1
|
Schlegel M, Cyr Y, Newman AAC, Schreyer K, Barcia Durán JG, Sharma M, Bozal FK, Gourvest M, La Forest M, Afonso MS, van Solingen C, Fisher EA, Moore KJ. Targeting Unc5b in macrophages drives atherosclerosis regression and pro-resolving immune cell function. Proc Natl Acad Sci U S A 2024; 121:e2412690121. [PMID: 39436659 PMCID: PMC11536151 DOI: 10.1073/pnas.2412690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Atherosclerosis results from lipid-driven inflammation of the arterial wall that fails to resolve. Imbalances in macrophage accumulation and function, including diminished migratory capacity and defective efferocytosis, fuel maladaptive inflammation and plaque progression. The neuroimmune guidance cue netrin-1 has dichotomous roles in inflammation partly due to its multiple receptors; in atherosclerosis, netrin-1 promotes macrophage survival and retention via its receptor Unc5b. To minimize the pleiotropic effects of targeting netrin-1, we tested the therapeutic potential of deleting Unc5b in mice with advanced atherosclerosis. We generated Unc5bfl/flCx3cr1creERT2/WT mice, which allowed conditional deletion of Un5b (∆Unc5bMØ) in monocytes and macrophages by tamoxifen injection. After inducing advanced atherosclerosis by hepatic PCSK9 overexpression and western diet feeding for 20 wk, Unc5b was deleted and hypercholesterolemia was normalized to simulate clinical lipid management. Deletion of myeloid Unc5b led to a 40% decrease in atherosclerotic plaque burden and reduced plaque complexity compared to Unc5bfl/flCx3cr1WT/WT littermate controls (CtrlMØ). Consistently, plaque macrophage content was reduced by 50% in ∆Unc5bMØ mice due to reduced plaque Ly6Chi monocyte recruitment and macrophage retention. Compared to CtrlMØ mice, plaques in ∆Unc5bMØ mice had reduced necrotic area and fewer apoptotic cells, which correlated with improved efferocytotic capacity by Unc5b-deficient macrophages in vivo and in vitro. Beneficial changes in macrophage dynamics in the plaque upon Unc5b deletion were accompanied by an increase in atheroprotective T cell populations, including T-regulatory and Th2 cells. Our data identify Unc5b in advanced atherosclerosis as a therapeutic target to induce pro-resolving restructuring of the plaque immune cells and to promote atherosclerosis regression.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - Yannick Cyr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Alexandra A. C. Newman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Korbinian Schreyer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, Klinikum rechts der Isar, Technical University of Munich (TUM) School of Medicine and Health, Munich81675, Germany
| | - José Gabriel Barcia Durán
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Monika Sharma
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Fazli K. Bozal
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Morgane Gourvest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Maxwell La Forest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Milessa S. Afonso
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
| | - Edward A. Fisher
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| | - Kathryn J. Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University Langone Health, New York, NY10016
| |
Collapse
|
2
|
Shu F, Huang H, Xiao S, Xia Z, Zheng Y. Netrin-1 co-cross-linked hydrogel accelerates diabetic wound healing in situ by modulating macrophage heterogeneity and promoting angiogenesis. Bioact Mater 2024; 39:302-316. [PMID: 38827174 PMCID: PMC11143790 DOI: 10.1016/j.bioactmat.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Diabetic wounds, characterized by prolonged inflammation and impaired vascularization, are a serious complication of diabetes. This study aimed to design a gelatin methacrylate (GelMA) hydrogel for the sustained release of netrin-1 and evaluate its potential as a scaffold to promote diabetic wound healing. The results showed that netrin-1 was highly expressed during the inflammation and proliferation phases of normal wounds, whereas it synchronously exhibited aberrantly low expression in diabetic wounds. Neutralization of netrin-1 inhibited normal wound healing, and the topical application of netrin-1 accelerated diabetic wound healing. Mechanistic studies demonstrated that netrin-1 regulated macrophage heterogeneity via the A2bR/STAT/PPARγ signaling pathway and promoted the function of endothelial cells, thus accelerating diabetic wound healing. These data suggest that netrin-1 is a potential therapeutic target for diabetic wounds.
Collapse
Affiliation(s)
- Futing Shu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hongchao Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
3
|
Chen C, Feng D, Wang Y, Yao T, Mackowiak B, Gao B. Necrotic Liver Lesion Resolution: Another Mode of Liver Regeneration. Semin Liver Dis 2024; 44:333-342. [PMID: 38955211 DOI: 10.1055/a-2358-9505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The liver has the great ability to regenerate after partial resection or injury, and the mechanisms underlying liver regeneration have been extensively investigated. Interestingly, acute liver injuries triggered by various etiologies are associated with the formation of necrotic lesions, and such necrotic lesions are also rapidly resolved. However, how necrotic liver lesions are repaired has not been carefully investigated until recently. In this review, we briefly summarize the spatiotemporal process of necrotic liver lesion resolution in several liver injury models including immune-mediated liver injury and drug-induced liver injury. The roles of liver nonparenchymal cells and infiltrating immune cells in controlling necrotic liver lesion resolution are discussed, which may help identify potential therapies for acute liver injury and failure.
Collapse
Affiliation(s)
- Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Tiantian Yao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Huang Y, Dong S, Li X, Shi J, Zhang Y, Liu S, Zhang Y, Yu J. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. FASEB J 2024; 38:e9664. [PMID: 38038805 DOI: 10.1096/fj.202301623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Shi H, Moore MP, Wang X, Tabas I. Efferocytosis in liver disease. JHEP Rep 2024; 6:100960. [PMID: 38234410 PMCID: PMC10792655 DOI: 10.1016/j.jhepr.2023.100960] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 01/19/2024] Open
Abstract
The process of dead cell clearance by phagocytic cells, called efferocytosis, prevents inflammatory cell necrosis and promotes resolution and repair. Defective efferocytosis contributes to the progression of numerous diseases in which cell death is prominent, including liver disease. Many gaps remain in our understanding of how hepatic macrophages carry out efferocytosis and how this process goes awry in various types of liver diseases. Thus far, studies have suggested that, upon liver injury, liver-resident Kupffer cells and infiltrating monocyte-derived macrophages clear dead cells, limit inflammation, and, through macrophage reprogramming, repair liver damage. However, in unusual settings, efferocytosis can promote liver disease. In this review, we will focus on efferocytosis in various types of acute and chronic liver diseases, including metabolic dysfunction-associated steatohepatitis. Understanding the mechanisms and consequences of efferocytosis by hepatic macrophages has the potential to shed new light on liver disease pathophysiology and to guide new treatment strategies to prevent disease progression.
Collapse
Affiliation(s)
- Hongxue Shi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mary P. Moore
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Chicherova I, Hernandez C, Mann F, Zoulim F, Parent R. Axon guidance molecules in liver pathology: Journeys on a damaged passport. Liver Int 2023; 43:1850-1864. [PMID: 37402699 DOI: 10.1111/liv.15662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND AIMS The liver is an innervated organ that develops a variety of chronic liver disease (CLD). Axon guidance cues (AGCs), of which ephrins, netrins, semaphorins and slits are the main representative, are secreted or membrane-bound proteins that can attract or repel axons through interactions with their growth cones that contain receptors recognizing these messengers. While fundamentally implicated in the physiological development of the nervous system, the expression of AGCs can also be reinduced under acute or chronic conditions, such as CLD, that necessitate redeployment of neural networks. METHODS This review considers the ad hoc literature through the neglected canonical neural function of these proteins that is also applicable to the diseased liver (and not solely their observed parenchymal impact). RESULTS AGCs impact fibrosis regulation, immune functions, viral/host interactions, angiogenesis, and cell growth, both at the CLD and HCC levels. Special attention has been paid to distinguishing correlative and causal data in such datasets in order to streamline data interpretation. While hepatic mechanistic insights are to date limited, bioinformatic evidence for the identification of AGCs mRNAs positive cells, protein expression, quantitative regulation, and prognostic data have been provided. Liver-pertinent clinical studies based on the US Clinical Trials database are listed. Future research directions derived from AGC targeting are proposed. CONCLUSION This review highlights frequent implication of AGCs in CLD, linking traits of liver disorders and the local autonomic nervous system. Such data should contribute to diversifying current parameters of patient stratification and our understanding of CLD.
