. Moreover, antibody-mediated HMGB1 neutralization alleviates lipopolysaccharide (LPS)-induced shock, suggesting a role for HMGB1 as a superordinate therapeutic target for inflammatory and infectious diseases. Recent genetic studies have indicated cell-intrinsic functions of HMGB1 in phagocytes as critical elements of immune responses to infections, yet the role of extracellular HMGB1 signaling in this context remains elusive. We performed antibody-mediated and genetic HMGB1 deletion studies accompanied by in vitro experiments to discern context-dependent cellular sources and functions of extracellular HMGB1 during murine bloodstream infection with Listeria monocytogenes. Antibody-mediated neutralization of extracellular HMGB1 favors bacterial dissemination and hepatic inflammation in mice. Hepatocyte HMGB1, a key driver of postnecrotic inflammation in the liver, does not affect Listeria-induced inflammation or mortality. While we confirm that leukocyte HMGB1 deficiency effectuates disseminated listeriosis, we observed no evidence of dysfunctional autophagy, xenophagy, intracellular bacterial degradation, or inflammatory gene induction in primary HMGB1-deficient phagocytes or altered immune responses to LPS administration. Instead, we demonstrate that mice devoid of leukocyte HMGB1 exhibit impaired hepatic recruitment of inflammatory monocytes early during listeriosis, resulting in alterations of the transcriptional hepatic immune response and insufficient control of bacterial dissemination. Bone marrow chimera indicate that HMGB1 from both liver-resident and circulating immune cells contributes to effective pathogen control. Conclusion: Leukocyte-derived extracellular HMGB1 is a critical cofactor in the immunologic control of bloodstream listeriosis. HMGB1 neutralization strategies preclude an efficient host immune response against Listeria.
Collapse
Affiliation(s)
- Annika Volmari
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Foelsch
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Zierz
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Yan
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minyue Qi
- Bioinformatics Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karlotta Bartels
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Kondratowicz
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Boettcher
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Reimers
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Ansgar W Lohse
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Peter Huebener
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Zhao J, Ran M, Yang T, Chen L, Ji P, Xu X, Zhang L, Sun S, Liu X, Zhou S, Zhou L, Zhang J. Bicyclol Alleviates Signs of BDL-Induced Cholestasis by Regulating Bile Acids and Autophagy-Mediated HMGB1/p62/Nrf2 Pathway. Front Pharmacol 2021; 12:686502. [PMID: 34366845 PMCID: PMC8334002 DOI: 10.3389/fphar.2021.686502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is a liver disease characterized by the accumulation of toxic bile salts, bilirubin, and cholesterol, resulting in hepatocellular damage. Recent findings have revealed several key steps of cholestasis liver injury including the toxicity of bile acids and accumulation of proinflammatory mediator. In this study, we investigated the protective effect of bicyclol in cholestasis caused by bile duct ligation (BDL), as well as relevant mechanisms. Bicyclol attenuated liver damage in BDL mice by increasing the levels of hydrophilic bile acid such as α-MCA and β-MCA, regulating bile acid-related pathways and improving histopathological indexes. High-mobility group box 1 (HMGB1) is an extracellular damage-associated molecular pattern molecule which can be used as biomarkers of cells and host defense. Bicyclol treatment decreased extracellular release of HMGB1. In addition, HMGB1 is also involved in regulating autophagy in response to oxidative stress. Bicyclol promoted the lipidation of LC3 (microtubule-associated protein 1 light chain 3)-Ⅱ to activate autophagy. The nuclear factor, E2-related factor 2 (Nrf2) and its antioxidant downstream genes were also activated. Our results indicate that bicyclol is a promising therapeutic strategy for cholestasis by regulating the bile acids and autophagy-mediated HMGB1/p62/Nrf2 pathway.
Collapse
Affiliation(s)
- Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Maojuan Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology and Hepatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Liwei Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Peixu Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiuxiu Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Siyuan Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
24
|
Ye Z, Jia J, Lv Z, Zheng S. Identification of High-Mobility Group Box 1 (HMGB1) Expression as a Potential Predictor of Rejection and Poor Prognosis After Liver Transplantation. Ann Transplant 2021; 26:e931625. [PMID: 34282108 PMCID: PMC8306885 DOI: 10.12659/aot.931625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute cellular rejection (ACR) frequently occurs after liver transplantation (LT) and can result in permanent damage of the liver allograft. Specific and sensitive biomarkers for predicting and monitoring ACR are vital for guiding post-transplantation care. In the present study, we aimed to investigate the function of high-mobility group box 1 (HMGB1) in predicting ACR and prognosis after LT. MATERIAL AND METHODS A total of 113 LT recipients were enrolled in the study, including 62 patients in an ACR group and 51 patients in a non-rejection group. Using tissues from the 113 patients, HMGB1 expression was examined by immunohistochemistry, and the total score for HMGB1 expression was calculated by multiplying the percentage of immunoreactive cells score and the staining intensity score. We then analyzed the association between HMGB1 expression and clinical features. Finally, the function of HMGB1 in predicting the prognosis of LT was determined using Kaplan-Meier (K-M) survival and Cox multivariate analyses. RESULTS Immunohistochemical staining results demonstrated that the expression of HMGB1 was significantly increased in the ACR group, compared with that in the non-rejection group (P<0.05). Clinical characteristic analysis revealed that high HMGB1 levels were related to ACR (P<0.05). Moreover, K-M survival analysis showed that patients with high HMGB1 expression displayed poorer prognosis (P<0.05). Cox multivariate analysis demonstrated that HMGB1 was an independent prognostic predictor for post-LT survival (odds ratio, 3.283; P=0.008). CONCLUSIONS LT recipients' HMGB1 levels may be a useful and noninvasive biomarker for the prediction of ACR and prognosis after LT.
