1
|
Zhang C, Chen L, Jiang Y, Qiu J, Lin Y, Ren G, Xu F, Xi J, Yu Z, Rong X, Dou X. Alisol B alleviates MASLD by activating liver autophagy and fatty acid oxidation via Ces2a. Int Immunopharmacol 2025; 157:114768. [PMID: 40327987 DOI: 10.1016/j.intimp.2025.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent global health issue characterized by excessive fat accumulation in the liver, often linked to obesity and metabolic syndrome. Despite advancements in understanding its pathogenesis, effective therapeutic strategies remain limited. This study investigates the potential of Alisol B, a natural compound from traditional Chinese medicine, in modulating lipid metabolism and autophagy in hepatocytes. We employed a combination of in vivo and in vitro approaches, including mouse models, cell culture assays, and transcriptomic profiling, to evaluate Alisol B's therapeutic efficacy against MASLD and elucidate its underlying mechanisms. Our findings reveal that Alisol B significantly reduces lipid accumulation and enhances fatty acid metabolism by upregulating Ces2a, a key regulator of lipid catabolism, as confirmed by RNA sequencing and Western blot analyses. Additionally, transcriptomic analysis indicates that Alisol B activates critical signaling pathways related to fatty acid metabolism and autophagy, including AMPK signaling. Importantly, in vitro studies demonstrate that Alisol B effectively reduces triglyceride levels in hepatocytes without compromising cell viability. Pharmacological inhibition of Ces2a further underscores its essential role in mediating Alisol B's therapeutic effects. These results suggest that Alisol B holds promise as a novel therapeutic agent for MASLD, warranting further exploration of its clinical applications and potential as a targeted treatment for metabolic disorders.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yuwei Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yiyou Lin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Guilin Ren
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Fangying Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiale Xi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhiling Yu
- Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang WX, Tian G, Zhang KY, Bai SP, Ding XM, Wang JP, Xuan Y, Zeng QF. Effects of dietary supplementation with oleic acid on growth performance, dietary fat utilization, serum and intestinal lipid metabolic parameters, and enterocyte lipid droplet metabolism in Pekin ducks. Poult Sci 2025; 104:105035. [PMID: 40117933 PMCID: PMC11979522 DOI: 10.1016/j.psj.2025.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
This study aimed to investigate the effects of a diet supplemented with different levels of oleic acid (OA) on growth performance, serum biochemical parameters, nutrient utilization, and intestinal lipid metabolism in Pekin ducks. A total of 350 fourteen-d-old male ducks were randomly assigned to the following five isonitrogenous and heteroenergetic dietary treatment groups: 0.00% (control), 0.25%, 0.50%, 0.75%, and 1.00% OA groups. The experiment lasted 28 days. The findings indicated that neither growth performance nor nutrient utilization was affected by OA supplementation (P > 0.05). The 0.50% OA group displayed the lowest serum triglyceride (TG) levels among all treatment groups, with significantly lower values compared to both the 0.25%=% and 0.75% OA groups (P < 0.05). Moreover, the activities of lipid droplet (LD)-degrading enzymes in the jejunal mucosa, such as adipose triglyceride lipase (ATGL), showed a significant inverse linear relationship (P < 0.05); carboxylesterase 2 (CES2) activity exhibited a proportional dose-dependent increase (P < 0.05); and lysosomal acid lipase (LAL) activity was negatively correlated with the increased concentration of OA in the diet (P < 0.05). Moreover, the mRNA expression levels of the LD formation-related genes PLIN2 were significantly higher in the 0.50% OA group compared to the 0.25% and 0.75% OA groups (P < 0.05). The mRNA expression of LD degradation-related genes, the PNPLA2 expression in the 0.25%, 0.50%, and 0.75% OA groups and LPL expression in all OA groups were downregulated (P < 0.05) when compared with those in the control group. These results suggested that dietary supplementation with OA, especially at a level of 0.50%, may decrease the serum TG content and promote lipid deposition in the jejunum in Pekin ducks by regulating the formation and degradation of enterocyte LDs.
Collapse
Affiliation(s)
- W X Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - G Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Province 611130, PR China.
