1
|
Chen CL, Yang WS, Yang HI, Chen CF, Wang LY, Lu SN, Kao JH, Chen PJ, Chen CJ. Plasma Adiponectin Levels in Relation to Chronic Hepatitis B Infection Progression to Liver Cancer Milestones: A Prospective Study. Liver Cancer 2025; 14:19-35. [PMID: 40144469 PMCID: PMC11936446 DOI: 10.1159/000539909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 03/28/2025] Open
Abstract
Introduction Our previous nested-case-control study demonstrated elevated adiponectin increased liver cirrhosis and HCC risk in HBV carriers. We extended the analysis to the whole REVEAL-HBV cohort to prospectively evaluate whether adiponectin directly affected end-stage liver diseases, or through affecting HBV progression. Methods Baseline plasma adiponectin was determined to investigate the association between adiponectin and subsequent HBeAg, HBsAg, and HBV DNA seroclearance, and the development of cirrhosis, HCC and liver-related death. Whether HBV characteristics modify the adiponectin-milestones associations was also examined. Results Among 3,931 HBsAg(+)/anti-HCV(-) REVEAL-HBV participants, 3,684 had sufficient biosamples left for adiponectin assay. Elevated adiponectin was associated with a higher chance of HBeAg-seropositive, high HBV viral load (≥2 × 105 IU/mL) and high HBsAg titers (≥1,000 IU/mL) in a dose-response manner (OR = 2.25, 95% CI: 1.55-3.28; OR = 2.11, 95% CI: 1.47-3.04; and OR = 1.92, 95% CI: 1.47-2.52 for Q5 vs. Q1, respectively). Those with the highest quintile had a lower chance of achieving HBeAg (HR = 0.48, 95% CI: 0.27-0.85), HBsAg (HR = 0.69, 95% CI: 0.49-0.97), and HBV DNA seroclearance (HR = 0.63, 95% CI: 0.43-0.90) and a higher chance of developing liver cirrhosis (HR = 2.88, 95% CI: 1.98-4.20, HCC (HR = 2.38, 95% CI: 1.52-3.73), and died from liver-related causes (HR = 2.32, 95% CI: 1.51-3.54). HBV genotype significantly modified the adiponectin-HCC (Pinteraction = 0.005) and adiponectin-liver death associations (Pinteraction = 0.0157), with higher risk among genotype C. Conclusion Elevated adiponectin is consistently associated with all important chronic HBV infection milestones toward progression to liver cancer. The exact mechanism of how adiponectin mediates HBV infection toward carcinogenesis remains unclear and warrants further investigation. Disentangling this may help us in finding new HBV treatment target, biomarker in HBV surveillance to identify high-risk patients, or even cancer prevention.
Collapse
Affiliation(s)
- Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwai-I. Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chuen-Fei Chen
- Department of Medicine, Mackay Medical College, Kaohsiung, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, Kaohsiung, Taiwan
| | - Sheng-Nan Lu
- Department of Gastroenterology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Su L, Hu P, Luo X, Ding H, Zhang R, Qian Y, Qi S, Tian X, Ling W. Development and Application of a BODIPY Carbazole Derivative Probe for Lysosomal Imaging: Insights into Lysosomal Dynamics and Dysfunction in Inflammation-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2025; 17:607-616. [PMID: 39688339 DOI: 10.1021/acsami.4c17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Inflammation is crucial in neurodegenerative and chronic diseases, including Alzheimer disease (AD) and liver fibrosis. To gain a deeper understanding of lysosomal functions in cellular physiology and disease mechanisms, we developed a carbazole-based BODIPY lysosomal probe, designated LysoI. This probe specifically targets lysosomes within 15 min and exhibits a Stokes shift of approximately 180 nm, enabling continuous incubation for up to 5 h without the need for washing steps. Interestingly, LysoI remained effective for long-term imaging, even up to 24 h poststaining. Despite varying pH values and conditions, such as autophagy, apoptosis, and inflammation, it consistently provides excellent lysosomal imaging. Notably, inflammation disrupts lysosomal morphology and motility, as evidenced by an increased size, a decrease in number, and a reduction in movement speed, as observed with LysoI. Furthermore, lysosomal rupture and impaired clearance may exacerbate inflammation and contribute to cellular apoptosis. These findings suggest that lysosomal dysfunction is closely associated with disease progression; therefore, protection and repair targeting lysosomes may offer promising strategies for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Liping Su
- Department of Medical Ultrasound, State Key Laboratory of Biotherapy, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan, People's Republic of China
| | - Panyi Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, People's Republic of China
| | - Xinmei Luo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Haitao Ding
- Department of Medical Ultrasound, State Key Laboratory of Biotherapy, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan, People's Republic of China
| | - Rundong Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, People's Republic of China
| | - Shiqian Qi
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy, West China Hospital, College of Life Sciences, Sichuan University, and National Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Xiaohe Tian
- Department of Medical Ultrasound, State Key Laboratory of Biotherapy, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan, People's Republic of China
| | - Wenwu Ling
- Department of Medical Ultrasound, State Key Laboratory of Biotherapy, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Li T, Song X, Chen J, Li Y, Lin J, Li P, Yu S, Durojaye OA, Yang F, Liu X, Li J, Cheng S, Yao X, Ding X. Kupffer Cell-derived IL6 Promotes Hepatocellular Carcinoma Metastasis Via the JAK1-ACAP4 Pathway. Int J Biol Sci 2025; 21:285-305. [PMID: 39744421 PMCID: PMC11667824 DOI: 10.7150/ijbs.97109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/22/2024] [Indexed: 01/21/2025] Open
Abstract
Tumor-associated macrophages (TAMs), which differentiate from tissue-resident macrophages, are recognized for their ability to influence cancer progression and metastasis. However, the specific role of Kupffer cells (KCs), the intrinsic macrophages of the liver, in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we describe a novel mechanism by which exosomes derived from HCC cells induce KCs to transition into TAMs, thereby facilitating the metastasis of HCC in an IL6-JAK1-ACAP4 axis-dependent manner. Mechanistically, the exosome-mediated domestication of KCs by hepatoma cells constitutes one of the primary sources of IL6 production in the HCC microenvironment. IL6 then activates JAK1 to phosphorylate its downstream effector ACAP4 at Tyr843, a novel phosphorylation site identified in this context, which in turn promotes ARF6-GTPase activity and hepatoma cell migration. Furthermore, we found that the levels of IL6, as well as the phosphorylation of JAK1 and ACAP4 at Tyr843, were significantly greater in tumor tissues from HCC patients than in adjacent tissues. These findings suggest that the IL6-JAK1-ACAP4 axis may be a promising therapeutic target for HCC. Importantly, we screened bufalin, an active ingredient derived from Venenum Bufonis, and discovered that it inhibits JAK1 and disrupts the IL6-induced phosphorylation of ACAP4. This inhibition not only impairs hepatoma cell migration but also prevents the metastasis of HCC. These findings demonstrate the interplay between hepatoma cells and KCs through the IL6-JAK1-ACAP4 axis, thereby promoting HCC metastasis, and reveal the therapeutic potential of bufalin for the treatment of HCC through JAK1 inhibition.
Collapse
Affiliation(s)
- Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Song
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Jiena Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Department of Hepatobiliary, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Fengrui Yang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xing Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shiyuan Cheng
- Department of Neurology, Northwestern Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xuebiao Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| |
Collapse
|
4
|
Odiase P, Ma J, Ranganathan S, Ogunkua O, Turner WB, Marshall D, Ochieng J. The Role of Fetuin-A in Tumor Cell Growth, Prognosis, and Dissemination. Int J Mol Sci 2024; 25:12918. [PMID: 39684629 DOI: 10.3390/ijms252312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Fetuin-A, also known as alpha-2-Heremans-Schmid-glycoprotein (Ahsg), is a multifunctional molecule with diverse roles in biological processes such as mineralization, tumor growth, and inflammation. This review explores the involvement of Ahsg in various cancers, including liver, breast, prostate, colorectal, brain, osteosarcoma, and lung cancers. In many cancer types, Ahsg promotes tumor growth, invasion, and metastasis through various mechanisms, including cellular adhesion, spreading, chemotaxis, and modulation of cell-growth signaling pathways. Additionally, Ahsg has been implicated in the regulation of inflammatory cytokine production, making it a potential marker of inflammation in cancer. The complex interplay between Ahsg and cancer progression highlights its potential as a diagnostic biomarker and therapeutic target in various cancers. However, further research is needed to fully elucidate the mechanisms of action of Ahsg in cancer and to explore its clinical implications in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Peace Odiase
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Jonathan Ma
- College of Arts and Science, Vanderbilt University, Nashville, TN 37203, USA
| | | | - Olugbemiga Ogunkua
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Winston B Turner
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Dana Marshall
- Department of Pathology, Meharry Medical College, Nashville, TN 37208, USA
| | - Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Biomedical Science, School of Graduate Studies Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
5
|
Nabil A, Abdel-Motaal M, Hassan A, Elshemy MM, Asem M, Elwan M, Ebara M, Abdelmageed M, Shiha G, Azzazy HME. Anti-hepatocellular carcinoma activities of novel hydrazone derivatives via downregulation of interleukin-6. RSC Adv 2024; 14:37960-37974. [PMID: 39610815 PMCID: PMC11603412 DOI: 10.1039/d4ra05854b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity worldwide. Sorafenib is a first-line drug for the treatment of HCC, however, it is reported to cause serious adverse effects and may lead to resistance in many patients. In this study, 20 hydrazone derivatives incorporating triazoles, pyrazolone, pyrrole, pyrrolidine, imidazoline, quinazoline, and oxadiazine moieties were designed, synthesized, and characterized. In addition to molecular docking and in silico ADME study, the cytotoxic activity of the synthesized compounds was evaluated against the human hepatocellular cancer cell line (HepG2) and liver mesenchymal stem cells as a normal cell line. The antitumor activities of the derivatives against sorafenib were compared. Of the 20 synthesized compounds, compound 16 demonstrated potential as a potent anti-HCC drug candidate through downregulation of interleukin 6 which reduces inflammation and tumorigenesis with a strong binding interaction and bioavailability.
Collapse
Affiliation(s)
- Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan +201000618349
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University Beni-Suef Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University Qassim Buraydah 51452 Saudi Arabia +966569909737
| | - Ayman Hassan
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
| | | | - Medhat Asem
- Department of Civil Engineering, College of Engineering and Information Technology, Onaizah Colleges Qassim Saudi Arabia
| | - Mariam Elwan
- Egyptian Ministry of Health El Mansoura Dakahlia Egypt
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan +201000618349
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba Ibaraki 305-8577 Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science 6-3-1 Niijuku Katsushika-ku Tokyo 125-8585 Japan
| | - Mohammed Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Buraydah Colleges Qassim Saudi Arabia
- Hot Laboratory Center, Atomic Energy Authority Cairo Egypt
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University Egypt
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt +201000565727
| |
Collapse
|
6
|
Zhao L, Zhang X, Birmann BM, Danford CJ, Lai M, Simon TG, Chan AT, Giovannucci EL, Ngo L, Libermann TA, Zhang X. Pre-diagnostic plasma inflammatory proteins and risk of hepatocellular carcinoma in three population-based cohort studies from the United States and the United Kingdom. Int J Cancer 2024; 155:1593-1603. [PMID: 38861327 PMCID: PMC11537828 DOI: 10.1002/ijc.35054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Previous studies suggest a role for inflammation in hepatocarcinogenesis. However, no study has comprehensively evaluated associations between circulating inflammatory proteins and risk of hepatocellular carcinoma (HCC) among the general population. We conducted a nested case-control study in the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS) with 56 pairs of incident HCC cases and controls. External validation was performed in the UK Biobank (34 HCC cases and 48,471 non-HCC controls). Inflammatory protein levels were measured in pre-diagnostic plasma using the Olink® Inflammation Panel. We used conditional logistic regression to calculate multivariable odds ratios (ORs) with 95% confidence intervals (CIs) for associations between a 1-standard deviation (SD) increase in biomarker levels and HCC risk, considering a statistically significant threshold of false discovery rate (FDR)-adjusted p < .05. In the NHS/HPFS, among 70 analyzed proteins with call rates >80%, 15 proteins had significant associations with HCC risk (pFDR < .05). Two proteins (stem cell factor, OR per SD = 0.31, 95% CI = 0.16-0.58; tumor necrosis factor superfamily member 12, OR per SD = 0.51, 95% CI = 0.31-0.85) were inversely associated whereas 13 proteins were positively associated with risk of HCC; positive ORs per SD ranged from 1.73 for interleukin (IL)-10 to 2.35 for C-C motif chemokine-19. A total of 11 proteins were further replicated in the UK Biobank. Seven of the eight selected positively associated proteins also showed positive associations with HCC risk by enzyme-linked immunosorbent assay, with ORs ranging from 1.56 for IL-10 to 2.72 for hepatocyte growth factor. More studies are warranted to further investigate the roles of these observed inflammatory proteins in HCC etiology, early detection, risk stratification, and disease treatment.