Collapse
Affiliation(s)
- Zhou Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland).,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China (mainland)
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland).,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China (mainland)
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland).,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China (mainland)
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland).,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
25
|
Xu M, Hang H, Huang M, Li J, Xu D, Jiao J, Wang F, Wu H, Sun X, Gu J, Kong X, Gao Y. DJ-1 Deficiency in Hepatocytes Improves Liver Ischemia-Reperfusion Injury by Enhancing Mitophagy. Cell Mol Gastroenterol Hepatol 2021; 12:567-584. [PMID: 33766785 PMCID: PMC8258983 DOI: 10.1016/j.jcmgh.2021.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS DJ-1 is universally expressed in various tissues and organs and is involved in the physiological processes in various liver diseases. However, the role of DJ-1 in liver ischemia-reperfusion (I/R) injury is largely unknown. METHODS In this study, we first examined the DJ-1 expression changes in the liver tissues of mice and clinical donor after hepatic I/R by both quantitative polymerase chain reaction and Western blotting assays. Then we investigated the role of DJ-1 in I/R injury by using a murine liver I/R model. RESULTS We demonstrated that DJ-1 down-regulation in both human and mouse liver tissues in response to I/R injury and Dj-1 deficiency in hepatocytes but not in myeloid cells could significantly ameliorate I/R induced liver injury and inflammatory responses. This hepatoprotective effect was dependent on enhanced autophagy in Dj-1 knockout mice, because inhibition of autophagy by 3-methyladenine and chloroquine could reverse the protective effect on hepatic I/R injury in Dj-1 knockout mice. CONCLUSIONS Dj-1 deficiency in hepatocytes significantly enhanced mitochondrial accumulation and protein stability of PARKIN, which in turn promotes the onset of mitophagy resulting in elevated clearance of damaged mitochondria during I/R injury.
Collapse
Affiliation(s)
- Min Xu
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Hualian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Huang
- Department of Transplantation, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jichang Li
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junzhe Jiao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China.
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shangha, China.
| |
Collapse
|
26
|
Sosa RA, Terry AQ, Kaldas FM, Jin YP, Rossetti M, Ito T, Li F, Ahn RS, Naini BV, Groysberg VM, Zheng Y, Aziz A, Nevarez-Mejia J, Zarrinpar A, Busuttil RW, Gjertson DW, Kupiec-Weglinski JW, Reed EF. Disulfide High-Mobility Group Box 1 Drives Ischemia-Reperfusion Injury in Human Liver Transplantation. Hepatology 2021; 73:1158-1175. [PMID: 32426849 PMCID: PMC8722704 DOI: 10.1002/hep.31324] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Sterile inflammation is a major clinical concern during ischemia-reperfusion injury (IRI) triggered by traumatic events, including stroke, myocardial infarction, and solid organ transplantation. Despite high-mobility group box 1 (HMGB1) clearly being involved in sterile inflammation, its role is controversial because of a paucity of patient-focused research. APPROACH AND RESULTS Here, we examined the role of HMGB1 oxidation states in human IRI following liver transplantation. Portal blood immediately following allograft reperfusion (liver flush; LF) had increased total HMGB1, but only LF from patients with histopathological IRI had increased disulfide-HMGB1 and induced Toll-like receptor 4-dependent tumor necrosis factor alpha production by macrophages. Disulfide HMGB1 levels increased concomitantly with IRI severity. IRI+ prereperfusion biopsies contained macrophages with hyperacetylated, lysosomal disulfide-HMGB1 that increased postreperfusion at sites of injury, paralleling increased histone acetyltransferase general transcription factor IIIC subunit 4 and decreased histone deacetylase 5 expression. Purified disulfide-HMGB1 or IRI+ blood stimulated further production of disulfide-HMGB1 and increased proinflammatory molecule and cytokine expression in macrophages through a positive feedback loop. CONCLUSIONS These data identify disulfide-HMGB1 as a mechanistic biomarker of, and therapeutic target for, minimizing sterile inflammation during human liver IRI.
Collapse
Affiliation(s)
- Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Allyson Q. Terry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Takahiro Ito
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Fang Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Richard S. Ahn
- Institute of Quantitative and Computational Biosciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Bita V. Naini
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Victoria M. Groysberg
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ying Zheng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Antony Aziz
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ali Zarrinpar
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - David W. Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Biostatistics, School of Public Health at UCLA, Los Angeles, CA, 90095, USA
| | - Jerzy W. Kupiec-Weglinski
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Tang D, Fu G, Li W, Sun P, Loughran PA, Deng M, Scott MJ, Billiar TR. Maresin 1 protects the liver against ischemia/reperfusion injury via the ALXR/Akt signaling pathway. Mol Med 2021; 27:18. [PMID: 33632134 PMCID: PMC7905895 DOI: 10.1186/s10020-021-00280-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury can be a major complication following liver surgery contributing to post-operative liver dysfunction. Maresin 1 (MaR1), a pro-resolving lipid mediator, has been shown to suppress I/R injury. However, the mechanisms that account for the protective effects of MaR1 in I/R injury remain unknown. METHODS WT (C57BL/6J) mice were subjected to partial hepatic warm ischemia for 60mins followed by reperfusion. Mice were treated with MaR1 (5-20 ng/mouse), Boc2 (Lipoxin A4 receptor antagonist), LY294002 (Akt inhibitor) or corresponding controls just prior to liver I/R or at the beginning of reperfusion. Blood and liver samples were collected at 6 h post-reperfusion. Serum aminotransferase, histopathologic changes, inflammatory cytokines, and oxidative stress were analyzed to evaluate liver injury. Signaling pathways were also investigated in vitro using primary mouse hepatocyte (HC) cultures to identify underlying mechanisms for MaR1 in liver I/R injury. RESULTS MaR1 treatment significantly reduced ALT and AST levels, diminished necrotic areas, suppressed inflammatory responses, attenuated oxidative stress and decreased hepatocyte apoptosis in liver after I/R. Akt signaling was significantly increased in the MaR1-treated liver I/R group compared with controls. The protective effect of MaR1 was abrogated by pretreatment with Boc2, which together with MaR1-induced Akt activation. MaR1-mediated liver protection was reversed by inhibition of Akt. CONCLUSIONS MaR1 protects the liver against hepatic I/R injury via an ALXR/Akt signaling pathway. MaR1 may represent a novel therapeutic agent to mitigate the detrimental effects of I/R-induced liver injury.