Collapse
Affiliation(s)
- Ievgeniia Chicherova
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Charlotte Hernandez
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Fanny Mann
- Aix-Marseille University, CNRS, IBDM, Marseille, France
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
- Hepatogastroenterology Service, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| |
Collapse
|
8
|
Bao Q, Wang Z, Cheng S, Zhang J, Liu Q, Zhang Y, Cheng D, Guo X, Wang X, Han B, Sun P. Peptidomic Analysis Reveals that Novel Peptide LDP2 Protects Against Hepatic Ischemia/Reperfusion Injury. J Clin Transl Hepatol 2023; 11:405-415. [PMID: 36643038 PMCID: PMC9817043 DOI: 10.14218/jcth.2022.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND AIMS Hepatic ischemia/reperfusion (I/R) injury has become an inevitable issue during liver transplantation, with no effective treatments available. However, peptide drugs provide promising regimens for the treatment of this injury and peptidomics has gradually attracted increasing attention. This study was designed to analyze the spectrum of peptides in injured livers and explore the potential beneficial peptides involved in I/R injury. METHODS C57BL/6 mice were used to establish a liver I/R injury animal model. Changes in peptide profiles in I/R-injured livers were analyzed by mass spectrometry, and the functions of the identified peptides were predicted by bioinformatics. AML12 cells were used to simulate hepatic I/R injury in vitro. After treatment with candidate liver-derived peptides (LDPs) 1-10, the cells were collected at various reperfusion times for further study. RESULTS Our preliminary study demonstrated that 6 h of reperfusion caused the most liver I/R injury. Peptidomic results suggested that 10 down-regulated peptides were most likely to alleviate I/R injury by supporting mitochondrial function. Most importantly, a novel peptide, LDP2, was identified that alleviated I/R injury of AML12 cells. It increased cell viability and reduced the expression of inflammation- and apoptosis-related proteins. In addition, LDP2 inhibited the expression of proteins related to autophagy. CONCLUSIONS Investigation of changes in the profiles of peptides in I/R-injured livers led to identification of a novel peptide, LDP2 with potential function in liver protection by inhibiting inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Qun Bao
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Sheng Cheng
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuli Liu
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunpeng Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daqing Cheng
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirong Guo
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyun Wang
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence to: Peng Sun, Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0003-4031-6889. Tel: +86-18121225835, Fax: +86-21- 52039999, E-mail: ; Bo Han, Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 720 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0002-9882-7166. Tel: +86-18017337189, Fax: +86-21- 52039999, E-mail:
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence to: Peng Sun, Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0003-4031-6889. Tel: +86-18121225835, Fax: +86-21- 52039999, E-mail: ; Bo Han, Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 720 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0002-9882-7166. Tel: +86-18017337189, Fax: +86-21- 52039999, E-mail:
| |
Collapse
|
9
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|
10
|
Han S, Li X, Xia N, Zhang Y, Yu W, Li J, Jiao C, Wang Z, Pu L. Myeloid Trem2 Dynamically Regulates the Induction and Resolution of Hepatic Ischemia-Reperfusion Injury Inflammation. Int J Mol Sci 2023; 24:ijms24076348. [PMID: 37047321 PMCID: PMC10094065 DOI: 10.3390/ijms24076348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Trem2, a transmembrane protein that is simultaneously expressed in both bone marrow-derived and embryonic-derived liver-resident macrophages, plays a complex role in liver inflammation. The unique role of myeloid Trem2 in hepatic ischemia-reperfusion (IR) injury is not precisely understood. Our study showed that in the early stage of inflammation induction after IR, Deletion of myeloid Trem2 inhibited the induction of iNOS, MCP-1, and CXCL1/2, alleviated the accumulation of neutrophils and mitochondrial damage, and simultaneously decreased ROS formation. However, when inflammatory monocyte-macrophages gradually evolved into CD11bhiLy6Clow pro-resolution macrophages through a phenotypic switch, the story of Trem2 took a turn. Myeloid Trem2 in pro-resolution macrophages promotes phagocytosis of IR-accumulated apoptotic cells by controlling Rac1-related actin polymerization, thereby actively promoting the resolution of inflammation. This effect may be exercised to regulate the Cox2/PGE2 axis by Trem2, alone or synergistically with MerTK/Arg1. Importantly, when myeloid Trem2 was over-expressed, the phenotypic transition of monocytes from a pro-inflammatory to a resolution type was accelerated, whereas knockdown of myeloid Trem2 resulted in delayed upregulation of CX3CR1. Collectively, our findings suggest that myeloid Trem2 is involved in the cascade of IR inflammation in a two-sided capacity, with complex and heterogeneous roles at different stages, not only contributing to our understanding of sterile inflammatory immunity but also to better explore the regulatory strategies and intrinsic requirements of targeting Trem2 in the event of sterile liver injury.
Collapse
|
11
|
Zhang H, Ni M, Wang H, Zhang J, Jin D, Busuttil RW, Kupiec-Weglinski JW, Li W, Wang X, Zhai Y. Gsk3β regulates the resolution of liver ischemia/reperfusion injury via MerTK. JCI Insight 2023; 8:e151819. [PMID: 36422999 PMCID: PMC9870084 DOI: 10.1172/jci.insight.151819] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Although glycogen synthase kinase β (Gsk3β) has been shown to regulate tissue inflammation, whether and how it regulates inflammation resolution versus inflammation activation is unclear. In a murine liver, partial warm ischemia/reperfusion injury (IRI) model, we found that Gsk3β inhibitory phosphorylation increased at both the early-activation and late-resolution stages of the disease. Myeloid Gsk3β deficiency not only alleviated liver injuries, it also facilitated the restoration of liver homeostasis. Depletion of Kupffer cells prior to the onset of liver ischemia diminished the differences between the WT and Gsk3β-KO mice in the activation of liver IRI. However, the resolution of liver IRI remained accelerated in Gsk3β-KO mice. In CD11b-DTR mice, Gsk3β-deficient BM-derived macrophages (BMMs) facilitated the resolution of liver IRI as compared with WT cells. Furthermore, Gsk3β deficiency promoted the reparative phenotype differentiation in vivo in liver-infiltrating macrophages and in vitro in BMMs. Gsk3 pharmacological inhibition promoted the resolution of liver IRI in WT, but not myeloid MerTK-deficient, mice. Thus, Gsk3β regulates liver IRI at both activation and resolution stages of the disease. Gsk3 inactivation enhances the proresolving function of liver-infiltrating macrophages in an MerTK-dependent manner.
Collapse
Affiliation(s)
- Hanwen Zhang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ni
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Han Wang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Dan Jin
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuehao Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Transplant Surgery, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
12
|
Barnault R, Verzeroli C, Fournier C, Michelet M, Redavid AR, Chicherova I, Plissonnier ML, Adrait A, Khomich O, Chapus F, Richaud M, Hervieu M, Reiterer V, Centonze FG, Lucifora J, Bartosch B, Rivoire M, Farhan H, Couté Y, Mirakaj V, Decaens T, Mehlen P, Gibert B, Zoulim F, Parent R. Hepatic inflammation elicits production of proinflammatory netrin-1 through exclusive activation of translation. Hepatology 2022; 76:1345-1359. [PMID: 35253915 DOI: 10.1002/hep.32446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.
Collapse
Affiliation(s)
- Romain Barnault
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Claire Verzeroli
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Carole Fournier
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Maud Michelet
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Anna Rita Redavid
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Ievgeniia Chicherova
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Marie-Laure Plissonnier
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Annie Adrait
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Olga Khomich
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Fleur Chapus
- Single Cell Dynamics Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Mathieu Richaud
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Maëva Hervieu
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Julie Lucifora
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Birke Bartosch
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Michel Rivoire
- Léon Bérard Cancer Center, Lyon, France.,Université Lyon 1, Lyon, France
| | - Hesso Farhan
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yohann Couté
- University of Grenoble-Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, France
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tuebingen, Eberhard-Karls University, Tuebingen, Germany
| | - Thomas Decaens
- Institute for Advanced Biosciences, Inserm U1209, University of Grenoble-Alpes, La Tronche, France
| | - Patrick Mehlen
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Benjamin Gibert
- University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Apoptosis, Cancer and Development Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Fabien Zoulim
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France.,Service of Hepato-Gastroenterology, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Pathogenesis of Chronic Hepatitis B and C Laboratory - LabEx DEVweCAN, Inserm U1052, Cancer Research Centre of Lyon, Lyon, France.,University of Lyon, Lyon, France.,University Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques, Lyon, France.,CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
13
|
Heck-Swain KL, Li J, Ruan W, Yuan X, Wang Y, Koeppen M, Eltzschig HK. Myeloid hypoxia-inducible factor HIF1A provides cardio-protection during ischemia and reperfusion via induction of netrin-1. Front Cardiovasc Med 2022; 9:970415. [PMID: 36247475 PMCID: PMC9554136 DOI: 10.3389/fcvm.2022.970415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
The transcription factor hypoxia-inducible factor HIF1A induces cardioprotection from ischemia and reperfusion injury. Here, we investigate tissue-specific pathways that are critical for HIF1A-elicited tissue protection. Initial studies showed that mice with induced global Hif1a deletion (Hif1aloxP/loxP UbiquitinCre+) have exaggerated myocardial injury during in situ ischemia and reperfusion. Surprisingly, this phenotype was mirrored only in mice with myeloid-specific Hif1a deletion (Hif1a loxP/loxP LysM Cre+). In contrast, mice with myocardial specific (Hif1aloxP/loxP Myosin Cre+), or vascular Hif1a deletion (Hif1aloxP/loxP VEcadherin Cre+) experienced similar levels of injury as controls. Subsequent studies using adoptive transfer of Hif1a-deficient polymorphonuclear neutrophils (PMNs) prior to myocardial injury demonstrated increased reperfusion injury. On the contrary, the adoptive transfer of PMNs treated ex vivo with the hypoxia inducible factor (HIF) stabilizer dimethyloxalylglycine (DMOG) was associated with attenuated myocardial injury. Furthermore, DMOG-mediated cardioprotection was abolished in Hif1aloxP/loxP LysM Cre+ mice, but not in Hif2aloxP/loxP LysM Cre+ mice. Finally, studies of PMN-dependent HIF1A target genes implicated the neuronal guidance molecule netrin-1 in mediating the cardioprotective effects of myeloid HIF1A. Taken together, the present studies identified a functional role for myeloid-expressed HIF1A in providing cardioprotection during ischemia and reperfusion injury, which is mediated, at least in part, by the induction of the netrin-1 neuronal guidance molecule in neutrophils.