Collapse
Affiliation(s)
- Longgang Zhao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Michelle Lai
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tracey G. Simon
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Towia A. Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Yale University School of Nursing, Orange, Connecticut, USA
| |
Collapse
|
7
|
Pupacdi B, Loffredo CA, Budhu A, Rabibhadana S, Bhudhisawasdi V, Pairojkul C, Sukeepaisarnjaroen W, Pugkhem A, Luvira V, Lertprasertsuke N, Chotirosniramit A, Auewarakul CU, Ungtrakul T, Sricharunrat T, Sangrajrang S, Phornphutkul K, Albert PS, Kim S, Harris CC, Mahidol C, Wang XW, Ruchirawat M. The landscape of etiological patterns of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in Thailand. Int J Cancer 2024; 155:1387-1399. [PMID: 38761410 PMCID: PMC11326978 DOI: 10.1002/ijc.35034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Thailand is among countries with the highest global incidence and mortality rates of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). While viral hepatitis and liver fluke infections have been associated with HCC and iCCA, respectively, other environmental risk factors, overall risk factor commonality and combinatorial roles, and effects on survival have not been systematically examined. We conducted a TIGER-LC consortium-based population study covering all high-incidence areas of both malignancies across Thailand: 837 HCC, 1474 iCCA, and 1112 controls (2011-2019) were comprehensively queried on lifelong environmental exposures, lifestyle, and medical history. Multivariate logistic regression and Cox proportional hazards analyses were used to evaluate risk factors and associated survival patterns. Our models identified shared risk factors between HCC and iCCA, such as viral hepatitis infection, liver fluke infection, and diabetes, including novel and shared associations of agricultural pesticide exposure (OR range of 1.50; 95% CI: 1.06-2.11 to 2.91; 95% CI: 1.82-4.63) along with vulnerable sources of drinking water. Most patients had multiple risk factors, magnifying their risk considerably. Patients with lower risk levels had better survival in both HCC (HR 0.78; 95% CI: 0.64-0.96) and iCCA (HR 0.84; 95% CI: 0.70-0.99). Risk factor co-exposures and their common associations with HCC and iCCA in Thailand emphasize the importance for future prevention and control measures, especially in its large agricultural sector. The observed mortality patterns suggest ways to stratify patients for anticipated survivorship and develop plans to support medical care of longer-term survivors, including behavioral changes to reduce exposures.
Collapse
Affiliation(s)
- Benjarath Pupacdi
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Vajarabhongsa Bhudhisawasdi
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
- Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Ake Pugkhem
- Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vor Luvira
- Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Chirayu U Auewarakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Teerapat Ungtrakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thaniya Sricharunrat
- Pathology and Forensic Medicine Department, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | | | - Paul S Albert
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sungduk Kim
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
8
|
Thongsak N, Chitapanarux T, Chotirosniramit A, Chakrabandhu S, Traisathit P, Nakharutai N, Srikummoon P, Thumronglaohapun S, Supasri T, Hemwan P, Chitapanarux I. Air pollutants and primary liver cancer mortality: a cohort study in crop-burning activities and forest fires area. Front Public Health 2024; 12:1389760. [PMID: 39381772 PMCID: PMC11459313 DOI: 10.3389/fpubh.2024.1389760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Northern Thailand experiences high levels of air pollution in the dry season due to agricultural waste burning and forest fires. Some air pollutants can enter the bloodstream, and the liver has the role of detoxifying these along with other harmful substances. In this study, we assessed the effects of long-term exposure to air pollutants on liver cancer mortality in this area. Methods A cohort of 10,859 primary liver cancer patients diagnosed between 2003 and 2018 and followed up to the end of 2020 were included in the study. Extended time-varying covariates of the annually averaged pollutant concentrations updated each year were utilized. The associations between air pollutants and mortality risk were examined by using a Cox proportional hazard model. Results Metastatic cancer stage had the highest adjusted hazard ratio (aHR) of 3.57 (95% confidence interval (CI):3.23-3.95). Being male (aHR = 1.10; 95% CI: 1.04-1.15), over 60 years old (aHR = 1.16; 95% CI: 1.11-1.21), having a history of smoking (aHR = 1.16; 95%CI: 1.11-1.22), and being exposed to a time-updated local concentration of PM2.5 of 40 μg/m3 (aHR = 1.10; 95% CI: 1.05-1.15) increased the mortality risk. Conclusion We found that air pollution is one of several detrimental factors on the mortality risk of liver cancer.
Collapse
Affiliation(s)
- Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Taned Chitapanarux
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anon Chotirosniramit
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Liu Z, Yuan H, Suo C, Zhao R, Jin L, Zhang X, Zhang T, Chen X. Point-based risk score for the risk stratification and prediction of hepatocellular carcinoma: a population-based random survival forest modeling study. EClinicalMedicine 2024; 75:102796. [PMID: 39263676 PMCID: PMC11388332 DOI: 10.1016/j.eclinm.2024.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Background The precise associations between common clinical biomarkers and hepatocellular carcinoma (HCC) risk remain unclear but hold valuable insights for HCC risk stratification and prediction. Methods We examined the linear and nonlinear associations between the baseline levels of 32 circulating biomarkers and HCC risk in the England cohort of UK Biobank (UKBB) (n = 397,702). The participants were enrolled between 2006 and 2010 and followed up to 31st October 2022. The primary outcome is incident HCC cases. We then employed random survival forests (RSF) to select the top ten most informative biomarkers, considering their association with HCC, and developed a point-based risk score to predict HCC. The performance of the risk score was evaluated in three validation sets including UKBB Scotland and Wales cohort (n = 52,721), UKBB non-White-British cohort (n = 29,315), and the Taizhou Longitudinal Study in China (n = 17,269). Findings Twenty-five biomarkers were significantly associated with HCC risk, either linearly or nonlinearly. Based on the RSF model selected biomarkers, our point-based risk score showed a concordance index of 0.866 in the England cohort and varied between 0.814 and 0.849 in the three validation sets. HCC incidence rates ranged from 0.95 to 30.82 per 100,000 from the lowest to the highest quintiles of the risk score in the England cohort. Individuals in the highest risk quintile had a 32-73 times greater risk of HCC compared to those in the lowest quintile. Moreover, over 70% of HCC cases were detected in individuals within the top risk score quintile across all cohorts. Interpretation Our simple risk score enables the identification of high-risk individuals of HCC in the general population. However, including some biomarkers, such as insulin-like growth factor 1, not routinely measured in clinical practice may increase the model's complexity, highlighting the need for more accessible biomarkers that can maintain or improve the predictive accuracy of the risk score. Funding This work was supported by the National Natural Science Foundation of China (grant numbers: 82204125) and the Science and Technology Support Program of Taizhou (TS202224).
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Nursing, Orange, CT, USA
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, China
| |
Collapse
|
10
|
González-Gil EM, Peruchet-Noray L, Sedlmeier AM, Christakoudi S, Biessy C, Navionis AS, Mahamat-Saleh Y, Jaafar RF, Baurecht H, Guevara M, Etxezarreta PA, Verschuren WMM, Boer JMA, Olsen A, Tjønneland A, Simeon V, Castro-Espin C, Aune D, Heath AK, Gunter M, Colorado-Yohar SM, Zilhão NR, Dahm CC, Llanaj E, Schulze MB, Petrova D, Sieri S, Ricceri F, Masala G, Key T, Viallon V, Rinaldi S, Freisling H, Dossus L. Association of body shape phenotypes and body fat distribution indexes with inflammatory biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC) and UK Biobank. BMC Med 2024; 22:334. [PMID: 39148045 PMCID: PMC11328449 DOI: 10.1186/s12916-024-03544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The allometric body shape index (ABSI) and hip index (HI), as well as multi-trait body shape phenotypes, have not yet been compared in their associations with inflammatory markers. The aim of this study was to examine the relationship between novel and traditional anthropometric indexes with inflammation using data from the European Prospective Investigation into Cancer and Nutrition (EPIC) and UK Biobank cohorts. METHODS Participants from EPIC (n = 17,943, 69.1% women) and UK Biobank (n = 426,223, 53.2% women) with data on anthropometric indexes and C-reactive protein (CRP) were included in this cross-sectional analysis. A subset of women in EPIC also had at least one measurement for interleukins, tumour necrosis factor alpha, interferon gamma, leptin, and adiponectin. Four distinct body shape phenotypes were derived by a principal component (PC) analysis on height, weight, body mass index (BMI), waist (WC) and hip circumferences (HC), and waist-to-hip ratio (WHR). PC1 described overall adiposity, PC2 tall with low WHR, PC3 tall and centrally obese, and PC4 high BMI and weight with low WC and HC, suggesting an athletic phenotype. ABSI, HI, waist-to-height ratio and waist-to-hip index (WHI) were also calculated. Linear regression models were carried out separately in EPIC and UK Biobank stratified by sex and adjusted for age, smoking status, education, and physical activity. Results were additionally combined in a random-effects meta-analysis. RESULTS Traditional anthropometric indexes, particularly BMI, WC, and weight were positively associated with CRP levels, in men and women. Body shape phenotypes also showed distinct associations with CRP. Specifically, PC2 showed inverse associations with CRP in EPIC and UK Biobank in both sexes, similarly to height. PC3 was inversely associated with CRP among women, whereas positive associations were observed among men. CONCLUSIONS Specific indexes of body size and body fat distribution showed differential associations with inflammation in adults. Notably, our results suggest that in women, height may mitigate the impact of a higher WC and HC on inflammation. This suggests that subtypes of adiposity exhibit substantial variation in their inflammatory potential, which may have implications for inflammation-related chronic diseases.