Collapse
Affiliation(s)
- Da Tang
- Department of General Surgery, The Third Xiangya Hospital, Central South University, 410000, Changsha, People's Republic of China
| | - Guang Fu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, 410000, Changsha, People's Republic of China
| | - Wenbo Li
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, 410000, Changsha, People's Republic of China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | - Meihong Deng
- Department of Surgery, Ohio State University Medical School, OH, Columbus, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, PA, 15213, Pittsburgh, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, PA, 15213, Pittsburgh, USA.
- Pittsburgh Trauma Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Zhou Q, Tu T, Tai S, Tang L, Yang H, Zhu Z. Endothelial specific deletion of HMGB1 increases blood pressure and retards ischemia recovery through eNOS and ROS pathway in mice. Redox Biol 2021; 41:101890. [PMID: 33582562 PMCID: PMC7887649 DOI: 10.1016/j.redox.2021.101890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrated HMGB1, an extracellular inflammation molecule, played an important role on endothelial cells. This study aimed to define the role and related mechanism of HMGB1 in endothelial cells. Endothelial-specific deletion of HMGB1(HMGB1ECKO) was generated and Akt/eNOS signaling, reactive oxygen species (ROS) production, endothelium dependent relaxation (EDR), and angiogenesis were determined in vitro and in vivo. Decreased activation of Akt/eNOS signaling, sprouting, and proliferation, and increased ROS production were evidenced in endothelial cells derived from HMGB1ECKO mice as compared with wild type controls. Decreased EDR and retarded blood flow recovery after hind limb ischemia were also demonstrated in HMGB1ECKO mice. Both impaired EDR and angiogenesis could be partly rescued by superoxide dismutase in HMGB1ECKO mice. In conclusion, intracellular HMGB1 might be a key regulator of endothelial Akt/eNOS pathway and ROS production, thus plays an important role in EDR regulation and angiogenesis.
Collapse
Affiliation(s)
- Qin Zhou
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi Tai
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Tang
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Lin M, Long J, Li W, Yang C, Loughran P, O'Doherty R, Billiar TR, Deng M, Scott MJ. Hepatocyte high-mobility group box 1 protects against steatosis and cellular stress during high fat diet feeding. Mol Med 2020; 26:115. [PMID: 33238880 PMCID: PMC7687718 DOI: 10.1186/s10020-020-00227-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circulating high-mobility group box 1 (HMGB1) plays important roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Intracellular HMGB1 is critical for the biology of hepatocytes. However, the intracellular role of HMGB1 in hepatocellular steatosis is unknown. Therefore, we aimed to investigate the role of hepatocyte-specific HMGB1 (HC-HMGB1) in development of hepatic steatosis. METHODS Wild type (WT) C57BL/6 and HC-HMGB1-/- mice were fed high-fat diet (HFD) or low-fat diet (LFD) for up to 16 weeks. RESULTS As expected, HMGB1 translocated from nuclear into cytoplasm and released into circulation after HFD treatment. HC-HMGB1 deficiency significantly reduced circulating HMGB1, suggesting that hepatocyte is a major source of circulating HMGB1 during NAFLD. Unexpectedly, HC-HMGB1 deficiency promoted rapid weight gain with enhanced hepatic fat deposition compared with WT at as early as 4 weeks after HFD treatment. Furthermore, there was no difference between WT and HC-HMGB1-/- mice in glucose tolerance, energy expenditure, liver damage or systemic inflammation. Interestingly, hepatic gene expression related to free fatty acid (FFA) β-oxidation was significantly down-regulated in HC-HMGB1-/- mice compared with WT, and endoplasmic reticulum (ER) stress markers were significantly higher in livers of HC-HMGB1-/- mice. In vitro experiments using primary mouse hepatocytes showed absence of HMGB1 increased FFA-induced intracellular lipid accumulation, accompanied by increased ER-stress, significant downregulation of FFA β-oxidation, and reduced oxidative phosphorylation. CONCLUSIONS Our findings suggest that hepatocyte HMGB1 protects against dysregulated lipid metabolism via maintenance of β-oxidation and prevention of ER stress. This represents a novel mechanism for HMGB1-regulation of hepatocellular steatosis, and suggests that stabilizing HMGB1 in hepatocytes may be effective strategies for prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Minjie Lin
- Clinical Skills Training Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jungke Long
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wenbo Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Plastic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chenxuan Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, 100084, China
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert O'Doherty
- The Center for Metabolism and Mitochondrial Medicine of University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- University of Pittsburgh, NW607 MUH, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- University of Pittsburgh, NW653 MUH, 3459 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Liu WL, Chiang FT, Kao JTW, Chiou SH, Lin HL. GSK3 modulation in acute lung injury, myocarditis and polycystic kidney disease-related aneurysm. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118798. [PMID: 32693109 PMCID: PMC7368652 DOI: 10.1016/j.bbamcr.2020.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
GSK3 are involved in different physical and pathological conditions and inflammatory regulated by macrophages contribute to significant mechanism. Infection stimuli may modulate GSK3 activity and influence host cell adaption, immune cells infiltration or cytokine expressions. To further address the role of GSK3 modulation in macrophages, the signal transduction of three major organs challenged by endotoxin, virus and genetic inherited factors are briefly introduced (lung injury, myocarditis and autosomal dominant polycystic kidney disease). As a result of pro-inflammatory and anti-inflammatory functions of GSK3 in different microenvironments and stages of macrophages (M1/M2), the rational resolution should be considered by adequately GSK3.
Collapse
Affiliation(s)
- Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Heng-Liang Lin
- Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Fund Managing, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
31
|
Chikhirzhina E, Starkova T, Beljajev A, Polyanichko A, Tomilin A. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int J Mol Sci 2020; 21:E7948. [PMID: 33114717 PMCID: PMC7662367 DOI: 10.3390/ijms21217948] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
The functioning of DNA in the cell nucleus is ensured by a multitude of proteins, whose interactions with DNA as well as with other proteins lead to the formation of a complicated, organized, and quite dynamic system known as chromatin. This review is devoted to the description of properties and structure of the progenitors of the most abundant non-histone protein of the HMGB family-the HmgB1 protein. The proteins of the HMGB family are also known as "architectural factors" of chromatin, which play an important role in gene expression, transcription, DNA replication, and repair. However, as soon as HmgB1 goes outside the nucleus, it acquires completely different functions, post-translational modifications, and change of its redox state. Despite a lot of evidence of the functional activity of HmgB1, there are still many issues to be solved related to the mechanisms of the influence of HmgB1 on the development and treatment of different diseases-from oncological and cardiovascular diseases to pathologies during pregnancy and childbirth. Here, we describe molecular structure of the HmgB1 protein and discuss general mechanisms of its interactions with other proteins and DNA in cell.