Collapse
Affiliation(s)
- Ka Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Ruan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
14
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
15
|
Duan L, Sanchez-Guerrero G, Jaeschke H, Ramachandran A. Activation of the adenosine A2B receptor even beyond the therapeutic window of N-acetylcysteine accelerates liver recovery after an acetaminophen overdose. Food Chem Toxicol 2022; 163:112911. [PMID: 35292334 PMCID: PMC9018526 DOI: 10.1016/j.fct.2022.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the USA. The short therapeutic window of the current antidote, N-acetylcysteine (NAC) highlights the need for novel late acting therapeutics. The neuronal guidance cue netrin-1 provides delayed protection against APAP hepatotoxicity through the adenosine A2B receptor (A2BAR). The clinical relevance of this mechanism was investigated here by administration of the A2BAR agonist BAY 60-6583, after an APAP overdose (300 or 600 mg/kg) in fasted male and female C57BL/6J mice with assessment of liver injury 6 or 24 h after APAP in comparison to NAC. BAY 60-6583 treatment 1.5 h after APAP overdose (600 mg/kg) protected against liver injury at 6 h by preserving mitochondrial function despite JNK activation and its mitochondrial translocation. Gender independent protection was sustained when BAY 60-6583 was given 6 h after APAP overdose (300 mg/kg), when NAC administration did not show benefit. This protection was accompanied by enhanced infiltration of macrophages with the reparative anti-inflammatory phenotype by 24 h, accompanied by a decrease in neutrophil infiltration. Thus, our data emphasize the remarkable therapeutic utility of using an A2BAR agonist, which provides delayed protection long after the standard of care NAC ceased to be effective.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
16
|
Abstract
Netrin-1, a secreted molecule that was first described for its role in guidance during embryogenesis, was then brought to light for its overexpression in a large number of aggressive cancers. Netrin-1 is a ligand of "dependence receptors". In adults, the interaction between Netrine-1 and these receptors triggers the survival, proliferation, and migration of different cell types. This will confer better survival properties to tumor cells, making them more prone to form aggressive tumors. A recently developed novel therapy aims at inhibiting the binding of Netrin-1 to these receptors in order to trigger cell death by apoptosis. This article presents a review of the functional characteristics of the Netrin-1 molecule, and the potential effects of a novel targeted therapy against Netrin-1 that could lead to very promising results in combination with conventional anti-cancer treatments.
Collapse
Affiliation(s)
- Mélanie Bellina
- Centre de recherche en cancérologie de Lyon (CRCL), Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Agnès Bernet
- Centre de recherche en cancérologie de Lyon (CRCL), Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| |
Collapse
|
17
|
Netrin-1: An Emerging Player in Inflammatory Diseases. Cytokine Growth Factor Rev 2022; 64:46-56. [DOI: 10.1016/j.cytogfr.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
|
18
|
Ziegon L, Schlegel M. Netrin-1: A Modulator of Macrophage Driven Acute and Chronic Inflammation. Int J Mol Sci 2021; 23:275. [PMID: 35008701 PMCID: PMC8745333 DOI: 10.3390/ijms23010275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Netrins belong to the family of laminin-like secreted proteins, which guide axonal migration and neuronal growth in the developing central nervous system. Over the last 20 years, it has been established that netrin-1 acts as a chemoattractive or chemorepulsive cue in diverse biological processes far beyond neuronal development. Netrin-1 has been shown to play a central role in cell adhesion, cell migration, proliferation, and cell survival in neuronal and non-neuronal tissue. In this context, netrin-1 was found to orchestrate organogenesis, angiogenesis, tumorigenesis, and inflammation. In inflammation, as in neuronal development, netrin-1 plays a dichotomous role directing the migration of leukocytes, especially monocytes in the inflamed tissue. Monocyte-derived macrophages have long been known for a similar dual role in inflammation. In response to pathogen-induced acute injury, monocytes are rapidly recruited to damaged tissue as the first line of immune defense to phagocyte pathogens, present antigens to initiate the adaptive immune response, and promote wound healing in the resolution phase. On the other hand, dysregulated macrophages with impaired phagocytosis and egress capacity accumulate in chronic inflammation sites and foster the maintenance-and even the progression-of chronic inflammation. In this review article, we will highlight the dichotomous roles of netrin-1 and its impact on acute and chronic inflammation.
Collapse
Affiliation(s)
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany;
| |
Collapse
|
19
|
Wang Z, Jiang T, Aji T, Aimulajiang K, Liu Y, Lv G, Wen H. Netrin-1 promotes liver regeneration possibly by facilitating vagal nerve repair after partial hepatectomy in mice. Cell Signal 2021; 91:110227. [PMID: 34954393 DOI: 10.1016/j.cellsig.2021.110227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Hepatic regeneration after hepatectomy is a great concern in clinical practice. Recently, the neuronal guidance protein netrin-1 has been reported to enhance regeneration after nerve injury. The goal of this study was to preliminarily investigate whether netrin-1 stimulates vagus nerve regeneration to promote liver regeneration after partial hepatectomy in mice. The expression of netrin-1 in murine remnant livers after partial hepatectomy (PHx) was evaluated in initial studies. C57BL/6 mice that received exogenous netrin-1 after PHx were used to examine liver regeneration. PHx was performed in wild-type mice after adeno-associated virus injection (Ntn1 gene silencing) to detect the impact of endogenous netrin-1. After PHx and hepatic branch vagotomy (HV), the mice were injected with or without netrin-1 to evaluate the effects on hepatic regeneration and vagal nerve recovery. Significant reductions in netrin-1 at the transcript and protein levels in murine liver tissue after hepatectomy were observed. Subsequent studies of netrin-1 administration revealed the promotion of hepatocyte proliferation and specific growth factors contributing to liver repair and a decrease in hepatic-specific injury enzymes. Furthermore, the opposite results were observed in the netrin-1 knockdown group. HV delayed liver regeneration after PHx. However, this retardation was reversed by exogenous netrin-1 supplementation. In addition, the results of nerve growth and vagal nerve repair in the remnant liver suggested that netrin-1 promoted vagal nerve regeneration after hepatectomy. Netrin-1 accelerates liver regeneration after partial hepatectomy in mice, and the potential mechanism is related to the promotion of vagus nerve repair and regeneration.
Collapse
Affiliation(s)
- Zongding Wang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Tiemin Jiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Tuerganaili Aji
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China
| | - Yanshi Liu
- Department of Micro-repair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China; Hepatobiliary and Hydatid Disease Department, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, PR China.
| |
Collapse
|
20
|
Camacho-Muñoz D, Kiezel-Tsugunova M, Kiss O, Uddin M, Sundén M, Ryaboshapkina M, Lind L, Oscarsson J, Nicolaou A. Omega-3 carboxylic acids and fenofibrate differentially alter plasma lipid mediators in patients with non-alcoholic fatty liver disease. FASEB J 2021; 35:e21976. [PMID: 34618982 DOI: 10.1096/fj.202100380rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Fibrates and omega-3 polyunsaturated acids are used for the treatment of hypertriglyceridemia but have not demonstrated consistent effects on cardiovascular (CV) risk. In this study, we investigate how these two pharmacological agents influence plasma levels of bioactive lipid mediators, aiming to explore their efficacy beyond that of lipid-lowering agents. Plasma from overweight patients with non-alcoholic fatty liver disease (NAFLD) and hypertriglyceridemia, participating in a randomized placebo-controlled study investigating the effects of 12 weeks treatment with fenofibrate or omega-3 free carboxylic acids (OM-3CA) (200 mg or 4 g per day, respectively), were analyzed for eicosanoids and related PUFA species, N-acylethanolamines (NAE) and ceramides. OM-3CA reduced plasma concentrations of proinflammatory PGE2 , as well as PGE1 , PGD1 and thromboxane B2 but increased prostacyclin, and eicosapentaenoic acid- and docosahexaenoic acid-derived lipids of lipoxygenase and cytochrome P450 monooxygenase (CYP) (e.g., 17-HDHA, 18-HEPE, 19,20-DiHDPA). Fenofibrate reduced plasma concentrations of vasoactive CYP-derived eicosanoids (DHETs). Although OM-3CA increased plasma levels of the NAE docosahexaenoyl ethanolamine and docosapentaenoyl ethanolamine, and fenofibrate increased palmitoleoyl ethanolamine, the effect of both treatments may have been masked by the placebo (olive oil). Fenofibrate was more efficacious than OM-3CA in significantly reducing plasma ceramides, pro-inflammatory lipids associated with CV disease risk. Neither treatment affected putative lipid species associated with NAFLD. Our results show that OM-3CA and fenofibrate differentially modulate the plasma mediator lipidome, with OM-3CA promoting the formation of lipid mediators with potential effects on chronic inflammation, while fenofibrate mainly reducing ceramides. These findings suggest that both treatments could ameliorate chronic inflammation with possible impact on disease outcomes, independent of triglyceride reduction.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Magdalena Kiezel-Tsugunova
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Orsolya Kiss
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mohib Uddin
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - Mattias Sundén
- Department of Economics, University of Gothenburg, Gothenburg, Sweden
| | | | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Oscarsson
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
21
|
Schlegel M, Sharma M, Brown EJ, Newman AAC, Cyr Y, Afonso MS, Corr EM, Koelwyn GJ, van Solingen C, Guzman J, Farhat R, Nikain CA, Shanley LC, Peled D, Schmidt AM, Fisher EA, Moore KJ. Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression. Circ Res 2021; 129:530-546. [PMID: 34289717 PMCID: PMC8529357 DOI: 10.1161/circresaha.121.319313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rationale: Therapeutic efforts to decrease atherosclerotic cardiovascular disease risk have focused largely on reducing atherogenic lipoproteins, yet lipid-lowering therapies alone are insufficient to fully regress plaque burden. We postulate that arterial repair requires resolution of a maladaptive immune response and that targeting factors that hinder inflammation resolution will facilitate plaque regression. Objective: The guidance molecule Ntn1 (netrin-1) is secreted by macrophages in atherosclerotic plaques, where it sustains inflammation by enhancing macrophage survival and blocking macrophage emigration. We tested whether silencing Ntn1 in advanced atherosclerosis could resolve arterial inflammation and regress plaques. Methods and Results: To temporally silence Ntn1 in myeloid cells, we generated genetically modified mice in which Ntn1 could be selectively deleted in monocytes and macrophages using a tamoxifen-induced CX3CR1-driven cre recombinase (Ntn1fl/flCx3cr1creERT2+) and littermate control mice (Ntn1fl/flCx3cr1WT). Mice were fed Western diet in the setting of hepatic PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression to render them atherosclerotic and then treated with tamoxifen to initiate deletion of myeloid Ntn1 (MøΔNtn1) or not in controls (MøWT). Morphometric analyses performed 4 weeks later showed that myeloid Ntn1 silencing reduced plaque burden in the aorta (−50%) and plaque complexity in the aortic root. Monocyte-macrophage tracing experiments revealed lower monocyte recruitment, macrophage retention, and proliferation in MøΔNtn1 compared with MøWT plaques, indicating a restructuring of monocyte-macrophage dynamics in the artery wall upon Ntn1 silencing. Single-cell RNA sequencing of aortic immune cells before and after Ntn1 silencing revealed upregulation of gene pathways involved in macrophage phagocytosis and migration, including the Ccr7 chemokine receptor signaling pathway required for macrophage emigration from plaques and atherosclerosis regression. Additionally, plaques from MøΔNtn1 mice showed hallmarks of inflammation resolution, including higher levels of proresolving macrophages, IL (interleukin)-10, and efferocytosis, as compared to plaques from MøWT mice. Conclusion: Our data show that targeting Ntn1 in advanced atherosclerosis ameliorates atherosclerotic inflammation and promotes plaque regression.