Collapse
Affiliation(s)
- Esther M González-Gil
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Laia Peruchet-Noray
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Anja M Sedlmeier
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
- Center for Translational Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Carine Biessy
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Anne-Sophie Navionis
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Yahya Mahamat-Saleh
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Rola F Jaafar
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Marcela Guevara
- Instituto de Salud Pública y Laboral de Navarra, 31003, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Pilar Amiano Etxezarreta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, BioGipuzkoa (BioDonostia) Health Research Institute, San Sebastián, Spain
| | - W M Monique Verschuren
- Centre forPrevention, Lifestyle and Health, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jolanda M A Boer
- Centre forPrevention, Lifestyle and Health, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Anja Olsen
- Danish Cancer Institute, Danish Cancer Society, Diet, Cancer and Health Strandboulevarden 49 2100, Copenhagen, Denmark
- Department of Public Health, University of Aarhus, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Institute, Danish Cancer Society, Diet, Cancer and Health Strandboulevarden 49 2100, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Vittorio Simeon
- Dipartimento Di Salute Mentale E Fisica E Medicina Preventiva, Università Degli Studi Della Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Carlota Castro-Espin
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Research, The Cancer Registry of Norway, Oslo, Norway
- Department of Nutrition, Oslo New University College, Oslo, Norway
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Marc Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sandra M Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council-IMIB, Murcia, Spain
- Research Group On Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Nuno R Zilhão
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Erand Llanaj
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munchen-Neuherberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Dafina Petrova
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs, GRANADA, 18012, Granada, Spain
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH) Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention, and Clinical Network (ISPRO), Florence, Italy
| | - Tim Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research On Cancer, World Health Organization, 69372, Lyon, CEDEX 08, France
| |
Collapse
|
11
|
Mestrovic A, Perkovic N, Bozic D, Kumric M, Vilovic M, Bozic J. Precision Medicine in Inflammatory Bowel Disease: A Spotlight on Emerging Molecular Biomarkers. Biomedicines 2024; 12:1520. [PMID: 39062093 PMCID: PMC11274502 DOI: 10.3390/biomedicines12071520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) remain challenging in terms of understanding their causes and in terms of diagnosing, treating, and monitoring patients. Modern diagnosis combines biomarkers, imaging, and endoscopic methods. Common biomarkers like CRP and fecal calprotectin, while invaluable tools, have limitations and are not entirely specific to IBD. The limitations of existing markers and the invasiveness of endoscopic procedures highlight the need to discover and implement new markers. With an ideal biomarker, we could predict the risk of disease development, as well as the possibility of response to a particular therapy, which would be significant in elucidating the pathogenesis of the disease. Recent research in the fields of machine learning, proteomics, epigenetics, and gut microbiota provides further insight into the pathogenesis of the disease and is also revealing new biomarkers. New markers, such as BAFF, PGE-MUM, oncostatin M, microRNA panels, αvβ6 antibody, and S100A12 from stool, are increasingly being identified, with αvβ6 antibody and oncostatin M being potentially close to being presented into clinical practice. However, the specificity of certain markers still remains problematic. Furthermore, the use of expensive and less accessible technology for detecting new markers, such as microRNAs, represents a limitation for widespread use in clinical practice. Nevertheless, the need for non-invasive, comprehensive markers is becoming increasingly important regarding the complexity of treatment and overall management of IBD.
Collapse
Affiliation(s)
- Antonio Mestrovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Nikola Perkovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Dorotea Bozic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| |
Collapse
|
12
|
Gu D, Zhao X, Song J, Xiao J, Zhang L, Deng G, Li D. Expression and clinical significance of interleukin-6 pathway in cholangiocarcinoma. Front Immunol 2024; 15:1374967. [PMID: 38881895 PMCID: PMC11176422 DOI: 10.3389/fimmu.2024.1374967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background Cholangiocarcinoma (CCA) is a typical inflammation-induced malignancy, and elevated serum interleukin-6 (IL-6) levels have been reported to be linked to the onset and progression of CCA. We aim to investigate the potential prognostic value of the IL-6 pathway for CCA. Methods We detected the expressions of IL-6, IL-6R, glycoprotein (gp130), C-reactive protein (CRP), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) in CCA tissue microarray using multiplex immunofluorescence. Furthermore, the clinical associations and prognostic values were assessed. Finally, single-cell transcriptome analysis was performed to evaluate the expression level of IL-6 pathway genes in CCA. Results The results revealed that the expression of IL-6 was lower, while the expression of STAT3 was higher in tumor tissues compared to normal tissues. Especially in tumor microenvironment, the expression of IL-6 pathway genes was generally downregulated. Importantly, gp130 was strongly correlated with JAK2 in tumor tissues, while it was moderately correlated with JAK2 in normal tissue. Although none of the gene expressions were directly associated with overall survival and disease-free survival, our study found that IL-6, IL-6R, CRP, gp130, and JAK2 were inversely correlated with vascular invasion, which is a risk factor for poor prognosis in patients with CCA. Conclusion The findings from this study suggest that the IL-6 signaling pathway may have a potential prognostic value for CCA. Further investigation is needed to understand the underlying molecular mechanisms of the IL-6 pathway in CCA.
Collapse
Affiliation(s)
- Dongqing Gu
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Viral Infectious Diseases, Chongqing, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing Song
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
| | - Jianmei Xiao
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Viral Infectious Diseases, Chongqing, China
| | - Leida Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Viral Infectious Diseases, Chongqing, China
| | - Dajiang Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Lan X, Huang H, Liu J, Zhao J, Li G, Zuo M, Xing X, Ren X. Compromised very-low density lipoprotein induced polyunsaturated triglyceride accumulation in N-nitrosodiethylamine-induced hepatic steatosis. Food Chem Toxicol 2024; 186:114519. [PMID: 38369053 DOI: 10.1016/j.fct.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.
Collapse
Affiliation(s)
- Xuerao Lan
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jing Zhao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Guowei Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Mingyang Zuo
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
14
|
El-Serag H, Kanwal F, Ning J, Powell H, Khaderi S, Singal AG, Asrani S, Marrero JA, Amos CI, Thrift AP, Luster M, Alsarraj A, Olivares L, Skapura D, Deng J, Salem E, Najjar O, Yu X, Duong H, Scheurer ME, Ballantyne CM, Kaochar S. Serum biomarker signature is predictive of the risk of hepatocellular cancer in patients with cirrhosis. Gut 2024; 73:gutjnl-2024-332034. [PMID: 38365278 PMCID: PMC11327383 DOI: 10.1136/gutjnl-2024-332034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Inflammatory and metabolic biomarkers have been associated with hepatocellular cancer (HCC) risk in phases I and II biomarker studies. We developed and internally validated a robust metabolic biomarker panel predictive of HCC in a longitudinal phase III study. METHODS We used data and banked serum from a prospective cohort of 2266 adult patients with cirrhosis who were followed until the development of HCC (n=126). We custom designed a FirePlex immunoassay to measure baseline serum levels of 39 biomarkers and established a set of biomarkers with the highest discriminatory ability for HCC. We performed bootstrapping to evaluate the predictive performance using C-index and time-dependent area under the receiver operating characteristic curve (AUROC). We quantified the incremental predictive value of the biomarker panel when added to previously validated clinical models. RESULTS We identified a nine-biomarker panel (P9) with a C-index of 0.67 (95% CI 0.66 to 0.67), including insulin growth factor-1, interleukin-10, transforming growth factor β1, adipsin, fetuin-A, interleukin-1 β, macrophage stimulating protein α chain, serum amyloid A and TNF-α. Adding P9 to our clinical model with 10 factors including AFP improved AUROC at 1 and 2 years by 4.8% and 2.7%, respectively. Adding P9 to aMAP score improved AUROC at 1 and 2 years by 14.2% and 7.6%, respectively. Adding AFP L-3 or DCP did not change the predictive ability of the P9 model. CONCLUSIONS We identified a panel of nine serum biomarkers that is independently associated with developing HCC in cirrhosis and that improved the predictive ability of risk stratification models containing clinical factors.
Collapse
Affiliation(s)
- Hashem El-Serag
- Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Houston VA Health Services Research & Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | | | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hannah Powell
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | - Amit G Singal
- Internal Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Sumeet Asrani
- Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | | | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Aaron P Thrift
- Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | - Abeer Alsarraj
- Gastroenterology and Hepatology, Michael DeBakey Veterans Affairs Medical Ctr and Houston Ctr for Quality of Care & Utilization Studies, Houston, Texas, USA
| | | | - Darlene Skapura
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Deng
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Emad Salem
- Baylor College of Medicine, Houston, Texas, USA
| | - Omar Najjar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Xian Yu
- Baylor College of Medicine, Houston, Texas, USA
| | - Hao Duong
- Baylor College of Medicine, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Salma Kaochar
- Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Li Y, Deng X, Tan X, Li Q, Yu Z, Wu W, Ma X, Zeng J, Wang X. Protective role of curcumin in disease progression from non-alcoholic fatty liver disease to hepatocellular carcinoma: a meta-analysis. Front Pharmacol 2024; 15:1343193. [PMID: 38313314 PMCID: PMC10834658 DOI: 10.3389/fphar.2024.1343193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Pathological progression from non-alcoholic fatty liver disease (NAFLD) to liver fibrosis (LF) to hepatocellular carcinoma (HCC) is a common dynamic state in many patients. Curcumin, a dietary supplement derived from the turmeric family, is expected to specifically inhibit the development of this progression. However, there is a lack of convincing evidence. Methods: The studies published until June 2023 were searched in PubMed, Web of Science, Embase, and the Cochrane Library databases. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) approach was used to evaluate the certainty of evidence. StataSE (version 15.1) and Origin 2021 software programs were used to analyze the critical indicators. Results: Fifty-two studies involving 792 animals were included, and three disease models were reported. Curcumin demonstrates a significant improvement in key indicators across the stages of NAFLD, liver fibrosis, and HCC. We conducted a detailed analysis of common inflammatory markers IL-1β, IL-6, and TNF-α, which traverse the entire disease process. The research results reveal that curcumin effectively hinders disease progression at each stage by suppressing inflammation. Curcumin exerted hepatoprotective effects in the dose range from 100 to 400 mg/kg and treatment duration from 4 to 10 weeks. The mechanistic analysis reveals that curcumin primarily exerts its hepatoprotective effects by modulating multiple signaling pathways, including TLR4/NF-κB, Keap1/Nrf2, Bax/Bcl-2/Caspase 3, and TGF-β/Smad3. Conclusion: In summary, curcumin has shown promising therapeutic effects during the overall progression of NAFLD-LF-HCC. It inhibited the pathological progression by synergistic mechanisms related to multiple pathways, including anti-inflammatory, antioxidant, and apoptosis regulation.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianrong Li
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi Yu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbin Wu
- Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyin Wang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Wang Y, Fleishman JS, Li T, Li Y, Ren Z, Chen J, Ding M. Pharmacological therapy of metabolic dysfunction-associated steatotic liver disease-driven hepatocellular carcinoma. Front Pharmacol 2024; 14:1336216. [PMID: 38313077 PMCID: PMC10834746 DOI: 10.3389/fphar.2023.1336216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024] Open
Abstract
In light of a global rise in the number of patients with type 2 diabetes mellitus (T2DM) and obesity, non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of hepatocellular carcinoma (HCC), with the annual occurrence of MASLD-driven HCC expected to increase by 45%-130% by 2030. Although MASLD has become a serious major public health threat globally, the exact molecular mechanisms mediating MASLD-driven HCC remain an open problem, necessitating future investigation. Meanwhile, emerging studies are focusing on the utility of bioactive compounds to halt the progression of MASLD to MASLD-driven HCC. In this review, we first briefly review the recent progress of the possible mechanisms of pathogenesis and progression for MASLD-driven HCC. We then discuss the application of bioactive compounds to mitigate MASLD-driven HCC through different modulatory mechanisms encompassing anti-inflammatory, lipid metabolic, and gut microbial pathways, providing valuable information for future treatment and prevention of MASLD-driven HCC. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of MASLD-driven HCC is still warranted.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Joshua S. Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Tongda Li
- Department of Traditional Chinese Medicine, Beijing Geriatric Hospital, Beijing, China
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
17
|
Georgescu D, Lighezan DF, Rosca CI, Nistor D, Ancusa OE, Suceava I, Iancu MA, Kundnani NR. NASH/NAFLD-Related Hepatocellular Carcinoma: An Added Burden. Life (Basel) 2023; 14:25. [PMID: 38255641 PMCID: PMC10817629 DOI: 10.3390/life14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently found primary malignancy of the liver, showing an accelerated upward trend over the past few years and exhibiting an increasing relationship with metabolic syndrome, obesity, dyslipidemia and type 2 diabetes mellitus. The connection between these risk factors and the occurrence of HCC is represented by the occurrence of non-alcoholic fatty liver disease (NAFLD) which later, based on genetic predisposition and various triggers (including the presence of chronic inflammation and changes in the intestinal microbiome), may evolve into HCC. HCC in many cases is diagnosed at an advanced stage and can be an incidental finding. We present such a scenario in the case of a 41-year-old male patient who had mild obesity and mixed dyslipidemia, no family or personal records of digestive pathologies and who recently developed a history of progressive fatigue, dyspepsia and mild upper abdominal discomfort initially thought to be linked to post-COVID syndrome, as the patient had COVID-19 pneumonia a month prior. The abdominal ultrasound revealed a mild hepatomegaly with bright liver aspect of the right lobe (diffuse steatosis), a large zone of focal steatosis (segments IV, III and II) and a left lobe tumoral mass, highly suggestive of malignancy. Point shear wave elastography at the right lobe ruled out an end-stage chronic liver disease. Additional laboratory investigations, imaging studies (magnetic resonance imaging) and histopathological examination of liver fragments confirmed a highly aggressive HCC, with poorly differentiation-G3, (T4, N 1M 0) and stage IVA, associated with nonalcoholic steatohepatitis (NASH). A sorafenib course of treatment was attempted, but the patient discontinued it due to severe side effects. The subsequent evolution was extremely unfavorable, with rapid degradation, a few episodes of upper digestive bleeding, hepatic insufficiency and mortality in a couple of months. Conclusions: Diagnosis of NASH-related HCC is either an accidental finding or is diagnosed at an advanced stage. In order to earn time for a proper treatment, it becomes important to diagnose it at an early stage, for which regular check-ups should be performed in groups having the risk factors related to it. Patients suffering from obesity and mixed dyslipidemia should undergo periodic abdominal ultrasound examinations. This should be emphasized even more in the cases showing NASH. Complaints of any kind post-COVID-19 should be dealt with keenly as little is yet known about its virulence and its long-term side effects.