Collapse
Affiliation(s)
| | | | | | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Tikhoretsky Av. 4, Russia; (T.S.); (A.B.); (A.T.)
| | | |
Collapse
|
32
|
Li J, Bao G, Wang H. Time to Develop Therapeutic Antibodies Against Harmless Proteins Colluding with Sepsis Mediators? Immunotargets Ther 2020; 9:157-166. [PMID: 33117741 PMCID: PMC7547129 DOI: 10.2147/itt.s262605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis refers to a systemic inflammatory response syndrome resulting from microbial infections, and is partly attributable to dysregulated inflammation and associated immunosuppression. A ubiquitous nuclear protein, HMGB1, is secreted by activated leukocytes to orchestrate inflammatory responses during early stages of sepsis. When it is released by injured somatic cells at overwhelmingly higher quantities, HMGB1 may induce macrophage pyroptosis and immunosuppression, thereby impairing the host's ability to eradicate microbial infections. A number of endogenous proteins have been shown to bind HMGB1 to modulate its extracellular functions. Here, we discuss an emerging possibility to develop therapeutic antibodies against harmless proteins that collude with pathogenic mediators for the clinical management of human sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, Xi’an, Shaanxi710032, People’s Republic of China
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549, USA
| |
Collapse
|
33
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
34
|
Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. It is involved in the development of many liver diseases such as α-1-antitrypsin deficiency, chronic hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer. Autophagy has thus become a new target for the treatment of liver diseases. How to treat liver diseases by regulating autophagy has been a hot topic.
Collapse
Affiliation(s)
- Jia Fan
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China.
| | - Yinghong Shi
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| | - Yuanfei Peng
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| |
Collapse
|
35
|
Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High Mobility Group Box-1 (HMGB1): A Potential Target in Therapeutics. Curr Drug Targets 2020; 20:1474-1485. [PMID: 31215389 DOI: 10.2174/1389450120666190618125100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.
Collapse
Affiliation(s)
- Eyaldeva C Vijayakumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
36
|
Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. [PMID: 32781069 DOI: 10.1016/j.lfs.2020.118203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a highly conserved nucleoprotein involving in numerous biological processes, and well known to trigger immune responses as the damage-associated molecular pattern (DAMP) in the extracellular environment. The role of HMGB1 is distinct due to its multiple functions in different subcellular location. In the nucleus, HMGB1 acts as a chaperone to regulate DNA events including DNA replication, repair and nucleosome stability. While in the cytoplasm, it is engaged in regulating autophagy and apoptosis. A great deal of research has explored its function in the pathogenesis of renal diseases. This review mainly focuses on the role of HMGB1 and summarizes the pathway and treatment targeting HMGB1 in the various renal diseases which may open the windows of opportunities for the development of desirable therapeutic ends in these pathological conditions.
Collapse
Affiliation(s)
- Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| |
Collapse
|
37
|
Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020; 13:91. [PMID: 32660524 PMCID: PMC7359022 DOI: 10.1186/s13045-020-00920-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin-associated protein that has been widely reported to play a pivotal role in the pathogenesis of hematopoietic malignancies. As a representative damage-associated molecular pattern (DAMP), HMGB1 normally exists inside cells but can be secreted into the extracellular environment through passive or active release. Extracellular HMGB1 binds with several different receptors and interactors to mediate the proliferation, differentiation, mobilization, and senescence of hematopoietic stem cells (HSCs). HMGB1 is also involved in the formation of the inflammatory bone marrow (BM) microenvironment by activating proinflammatory signaling pathways. Moreover, HMGB1-dependent autophagy induces chemotherapy resistance in leukemia and multiple myeloma. In this review, we systematically summarize the emerging roles of HMGB1 in carcinogenesis, progression, prognosis, and potential clinical applications in different hematopoietic malignancies. In summary, targeting the regulation of HMGB1 activity in HSCs and the BM microenvironment is highly beneficial in the diagnosis and treatment of various hematopoietic malignancies.
Collapse
Affiliation(s)
- Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
38
|
Ross BX, Choi J, Yao J, Hager HM, Abcouwer SF, Zacks DN. Loss of High-Mobility Group Box 1 (HMGB1) Protein in Rods Accelerates Rod Photoreceptor Degeneration After Retinal Detachment. Invest Ophthalmol Vis Sci 2020; 61:50. [PMID: 32460314 PMCID: PMC7405795 DOI: 10.1167/iovs.61.5.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Retinal detachment (RD) disrupts the nutritional support and oxygen delivery to photoreceptors (PRs), ultimately causing cell death. High-mobility group box 1 (HMGB1) can serve as an extracellular alarmin when released from stressed cells. PRs release HMGB1 after RD. The purpose of this study was to investigate the relationship between HMGB1 and PR survival after RD. Methods Acute RD was created by injection of hyaluronic acid (1%) into the subretinal space in C57BL/6 mice and mice with a rhodopsin-Cre-mediated conditional knockout (cKO) of HMGB1 in rods (HMGB1ΔRod). Immunofluorescence (IF) in retinal sections was used to localize HMGB1, rhodopsin, and Iba-1 proteins. Optical coherence tomography and electroretinography were used to quantify retinal thickness and function, respectively. The morphology of the retina was assessed by hematoxylin and eosin. Results HMGB1 protein was localized to the nuclei of all retinal neurons, including PRs, with cones staining more intensely than rods. HMGB1 protein was also found in the inner and outer segments of cones but not rods. Creation of RD caused a dramatic increase of HMGB1 protein IF in rods. cKO of HMGB1 in rods did not affect retinal structure or function. However, after RD, loss of rods and reduction in the thickness of the outer nuclear layer were significantly increased in the HMGB1ΔRod retinas as compared to the control. Interestingly, depletion of HMGB1 in rods did not affect the activation and mobilization of microglia/macrophages normally seen after RD. Conclusions Increased HMGB1 expression in stressed rods may represent an intrinsic mechanism regulating their survival after RD.