Collapse
Affiliation(s)
- Martin Schlegel
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
- Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Germany (M. Schlegel)
| | - Monika Sharma
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emily J Brown
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Alexandra A C Newman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Yannick Cyr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Milessa Silva Afonso
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emma M Corr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Graeme J Koelwyn
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Coen van Solingen
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Jonathan Guzman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Rubab Farhat
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Cyrus A Nikain
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Lianne C Shanley
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Daniel Peled
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Ann Marie Schmidt
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University (A.M.S.). K.J. Moore, M. Schlegel, M. Sharma, A.M. Schmidt, and E.A. Fisher designed the study and performed data analysis and interpretation. M. Schlegel, M. Sharma, M.S. Afonso, E.J. Brown, E.M. Corr, C. van Solingen, G.J. Koelwyn, A.A.C. Newman, Y. Cyr, R. Farhat, J. Guzman, L.C. Shanley, and D. Peled conducted experiments, acquired data, and performed analyses. E.J. Brown analyzed the RNA-sequencing data. K.J. Moore and M. Schlegel wrote the article with input from all authors
| | - Edward A Fisher
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| |
Collapse
|
22
|
Abstract
Nonresolving inflammation, a hallmark of sepsis and/or multi-organ failure, still poses a challenge in medicine. The mortality rate is enormous, and so far no adequate curative therapy is available. Here we identify a previously unrecognized role of the neuronal guidance protein semaphorin 7A in the transition to resolution processes in severe systematic inflammation such as sepsis. Endogenous mediators regulating acute inflammatory responses in both the induction and resolution phases of inflammatory processes are pivotal in host defense and tissue homeostasis. Recent studies have identified neuronal guidance proteins characterized in axonal development that display immunomodulatory functions. Here, we identify the neuroimmune guidance cue Semaphorin 7A (Sema7A), which appears to link macrophage (MΦ) metabolic remodeling to inflammation resolution. Sema7A orchestrated MΦ chemotaxis and chemokinesis, activated MΦ differentiation and polarization toward the proresolving M2 phenotype, and promoted leukocyte clearance. Peritoneal MΦSema7A−/− displayed metabolic reprogramming, characterized by reductions in fatty acid oxidation and oxidative phosphorylation, increases in glycolysis and the pentose phosphate pathway, and truncation of the tricarboxylic acid cycle, which resulted in increased levels of the intermediates succinate and fumarate. The low accumulation of citrate in MΦSema7A−/− correlated with the decreased synthesis of prostaglandins, leading to a reduced impact on lipid-mediator class switching and the generation of specialized pro resolving lipid mediators. Signaling network analysis indicated that Sema7A induced the metabolic reprogramming of MΦ by activating the mTOR- and AKT2-signaling pathways. Administration of Sema7ASL4cd orchestrated the resolution response to tissue homeostasis by shortening the resolution interval, promoting tissue protection in murine peritonitis, and enhancing survival in polymicrobial sepsis.
Collapse
|
23
|
Berg NK, Li J, Kim B, Mills T, Pei G, Zhao Z, Li X, Zhang X, Ruan W, Eltzschig HK, Yuan X. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J 2021; 35:e21334. [PMID: 33715200 PMCID: PMC8251729 DOI: 10.1096/fj.202002407r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Sepsis and sepsis‐associated lung inflammation significantly contribute to the morbidity and mortality of critical illness. Here, we examined the hypothesis that neuronal guidance proteins could orchestrate inflammatory events during endotoxin‐induced lung injury. Through a targeted array, we identified netrin‐1 as the top upregulated neuronal guidance protein in macrophages treated with lipopolysaccharide (LPS). Furthermore, we found that netrin‐1 is highly enriched in infiltrating myeloid cells, particularly in macrophages during LPS‐induced lung injury. Transcriptional studies implicate hypoxia‐inducible factor HIF‐1α in the transcriptional induction of netrin‐1 during LPS treatment. Subsequently, the deletion of netrin‐1 in the myeloid compartment (Ntn1loxp/loxp LysM Cre) resulted in exaggerated mortality and lung inflammation. Surprisingly, further studies revealed enhanced natural killer cells (NK cells) infiltration in Ntn1loxp/loxp LysM Cre mice, and neutralization of NK cell chemoattractant chemokine (C‐C motif) ligand 2 (CCL2) reversed the exaggerated lung inflammation. Together, these studies provide functional insight into myeloid cell‐derived netrin‐1 in controlling lung inflammation through the modulation of CCL2‐dependent infiltration of NK cells.
Collapse
Affiliation(s)
- Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Tingting Mills
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA.,Center for Clinical and Translational Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
24
|
Duan L, Woolbright BL, Jaeschke H, Ramachandran A. Late Protective Effect of Netrin-1 in the Murine Acetaminophen Hepatotoxicity Model. Toxicol Sci 2021; 175:168-181. [PMID: 32207522 DOI: 10.1093/toxsci/kfaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acetaminophen (APAP) overdose-induced acute liver failure is an important clinical problem in the United States and the current antidote N-acetylcysteine, has a short early therapeutic window. Since most patients present late to the clinic, there is need for novel late-acting therapeutic options. Though the neuronal guidance cue netrin-1, has been shown to promote hepatic repair and regeneration during liver ischemia/reperfusion injury, its effect in APAP-induced hepatotoxicity is unknown. In the quest for a late-acting therapeutic intervention in APAP-induced liver injury, we examined the role of netrin-1 in a mouse model of APAP overdose. Male C57BL/6J mice were cotreated with exogenous netrin-1 or vehicle control, along with 300 mg/kg APAP and euthanized at 6, 12, and 24 h. Significant elevations in alanine aminotransferase indicative of liver injury were seen in control mice at 6 h and this was not affected by netrin-1 administration. Also, netrin-1 treatment did not influence mitochondrial translocation of phospho-JNK, or peroxynitrite formation indicating that there was no interference with APAP-induced injury processes. Interestingly however, netrin-1 administration attenuated liver injury at 24 h, as seen by alanine aminotransferase levels and histology, at which time significant elevations in the netrin-1 receptor, adenosine A2B receptor (A2BAR) as well as macrophage infiltration was evident. Removal of resident macrophages with clodronate liposomes or treatment with the A2BAR antagonist PSB1115 blocked the protective effects of netrin-1. Thus, our data indicate a previously unrecognized role for netrin-1 in attenuation of APAP hepatotoxicity by enhancing recovery and regeneration, which is mediated through the A2BAR and involves resident liver macrophages.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
25
|
Abstract
Innate immune cells are crucial in the development and regulation of cardiovascular disease. In this issue, two groups, Davis et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201839) and Li et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210008) describe the impact of the innate immune system on the development of cardiovascular disease.