Collapse
Affiliation(s)
- Doina Georgescu
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Daniel Florin Lighezan
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ciprian Ilie Rosca
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Daciana Nistor
- Department of Functional Sciences, Physiology, Centre of Imuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Gene and Cellular Therapies in Cancer, 3000723 Timisoara, Romania
| | - Oana Elena Ancusa
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ioana Suceava
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Mihaela Adela Iancu
- Department 5, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania
| | - Nilima Rajpal Kundnani
- Department of Cardiology—Discipline of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
18
|
Chen W, Zhang Z, Liu K, Jiang D, Sun X, Mao Y, Li S, Ye D. Circulating Copper and Liver Cancer. Biol Trace Elem Res 2023; 201:4649-4656. [PMID: 36633787 DOI: 10.1007/s12011-023-03554-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
The association between circulating copper and the risk of liver cancer has been investigated by previous studies, while the findings were inconsistent. Thus, we aimed to evaluate the association between circulating copper and liver cancer by using meta-analysis and Mendelian randomization (MR). For meta-analysis, PubMed and Web of Science were searched to identify eligible studies published before April 4, 2022. Standardized mean difference (SMD) with 95% confidence interval (CI) in circulating copper level between liver cancer patients and controls were pooled. Furthermore, we selected genetic instruments for circulating copper from a genome-wide association study (GWAS) to conduct MR analysis. The summary statistics related to liver cancer were obtained from two large independent cohorts, UKBB and FinnGen, respectively. MR analysis was performed mainly by inverse-variance weighted (IVW) approach, followed by maximum-likelihood method as sensitivity analysis. In meta-analysis of eight studies, circulating copper was found to be higher in liver cancer patients (SMD: 1.65; 95% CI: 0.65 to 2.65) with high heterogeneity (I2 = 96.40%, P = 0.001). However, inconsistent findings were observed among subgroups with high evidence. In MR analysis, genetically predicted circulating copper was not significantly associated with the risk of liver cancer by IVW in UKBB (OR: 1.38; 95% CI: 0.72 to 2.65) and FinnGen (OR: 1.10; 95% CI: 0.69 to 1.73) separately, and the pooled results produced similar results (OR: 1.18, 95% CI: 0.81 to 1.72). Moreover, non-significant finding was confirmed by using maximum-likelihood method. There is no sufficient evidence to demonstrate that high levels of circulating copper increase the risks of liver cancer.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Zhiwei Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ke Liu
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Die Jiang
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Xiaohui Sun
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China.
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
19
|
Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov 2023; 9:361. [PMID: 37773196 PMCID: PMC10541886 DOI: 10.1038/s41420-023-01666-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Inflammatory Bowel Disease (IBD), a chronic nonspecific intestinal inflammatory disease, is comprised of Ulcerative Colitis (UC) and Crohn's Disease (CD). IBD is closely related to a systemic inflammatory reaction and affects the progression of many intestinal and extraintestinal diseases. As one of the representative bacteria for probiotic-assisted therapy in IBD, multiple strains of Lactobacillus have been proven to alleviate intestinal damage and strengthen the intestinal immunological barrier, epithelial cell barrier, and mucus barrier. Lactobacillus also spares no effort in the alleviation of IBD-related diseases such as Colitis-associated Colorectal cancer (CAC), Alzheimer's Disease (AD), Depression, Anxiety, Autoimmune Hepatitis (AIH), and so on via gut-brain axis and gut-liver axis. This article aims to discuss the role of Lactobacillus in IBD and IBD-related diseases, including its underlying mechanisms and related curative strategies from the present to the future.
Collapse
Affiliation(s)
- Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Long
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
20
|
Xu Y, Zhu Y, Wu Z, Li S, Shao M, Tao Q, Xu Q, Chen Y, Shu Y, Chen M, Zhou Y, Shi Y. Hepatocyte-specific HDAC3 ablation promotes hepatocellular carcinoma in females by suppressing Foxa1/2. BMC Cancer 2023; 23:906. [PMID: 37752418 PMCID: PMC10521566 DOI: 10.1186/s12885-023-11393-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most common primary liver cancer, prevails mainly in males and has long been attributed to androgens and higher circumstantial levels of interleukin-6 (IL-6) produced by resident hepatic macrophages. METHODS Constitutively hepatocyte-specific histone deacetylase 3 (HDAC3)-deficient (HDAC3LCKO) mice and constitutively hepatocyte-specific HDAC3 knockout and systemic IL-6 simultaneously ablated (HDAC3LCKO& IL-6-/-) mice were used in our study to explore the causes of sex differences in HCC. Additionally, we performed human HCC tissues with an IHC score. Correlation analysis and linear regression plots were constructed to reveal the association between HDAC3 and its candidate genes. To further elucidate that HDAC3 controls the expression of Foxa1/2, we knocked down HDAC3 in HUH7 liver cancer cells. RESULTS We observed a contrary sex disparity, with an earlier onset and higher incidence of HCC in female mice when HDAC3 was selectively ablated in the liver. Loss of HDAC3 led to constant liver injury and the spontaneous development of HCC. Unlike the significant elevation of IL-6 in male mice at a very early age, female mice exhibit stable IL-6 levels, and IL-6 ablation did not eliminate the sex disparity in hepatocarcinogenesis in HDAC3-deficient mice. Oestrogen often protects the liver when combined with oestrogen receptor alpha (ERα); however, ovariectomy in HDAC3-ablated female mice significantly delayed tumourigenesis. The oestrogen-ERα axis can also play a role in tumour promotion in the absence of Foxa1 and Foxa2 in the receptor complex. Loss of HDAC3 profoundly reduced the expression of both Foxa1 and Foxa2 and impaired the binding between Foxa1/2 and ERα. Furthermore, a more frequent HDAC3 decrease accompanied by the simultaneous Foxa1/2 decline was found in female HCC compared to that in male HCC. CONCLUSION In summary, we reported that loss of HDAC3 reduces Foxa1/2 and thus promotes HCC development in females in an oestrogen-dependent manner.
Collapse
Affiliation(s)
- Yahong Xu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Shengfu Li
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Mingyang Shao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Qing Tao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Yuwei Chen
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Yuke Shu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Menglin Chen
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujun Shi
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, NHC, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
22
|
Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep 2023; 5:100811. [PMID: 37575883 PMCID: PMC10413159 DOI: 10.1016/j.jhepr.2023.100811] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.
Collapse
Affiliation(s)
- Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Michela Lisjak
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Eduardo H. Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Camilo J. Llamoza-Torres
- Department of Hepatology, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| |
Collapse
|
23
|
Lécuyer L, Laouali N, Viallon V, Artaud F, Hébert JR, Shivappa N, Agudo A, Tjønneland A, Mellemkjær L, Kaaks R, Katzke VA, Schulze MB, Frenoy P, Mancini FR, De Magistris MS, Macciotta A, Masala G, Agnoli C, Tumino R, Boer JMA, Verschuren WMM, Enget Jensen TM, Olsen KS, Skeie G, Chirlaque MD, Petrova D, Castro-Espin C, Quirós JR, Guevara M, Amiano P, Borné Y, Sandström M, Nilsson LM, Heath AK, Mayen AL, Huybrechts I, Weiderpass E, Boutron-Ruault MC, Dossus L, Rinaldi S, Truong T. Associations between dietary inflammatory scores and biomarkers of inflammation in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Clin Nutr 2023; 42:1115-1125. [PMID: 37271707 DOI: 10.1016/j.clnu.2023.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Since the first version of the dietary inflammatory index (DII®) developed in the past decade, several other versions have been developed. However, to date no study has attempted to compare these versions with respect to their associations with biomarkers of inflammation. OBJECTIVE We aimed to investigate the relationship between four dietary inflammatory scores [DII, two energy-adjusted derivatives (E-DII and E-DIIr), and the Inflammatory Score of the Diet (ISD)], and circulating levels of several inflammatory markers and adipokines. METHODS This study included 17 637 participants from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort with at least one marker of inflammation measured in blood. Associations between the four scores and C-reactive protein (CRP), interleukin (IL)6, IL10, IL1RA, tumor necrosis factor-α (TNFα), soluble tumor necrosis factor receptor-1 (sTNFR1), sTNFR2, leptin, soluble leptin receptor (sLeptin R), adiponectin, and High Molecular Weight (HMW) adiponectin were evaluated using multivariable linear regressions adjusted for potential confounders. RESULTS Positive associations were observed between the four dietary inflammatory scores and levels of CRP, IL6, sTNFR1, sTNFR2 and leptin. However, only the DII and the ISD were positively associated with IL1RA levels and only the DII and the E-DIIr were positively associated with TNFα levels. The proportion of variance of each biomarker explained by the scores was lower than 2%, which was equivalent to the variance explained by smoking status but much lower than that explained by body mass index. CONCLUSIONS Our results suggest that the four dietary inflammatory scores were associated with some biomarkers of inflammation and could be used to assess the inflammatory potential of diet in European adults but are not sufficient to capture the inflammatory status of an individual. These findings can help to better understand the inflammatory potential of diet, but they need to be replicated in studies with repeated dietary measurements.
Collapse
Affiliation(s)
- Lucie Lécuyer
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team "Exposome and Heredity", 94807, Villejuif, France
| | - Nasser Laouali
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team "Exposome and Heredity", 94807, Villejuif, France; Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Fanny Artaud
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team "Exposome and Heredity", 94807, Villejuif, France
| | - James R Hébert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA; Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - Nitin Shivappa
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA; Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Anne Tjønneland
- Danish Cancer Society Research Center, "Diet, Cancer and Health", Copenhagen, Denmark; University of Copenhagen, Department of Public Health, Copenhagen, Denmark
| | - Lene Mellemkjær
- Danish Cancer Society Research Center, "Diet, Cancer and Health", Copenhagen, Denmark
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena A Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. of Molecular Epidemiology, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Pauline Frenoy
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team "Exposome and Heredity", 94807, Villejuif, France
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team "Exposome and Heredity", 94807, Villejuif, France
| | | | - Alessandra Macciotta
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE-ONLUS, Ragusa, Italy
| | - Jolanda M A Boer
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - W M Monique Verschuren
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Torill M Enget Jensen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Dafina Petrova
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
| | - Carlota Castro-Espin
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Marcela Guevara
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Pilar Amiano
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastián, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Yan Borné
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Maria Sandström
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Lena Maria Nilsson
- Department of Epidemiology and Global Health/ Arcum, Arctic Centre, Umeå University, Umeå, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Ana-Lucia Mayen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team "Exposome and Heredity", 94807, Villejuif, France.
| |
Collapse
|
24
|
Ren Z, Pan B, Wang F, Lyu S, Zhai J, Hu X, Liu Z, Li L, Lang R, He Q, Zhao X. Spatial transcriptomics reveals the heterogeneity and FGG+CRP+ inflammatory cancer-associated fibroblasts replace islets in pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1112576. [PMID: 37124494 PMCID: PMC10140349 DOI: 10.3389/fonc.2023.1112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Understanding the spatial heterogeneity of the tumor microenvironment (TME) in pancreatic cancer (PC) remains challenging. METHODS In this study, we performed spatial transcriptomics (ST) to investigate the gene expression features across one normal pancreatic tissue, PC tissue, adjacent tumor tissue, and tumor stroma. We divided 18,075 spatial spots into 22 clusters with t-distributed stochastic neighbor embedding based on gene expression profiles. The biological functions and signaling pathways involved in each cluster were analyzed with gene set enrichment analysis. RESULTS The results revealed that KRT13+FABP5+ malignant cell subpopulation had keratinization characteristics in the tumor tissue. Fibroblasts from adjacent tumor tissue exhibited a tumor-inhibiting role such as "B-cell activation" and "positive regulation of leukocyte activation." The FGG+CRP+ inflammatory cancer-associated fibroblasts replaced the islets in tumor stroma. During PC progression, the damage to pancreatic structure and function was heavier in the pancreatic exocrine (AMYA2+PRSS1+) than in the endocrine (INS+GCG+). CONCLUSION Our results revealed the spatial heterogeneity of dynamic changes and highlighted the significance of impaired exocrine function in PC.