Collapse
Affiliation(s)
- Bing X. Ross
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Joanne Choi
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Heather M. Hager
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
39
|
Nakamura K, Kageyama S, Kaldas FM, Hirao H, Ito T, Kadono K, Dery KJ, Kojima H, Gjertson DW, Sosa RA, Kujawski M, Busuttil RW, Reed EF, Kupiec-Weglinski JW. Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury. J Clin Invest 2020; 130:2689-2704. [PMID: 32027621 PMCID: PMC7190917 DOI: 10.1172/jci133142] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Although CEACAM1 (CC1) glycoprotein resides at the interface of immune liver injury and metabolic homeostasis, its role in orthotopic liver transplantation (OLT) remains elusive. We aimed to determine whether/how CEACAM1 signaling may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. In the mouse, donor liver CC1 null mutation augmented IRI-OLT (CC1-KO→WT) by enhancing ROS expression and HMGB1 translocation during cold storage, data supported by in vitro studies where hepatic flush from CC1-deficient livers enhanced macrophage activation in bone marrow-derived macrophage cultures. Although hepatic CC1 deficiency augmented cold stress-triggered ASK1/p-p38 upregulation, adjunctive ASK1 inhibition alleviated IRI and improved OLT survival by suppressing p-p38 upregulation, ROS induction, and HMGB1 translocation (CC1-KO→WT), whereas ASK1 silencing (siRNA) promoted cytoprotection in cold-stressed and damage-prone CC1-deficient hepatocyte cultures. Consistent with mouse data, CEACAM1 expression in 60 human donor liver biopsies correlated negatively with activation of the ASK1/p-p38 axis, whereas low CC1 levels associated with increased ROS and HMGB1 translocation, enhanced innate and adaptive immune responses, and inferior early OLT function. Notably, reduced donor liver CEACAM1 expression was identified as one of the independent predictors for early allograft dysfunction (EAD) in human OLT patients. Thus, as a checkpoint regulator of IR stress and sterile inflammation, CEACAM1 may be considered as a denominator of donor hepatic tissue quality, and a target for therapeutic modulation in OLT recipients.
Collapse
Affiliation(s)
- Kojiro Nakamura
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Shoichi Kageyama
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Fady M. Kaldas
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hirofumi Hirao
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Takahiro Ito
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kentaro Kadono
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kenneth J. Dery
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hidenobu Kojima
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - David W. Gjertson
- Department of Biostatistics, UCLA School of Public Health
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maciej Kujawski
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ronald W. Busuttil
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| |
Collapse
|
40
|
Gaskell H, Ge X, Desert R, Das S, Han H, Lantvit D, Guzman G, Nieto N. Ablation of Hmgb1 in Intestinal Epithelial Cells Causes Intestinal Lipid Accumulation and Reduces NASH in Mice. Hepatol Commun 2019; 4:92-108. [PMID: 31909358 PMCID: PMC6939545 DOI: 10.1002/hep4.1448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic disorder in which poor nutrition and the gut-to-liver interaction play a major role. We previously established that hepatic high mobility group box-1 (HMGB1) is involved in chronic liver disease. HMGB1 increases in patients with NASH and it is expressed in intestinal epithelial cells (IEC); yet, the role of intestinal HMGB1 in the pathogenesis of NASH has not been investigated. Thus, we hypothesized that IEC-derived HMGB1 could play a role in NASH due to local effects in the intestine that govern hepatic steatosis. Control littermates and Hmgb1 ΔIEC mice were fed for 1 or 24 weeks a control diet or a high fat, high cholesterol (CHO) and fructose-enriched diet (HFCFD). Hepatic and intestinal injury were analyzed. Hmgb1 ΔIEC mice were protected from HFCFD-induced NASH after 1 or 24 weeks of feeding; however, they showed extensive atypical lipid droplet accumulation and increased concentrations of triglycerides (TG) and CHO in jejunal IEC together with lower TG and other lipid classes in serum. Olive oil or CHO gavage resulted in decreased serum TG and CHO in Hmgb1 ΔIEC mice, respectively, indicating delayed and/or reduced chylomicron (CM) efflux. There was significant up-regulation of scavenger receptor class B type 1 (SR-B1) and down-regulation of apolipoprotein B48 (ApoB48) proteins, suggesting decreased lipid packaging and/or CM formation that resulted in lesser hepatosteatosis. Conclusion: Ablation of Hmgb1 in IEC causes up-regulation of SR-B1 and down-regulation of ApoB48, leads to lipid accumulation in jejunal IEC, decreases CM packaging and/or release, reduces serum TG, and lessens liver steatosis, therefore protecting Hmgb1 ΔIEC mice from HFCFD-induced NASH.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Romain Desert
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Sukanta Das
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Hui Han
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Daniel Lantvit
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Grace Guzman
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine Division of Gastroenterology and Hepatology University of Illinois at Chicago Chicago IL
| |
Collapse
|
41
|
Ye TJ, Lu YL, Yan XF, Hu XD, Wang XL. High mobility group box-1 release from H 2O 2-injured hepatocytes due to sirt1 functional inhibition. World J Gastroenterol 2019; 25:5434-5450. [PMID: 31576091 PMCID: PMC6767985 DOI: 10.3748/wjg.v25.i36.5434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High mobility group box-1 (HMGB1), recognized as a representative of damage-associated molecular patterns, is released during cell injury/death, triggering the inflammatory response and ultimately resulting in tissue damage. Dozens of studies have shown that HMGB1 is involved in certain diseases, but the details on how injured hepatocytes release HMGB1 need to be elicited.
AIM To reveal HMGB1 release mechanism in hepatocytes undergoing oxidative stress.