Collapse
Affiliation(s)
- Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
26
|
Li J, Conrad C, Mills TW, Berg NK, Kim B, Ruan W, Lee JW, Zhang X, Yuan X, Eltzschig HK. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J Exp Med 2021; 218:212023. [PMID: 33891683 PMCID: PMC8077173 DOI: 10.1084/jem.20210008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies implicated the neuronal guidance molecule netrin-1 in attenuating myocardial ischemia-reperfusion injury. However, the tissue-specific sources and receptor signaling events remain elusive. Neutrophils are among the first cells responding to an ischemic insult and can be associated with tissue injury or rescue. We found netrin-1 levels were elevated in the blood of patients with myocardial infarction, as well as in mice exposed to myocardial ischemia-reperfusion. Selectively increased infarct sizes and troponin levels were found in Ntn1loxP/loxP Lyz2 Cre+ mice, but not in mice with conditional netrin-1 deletion in other tissue compartments. In vivo studies using neutrophil depletion identified neutrophils as the main source for elevated blood netrin-1 during myocardial injury. Finally, pharmacologic studies using treatment with recombinant netrin-1 revealed a functional role for purinergic signaling events through the myeloid adenosine A2b receptor in mediating netrin-1-elicited cardioprotection. These findings suggest an autocrine signaling loop with a functional role for neutrophil-derived netrin-1 in attenuating myocardial ischemia-reperfusion injury through myeloid adenosine A2b signaling.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Catharina Conrad
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tingting W Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nathaniel K Berg
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Boyun Kim
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Wei Ruan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Second Xiangya Hospital, Central South University, Hunan, China
| | - Jae W Lee
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT
| | - Xu Zhang
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
27
|
Liu J, Zhao Y, Li ZQ, Chen Q, Luo CQ, Su JX, Wang YM. Biomarkers for detecting and improving AKI after liver transplantation: From diagnosis to treatment. Transplant Rev (Orlando) 2021; 35:100612. [PMID: 33721594 DOI: 10.1016/j.trre.2021.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
Orthotopic liver transplantation (OLT) is a well-established treatment for patients with liver failure. The shortage of donor organs and postoperative complications remain major obstacles for improving patient survival. Among these complications, acute kidney injury (AKI) is one of the most frequent types, contributing to graft loss. The timely detection and reversal of AKI can reduce its adverse influences on graft and patient outcomes. Traditional markers for detecting AKI are often limited with regard to their accuracy and specificity, and the discovery of better AKI markers and therapeutic targets assumes great importance. During past decades, studies directed toward early detection and treatment of AKI in OLT have been available. This review summarizes the evidence of these biomarkers for the prediction, diagnosis, treatment and prognosis stratification of AKI associated with OLT.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Zhao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen-Qiong Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chang-Qing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jin-Xuan Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
28
|
Lou XH, Cai YY, Yang XQ, Zheng HJ, Yu YJ, Wang CH, Huang LN. Serum netrin-1 concentrations are associated with clinical outcome in acute intracerebral hemorrhage. Clin Chim Acta 2020; 508:154-160. [DOI: 10.1016/j.cca.2020.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023]
|
29
|
Schlegel M, Moore KJ. A heritable netrin-1 mutation increases atherogenic immune responses. Atherosclerosis 2020; 301:82-83. [PMID: 32317107 PMCID: PMC7769589 DOI: 10.1016/j.atherosclerosis.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Atherosclerosis and its major clinical manifestations – myocardial infarction, ischemic stroke and peripheral artery disease – remain a leading cause of death worldwide1 . The onset of atherosclerosis is driven by the accumulation and expansion of macrophages in the artery wall in response to lipid deposition. Subsequently, the macrophage’s failure to resolve the inflammation and to exit the plaque are key processes in the progression of atherosclerosis2 . Understanding the underlying causes and pathological mechanisms of this chronic, low grade inflammation that sustains plaque progression has been a major focus of the field in the last decade3 . In this issue of Atherosclerosis , Bruikman et al identify a rare variant in the gene encoding the neuroimmune guidance molecule netrin-1 (NTN1 ), in a family with premature atherosclerosis, that alters netrin-1 functions and promotes proatherogenic immune responses4 .
Collapse
Affiliation(s)
- Martin Schlegel
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Anesthesiology and Intensive Care, Technical University of Munich School of Medicine, Munich, Germany
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Gudernatsch V, Stefańczyk SA, Mirakaj V. Novel Resolution Mediators of Severe Systemic Inflammation. Immunotargets Ther 2020; 9:31-41. [PMID: 32185148 PMCID: PMC7064289 DOI: 10.2147/itt.s243238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
Nonresolving inflammation, a hallmark of underlying severe inflammatory processes such as sepsis, acute respiratory distress syndrome and multiple organ failure is a major cause of admission to the intensive care unit and high mortality rates. Many survivors develop new functional limitations and health problems, and in cases of sepsis, approximately 40% of patients are rehospitalized within three months. Over the last few decades, better treatment approaches have been adopted. Nevertheless, the lack of knowledge underlying the complex pathophysiology of the inflammatory response organized by numerous mediators and the induction of complex networks impede curative therapy. Thus, increasing evidence indicates that resolution of an acute inflammatory response, considered an active process, is the ideal outcome that leads to tissue restoration and organ function. Many mediators have been identified as immunoresolvents, but only a few have been shown to contribute to both the initial and resolution phases of severe systemic inflammation, and these agents might finally substantially impact the therapeutic approach to severe inflammatory processes. In this review, we depict different resolution mediators/immunoresolvents contributing to resolution programmes specifically related to life-threatening severe inflammatory processes.
Collapse
Affiliation(s)
- Verena Gudernatsch
- Molecular Intensive Care Medicine, Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sylwia Anna Stefańczyk
- Molecular Intensive Care Medicine, Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Valbona Mirakaj
- Molecular Intensive Care Medicine, Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Cheng B, Xie H, Jia J, Wu M, Guo J, Zhang Y, Liu Y, Zhou J, He N. Deceleration of Liver Regeneration by Knockdown of Heme Oxygenase-1 is Associated With Impairment of Liver Injury Recovery After Reduced-Size Liver Transplantation in Rats. Transplant Proc 2020; 52:1001-1006. [PMID: 32146020 DOI: 10.1016/j.transproceed.2019.11.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023]
Abstract
AIM It has been reported that heme oxygenase-1 (HO-1) is upregulated during hepatocyte proliferation. Herein, we used a half-size liver transplantation (HSLT) model to study the impact of HO-1 on liver grafts proliferation. To the best of our knowledge, this is the first time that HO-1 has been characterized as a regulator of liver graft regeneration. MATERIALS AND METHODS Saline and tin protoporphyrin (SnPP, a HO-1 competitive inhibitor) were separately administered in vehicle and SnPP group before rats HSLT. Plasma samples were collected at 0, 1, 3, and 5 days after HSLT for liver function analysis. Liver tissues were obtained at 0, 1, 3, and 5 days after HSLT for analyses of histologic, apoptosis, and proliferation index by immunohistochemical, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blotting. RESULTS HO-1 level was upregulated by the treatment of HSLT along with accelerated liver proliferation, which was reversed by SnPP. The reduced regeneration by SnPP lead to higher Suzuki's scores, alanine aminotransferase, and aspartate aminotransferase levels. The interleukin-6 levels, p-Stat3/t-Stat3, c-myc, and c-jun were decreased in the SnPP group than the vehicle group. CONCLUSIONS Our findings suggest that inhibition of HO-1 mitigates liver regeneration in part by downregulation of an interleukin-6/Stat3 axis. Targeted specific pharmacologic induction of HO-1 may be applicable in clinical practice.
Collapse
Affiliation(s)
- Bing Cheng
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Hua Xie
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Junjun Jia
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Man Wu
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Junling Guo
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Yuanyuan Zhang
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Yashuang Liu
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Jieping Zhou
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Zabala V, Boylan JM, Thevenot P, Frank A, Senthoor D, Iyengar V, Kim H, Cohen A, Gruppuso PA, Sanders JA. Transcriptional changes during hepatic ischemia-reperfusion in the rat. PLoS One 2019; 14:e0227038. [PMID: 31891620 PMCID: PMC6938360 DOI: 10.1371/journal.pone.0227038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
There are few effective targeted strategies to reduce hepatic ischemia-reperfusion (IR) injury, a contributor to poor outcomes in liver transplantation recipients. It has been proposed that IR injury is driven by the generation of reactive oxygen species (ROS). However, recent studies implicate other mediators of the injury response, including mitochondrial metabolic dysfunction. We examined changes in global gene expression after transient hepatic ischemia and at several early reperfusion times to identify potential targets that could be used to protect against IR injury. Male Wistar rats were subjected to 30 minutes of 70% partial warm ischemia followed by 0, 0.5, 2, or 6 hours of reperfusion. RNA was extracted from the reperfused and non-ischemic lobes at each time point for microarray analysis. Identification of differentially expressed genes and pathway analysis were used to characterize IR-induced changes in the hepatic transcriptome. Changes in the reperfused lobes were specific to the various reperfusion times. We made the unexpected observation that many of these changes were also present in tissue from the paired non-ischemic lobes. However, the earliest reperfusion time, 30 minutes, showed a marked increase in the expression of a set of immediate-early genes (c-Fos, c-Jun, Atf3, Egr1) that was exclusive to the reperfused lobe. We interpreted these results as indicating that this early response represented a tissue autonomous response to reperfusion. In contrast, the changes that occurred in both the reperfused and non-ischemic lobes were interpreted as indicating a non-autonomous response resulting from hemodynamic changes and/or circulating factors. These tissue autonomous and non-autonomous responses may serve as targets to ameliorate IR injury.
Collapse
Affiliation(s)
- Valerie Zabala
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Joan M. Boylan
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Health Systems, New Orleans LA, United States of America
| | - Anderson Frank
- Institute of Translational Research, Ochsner Health Systems, New Orleans LA, United States of America
| | - Dewahar Senthoor
- Warren Alpert Medical School, Providence, RI, United States of America
| | - Varun Iyengar
- Warren Alpert Medical School, Providence, RI, United States of America
| | - Hannah Kim
- Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Ari Cohen
- Institute of Translational Research, Ochsner Health Systems, New Orleans LA, United States of America
| | - Philip A. Gruppuso
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America
| | - Jennifer A. Sanders
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
| |
Collapse
|
33
|
Inhibition of Δ24-dehydrocholesterol reductase activates pro-resolving lipid mediator biosynthesis and inflammation resolution. Proc Natl Acad Sci U S A 2019; 116:20623-20634. [PMID: 31548397 DOI: 10.1073/pnas.1911992116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Targeting metabolism through bioactive key metabolites is an upcoming future therapeutic strategy. We questioned how modifying intracellular lipid metabolism could be a possible means for alleviating inflammation. Using a recently developed chemical probe (SH42), we inhibited distal cholesterol biosynthesis through selective inhibition of Δ24-dehydrocholesterol reductase (DHCR24). Inhibition of DHCR24 led to an antiinflammatory/proresolving phenotype in a murine peritonitis model. Subsequently, we investigated several omics layers in order to link our phenotypic observations with key metabolic alterations. Lipidomic analysis revealed a significant increase in endogenous polyunsaturated fatty acid (PUFA) biosynthesis. These data integrated with gene expression analysis, revealing increased expression of the desaturase Fads6 and the key proresolving enzyme Alox-12/15 Protein array analysis, as well as immune cell phenotype and functional analysis, substantiated these results confirming the antiinflammatory/proresolving phenotype. Ultimately, lipid mediator (LM) analysis revealed the increased production of bioactive lipids, channeling the observed metabolic alterations into a key class of metabolites known for their capacity to change the inflammatory phenotype.