Collapse
Affiliation(s)
- Zhangyong Ren
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Bing Pan
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Fangfei Wang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Shaocheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Jialei Zhai
- Department of Pathology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Xiumei Hu
- Department of Pathology, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Zhe Liu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Lixin Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Tsai SS, Hsu CT, Yang C. Risk of death from liver cancer in relation to long-term exposure to fine particulate air pollution in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:135-143. [PMID: 36752360 DOI: 10.1080/15287394.2023.2168225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the International Agency for Research on Cancer (IARC), airborne fine particulate matter (PM2.5), which is categorized as a Group I carcinogen, was found to lead to predominantly lung as well as other cancer types in humans. Hepatocellular carcinoma (HCC) is endemic in Taiwan where it is the second and fourth foremost cause of cancer deaths in men and women, respectively. Taiwan's mortality rates for liver cancer vary considerably from one region to another, suggesting that the environment may exert some influence on deaths attributed to liver cancer. The aim of this investigation was to perform an ecologic study to examine the possible link between ambient PM2.5 levels and risk of liver cancer in 66 in Taiwan municipalities. To undertake this investigation, annual PM2.5 levels and age-standardized liver cancer mortality rates were calculated for male and female residents of these areas from 2010 to 2019. Data were tested using weighted-multiple regression analyses to compute adjusted risk ratio (RR) controlling for urbanization level and physician density. Annual PM2.5 levels of each municipality were divided into tertiles. The adjusted RRs for males residing in those areas with intermediate tertile levels (21.85 to 28.21 ug/m3) and the highest tertiles levels (28.22-31.23 ug/m3) of PM2.5 were 1.29 (95% CI = 1.25-1.46) and 1.41 (95% CI = 1.36-1.46), respectively. Women in these locations shared a similar risk, 1.32 (1.25-1.4) and 1.41 (1.34-1.49), respectively. Evidence indicated that PM2.5 increased risk of mortality rates attributed to liver cancer in both men and women in Taiwan.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Ta Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - ChunYuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
26
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
27
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
28
|
Tabakhiyan F, Mir A, Vahedian V. Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6). Horm Mol Biol Clin Investig 2022; 43:389-396. [PMID: 35709206 DOI: 10.1515/hmbci-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC), the most common form of liver cancer, is a leading cause of tumor-associated mortality worldwide. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The progression of HCC is often associated with chronic inflammation, expression levels of inflammatory mediators, chemokine, and cytokines. In this study, we try to evaluate the PI3K and pro-inflammatory cytokines, TGF-β, IL-1, and IL-6 expression level in patients with liver cancer. MATERIALS AND METHODS The kupffer cells were isolated from patient's specimens. Real-time PCR was applied to evaluate the expression level of PI3K in cell lines or tumors. The concentrations of TGF-β, IL-1, and IL-6 were measured by the quantitative ELISA kit. RESULTS PI3K mRNA expression in cancer cells was increased markedly vs. normal cells. The ELISA results demonstrated over expression of TGF-β, IL-1, and IL-6 in patients and positive correlation between tumor size and stage. DISCUSSION This study suggests that targeting the expression level of PI3K and pro-inflammatory chemokine and cytokines, TGF-β, IL-1, and IL-6, may be a potential diagnostic strategy in HCC patients.
Collapse
Affiliation(s)
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Islamic Republic of Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Sao Paulo, Brazil
| |
Collapse
|
29
|
Larsson SC, Spyrou N, Mantzoros CS. Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism 2022; 137:155326. [PMID: 36191637 DOI: 10.1016/j.metabol.2022.155326] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
This narrative review highlights current evidence linking greater body fatness to risk of various cancers, with focus on evidence from recent large cohort studies and pooled analyses of cohort studies as well as Mendelian randomization studies (which utilized genetic variants associated with body mass index to debrief the causal effect of higher body fatness on cancer risk). This review also provides insights into the biological mechanisms underpinning the associations. Data from both observational and Mendelian randomization studies support the associations of higher body mass index with increased risk of many cancers with the strongest evidence for digestive system cancers, including esophageal, stomach, colorectal, liver, gallbladder, and pancreatic cancer, as well as kidney, endometrial, and ovarian (weak association) cancer. Evidence from observational studies suggests that greater body fatness has contrasting effects on breast cancer risk depending on menopausal status and on prostate cancer risk depending on disease stage. Experimental and Mendelian randomization studies indicate that adiponectin, insulin, and sex hormone pathways play an important role in mediating the link between body fatness and cancer risk. The possible role of specific factors and pathways, such as other adipocytokines and hormones and the gut microbiome in mediating the associations between greater body fatness and cancer risk is yet uncertain and needs investigation in future studies. With rising prevalence of overweight and obesity worldwide, the proportion of cancer caused by excess body fatness is expected to increase. There is thus an urgent need to identify efficient ways at the individual and societal level to improve diet and physical activity patterns to reduce the burden of obesity and accompanying comorbidities, including cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Nikolaos Spyrou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, Ding J, Ding R, Zhang X, Dou K. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol 2022; 13:984728. [PMID: 36189208 PMCID: PMC9520190 DOI: 10.3389/fimmu.2022.984728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma(HCC) is the sixth most common cancer in the world and is usually caused by viral hepatitis (HBV and HCV), alcoholic, and non-alcoholic fatty liver disease(NAFLD). Viral hepatitis accounts for 80% of HCC cases worldwide. In addition, With the increasing incidence of metabolic diseases, NAFLD is now the most common liver disease and a major risk factor for HCC in most developed countries. This review mainly described the specificity and similarity between the pathogenesis of viral hepatitis(HBV and HCV)-induced HCC and NAFLD-induced HCC. In general, viral hepatitis promotes HCC development mainly through specific encoded viral proteins. HBV can also exert its tumor-promoting mechanism by integrating into the host chromosome, while HCV cannot. Viral hepatitis-related HCC and NASH-related HCC differ in terms of genetic factors, and epigenetic modifications (DNA methylation, histone modifications, and microRNA effects). In addition, both of them can lead to HCC progression through abnormal lipid metabolism, persistent inflammatory response, immune and intestinal microbiome dysregulation.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenlong Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| |
Collapse
|
31
|
Caligiuri A, Gitto S, Lori G, Marra F, Parola M, Cannito S, Gentilini A. Oncostatin M: From Intracellular Signaling to Therapeutic Targets in Liver Cancer. Cancers (Basel) 2022; 14:4211. [PMID: 36077744 PMCID: PMC9454586 DOI: 10.3390/cancers14174211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancers represent the third-most-common cause of cancer-related mortality worldwide, with an incidence of 80-90% for hepatocellular carcinoma (HCC) and 10-15% for cholangiocarcinoma (CCA), and an increasing morbidity and mortality rate. Although HCC and CCA originate from independent cell populations (hepatocytes and biliary epithelial cells, respectively), they develop in chronically inflamed livers. Evidence obtained in the last decade has revealed a role for cytokines of the IL-6 family in the development of primary liver cancers. These cytokines operate through the receptor subunit gp130 and the downstream Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. Oncostatin M (OSM), a member of the IL-6 family, plays a significant role in inflammation, autoimmunity, and cancer, including liver tumors. Although, in recent years, therapeutic approaches for the treatment of HCC and CCA have been implemented, limited treatment options with marginal clinical benefits are available. We discuss how OSM-related pathways can be selectively inhibited and therapeutically exploited for the treatment of liver malignancies.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
32
|
Song M, Liu T, Liu H, Zhang Q, Zhang Q, Wang Y, Ma X, Cao L, Shi H. Association between metabolic syndrome, C-reactive protein, and the risk of primary liver cancer: a large prospective study. BMC Cancer 2022; 22:853. [PMID: 35927639 PMCID: PMC9351132 DOI: 10.1186/s12885-022-09939-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background and aims High-sensitivity C-reactive protein (hs-CRP) levels and metabolic syndrome (MetS) are known to be associated with an increased incidence of different cancers. We aimed to evaluate the effect of MetS combined with high hs-CRP levels on the risk of primary liver cancer (PLC). Methods Participants were recruited from the Kailuan cohort study and were classified into four groups according to the presence or absence of MetS and inflammation (hs-CRP ≥ 3 or < 3 mg/L). The associations of MetS and inflammation with the risk of PLC were assessed using Cox proportional hazards models. Results This study included 92,770 participants. The mean age was 51.4 years old. Over a median follow-up of 13.02 years, 395 participants were diagnosed as PLC. Compared to the control participants without inflammation (hs-CRP < 3 mg/L) and MetS (n = 69,413), participants with high hs-CRP levels combined with MetS (n = 2,269) had a higher risk of PLC [hazard ratios (HR) 2.91; 95% confidence interval (CI), 1.77–4.81], and participants with high hs-CRP levels and without MetS (n = 14,576) had the same trend (HR, 1.36; 95%CI, 1.05–1.75). However, participants with low hs-CRP levels and MetS (n = 6,512) had no significant association with an elevated risk of PLC (HR, 1.18; 95%CI, 0.76–1.82). After excluding participants who had cancer during the first year of follow-up, sensitivity analysis showed the same trend. In addition, co-occurrence of MetS and high hs-CRP levels had significant interactive effects on the risk of PLC between the sexes (P < 0.001) and the patients with HBV infection (P = 0.012). Conclusions Participants with co-occurrence of MetS and high hs-CRP levels have an elevated risk of PLC. Trial registration Kailuan study, ChiCTR–TNRC–11001489. Registered 24 August, 2011-Retrospectively registered, http://www.chictr.org.cn/showprojen.aspx?proj=8050 Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09939-w.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Hai Liu
- Department of Anesthesia, Kailuan General Hospital, Tangshan, China
| | - Qi Zhang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Qingsong Zhang
- Department of General Surgery, Kailuan General Hospital, Tangshan, 063000, China
| | - Yiming Wang
- Department of Hepatological Surgery, Kailuan General Hospital, Tangshan, 063000, China
| | - Xiangming Ma
- Department of Hepatological Surgery, Kailuan General Hospital, Tangshan, 063000, China
| | - Liying Cao
- Department of Hepatological Surgery, Kailuan General Hospital, Tangshan, 063000, China.