METHODS C57BL6/J male mice were fed a high-fat diet for 12 wk plus a single binge of ethanol to induce severe steatohepatitis. Hepatocytes treated with H2O2 were used to establish an in vitro model. Serum alanine aminotransferase, liver H2O2 content and catalase activity, lactate dehydrogenase and 8-hydroxy-2-deoxyguanosine content, nicotinamide adenine dinucleotide (NAD+) levels, and Sirtuin 1 (Sirt1) activity were detected by spectrophotometry. HMGB1 release was measured by enzyme linked immunosorbent assay. HMGB1 translocation was observed by immunohistochemistry/immunofluorescence or Western blot. Relative mRNA levels were assayed by qPCR and protein expression was detected by Western blot. Acetylated HMGB1 and poly(ADP-ribose)polymerase 1 (Parp1) were analyzed by Immunoprecipitation.
RESULTS When hepatocytes were damaged, HMGB1 translocated from the nucleus to the cytoplasm because of its hyperacetylation and was passively released outside both in vivo and in vitro. After treatment with Sirt1-siRNA or Sirt1 inhibitor (EX527), the hyperacetylated HMGB1 in hepatocytes increased, and Sirt1 activity inhibited by H2O2 could be reversed by Parp1 inhibitor (DIQ). Parp1 and Sirt1 are two NAD+-dependent enzymes which play major roles in the decision of a cell to live or die in the context of stress . We showed that NAD+ depletion attributed to Parp1 activation after DNA damage was caused by oxidative stress in hepatocytes and resulted in Sirt1 activity inhibition. On the contrary, Sirt1 suppressed Parp1 by negatively regulating its gene expression and deacetylation.
CONCLUSION The functional inhibition between Parp1 and Sirt1 leads to HMGB1 hyperacetylation, which leads to its translocation from the nucleus to the cytoplasm and finally outside the cell.
Collapse
Affiliation(s)
- Ting-Jie Ye
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan-Lin Lu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiao-Feng Yan
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Dong Hu
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Ling Wang
- Department of Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
42
|
Hirakawa Y, Tsuchishima M, Fukumura A, Kinoshita K, Hayashi N, Saito T, George J, Toshikuni N, Ueda Y, Tsutsumi M. Recombinant thrombomodulin prevented hepatic ischemia-reperfusion injury by inhibiting high-mobility group box 1 in rats. Eur J Pharmacol 2019; 863:172681. [PMID: 31542482 DOI: 10.1016/j.ejphar.2019.172681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
Abstract
Recombinant thrombomodulin (rTM) is a novel anticoagulant and anti-inflammatory agent that inhibits secretion of high-mobility group box 1 (HMGB1) from liver. We evaluated the protective effects of rTM on hepatic ischemia-reperfusion injury in rats. Ischemia was induced by clamping the portal vein and hepatic artery of left lateral and median lobes of the liver. At 30 min before ischemia and at 6 h after reperfusion, 0.3 ml of saline (IR group) or 0.3 ml of saline containing 6 mg/kg body weight of rTM (IR-rTM group) was injected into the liver through inferior vena cava or caudate vein. Blood flow was restored at 60 min of ischemia. Blood was collected 30 min prior to induction of ischemia and before restoration of blood flow, and at 6, 12, and 24 h after reperfusion. All the animals were euthanized at 24 h after reperfusion and the livers were harvested and subjected to biochemical and pathological evaluations. Serum levels of ALT, AST, and HMGB1 were significantly lower after reperfusion in the IR-rTM group compared to IR group. Marked hepatic necrosis was present in the IR group, while necrosis was almost absent in IR-rTM group. Treatment with rTM significantly reduced the expression of TNF-α and formation of 4-hydroxynonenal in the IR-rTM group compared to IR group. The results of the present study indicate that rTM could be used as a potent therapeutic agent to prevent IR-induced hepatic injury and the related adverse events.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Atsushi Fukumura
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Kaori Kinoshita
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Nobuhiko Hayashi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Takashi Saito
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Nobuyuki Toshikuni
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Yoshimichi Ueda
- Department of Pathology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
43
|
Foglio E, Pellegrini L, Germani A, Russo MA, Limana F. HMGB1-mediated apoptosis and autophagy in ischemic heart diseases. VASCULAR BIOLOGY 2019; 1:H89-H96. [PMID: 32923959 PMCID: PMC7439920 DOI: 10.1530/vb-19-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Acute myocardial infarction (MI) and its consequences are the most common and lethal heart syndromes worldwide and represent a significant health problem. Following MI, apoptosis has been generally seen as the major contributor of the cardiomyocyte fate and of the resultant myocardial remodeling. However, in recent years, it has been discovered that, following MI, cardiomyocytes could activate autophagy in an attempt to protect themselves against ischemic stress and to preserve cardiac function. Although initially seen as two completely separate responses, recent works have highlighted the intertwined crosstalk between apoptosis and autophagy. Numerous researches have tried to unveil the mechanisms and the molecular players involved in this phenomenon and have identified in high-mobility group box 1 (HMGB1), a highly conserved non-histone nuclear protein with important roles in the heart, one of the major regulator. Thus, the aim of this mini review is to discuss how HMGB1 regulates these two responses in ischemic heart diseases. Indeed, a detailed understanding of the crosstalk between apoptosis and autophagy in these pathologies and how HMGB1 regulates them would be of tremendous help in developing novel therapeutic approaches aimed to promote cardiomyocyte survival and to diminish tissue injury following MI.