Collapse
|
34
|
Chen JL, Yuan DH, Yang SJ, Gu C, Zhou HS, Shao GF. Serum netrin-1 serves as a prognostic biomarker of aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2019; 495:294-300. [DOI: 10.1016/j.cca.2019.04.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
|
35
|
Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan H, Yang S, He J, Shi D, Wang Y. Netrin-1 alleviates subarachnoid haemorrhage-induced brain injury via the PPARγ/NF-KB signalling pathway. J Cell Mol Med 2019; 23:2256-2262. [PMID: 30614619 PMCID: PMC6378208 DOI: 10.1111/jcmm.14105] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Netrin‐1 (NTN‐1) is a novel drug to alleviate early brain injury following subarachnoid haemorrhage (SAH). However the molecular mechanism of NTN‐1‐mediated protection against early brain injury following SAH remains largely elusive. This study aims to evaluate the effects and mechanisms of NTN‐1 in protecting SAH‐induced early brain injury. The endovascular perforation SAH model was constructed using male C57BL/6J mice, and recombinant NTN‐1 was administrated intravenously. Mortality rates, SAH grade, brain water content, neurological score and neuronal apoptosis were evaluated. The expression of PPARγ, Bcl‐2, Bax and nuclear factor‐kappa B (NF‐κB) were detected by Western blot. Small interfering RNA specific to NTN‐1 receptor, UNC5B, and a selective PPARγ antagonist, bisphenol A diglycidyl ether (BADGE), were applied in combination with NTN‐1. The results suggested that NTN‐1 improved the neurological deficits, reduced the brain water content and alleviated neuronal apoptosis. In addition, NTN‐1 enhanced PPARγ and Bcl‐2 expression and decreased the levels of Bax and NF‐κB. However, the neuroprotection of NTN‐1 was abolished by UNC5B and BADGE. In conclusion, our results demonstrated that NTN‐1 attenuates early brain injury following SAH via the UNC5B PPARγ/NF‐κB signalling pathway.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| | - Yong Xuan
- Department of Orthopedic, The Second People's Hospital of Hefei, Hefei City, Anhui Province, PR. China
| | - Yan Chen
- Department of Physical Examination Center, Hexian Peoples Hospital, Ma Anshan City, Anhui Province, PR. China
| | - Ting Wu
- Department of Cardiology, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| | - Lei Chen
- Department of Neurosurgery, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| | - Haoxiang Guan
- Department of Neurosurgery, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| | - Shuo Yang
- Department of Neurosurgery, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| | - Jianqing He
- Department of Neurosurgery, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| | - Dongliang Shi
- Department of Neurosurgery, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Medical College of Anhui Medical University (l0lst Hospital of PLA), Wuxi City, Jiangsu Province, PR. China
| |
Collapse
|
36
|
Jonasdottir HS, Brouwers H, Toes REM, Ioan-Facsinay A, Giera M. Effects of anticoagulants and storage conditions on clinical oxylipid levels in human plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1511-1522. [PMID: 30308322 DOI: 10.1016/j.bbalip.2018.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023]
Abstract
Metabolomics and lipidomics are of fundamental importance to personalized healthcare. Particularly the analysis of bioactive lipids is of relevance to a better understanding of various diseases. Within clinical routines, blood derived samples are widely used for diagnostic and research purposes. Hence, standardized and validated procedures for blood collection and storage are mandatory, in order to guarantee sample integrity and relevant study outcomes. We here investigated different plasma storage conditions and their effect on plasma fatty acid and oxylipid levels. Our data clearly indicate the importance of storage conditions for plasma lipidomic analysis. Storage at very low temperature (-80 °C) and the addition of methanol directly after sampling are the most important measures to avoid ex vivo synthesis of oxylipids. Furthermore, we identified critical analytes being affected under certain storage conditions. Finally, we carried out chiral analysis and found possible residual enzymatic activity to be one of the contributors to the ex vivo formation of oxylipids even at -20 °C.
Collapse
Affiliation(s)
- Hulda S Jonasdottir
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, the Netherlands; Leiden University Medical Center, Department of Rheumatology, Albinusdreef 2, 2300RC Leiden, the Netherlands
| | - Hilde Brouwers
- Leiden University Medical Center, Department of Rheumatology, Albinusdreef 2, 2300RC Leiden, the Netherlands
| | - René E M Toes
- Leiden University Medical Center, Department of Rheumatology, Albinusdreef 2, 2300RC Leiden, the Netherlands
| | - Andreea Ioan-Facsinay
- Leiden University Medical Center, Department of Rheumatology, Albinusdreef 2, 2300RC Leiden, the Netherlands
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, the Netherlands.
| |
Collapse
|
37
|
Schlegel M, Körner A, Kaussen T, Knausberg U, Gerber C, Hansmann G, Jónasdóttir HS, Giera M, Mirakaj V. Inhibition of neogenin fosters resolution of inflammation and tissue regeneration. J Clin Invest 2018; 128:4711-4726. [PMID: 30222138 DOI: 10.1172/jci96259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
The resolution of inflammation is an active process that is coordinated by endogenous mediators. Previous studies have demonstrated the immunomodulatory properties of the axonal guidance proteins in the initial phase of acute inflammation. We hypothesized that the neuronal guidance protein neogenin (Neo1) modulates mechanisms of inflammation resolution. In murine peritonitis, Neo1 deficiency (Neo1-/-) resulted in higher efficacies in reducing neutrophil migration into injury sites, increasing neutrophil apoptosis, actuating PMN phagocytosis, and increasing the endogenous biosynthesis of specialized proresolving mediators, such as lipoxin A4, maresin-1, and protectin DX. Neo1 expression was limited to Neo1-expressing Ly6Chi monocytes, and Neo1 deficiency induced monocyte polarization toward an antiinflammatory and proresolving phenotype. Signaling network analysis revealed that Neo1-/- monocytes mediate their immunomodulatory effects specifically by activating the PI3K/AKT pathway and suppressing the TGF-β pathway. In a cohort of 59 critically ill, intensive care unit (ICU) pediatric patients, we found a strong correlation between Neo1 blood plasma levels and abdominal compartment syndrome, Pediatric Risk of Mortality III (PRISM-III) score, and ICU length of stay and mortality. Together, these findings identify a crucial role for Neo1 in regulating tissue regeneration and resolution of inflammation, and determined Neo1 to be a predictor of morbidity and mortality in critically ill children affected by clinical inflammation.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Andreas Körner
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Torsten Kaussen
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Urs Knausberg
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Carmen Gerber
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Hulda Soffia Jónasdóttir
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Fatty liver is associated with blood pathways of inflammatory response, immune system activation and prothrombotic state in Young Finns Study. Sci Rep 2018; 8:10358. [PMID: 29985430 PMCID: PMC6037671 DOI: 10.1038/s41598-018-28563-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
Fatty liver (FL) disease is the most common type of chronic liver disease. We hypothesized that liver’s response to the process where large droplets of triglyceride fat accumulate in liver cells is reflected also in gene pathway expression in blood. Peripheral blood genome wide gene expression analysis and ultrasonic imaging of liver were performed for 1,650 participants (316 individuals with FL and 1,334 controls) of the Young Finns Study. Gene set enrichment analysis (GSEA) was performed for the expression data. Fourteen gene sets were upregulated (false discovery rate, FDR < 0.05) in subjects with FL. These pathways related to extracellular matrix (ECM) turnover, immune response regulation, prothrombotic state and neural tissues. After adjustment for known risk factors and biomarkers of FL, we found i) integrin A4B1 signaling, ii) leukocyte transendothelial migration, iii) CD40/CD40L and iv) netrin-1 signaling pathways to be upregulated in individuals with FL (nominal p < 0.05). From these all but not ii) remained significantly upregulated when analyzing only subjects without history of heavy alcohol use. In conclusion, FL was associated with blood gene sets of ECM turnover, inflammatory response, immune system activation and prothrombotic state. These may form a systemic link between FL and the development of cardiovascular diseases.
Collapse
|
39
|
Asuri S, McIntosh S, Taylor V, Rokeby A, Kelly J, Shumansky K, Field LL, Yoshida EM, Arbour L. Primary Biliary Cholangitis in British Columbia First Nations: Clinical features and discovery of novel genetic susceptibility loci. Liver Int 2018; 38:940-948. [PMID: 29297981 DOI: 10.1111/liv.13686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/21/2017] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterized by destruction of intrahepatic bile ducts, portal inflammation and cirrhosis. Although rare in most populations, it is prevalent and often familial in British Columbia First Nations. We hypothesized that major genetic factors increased the risk in First Nations. METHODS In all, 44 individuals with Primary Biliary Cholangitis and 61 unaffected relatives from 32 First Nations families participated. Family history and co-morbidities were documented. Medical records were reviewed and available biopsies were re-reviewed by our team pathologist. Genotyping was performed on DNA from 36 affected persons and 27 unaffected relatives using the Affymetrix Human Mapping 500K Array Set. MERLIN software was used to carry out multipoint parametric and nonparametric linkage analysis. Candidate genes were identified and entered into InnateDB and KEGG software to identify potential pathways affecting pathogenesis. RESULTS In all, 34% of families were multiplex. Fifty per cent of cases and 33% of unaffected relatives reported other autoimmune disease. Three genomic regions (9q21, 17p13 and 19p13) produced LOD scores of 2.3 or greater suggestive of linkage, but no single linkage peak reached statistical significance. Candidate genes identified in the three regions suggested involvement of IL17, NFκB, IL6, JAK-STAT, IFNγ and TGFβ immune signalling pathways. Specifically, four genes-ACT1, PIN1, DNMT1 and NTN1-emerged as having roles in these pathways that may influence Primary Biliary Cholangitis pathogenesis. CONCLUSIONS Our whole genome linkage study results reflect the multifactorial nature of Primary Biliary Cholangitis, support previous studies suggesting signalling pathway involvement and identify new candidate genes for consideration.