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China. .,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China. .,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China.
| |
Collapse
|
33
|
Thadathil N, Selvarani R, Mohammed S, Nicklas EH, Tran AL, Kamal M, Luo W, Brown JL, Lawrence MM, Borowik AK, Miller BF, Van Remmen H, Richardson A, Deepa SS. Senolytic treatment reduces cell senescence and necroptosis in Sod1 knockout mice that is associated with reduced inflammation and hepatocellular carcinoma. Aging Cell 2022; 21:e13676. [PMID: 35869934 PMCID: PMC9381894 DOI: 10.1111/acel.13676] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of this study was to test the role cellular senescence plays in the increased inflammation, chronic liver disease, and hepatocellular carcinoma seen in mice null for Cu/Zn-Superoxide dismutase (Sod1KO). To inhibit senescence, wildtype (WT) and Sod1KO mice were given the senolytics, dasatinib, and quercetin (D + Q) at 6 months of age when the Sod1KO mice begin exhibiting signs of accelerated aging. Seven months of D + Q treatment reduced the expression of p16 in the livers of Sod1KO mice to WT levels and the expression of several senescence-associated secretory phenotype factors (IL-6, IL-1β, CXCL-1, and GDF-15). D + Q treatment also reduced markers of inflammation in livers of the Sod1KO mice, for example, cytokines, chemokines, macrophage levels, and Kupffer cell clusters. D + Q treatment had no effect on various markers of liver fibrosis in the Sod1KO mice but reduced the expression of genes involved in liver cancer and dramatically reduced the incidence of hepatocellular carcinoma. Surprisingly, D + Q also reduced markers of necroptosis (phosphorylated and oligomerized MLKL) in the Sod1KO mice to WT levels. We also found that inhibiting necroptosis in the Sod1KO mice with necrostatin-1s reduced the markers of cellular senescence (p16, p21, and p53). Our study suggests that an interaction occurs between cellular senescence and necroptosis in the liver of Sod1KO mice. We propose that these two cell fates interact through a positive feedback loop resulting in a cycle amplifying both cellular senescence and necroptosis leading to inflammaging and age-associated pathology in the Sod1KO mice.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Ramasamy Selvarani
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Sabira Mohammed
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Evan H. Nicklas
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Albert L. Tran
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Maria Kamal
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Wenyi Luo
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jacob L. Brown
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
| | - Marcus M. Lawrence
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Department of Kinesiology and Outdoor RecreationSouthern Utah UniversityCedar CityUtahUSA
| | - Agnieszka K. Borowik
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Holly Van Remmen
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Arlan Richardson
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Sathyaseelan S. Deepa
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
34
|
Campbell PT, Newton CC, Jacobs EJ, McCullough ML, Wang Y, Rees-Punia E, Guinter MA, Murphy N, Koshiol J, Dehal AN, Rohan T, Strickler H, Petrick J, Gunter M, Zhang X, McGlynn KA, Pollak M, Patel AV, Gapstur SM. Prospective associations of hemoglobin A 1c and c-peptide with risk of diabetes-related cancers in the Cancer Prevention Study-II Nutrition Cohort. CANCER RESEARCH COMMUNICATIONS 2022; 2:653-662. [PMID: 36712480 PMCID: PMC9881454 DOI: 10.1158/2767-9764.crc-22-0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 02/02/2023]
Abstract
Self-reported type 2 diabetes mellitus (T2DM) is a risk factor for many cancers, suggesting its pathology relates to carcinogenesis. We conducted a case-cohort study to examine associations of hemoglobin A1c (HbA1c) and c-peptide with cancers associated with self-reported T2DM. This study was drawn from a prospective cohort of 32,383 women and men who provided blood specimens at baseline: c-peptide and HbA1c were assessed in 3,000 randomly selected participants who were cancer-free-at-baseline and an additional 2,281 participants who were cancer-free-at-baseline and subsequently diagnosed with incident colorectal, liver, pancreatic, female breast, endometrial, ovarian, bladder, or kidney cancers. Weighted-Cox regression models estimated hazards ratios (HRs) and 95% confidence intervals (CI), adjusted for covariates. C-peptide was associated with higher risk of liver cancer (per standard deviation (SD) HR: 1.80; 95%CI: 1.32-2.46). HbA1c was associated with higher risk of pancreatic cancer (per SD HR: 1.21 95%CI 1.05-1.40) and with some suggestion of higher risks for all-cancers-of-interest (per SD HR: 1.05; 95%CI: 0.99-1.11) and colorectal (per SD HR: 1.09; 95%CI: 0.98-1.20), ovarian (per SD HR: 1.18; 95%CI 0.96-1.45) and bladder (per SD HR: 1.08; 95%CI 0.96-1.21) cancers. Compared to no self-reported T2DM and HbA1c <6.5% (reference group), self-reported T2DM and HbA1c <6.5% (i.e., T2DM in good glycemic control) was not associated with risk of colorectal cancer, whereas it was associated with higher risks of all-cancers-of-interest combined (HR: 1.28; 95%CI: 1.01-1.62), especially for breast and endometrial cancers. Additional large, prospective studies are needed to further explore the roles of hyperglycemia, hyperinsulinemia, and related metabolic traits with T2DM-associated cancers to better understand the mechanisms underlying the self-reported T2DM-cancer association and to identify persons at higher cancer risk.
Collapse
Affiliation(s)
- Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| | - Christina C. Newton
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| | - Eric J. Jacobs
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| | | | - Ying Wang
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| | - Erika Rees-Punia
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| | - Mark A. Guinter
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, NIH, NCI, Rockville, Maryland
| | - Ahmed N. Dehal
- Department of Clinical Science, Kaiser Permanente Bernard J Tyson School of Medicine, Panorama City, California
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Howard Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Jessica Petrick
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Marc Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Michael Pollak
- Depsartment of Medicine and Oncology, McGill University, Montreal, Quebec, Canada
| | - Alpa V. Patel
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| | - Susan M. Gapstur
- Population Science Department, American Cancer Society (ACS), Atlanta, Georgia
| |
Collapse
|
35
|
Rojano-Toimil A, Rivera-Esteban J, Manzano-Nuñez R, Bañares J, Martinez Selva D, Gabriel-Medina P, Ferrer R, Pericàs JM, Ciudin A. When Sugar Reaches the Liver: Phenotypes of Patients with Diabetes and NAFLD. J Clin Med 2022; 11:jcm11123286. [PMID: 35743358 PMCID: PMC9225139 DOI: 10.3390/jcm11123286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) have been traditionally linked to one another. Recent studies suggest that NAFLD may be increasingly common in other types of diabetes such as type 1 diabetes (T1DM) and less frequently ketone-prone and Maturity-onset Diabetes of the Young (MODY) diabetes. In this review, we address the relationship between hyperglycemia and insulin resistance and the onset and progression of NAFLD. In addition, despite the high rate of patients with T2DM and other diabetes phenotypes that can alter liver metabolism and consequently develop steatosis, fibrosis, and cirrhosis, NALFD screening is not still implemented in the daily care routine. Incorporating a clinical algorithm created around a simple, non-invasive, cost-effective model would identify high-risk patients. The principle behind managing these patients is to improve insulin resistance and hyperglycemia states with lifestyle changes, weight loss, and new drug therapies.
Collapse
Affiliation(s)
- Alba Rojano-Toimil
- Endocrinology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
| | - Jesús Rivera-Esteban
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Medicine Department Bellaterra, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Ramiro Manzano-Nuñez
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Juan Bañares
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - David Martinez Selva
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Spanish Network of Biomedical Research Centers, Diabetes and Metabolic Associated Disorders (CIBERdem), 28029 Madrid, Spain
| | - Pablo Gabriel-Medina
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (R.F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Roser Ferrer
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (R.F.)
| | - Juan M Pericàs
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Spanish Network of Biomedical Research Centers, Liver and Digestive Diseases (CIBERehd), 28801 Madrid, Spain
- Correspondence: (J.M.P.); (A.C.)
| | - Andreea Ciudin
- Endocrinology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Medicine Department Bellaterra, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Spanish Network of Biomedical Research Centers, Diabetes and Metabolic Associated Disorders (CIBERdem), 28029 Madrid, Spain
- Correspondence: (J.M.P.); (A.C.)
| |
Collapse
|
36
|
Association between C-reactive protein and risk of overall and 18 site-specific cancers in a Japanese case-cohort. Br J Cancer 2022; 126:1481-1489. [PMID: 35140343 PMCID: PMC9091208 DOI: 10.1038/s41416-022-01715-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Evidence of the association between chronic low-grade inflammation, as reflected by C-reactive protein (CRP) measurements, and cancer risk is equivocal. Specifically, few studies have examined this in uncommon cancers and Asian populations. METHODS We utilised a case-cohort design consisting of multi-types of cancer (N = 3608), and a random subcohort (N = 4432) in a Japanese large population-based study, with a median follow-up time of 15.6 years, and measured baseline plasma CRP using high sensitivity assay. The hazard ratios (HRs) were estimated using weighted Cox proportional hazards methods. RESULTS The multivariable-adjusted HR (95% confidence interval) for the top quartile of CRP was 1.28 (1.11‒1.48) (Ptrend < 0.001) for overall cancer compared to the bottom quartile of CRP. Among site-specific cancers, higher CRP levels were associated with an increased risk of colorectal, lung, breast, biliary tract, and kidney cancer, and leukaemia. These positive associations remained among participants after >3 years' follow-up. Furthermore, subgroup analyses for overall cancer robustly showed a positive association with CRP levels, regardless of sex and obesity. CONCLUSION Our consistent findings suggested that chronic low-grade inflammation measured by CRP is associated with the risk of cancer.
Collapse
|
37
|
IL-6 Promotes Hepatocellular Carcinoma Invasion by Releasing Exosomal miR-133a-3p. Gastroenterol Res Pract 2022; 2022:4589163. [PMID: 35432524 PMCID: PMC9007680 DOI: 10.1155/2022/4589163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Interleukin-6 (IL-6), an important inflammatory cytokine, is a key factor regulating cancer metastasis. Cancer cells can modulate their tumorigenic abilities by sorting specific microRNAs (miRNAs) as exosomes into the tumor microenvironment. The relationship between IL-6 and exosomal miRNAs related to hepatocellular carcinoma (HCC) metastasis remains to be elucidated. We examined the metastatic ability of HCC cells after IL-6 treatment and found that miR-133a-3p was sorted into exosomes after IL-6 stimulation and was subsequently released into the tumor microenvironment. In vitro analysis confirmed that exosomal miR-133a-3p acted as a tumor suppressor in HCC. Bioinformatic analysis revealed several signaling pathways and hub genes (CREB1, VCP, CALM1, and YES1) regulated by miR-133a-3p. Survival curves further verified the important roles of hub genes in the prognosis of patients with HCC. It is envisaged that the IL-6/miR-133a-3p axis may be related to the activation of CREB1, VCP, CALM1, and YES1. Our findings provide new insights into the role of exosomal miRNA-mediated tumor progression under inflammatory conditions.