Collapse
Affiliation(s)
- Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Antonia Germani
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana, San Raffaele Open University, Rome, Italy.,MEBIC Consortium, San Raffaele Open University, Rome, Italy
| | - Federica Limana
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele Open University, Rome, Italy
| |
Collapse
|
44
|
Nakao T, Ono Y, Dai H, Nakano R, Perez-Gutierrez A, Camirand G, Huang H, Geller DA, Thomson AW. DNAX Activating Protein of 12 kDa/Triggering Receptor Expressed on Myeloid Cells 2 Expression by Mouse and Human Liver Dendritic Cells: Functional Implications and Regulation of Liver Ischemia-Reperfusion Injury. Hepatology 2019; 70:696-710. [PMID: 30372546 PMCID: PMC6488456 DOI: 10.1002/hep.30334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
Liver interstitial dendritic cells (DCs) have been implicated in the control of ischemia-reperfusion injury (IRI) and host immune responses following liver transplantation. Mechanisms underlying these regulatory functions of hepatic DCs remain unclear. We have shown recently that the transmembrane immunoadaptor DNAX-activating protein of 12 kDa (DAP12) negatively regulates mouse liver DC maturation and proinflammatory and immune stimulatory functions. Here, we used PCR analysis and flow cytometry to characterize expression of DAP12 and its associated triggering receptor, triggering receptor expressed on myeloid cells 2 (TREM2), by mouse and human liver DCs and other immune cells compared with DCs in other tissues. We also examined the roles of DAP12 and TREM2 and their expression by liver DCs in the regulation of liver IRI. Injury was induced in DAP12-/- , TREM2-/- , or wild-type (WT) mice by 1 hour of 70% clamping and quantified following 6 hours of reperfusion. Both DAP12 and TREM2 were coexpressed at comparatively high levels by liver DCs. Mouse liver DCs lacking DAP12 or TREM2 displayed enhanced levels of nuclear factor κB and costimulatory molecule expression. Unlike normal WT liver DCs, DAP12-/- liver DC failed to inhibit proliferative responses of activated T cells. In vivo, DAP12-/- and TREM2-/- mice exhibited enhanced IRI accompanied by augmented liver DC activation. Elevated alanine aminotransferase levels and tissue injury were markedly reduced by infusion of WT but not DAP12-/- DC. Conclusion: Our data reveal a close association between DAP12 and TREM2 expression by liver DC and suggest that, by negatively regulating liver DC stimulatory function, DAP12 promotes their control of hepatic inflammatory responses; the DAP12/TREM2 signaling complex may represent a therapeutic target for control of acute liver injury/liver inflammatory disorders.
Collapse
Affiliation(s)
- Toshimasa Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoshihiro Ono
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helong Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ryosuke Nakano
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angelica Perez-Gutierrez
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geoffrey Camirand
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hai Huang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author: Angus W. Thomson, PhD DSc, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392, Fax: (412)-624-1172,
| |
Collapse
|
45
|
Maia de Oliveira da Silva JP, Brugnerotto AF, S. Romanello K, K. L. Teixeira K, Lanaro C, S. Duarte A, G. L. Costa G, da Silva Araújo A, C. Bezerra MA, de Farias Domingos I, Pereira Martins DA, Malavazi I, F. Costa F, Cunha AF. Global gene expression reveals an increase of HMGB1 and APEX1 proteins and their involvement in oxidative stress, apoptosis and inflammation pathways among beta‐thalassaemia intermedia and major phenotypes. Br J Haematol 2019; 186:608-619. [DOI: 10.1111/bjh.16062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ana Flávia Brugnerotto
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Karen S. Romanello
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| | - Karina K. L. Teixeira
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| | - Carolina Lanaro
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Adriana S. Duarte
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Gustavo G. L. Costa
- Centro Nacional de Processamento de Alto Desempenho em São Paulo. CENAPAD‐SP Campinas São PauloBrazil
| | | | | | | | | | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| | - Fernando F. Costa
- Centro de Hematologia e Hemoterapia Universidade Estadual de Campinas CampinasSão PauloBrazil
| | - Anderson F. Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos São CarlosSão PauloBrazil
| |
Collapse
|
46
|
Gasdermin D protects against noninfectious liver injury by regulating apoptosis and necroptosis. Cell Death Dis 2019; 10:481. [PMID: 31209224 PMCID: PMC6579760 DOI: 10.1038/s41419-019-1719-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Gasdermin D (GsdmD) was recently identified as the executioner of pyroptotic inflammatory cell death, and is a substrate for caspases-1 and 11. GsdmD is detrimental in lethal endotoxemia but protective in bacterial sepsis. However, little is known about its role during noninfectious/sterile injuries. In this study, we examined the contribution of GsdmD using WT and GsdmD−/− mice in two models of noninfectious liver injury: hemorrhagic shock with resuscitation (HS/R) and acetaminophen (APAP) overdose. GsdmD−/− mice had significantly increased liver damage at 6 h after HS/R or APAP vs WT, shown by significantly elevated ALT level and extended areas of cell death in liver. Caspase-8, a mediator of multiple cell death pathways, was highly elevated in GsdmD−/− mice after injury. Significantly increased cleavage of caspase-8 and subsequent high levels of apoptosis were found in livers of GsdmD−/− mice after HS/R, a relatively mild ROS-induced liver injury. However, during more severe APAP-mediated ROS-induced liver injury, caspase-8 cleavage in GsdmD−/− liver was inhibited compared with WT, resulting in accumulation of pro-caspase-8 and increased levels of necroptosis. Our findings indicate a novel hepatoprotective role for GsdmD in noninfectious inflammation models via regulation of caspase-8 expression and downstream cell death pathways. The effects of GsdmD protection are likely injury specific and may also depend on injury severity and levels of ROS produced. These data suggest modulation of GsdmD/caspase-8 may be a novel therapeutic option in ROS-mediated liver injury.