Collapse
Affiliation(s)
- Sirisha Asuri
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah McIntosh
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Valerie Taylor
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Andrew Rokeby
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - James Kelly
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karey Shumansky
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Lanora Leigh Field
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
40
|
Kaisar MMM, Ritter M, del Fresno C, Jónasdóttir HS, van der Ham AJ, Pelgrom LR, Schramm G, Layland LE, Sancho D, Prazeres da Costa C, Giera M, Yazdanbakhsh M, Everts B. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol 2018; 16:e2005504. [PMID: 29668708 PMCID: PMC5927467 DOI: 10.1371/journal.pbio.2005504] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
The molecular mechanisms through which dendritic cells (DCs) prime T helper 2 (Th2) responses, including those elicited by parasitic helminths, remain incompletely understood. Here, we report that soluble egg antigen (SEA) from Schistosoma mansoni, which is well known to drive potent Th2 responses, triggers DCs to produce prostaglandin E2 (PGE2), which subsequently—in an autocrine manner—induces OX40 ligand (OX40L) expression to license these DCs to drive Th2 responses. Mechanistically, SEA was found to promote PGE2 synthesis through Dectin-1 and Dectin-2, and via a downstream signaling cascade involving spleen tyrosine kinase (Syk), extracellular signal-regulated kinase (ERK), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase 1 and 2 (COX-1 and COX-2). In addition, this pathway was activated independently of the actions of omega-1 (ω-1), a previously described Th2-priming glycoprotein present in SEA. These findings were supported by in vivo murine data showing that ω-1–independent Th2 priming by SEA was mediated by Dectin-2 and Syk signaling in DCs. Finally, we found that Dectin-2−/−, and to a lesser extent Dectin-1−/− mice, displayed impaired Th2 responses and reduced egg-driven granuloma formation following S. mansoni infection, highlighting the physiological importance of this pathway in Th2 polarization during a helminth infection. In summary, we identified a novel pathway in DCs involving Dectin-1/2-Syk-PGE2-OX40L through which Th2 immune responses are induced. T helper 2 (Th2) responses, which are initiated by dendritic cells (DCs), can cause allergic diseases, but they can also provide protection against metabolic disorders and parasitic helminth infections. As such, there is great interest in better understanding how their activity is induced and regulated by DCs. Parasitic helminths can potently induce Th2 responses. However, how helminths condition DCs for priming of Th2 responses remains incompletely understood. Here, we find that egg antigens from the parasitic helminth Schistosoma mansoni bind to pattern-recognition receptors (PRRs) Dectin-1 and Dectin-2 on DCs. This binding triggers a signaling cascade in DCs that results in synthesis of eicosanoid prostaglandin E2 (PGE2). PGE2 is sensed by the DCs themselves, resulting in expression of OX40 ligand (OX40L), which subsequently enables the DCs to promote Th2 differentiation. We show that this pathway is activated independently of omega-1 (ω-1), which is a glycoprotein secreted by the eggs and previously shown to condition DCs for priming of Th2 responses. Moreover, we demonstrate that this ω-1–independent pathway is crucial for Th2 induction and egg-driven immunopathology following S. mansoni infection in vivo. In summary, we identified a novel pathway in DCs involving Dectin-1/2–induced autocrine PGE2 signaling through which Th2 responses are induced.
Collapse
Affiliation(s)
- Maria M. M. Kaisar
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
| | - Carlos del Fresno
- Centro Nacional de Investigaciones Cardiovasculares “Carlos III”, Madrid, Spain
| | - Hulda S. Jónasdóttir
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alwin J. van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leonard R. Pelgrom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Laura E. Layland
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany & German Centre for Infection Research, partner site, Bonn-Cologne, Bonn, Germany
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares “Carlos III”, Madrid, Spain
| | | | - Martin Giera
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
41
|
Abstract
Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality worldwide. This disease is believed to occur in two stages with placental dysfunction in early pregnancy leading to maternal clinical findings after 20 weeks of gestation, as consequence of systemic inflammation, oxidative stress, and endothelial dysfunction. Much evidence suggests that PE women display an overshooting inflammatory response throughout pregnancy due to an unbalanced regulation of innate and adaptive immune responses. Recently, it has been suggested that dysregulation of endogenous protective pathways might be associated with PE etiopathogenesis. Resolution of inflammation is an active process coordinated by mediators from diverse nature that regulate key cellular events to restore tissue homeostasis. Inadequate or insufficient resolution of inflammation is believed to play an important role in the development of chronic inflammatory diseases, like PE. In this narrative review, we discuss possible pro-resolution pathways that might be compromised in PE women, which could be targets to novel therapeutic strategies in this disease.
Collapse
|
42
|
Zhang Y, Chen P, Di G, Qi X, Zhou Q, Gao H. Netrin-1 promotes diabetic corneal wound healing through molecular mechanisms mediated via the adenosine 2B receptor. Sci Rep 2018; 8:5994. [PMID: 29662125 PMCID: PMC5902612 DOI: 10.1038/s41598-018-24506-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
Netrins are secreted chemoattractants with the roles in axon guidance, cell migration and epithelial plasticity. In the present study, we investigated the roles of netrin-1 in the regulation of corneal epithelial wound healing, inflammation response and nerve fiber regeneration in diabetic mice and cultured corneal epithelial cells. In diabetic mice, the expression of netrin-1 was decreased when compared with that of normal mice. Furthermore, high glucose blocked the wounding-induced up-regulation of netrin-1 expression in corneal epithelial cells. Exogenous netrin-1 promoted the corneal epithelial wound healing in diabetic mice, and facilitated the proliferation and migration by reactivating the phosphorylation of ERK and EGFR in high-glucose treated corneal epithelial cells. Moreover, netrin-1 decreased the neutrophil infiltration and promoted M2 macrophage transition, accompanied with the attenuated expression of pro-inflammatory factors in diabetic mouse corneal epithelium. The promotions of netrin-1 on corneal epithelial wound healing and inflammation resolution were mediated at least through the adenosine 2B receptor. In addition, netrin-1 promoted the regeneration of corneal nerve fibers that was impaired in diabetic mice. Taken together, netrin-1 regulates corneal epithelial wound healing, inflammation response and nerve fiber regeneration in diabetic mice, indicating the potential application for the therapy of diabetic keratopathy.
Collapse
Affiliation(s)
- Yangyang Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Peng Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Guohu Di
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
43
|
Xie Z, Huang L, Enkhjargal B, Reis C, Wan W, Tang J, Cheng Y, Zhang JH. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 2018; 69:190-202. [PMID: 29162556 PMCID: PMC5894358 DOI: 10.1016/j.bbi.2017.11.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is an essential mechanism involved in the pathogenesis of subarachnoid hemorrhage (SAH)-induced brain injury. Recently, Netrin-1 (NTN-1) is well established to exert anti-inflammatory property in non-nervous system diseases through inhibiting infiltration of neutrophil. The present study was designed to investigate the effects of NTN-1 on neuroinflammation, and the potential mechanism in a rat model of SAH. Two hundred and ninety-four male Sprague Dawley rats (weight 280-330 g) were subjected to the endovascular perforation model of SAH. Recombinant human NTN-1 (rh-NTN-1) was administered intravenously. Small interfering RNA (siRNA) of NTN-1 and UNC5B, and a selective PPARγ antagonist bisphenol A diglycidyl ether (BADGE) were applied. Post-SAH evaluations included neurobehavioral function, brain water content, Western blot analysis, and immunohistochemistry. Our results showed that endogenous NTN-1 and its receptor UNC5B level were increased after SAH. Administration of rh-NTN-1 reduced brain edema, ameliorated neurological impairments, and suppressed microglia activation after SAH, which were concomitant with PPARγ activation, inhibition of NFκB, and decrease in TNF-α, IL-6, and ICAM-1, as well as myeloperoxidase (MPO). Knockdown of endogenous NTN-1 increased expression of pro-inflammatory mediators and MPO, and aggravated neuroinflammation and brain edema. Moreover, knockdown of UNC5B using specific siRNA and inhibition of PPARγ with BADGE blocked the protective effects of rh-NTN-1. In conclusion, our findings indicated that exogenous rh-NTN-1 treatment attenuated neuroinflammation and neurological impairments through inhibiting microglia activation after SAH in rats, which is possibly mediated by UNC5B/PPARγ/NFκB signaling pathway. Exogenous NTN-1 may be a novel therapeutic agent to ameliorating early brain injury via its anti-inflammation effect.