Collapse
|
38
|
Jiang H, Hu D, Wang J, Zhang B, He C, Ning J. Adiponectin and the risk of gastrointestinal cancers in East Asians: Mendelian randomization analysis. Cancer Med 2022; 11:2397-2404. [PMID: 35384390 PMCID: PMC9189470 DOI: 10.1002/cam4.4735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Adiponectin is an important adipocytokine and has been associated with the risks of gastrointestinal cancers (GICs). Mendelian randomization (MR) analysis is needed to assess the causal relationships between adiponectin and GICs. Methods We retrieved the summary data of genome‐wide association studies for adiponectin and six types of GICs in East Asians. A series of quality control steps were performed to select the eligible genetic instrumental tools. Horizontal pleiotropy and between‐SNP heterogeneity were tested to choose the primary MR method. We also conducted sensitivity analyses to test the robustness of the main findings. Results We detected neither heterogeneity nor horizontal pleiotropy for the eligible SNPs in all of the MR analyses. Inverse variance weighted (IVW) was therefore used as the primary method, and suggested that per 10% increase in log‐transformed adiponectin level was significantly associated with a decreased risk of gastric cancer (odds ratio [OR] = 0.88, 95% CI 0.81, 0.96), whereas with an increased risk of hepatocellular carcinoma (OR = 1.26, 95% CI 1.09, 1.44) and of biliary tract cancer (OR = 1.54, 95% CI 1.12, 2.12). However, only the association between adiponectin and HCC risk was statistically significant after correction for multiple testing. No statistically significant association was detected between adiponectin and esophageal (OR = 1.05, 95% CI 0.89, 1.23), pancreatic (OR = 1.04, 95% CI 0.78, 1.37), and colorectal cancers (OR = 1.00, 95% CI 0.93, 1.07). Sensitivity analyses did not find contradictory results. Conclusion High level of adiponectin may have a causal effect on and can serve as a biomarker for the carcinogenesis of gastric cancer, hepatocellular carcinoma, and biliary tract cancer.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
| | - Daojun Hu
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Zhang
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiyi He
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui Province, China
| | - Jiyu Ning
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
39
|
Berthou F, Sobolewski C, Abegg D, Fournier M, Maeder C, Dolicka D, Correia de Sousa M, Adibekian A, Foti M. Hepatic PTEN Signaling Regulates Systemic Metabolic Homeostasis through Hepatokines-Mediated Liver-to-Peripheral Organs Crosstalk. Int J Mol Sci 2022; 23:ijms23073959. [PMID: 35409319 PMCID: PMC8999584 DOI: 10.3390/ijms23073959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Liver-derived circulating factors deeply affect the metabolism of distal organs. Herein, we took advantage of the hepatocyte-specific PTEN knockout mice (LPTENKO), a model of hepatic steatosis associated with increased muscle insulin sensitivity and decreased adiposity, to identify potential secreted hepatic factors improving metabolic homeostasis. Our results indicated that protein factors, rather than specific metabolites, released by PTEN-deficient hepatocytes trigger an improved muscle insulin sensitivity and a decreased adiposity in LPTENKO. In this regard, a proteomic analysis of conditioned media from PTEN-deficient primary hepatocytes identified seven hepatokines whose expression/secretion was deregulated. Distinct expression patterns of these hepatokines were observed in hepatic tissues from human/mouse with NAFLD. The expression of specific factors was regulated by the PTEN/PI3K, PPAR or AMPK signaling pathways and/or modulated by classical antidiabetic drugs. Finally, loss-of-function studies identified FGF21 and the triad AHSG, ANGPTL4 and LECT2 as key regulators of insulin sensitivity in muscle cells and in adipocytes biogenesis, respectively. These data indicate that hepatic PTEN deficiency and steatosis alter the expression/secretion of hepatokines regulating insulin sensitivity in muscles and the lipid metabolism in adipose tissue. These hepatokines could represent potential therapeutic targets to treat obesity and insulin resistance.
Collapse
Affiliation(s)
- Flavien Berthou
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Cyril Sobolewski
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Margot Fournier
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Christine Maeder
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Dobrochna Dolicka
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Marta Correia de Sousa
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; (D.A.); (A.A.)
| | - Michelangelo Foti
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.B.); (C.S.); (M.F.); (C.M.); (D.D.); (M.C.d.S.)
- Diabetes Center, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(22)-379-52-04
| |
Collapse
|
40
|
Lu P, Ma Y, Kai J, Wang J, Yin Z, Xu H, Li X, Liang X, Wei S, Liang X. A Low Advanced Lung Cancer Inflammation Index Predicts a Poor Prognosis in Patients With Metastatic Non–Small Cell Lung Cancer. Front Mol Biosci 2022; 8:784667. [PMID: 35096967 PMCID: PMC8795874 DOI: 10.3389/fmolb.2021.784667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Inflammation plays a crucial role in cancers, and the advanced lung cancer inflammation index (ALI) is considered to be a potential factor reflecting systemic inflammation. Objectives: This work aimed to explore the prognostic value of the ALI in metastatic non–small cell lung cancer (NSCLC) and classify patients according to risk and prognosis. Methods: We screened 318 patients who were diagnosed with stage IV NSCLC in Hubei Cancer Hospital from July 2012 to December 2013. The formula for ALI is body mass index (BMI, kg/m2) × serum albumin (Alb, g/dl)/neutrophil–lymphocyte ratio (NLR). Categorical variables were analyzed by the chi-square test or Fisher’s exact test. The overall survival (OS) rates were analyzed by the Kaplan–Meier method and plotted with the R language. A multivariate Cox proportional hazard model was used to analyze the relationship between ALI and OS. Results: According to the optimal cut-off value determined by X-tile software, patients were divided into two groups (the ALI <32.6 and ALI ≥32.6 groups), and the median OS times were 19.23 and 39.97 months, respectively (p < 0.01). A multivariable Cox regression model confirmed that ALI and chemotherapy were independent prognostic factors for OS in patients with NSCLC. OS in the high ALI group was better than that in the low ALI group (HR: 1.39; 95% CI: 1.03–1.89; p = 0.03). Conclusions: Patients with a low ALI tend to have lower OS among those with metastatic NSCLC, and the ALI can serve as an effective prognostic factor for NSCLC patients.
Collapse
Affiliation(s)
- Ping Lu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Yifei Ma
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Jindan Kai
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Jun Wang
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Zhucheng Yin
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Hongli Xu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Xinying Li
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liang
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Wuhan, China
| | - Shaozhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Wuhan, China
- *Correspondence: Xinjun Liang, ; Shaozhong Wei,
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, China
- *Correspondence: Xinjun Liang, ; Shaozhong Wei,
| |
Collapse
|
41
|
Association between immunologic markers and cirrhosis in individuals with chronic hepatitis B. Sci Rep 2021; 11:21194. [PMID: 34782638 PMCID: PMC8593047 DOI: 10.1038/s41598-021-00455-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Host immune response and chronic inflammation associated with chronic hepatitis B virus (HBV) infection play a key role in the pathogenesis of liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). We sampled 175 HCC, 117 cirrhotic and 165 non-cirrhotic controls from a prospective cohort study of chronically HBV-infected individuals. Multivariable polytomous logistic regression and canonical discriminant analysis (CDA) were used to compare baseline plasma levels for 102 markers in individuals who developed cirrhosis vs. controls and those who developed HCC vs. cirrhosis. Leave-one-out cross validation was used to generate receiver operating characteristic curves to compare the predictive ability of marker groups. After multivariable adjustment, HGF (Q4v1OR: 3.74; p-trend = 0.0001), SLAMF1 (Q4v1OR: 4.07; p-trend = 0.0001), CSF1 (Q4v1OR: 3.00; p-trend = 0.002), uPA (Q4v1OR: 3.36; p-trend = 0.002), IL-8 (Q4v1OR: 2.83; p-trend = 0.004), and OPG (Q4v1OR: 2.44; p-trend = 0.005) were all found to be associated with cirrhosis development compared to controls; these markers predicted cirrhosis with 69% accuracy. CDA analysis identified a nine marker model capable of predicting cirrhosis development with 79% accuracy. No markers were significantly different between HCC and cirrhotic participants. In this study, we assessed immunologic markers in relation to liver disease in chronically-HBV infected individuals. While validation in required, these findings highlight the importance of immunologic processes in HBV-related cirrhosis.
Collapse
|
42
|
Wang X, Zhou M, Xiao L, Xu T, Yang S, Nie X, Xie L, Yu L, Mu G, Ma J, Chen W. Systemic inflammation mediates the association of heavy metal exposures with liver injury: A study in general Chinese urban adults. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126497. [PMID: 34323735 DOI: 10.1016/j.jhazmat.2021.126497] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal exposures have been reported to be associated with increased risk for liver injury. However, the potential mechanisms of the association remain unclear. A repeated-measure study of 9367 observations was conducted to quantify the associations of urinary heavy metals with serum alanine aminotransferase (ALT), a biomarker for liver injury, and assess the mediating role of systemic inflammation in such associations among general Chinese adults. In single-metal models, positive dose-response relationships between urinary vanadium (V), chromium (Cr), copper (Cu), arsenic (As), cadmium (Cd), tungsten (W), and lead (Pb) and serum ALT were observed. In the multiple-metal model containing the seven metals mentioned above, V and Cu remained positively associated with ALT. In longitudinal analyses of 3-6 years, each 1-unit increase in log-transformed levels of V and Cu was associated with an additional rate of annual ALT increase (95% CI) for 1.3% (0.7-1.8%) and 1.3% (0.7-2.0%), respectively. Plasma CRP concentrations were not only positively associated with urinary Cu and Cd, but also positively related with ALT. Furthermore, mediation analyses showed that CRP mediated 4.70% and 7.03% of urinary Cu- and Cd-associated ALT elevations. Our study provides clues for the prevention of heavy metal-induced liver injury.
Collapse
Affiliation(s)
- Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
43
|
Padda J, Khalid K, Khedr A, Tasnim F, Al-Ewaidat OA, Cooper AC, Jean-Charles G. Non-Alcoholic Fatty Liver Disease and Its Association With Diabetes Mellitus. Cureus 2021; 13:e17321. [PMID: 34557367 PMCID: PMC8449987 DOI: 10.7759/cureus.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
There is a bidirectional relationship between non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The liver has a vital role in the pathophysiology of both diseases as it leads to the development of insulin resistance (IR), which in turn results in NAFLD and T2DM. It has been shown that T2DM increases the risk of NAFLD progression. Furthermore, the presence of NAFLD raises the probability of T2DM complications, which explains the increased rates of NAFLD screening in patients with T2DM. In addition, there are common management options for the two diseases. Lifestyle changes can play a role in the initial management of both diseases. Medications that are used to treat T2DM are also used in the management of NAFLD, such as metformin, thiazolidinediones (TZD), glucagon-like peptide-1 (GLP-1) analogues, and dipeptidyl peptidase-4 (DPP4) inhibitors. Bariatric surgery is often used as a last resort and has shown promising results. Lifestyle interventions with diet and exercise are important postoperatively to maintain the weight loss. There are many novel treatments that are being investigated for the treatment of NAFLD, targeting multiple pathophysiologic pathways. This review aims to shed some light on the intricate relationship between NAFLD and T2DM and how IR links both diseases. We also try to raise awareness among clinicians about this relationship and how the presence of one disease should raise a high index of suspicion for the existence of the other.
Collapse
Affiliation(s)
| | | | - Anwar Khedr
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Advent Health & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
44
|
Khandelwal R, Dassanayake AS, Conjeevaram HS, Singh SP. Non-alcoholic fatty liver disease in diabetes: When to refer to the hepatologist? World J Diabetes 2021; 12:1479-1493. [PMID: 34630901 PMCID: PMC8472504 DOI: 10.4239/wjd.v12.i9.1479] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide. A strong relationship exists between NAFLD and diabetes mellitus. There is growing evidence of a mechanistically complex and strong association between the two diseases. Current data also shows that one disease actually leads to worsening of the other and vice versa. Understanding of the various pathophysiological mechanisms involved, natural history and spectrum of these two diseases is essential not only for early diagnosis and management but also for prevention of severe disease forms. Despite the tremendous progress made in recent times in acquiring knowledge about these highly prevalent diseases, the guidelines and recommendations for screening and management of diabetics with NAFLD remain ambiguous. An interdisciplinary approach is required to not only raise awareness of the prevalence of NAFLD in diabetics but also for better patient management. This can help attenuate the development of significant complications, such as cirrhosis, decompensation and hepatocellular carcinoma in these patients, thereby halting NAFLD in its tracks. This review focuses on the pivotal role of primary care physicians and endocrinologists in identification of NAFLD in diabetics in early stages and the role of proactive screening for prompt referral to hepatologist.
Collapse
Affiliation(s)
- Reshu Khandelwal
- Department of Gastroenterology, Srirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack 753007, Odisha, India
| | - Anuradha S Dassanayake
- Department of Medicine, Colombo North Centre for Liver Disease, University of Kelaniya, Kelaniya 11600, Sri Lanka
| | - Hari S Conjeevaram
- Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Shivaram P Singh
- Department of Gastroenterology, Srirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack 753007, Odisha, India
| |
Collapse
|
45
|
Nara H, Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22189889. [PMID: 34576053 PMCID: PMC8471880 DOI: 10.3390/ijms22189889] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.