Collapse
|
47
|
Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting Oxidative Stress for the Treatment of Liver Fibrosis. Rev Physiol Biochem Pharmacol 2019; 175:71-102. [PMID: 29728869 DOI: 10.1007/112_2018_10] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a reflection of the imbalance between the production of reactive oxygen species (ROS) and the scavenging capacity of the antioxidant system. Excessive ROS, generated from various endogenous oxidative biochemical enzymes, interferes with the normal function of liver-specific cells and presumably plays a role in the pathogenesis of liver fibrosis. Once exposed to harmful stimuli, Kupffer cells (KC) are the main effectors responsible for the generation of ROS, which consequently affect hepatic stellate cells (HSC) and hepatocytes. ROS-activated HSC undergo a phenotypic switch and deposit an excessive amount of extracellular matrix that alters the normal liver architecture and negatively affects liver function. Additionally, ROS stimulate necrosis and apoptosis of hepatocytes, which causes liver injury and leads to the progression of end-stage liver disease. In this review, we overview the role of ROS in liver fibrosis and discuss the promising therapeutic interventions related to oxidative stress. Most importantly, novel drugs that directly target the molecular pathways responsible for ROS generation, namely, mitochondrial dysfunction inhibitors, endoplasmic reticulum stress inhibitors, NADPH oxidase (NOX) inhibitors, and Toll-like receptor (TLR)-affecting agents, are reviewed in detail. In addition, challenges for targeting oxidative stress in the management of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Su Suriguga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Geny M M Groothuis
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Takahashi T, Shishido T, Kinoshita D, Watanabe K, Toshima T, Sugai T, Narumi T, Otaki Y, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Miyamoto T, Watanabe T, Woo CH, Abe JI, Takeishi Y, Kubota I, Watanabe M. Cardiac Nuclear High-Mobility Group Box 1 Ameliorates Pathological Cardiac Hypertrophy by Inhibiting DNA Damage Response. ACTA ACUST UNITED AC 2019; 4:234-247. [PMID: 31061925 PMCID: PMC6488753 DOI: 10.1016/j.jacbts.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023]
Abstract
HMGB1 is a DNA-binding protein associated with nuclear homeostasis and DNA repair. Decreased nuclear HMGB1 expression is observed in human failing hearts, which is associated with cardiomyocyte hypertrophy and fibrosis. Cardiac nuclear HMGB1 overexpression ameliorates Ang II–induced pathological cardiac remodeling by inhibiting cardiomyocyte DNA damage and following ataxia telangiectasia mutated activation in mice. Ataxia telangiectasia mutated inhibitor treatment provided a cardioprotective effect on Ang II–induced cardiac remodeling in mice.
High-mobility group box 1 (HMGB1) is a deoxyribonucleic acid (DNA)–binding protein associated with DNA repair. Decreased nuclear HMGB1 expression and increased DNA damage response (DDR) were observed in human failing hearts. DNA damage and DDR as well as cardiac remodeling were suppressed in cardiac-specific HMGB1 overexpression transgenic mice after angiotensin II stimulation as compared with wild-type mice. In vitro, inhibition of HMGB1 increased phosphorylation of extracellular signal-related kinase 1/2 and nuclear factor kappa B, which was rescued by DDR inhibitor treatment. DDR inhibitor treatment provided a cardioprotective effect on angiotensin II–induced cardiac remodeling in mice.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ATM, ataxia telangiectasia mutated
- Ang II, angiotensin II
- BNP, brain natriuretic peptide
- CVF, collagen volume fraction
- DAMP, damage-associated molecular pattern
- DDR, deoxyribonucleic acid damage response
- DNA damage response
- DNA, deoxyribonucleic acid
- E/A ratio, ratio of early to atrial wave
- ERK1/2, extracellular signal-related kinase 1/2
- HMGB1
- HMGB1, high-mobility group box 1
- HMGB1-Tg, high-mobility group box 1 transgenic
- HW/TL, heart weight to tibial length
- IVSd, interventricular septum diameter
- LVDd, left ventricular diastolic dimension
- LVDs, left ventricular systolic dimension
- MyD, cardiomyocyte diameter
- NF-κB, nuclear factor kappa B
- NRCM, neonatal rat cardiomyocyte
- PWd, posterior wall diameter
- WT, wild-type
- p-ATM, phosphorylation of ataxia telangiectasia mutated
- pathological cardiac hypertrophy
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Daisuke Kinoshita
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Ken Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Taku Toshima
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takayuki Sugai
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takuya Miyamoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Chang-Hoon Woo
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
49
|
HMGB1 is a Central Driver of Dynamic Pro-inflammatory Networks in Pediatric Acute Liver Failure induced by Acetaminophen. Sci Rep 2019; 9:5971. [PMID: 30979951 PMCID: PMC6461628 DOI: 10.1038/s41598-019-42564-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP) overdose (APAPo) is predominant in the NIH Pediatric Acute Liver Failure (PALF) Study. We assayed multiple inflammatory mediators in serial serum samples from 13 PALF survivors with APAPo + N-acetylcysteine (NAC, the frontline therapy for APAPo), 8 non-APAPo + NAC, 40 non-APAPo non-NAC, and 12 non-survivors. High Mobility Group Box 1 (HMGB1) was a dominant mediator in dynamic inflammation networks in all sub-groups, associated with a threshold network complexity event at d1–2 following enrollment that was exceeded in non-survivors vs. survivors. We thus hypothesized that differential HMGB1 network connectivity after day 2 is related to the putative threshold event in non-survivors. DyNA showed that HMGB1 is most connected in non-survivors on day 2–3, while no connections were observed in APAPo + NAC and non-APAPo + NAC survivors. Inflammatory dynamic networks, and in particular HMGB1 connectivity, were associated with the use of NAC in the context of APAPo. To recapitulate hepatocyte (HC) damage in vitro, primary C57BL/6 HC and HC-specific HMGB1-null HC were treated with APAP + NAC. Network phenotypes of survivors were recapitulated in C57BL/6 mouse HC and were greatly altered in HMGB1-null HC. HC HMGB1 may thus coordinate a pro-inflammatory program in PALF non-survivors (which is antagonized by NAC), while driving an anti-inflammatory/repair program in survivors.
Collapse
|
50
|
Deng M, Scott MJ, Fan J, Billiar TR. Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. J Leukoc Biol 2019; 106:161-169. [PMID: 30946496 DOI: 10.1002/jlb.3mir1218-497r] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a multifunctional nuclear protein, probably known best as a prototypical alarmin or damage-associated molecular pattern (DAMP) molecule when released from cells. However, HMGB1 has multiple functions that depend on its location in the nucleus, in the cytosol, or extracellularly after either active release from cells, or passive release upon lytic cell death. Movement of HMGB1 between cellular compartments is a dynamic process induced by a variety of cell stresses and disease processes, including sepsis, trauma, and hemorrhagic shock. Location of HMGB1 is intricately linked with its function and is regulated by a series of posttranslational modifications. HMGB1 function is also regulated by the redox status of critical cysteine residues within the protein, and is cell-type dependent. This review highlights some of the mechanisms that contribute to location and functions of HMGB1, and focuses on some recent insights on important intracellular effects of HMGB1 during sepsis and trauma.
Collapse
Affiliation(s)
- Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|