Collapse
Affiliation(s)
- Zongyi Xie
- Department of Neurosurgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weifeng Wan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA,Corresponding author: John H. Zhang, MD, PhD, Departments of Anesthesiology, Physiology and Pharmacology and Neurosurgery, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, USA. Tel: 909-558-4723; Fax: 909-558-0119; , Yuan Cheng, MD, Department of Neurosurgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China. Tel: +8623-63693539; Fax: +8623-63693871;
| |
Collapse
|
44
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Yim J, Kim G, Lee BW, Kang ES, Cha BS, Kim JH, Cho JW, Lee SG, Lee YH. Relationship Between Circulating Netrin-1 Concentration, Impaired Fasting Glucose, and Newly Diagnosed Type 2 Diabetes. Front Endocrinol (Lausanne) 2018; 9:691. [PMID: 30532735 PMCID: PMC6265472 DOI: 10.3389/fendo.2018.00691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/02/2018] [Indexed: 01/22/2023] Open
Abstract
Background: The protein netrin-1 has demonstrated anti-inflammatory, tissue regeneration, and immune modulation properties. Although inflammation is a major contributing factor in the development of insulin resistance and type 2 diabetes, little is known about a possible relationship between serum netrin-1 and type 2 diabetes. Therefore, we investigated the association between circulating levels of netrin-1 and glycometabolic parameters predictive of type 2 diabetes. Methods: Serum samples were collected from 41 normal controls, 85 subjects with impaired fasting glucose (IFG), and 92 subjects with newly diagnosed type 2 diabetes. Clinical and laboratory parameters were assessed and netrin-1 levels were measured by commercial enzyme-linked immunosorbent assay. Spearman correlation analyses and multivariable-adjusted regression analyses were conducted to examine the relationship between serum netrin-1 levels and glycometabolic parameters. Results: Serum netrin-1 levels in subjects with type 2 diabetes or IFG were significantly higher compared to normal controls (441.0, 436.6, and 275.9 pg/mL, respectively; P for trend < 0.001). Serum netrin-1 levels were significantly positively correlated with fasting glucose, HbA1c, and insulin resistance index (all Ps < 0.01). Serum netrin-1 levels were independently associated with IFG or type 2 diabetes (standardized β = 0.405, P < 0.001) after adjusting for covariates and potential confounders. In addition, the receiver operating characteristic (ROC) analysis showed that serum netrin-1 levels could identify the presence of IFG and type 2 diabetes with the area under the ROC curve (AUC) of 0.784 (P < 0.001). Conclusions: Our results suggest that elevated serum netrin-1 levels are significantly associated with the presence of IFG and type 2 diabetes.
Collapse
Affiliation(s)
- Jisook Yim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Division of Special Chemistry, Green Cross Reference Laboratory, Yongin-si, South Korea
- Department of Laboratory Medicine, Veterans General Hospital, Incheon, South Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong-Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Won Cho
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, South Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Sang-Guk Lee
| | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, South Korea
- Yong-ho Lee
| |
Collapse
|
46
|
Abstract
Nuclear magnetic resonance (NMR) is one of the key analytical platforms used in the analysis of intracellular and extracellular metabolites. Despite the technological advances that allow for the production of high-quality data, the sampling procedures of cultured cells are less well standardized. Different cell lines and culture media composition require adjustments of the protocols to result meaningful quantitative information. Here we provide the workflow for obtaining quantitative metabolic data from adherent mammalian cells using NMR spectroscopy. The robustness of NMR allows for the implementation of the here described protocol to other cell types with only minor adjustments.
Collapse
Affiliation(s)
- Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
47
|
Resolution of inflammation and sepsis survival are improved by dietary Ω-3 fatty acids. Cell Death Differ 2017; 25:421-431. [PMID: 29053142 PMCID: PMC5762854 DOI: 10.1038/cdd.2017.177] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/04/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Critical conditions such as sepsis following infection or traumatic injury disturb the complex state of homeostasis that may lead to uncontrolled inflammation resulting in organ failure, shock and death. They are associated with endogenous mediators that control the onset of acute inflammatory response, but the central problem remains the complete resolution of inflammation. Omega-3 enriched lipid emulsions (Ω-3+ LEs) were used in experimental studies and clinical trials to establish homeostasis, yet with little understanding about their role on the resolution of inflammation and tissue regeneration. Here, we demonstrate that Ω-3 lipid emulsions (LEs) orchestrate inflammation-resolution/regeneration mechanism during sterile peritonitis and murine polymicrobial sepsis. Ω-3+ LEs recessed neutrophil infiltration, reduced pro-inflammatory mediators, reduced the classical monocyte and enhanced the non-classical monocytes/macrophages recruitment and finally increased the efferocytosis in sepsis. The actions of Ω-3+ LE were 5-lipoxygenase (5-LOX) and 12/15-lipoxygenase (12/15-LOX) dependent. Ω-3+ LEs shortened the resolution interval by 56%, stimulated the endogenous biosynthesis of resolution mediators lipoxin A4, protectin DX and maresin 1 and contributed to tissue regeneration. Ω-3+ LEs protected against hypothermia and weight loss and enhanced survival in murine polymicrobial sepsis. We highlighted a role of Ω-3+ LEs in regulating key mechanisms within the resolution terrain during murine sepsis. This might form the basis for a rational design of sepsis specific clinical nutrition.
Collapse
|
48
|
Kostidis S, Addie RD, Morreau H, Mayboroda OA, Giera M. Quantitative NMR analysis of intra- and extracellular metabolism of mammalian cells: A tutorial. Anal Chim Acta 2017. [PMID: 28622799 DOI: 10.1016/j.aca.2017.05.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metabolomics analysis of body fluids as well as cells is depended on many factors. While several well-accepted standard operating procedures for the analysis of body fluids are available, the NMR based quantitative analysis of cellular metabolites is less well standardized. Experimental designs depend on the cell type, the quenching protocol and the applied post-acquisition workflow. Here, we provide a tutorial for the quantitative description of the metabolic phenotype of mammalian cells using NMR spectroscopy. We discuss all key steps of the process, starting from the selection of the appropriate culture medium, quenching techniques to arrest metabolism in a reproducible manner, the extraction of the intracellular components and the profiling of the culture medium. NMR data acquisition and methods for both qualitative and quantitative analysis are also provided. The suggested methods cover experiments for adherent cells and cells in suspension. We ultimately describe the application of the discussed workflow to a thyroid cancer cell line. Although this tutorial focuses on mammalian cells, the given guidelines and procedures may be adjusted for the analysis of other cell types.
Collapse
Affiliation(s)
- Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300RC, Leiden, The Netherlands.
| | - Ruben D Addie
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300RC, Leiden, The Netherlands; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300RC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300RC, Leiden, The Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300RC, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300RC, Leiden, The Netherlands
| |
Collapse
|
49
|
Mirakaj V, Rosenberger P. Immunomodulatory Functions of Neuronal Guidance Proteins. Trends Immunol 2017; 38:444-456. [PMID: 28438491 DOI: 10.1016/j.it.2017.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Neuronal guidance proteins (NGPs) were originally identified for their role during the embryonic development of the nervous system. Recent years have seen the discovery of NGP functions during immune responses. In this context, NGPs were demonstrated to control leukocyte migration and the release of cytokines during conditions of acute inflammation, such as lung injury or sepsis. However, NGPs also display potent actions in the resolution of inflammation, chronic inflammatory conditions, the development of atherosclerosis, and during ischemia followed by reperfusion. Here, we provide an overview of the current state of knowledge about the role of NGPs in the immune system and describe their immunomodulatory function.
Collapse
Affiliation(s)
- Valbona Mirakaj
- Department of Anesthesia and Intensive Care Medicine, Tübingen University Hospital, Faculty of Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| | - Peter Rosenberger
- Department of Anesthesia and Intensive Care Medicine, Tübingen University Hospital, Faculty of Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| |
Collapse
|
50
|
Laan LC, Williams AR, Stavenhagen K, Giera M, Kooij G, Vlasakov I, Kalay H, Kringel H, Nejsum P, Thamsborg SM, Wuhrer M, Dijkstra CD, Cummings RD, van Die I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells. FASEB J 2016; 31:719-731. [PMID: 27806992 DOI: 10.1096/fj.201600841r] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Clinical trials have shown that administration of the nematode Trichuris suis can be beneficial in treating various immune disorders. To provide insight into the mechanisms by which this worm suppresses inflammatory responses, an active component was purified from T. suis soluble products (TsSPs) that suppress---- TNF and IL-12 secretion from LPS-activated human dendritic cells (DCs). Analysis by liquid chromatography tandem mass spectrometry identified this compound as prostaglandin (PG)E2. The purified compound showed similar properties compared with TsSPs and commercial PGE2 in modulating LPS-induced expression of many cytokines and chemokines and in modulating Rab7B and P2RX7 expression in human DCs. Furthermore, the TsSP-induced reduction of TNF secretion from DCs is reversed by receptor antagonists for EP2 and EP4, indicating PGE2 action. T. suis secretes extremely high amounts of PGE2 (45-90 ng/mg protein) within their excretory/secretory products but few related lipid mediators as established by metabololipidomic analysis. Culture of T. suis with several cyclooxygenase (COX) inhibitors that inhibit mammalian prostaglandin synthesis affected the worm's motility but did not inhibit PGE2 secretion, suggesting that the worms can synthesize PGE2 via a COX-independent pathway. We conclude that T. suis secretes PGE2 to suppress proinflammatory responses in human DCs, thereby modulating the host's immune response.-Laan, L. C., Williams, A. R., Stavenhagen, K., Giera, M., Kooij, G., Vlasakov, I., Kalay, H., Kringel, H., Nejsum, P., Thamsborg, S. M., Wuhrer, M., Dijkstra, C. D., Cummings, R. D., van Die, I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells.
Collapse
Affiliation(s)
- Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrew R Williams
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands.,Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Iliyan Vlasakov
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; and
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Helene Kringel
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Peter Nejsum
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Stig M Thamsborg
- Section for Parasitology, Health, and Development, Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine D Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Center for Glycosciences, Boston, Massachusetts, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, Vrije Universiteit Medical Center Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|