Collapse
|
46
|
Pang Y, Lv J, Kartsonaki C, Yu C, Guo Y, Du H, Bennett D, Bian Z, Chen Y, Yang L, Turnbull I, Wang H, Li H, Holmes MV, Chen J, Chen Z, Li L. Association of physical activity with risk of hepatobiliary diseases in China: a prospective cohort study of 0.5 million people. Br J Sports Med 2021; 55:1024-1033. [PMID: 32826226 PMCID: PMC8408581 DOI: 10.1136/bjsports-2020-102174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE There is limited prospective evidence on the association of physical activity with hepatobiliary cancer subtypes and other major hepatobiliary diseases, especially in China. We aimed to quantify the associations with risk of these diseases. METHODS The study population involved 460 937 participants of the prospective China Kadoorie Biobank aged 30-79 years from 10 diverse areas in China without history of cancer or hepatobiliary disease at baseline. Cox regression was used to estimate adjusted hazard ratios (HRs) for each disease associated with self-reported total and domain-specific physical activity (occupational and non-occupational, ie, leisure time, household and commuting). RESULTS During ~10 years of follow-up, 22 012 incident cases of hepatobiliary diseases were recorded. The overall mean (SD) total physical activity was 21.2 (13.9) metabolic equivalent of task (MET)-hours/day, with 62% from occupational activity. Total physical activity was inversely associated with hospitalised non-alcoholic fatty liver disease (HR comparing top vs bottom quintile: 0.62, 95% confidence interval (CI) 0.53 to 0.72), viral hepatitis (0.73, 95% CI 0.62 to 0.87), cirrhosis (0.76, 95% CI 0.66 to 0.88) and liver cancer (0.81, 95% CI 0.71 to 0.93), as well as gallstone disease (0.86, 95% CI 0.81 to 0.90), gallbladder cancer (0.51, 95% CI 0.32 to 0.80) and biliary tract cancer (0.55, 95% CI 0.38 to 0.78). The associations for occupational physical activity were similar to those for total physical activity, but for non-occupational physical activity they differed by disease subtype. For leisure-time physical activity, there was an inverse association with liver cancer and an inverse trend for gallstone disease (HR comparing ≥7.5 MET-hours/day with none: 0.83, 95% CI 0.75 to 0.91 and 0.82, 95% CI 0.66 to 1.01). CONCLUSION Among Chinese adults, high total physical activity, particularly occupational physical activity, was inversely associated with risk of major hepatobiliary cancers and diseases, including non-alcoholic fatty liver disease, cirrhosis and certain types of cancer.
Collapse
Affiliation(s)
- Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Huaidong Du
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Derrick Bennett
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iain Turnbull
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Hao Wang
- Zhejiang Center for Disease Prevention and Control, Hangzhou, China
| | - Hui Li
- Liuzhou Chinese Medicine Hospital, Liuzhou, China
| | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK
| | - Junshi Chen
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
47
|
Koshiol J, Argirion I, Liu Z, Kim Lam T, O'Brien TR, Yu K, McGlynn KA, Petrick JL, Pinto L, Chen CJ, Hildesheim A, Pfeiffer RM, Lee MH, Yang HI. Immunologic markers and risk of hepatocellular carcinoma in hepatitis B virus- and hepatitis C virus-infected individuals. Aliment Pharmacol Ther 2021; 54:833-842. [PMID: 34286851 DOI: 10.1111/apt.16524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Clinical and experimental studies suggest immunologic proteins contribute to hepatocellular carcinoma (HCC) development. AIM To evaluate circulating immunologic markers and HCC risk. METHODS From a Taiwanese cohort of chronically hepatitis B virus (HBV)-infected individuals followed over time (REVEAL-HBV), we sampled 175 who developed HCC, 117 cirrhosis only, and 165 non-cirrhotic controls. From a similar Taiwanese cohort of chronically hepatitis C virus (HCV)-infected individuals (REVEAL-HCV), we included 94 individuals who developed HCC, 68 cirrhosis only and 100 non-cirrhotic controls. We compared pre-diagnostic plasma levels of 102 markers in HCC cases to non-cirrhotic and cirrhotic controls using polytomous logistic regression. A priori markers included insulin-like growth factor binding protein-3 (IGFBP-3), intercellular adhesion molecule 1 (ICAM-1) and interleukin 6 (IL-6). P-values for other markers were corrected for multiple testing (false discovery rate = 10%). RESULTS In both REVEAL-HBV and REVEAL-HCV, increasing levels of ICAM-1 were associated with increased risk of HCC compared to non-cirrhotic controls (P-trend 0.02 and 0.001, respectively). In both REVEAL-HBV and REVEAL-HCV, two novel markers [C-X-C motif chemokine 11 (CXCL11) and hepatocyte growth factor (HGF)] were positively associated [strongest odds ratioquartile 4 versus 1 (OR) 4.55 for HGF in HCV], while two [complement factor H related 5 (CFHR5) and stem cell factor (SCF)] were negatively associated (strongest ORQ4vQ1 0.14 for SCF in HCV) with development of HCC compared to non-cirrhotic controls. CONCLUSIONS We confirmed the association for ICAM-1 and identified 4 additional proteins associated with HBV- and HCV-related HCC. These findings highlight the importance of immunologic processes in HBV- and HCV-related HCC.
Collapse
Affiliation(s)
- Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ilona Argirion
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tram Kim Lam
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Thomas R O'Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kelly Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jessica L Petrick
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,School of Medicine, Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Ligia Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos, Biomedical Research, Inc, Frederick, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Epidemiology and Preventative Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mei-Hsuan Lee
- National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
48
|
Varol Fİ, Tabel Y, Yoloğlu S, Yeşilada E. Prevalence of Familial Mediterranean Fever in Children with Cryptogenic Cirrhosis. J Trop Pediatr 2021; 67:6344867. [PMID: 34363075 DOI: 10.1093/tropej/fmab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an autoinflammatory disease characterized by abdominal and chest pain and recurrent fever due to inflammation in the serosal membranes such as peritoneum, pleura and synovia. In FMF, recurrent inflammatory cytokine production may lead to cirrhosis. The aim of this study was to determine the prevalence of FMF in children with cryptogenic cirrhosis and it was found to be high, to add FMF among the etiological causes of cirrhosis. MATERIALS AND METHODS This prospective cohort study conducted at the Hospital of İnönü University, Malatya, Turkey. In this study, 44 patients diagnosed with cryptogenic cirrhosis by biopsy, in the Pediatric Gastroenterology, Hepatology and Nutrition Clinic, were included, after the other reasons that may cause chronic liver disease were excluded. MEVF gene analysis was performed for all patients with cryptogenic cirrhosis. RESULTS FMF genetic mutation was detected in 9 (20%) of 44 patients. M694V mutation was detected in one patient (2.27%) and E148Q homozygous mutation was detected in one patient (2.27%). Various other heterozygous mutations were detected in seven other patients. Homozygous and heterozygous R202Q mutations were detected in one patient. CONCLUSION We suggest that FMF plays a role in the etiologic differential diagnosis of cryptogenic cirrhosis.
Collapse
Affiliation(s)
- Fatma İlknur Varol
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Yılmaz Tabel
- Department of Pediatric Nephrology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Saim Yoloğlu
- Department of Biostatistic, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Elif Yeşilada
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
49
|
Barahona Ponce C, Scherer D, Brinster R, Boekstegers F, Marcelain K, Gárate-Calderón V, Müller B, de Toro G, Retamales J, Barajas O, Ahumada M, Morales E, Rojas A, Sanhueza V, Loader D, Rivera MT, Gutiérrez L, Bernal G, Ortega A, Montalvo D, Portiño S, Bertrán ME, Gabler F, Spencer L, Olloquequi J, Fischer C, Jenab M, Aleksandrova K, Katzke V, Weiderpass E, Bonet C, Moradi T, Fischer K, Bossers W, Brenner H, Hveem K, Eklund N, Völker U, Waldenberger M, Fuentes Guajardo M, Gonzalez-Jose R, Bedoya G, Bortolini MC, Canizales-Quinteros S, Gallo C, Ruiz-Linares A, Rothhammer F, Lorenzo Bermejo J. Gallstones, Body Mass Index, C-Reactive Protein, and Gallbladder Cancer: Mendelian Randomization Analysis of Chilean and European Genotype Data. Hepatology 2021; 73:1783-1796. [PMID: 32893372 DOI: 10.1002/hep.31537] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Gallbladder cancer (GBC) is a neglected disease with substantial geographical variability: Chile shows the highest incidence worldwide, while GBC is relatively rare in Europe. Here, we investigate the causal effects of risk factors considered in current GBC prevention programs as well as C-reactive protein (CRP) level as a marker of chronic inflammation. APPROACH AND RESULTS We applied two-sample Mendelian randomization (MR) using publicly available data and our own data from a retrospective Chilean and a prospective European study. Causality was assessed by inverse variance weighted (IVW), MR-Egger regression, and weighted median estimates complemented with sensitivity analyses on potential heterogeneity and pleiotropy, two-step MR, and mediation analysis. We found evidence for a causal effect of gallstone disease on GBC risk in Chileans (P = 9 × 10-5 ) and Europeans (P = 9 × 10-5 ). A genetically elevated body mass index (BMI) increased GBC risk in Chileans (P = 0.03), while higher CRP concentrations increased GBC risk in Europeans (P = 4.1 × 10-6 ). European results suggest causal effects of BMI on gallstone disease (P = 0.008); public Chilean data were not, however, available to enable assessment of the mediation effects among causal GBC risk factors. CONCLUSIONS Two risk factors considered in the current Chilean program for GBC prevention are causally linked to GBC risk: gallstones and BMI. For Europeans, BMI showed a causal effect on gallstone risk, which was itself causally linked to GBC risk.
Collapse
Affiliation(s)
- Carol Barahona Ponce
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago de Chile, Chile
| | - Dominique Scherer
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Regina Brinster
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago de Chile, Chile
| | - Valentina Gárate-Calderón
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago de Chile, Chile
| | - Bettina Müller
- Servicio de Oncología Médica, Instituto Nacional del Cáncer, Santiago, Chile
| | - Gonzalo de Toro
- Escuela de Tecnologia Medica, Universidad Austral de Chile sede Puerto Montt, Puerto Montt, Chile
- Servicio de Anatomía Patológica, Hospital de Puerto Montt, Puerto Montt, Chile
| | - Javier Retamales
- Servicio de Oncología Médica, Instituto Nacional del Cáncer, Santiago, Chile
| | - Olga Barajas
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago de Chile, Chile
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
- Oncology Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Monica Ahumada
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago de Chile, Chile
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
- Oncology Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Erik Morales
- Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
- Unidad de Anatomía Patológica del Hospital Regional de Talca, Talca, Chile
| | - Armando Rojas
- Laboratorio de Investigaciones Biomédicas en la Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Verónica Sanhueza
- Servicio de Anatomía Patológica, Hospital Padre Hurtado, Santiago, Chile
| | - Denisse Loader
- Servicio de Anatomía Patológica, Hospital Padre Hurtado, Santiago, Chile
| | | | - Lorena Gutiérrez
- Servicio de Anatomía Patológica, Hospital San Juan de Dios, Santiago, Chile
| | - Giuliano Bernal
- Laboratory of Molecular and Cellular Biology of Cancer (CancerLab), Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Alejandro Ortega
- Servicio de Anatomía Patológica, Hospital Regional, Arica, Chile
| | | | - Sergio Portiño
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
- Oncology Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Fernando Gabler
- Servicio de Anatomía Patológica, Hospital San Borja Arriarán, Santiago, Chile
| | - Loreto Spencer
- Servicio de Anatomía Patológica, Hospital Regional Guillermo Grant Benavente, Concepción, Chile
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Christine Fischer
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Mazda Jenab
- International Agency for Research on Cancer, Lyon, France
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Barcelona, Spain
| | - Tahereh Moradi
- Division of Epidemiology, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Kristian Hveem
- The Nord-Trøndelag Health Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, K.G. Jebsen Centre for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Niina Eklund
- Genomics and Biobank, National Institute for Health and Welfare, Helsinki, Finland
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Rolando Gonzalez-Jose
- Centro Nacional Patagónico, Instituto Patagónico de Ciencias Sociales y Humanas, CONICET, Puerto Madryn, Argentina
| | - Gabriel Bedoya
- Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Maria C Bortolini
- Instituto de Biociências, Universidad Federal do Rio Grande do Sul, Puerto Alegre, Brazil
| | | | - Carla Gallo
- Unidad de Neurobiología Molecular y Genética, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andres Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, France
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, UK
| | | | - Justo Lorenzo Bermejo
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|