| |
Collapse
|
3
|
Liu J, Deng L, Yao B, Zhang Y, Huang J, Huang S, Liang C, Shen Y, Wang X. Carboxylesterase 2A gene knockout or enzyme inhibition alleviates steatohepatitis in rats by regulating PPARγ and endoplasmic reticulum stress. Free Radic Biol Med 2025; 232:279-291. [PMID: 40089078 DOI: 10.1016/j.freeradbiomed.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is a widespread liver disease that progresses from simple steatosis to severe steatohepatitis stage. Despite the recognized importance of carboxylesterase 2 (CES2) in hepatic lipid metabolism, the role of CES2 in hepatic inflammation remains unclear. The rat genome encodes six Ces2 genes and Ces2a shows high expression in the liver and intestine. Lipid metabolism, inflammation, fibrosis, and endoplasmic reticulum (ER) stress were investigated in Ces2a knockout (KO) rats. KO rats showed spontaneous liver lipid accumulation due to increased lipogenesis and reduced fatty acid oxidation. Non-targeted lipidomic analysis revealed enhanced lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs) in KO rats and increased concentrations of ligands, thus activating the expression of PPARγ. Although there was simple lipid accumulation in the liver of KO rats, Ces2a deficiency showed a significant protective effect against LPS and diet-induced hepatic steatohepatitis by inhibiting ER stress regulated by PPARγ activation. In line with this, treatment with tanshinone IIA, a CES2 inhibitor, significantly alleviated the progression of steatohepatitis induced by the MCD diet. In conclusion, the increased PPARγ expression in Ces2a deficiency may counteract liver inflammation and ER stress despite the presence of simple steatosis. Therefore, CES2 inhibition represents a potential therapeutic approach for steatohepatitis.
Collapse
Affiliation(s)
- Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Luyao Deng
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Zhang Z, Li J, Ma M, Shi H, Lu M, Liang F, Wang X, Ma P, Tian Y, Song D, Zhang Z. Near-infrared fluorescence imaging tool with large Stokes shift for sensitively detecting carboxylesterase 2 and monitoring its expression in non-alcoholic fatty liver disease. Talanta 2025; 285:127378. [PMID: 39689640 DOI: 10.1016/j.talanta.2024.127378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) now affects more than one quarter of the global population and becomes a heavy public health burden. However, the underlying mechanism for the pathogenesis of NAFLD is still not clear. Carboxylesterase 2 (CES2), highly abundant in the liver and intestine, plays an important role in endogenous lipid metabolism and lipolysis. So far, the literatures for the role of CES2 in the development of NAFLD are still limited. In this study, we designed and synthesized a near-infrared fluorescent probe (HP-LZ-CES2) which can be specifically recognized and hydrolyzed by CES2, releasing a benzoate residue and a fluorophore (HP-LZ) with good fluorescence signal. With this probe, CES2 levels can be quantitatively measured in vitro and qualitatively visualized in living cells and mice. The probe has the advantages of large Stokes shift, high detection sensitivity and good selectivity. Further, the CES2 expression levels were visually investigated in both high-fat cells as the in vitro model for NAFLD and high-fat diet fed mouse as the in vivo model for NAFLD. The cell imaging experiments indicated a reduction of fluorescence signal in high-fat hepatic cells. The in vivo experiments showed an obvious reduction of fluorescence in the liver of NAFLD mouse model, which is consistent with the hepatic cell experiments. In contrast, an enhancement of fluorescence was observed in the intestine of NAFLD mouse model. As a result, the NAFLD mouse model can be visually distinguished from the normal chow mouse by vision. Therefore, the proposed probe can be an auxiliary tool for the diagnosis of NAFLD and a visual tool for understanding CES2's role in the development of NAFLD.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; Department of Pharmacy, Changchun Medical College, Changchun, 130031, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Hui Shi
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Meijun Lu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Fanghui Liang
- Department of Pharmacy, Changchun Medical College, Changchun, 130031, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
5
|
Wang YG, Gan CP, Beukers-Korver J, Rosing H, Li WL, Wagenaar E, Lebre MC, Song JY, Pritchard C, Bin Ali R, Huijbers I, Beijnen JH, Schinkel AH. Intestinal human carboxylesterase 2 (CES2) expression rescues drug metabolism and most metabolic syndrome phenotypes in global Ces2 cluster knockout mice. Acta Pharmacol Sin 2025; 46:777-793. [PMID: 39496863 PMCID: PMC11845761 DOI: 10.1038/s41401-024-01407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
Carboxylesterase 2 (CES2) is expressed mainly in liver and intestine, but most abundantly in intestine. It hydrolyzes carboxylester, thioester, and amide bonds in many exogenous and endogenous compounds, including lipids. CES2 therefore not only plays an important role in the metabolism of many (pro-)drugs, toxins and pesticides, directly influencing pharmacology and toxicology in humans, but it is also involved in energy homeostasis, affecting lipid and glucose metabolism. In this study we investigated the pharmacological and physiological functions of CES2. We constructed Ces2 cluster knockout mice lacking all eight Ces2 genes (Ces2-/- strain) as well as humanized hepatic or intestinal CES2 transgenic strains in this Ces2-/- background. We showed that oral availability and tissue disposition of capecitabine were drastically increased in Ces2-/- mice, and tissue-specifically decreased by intestinal and hepatic human CES2 (hCES2) activity. The metabolism of the chemotherapeutic agent vinorelbine was strongly reduced in Ces2-/- mice, but only marginally rescued by hCES2 expression. On the other hand, Ces2-/- mice exhibited fatty liver, adipositis, hypercholesterolemia and diminished glucose tolerance and insulin sensitivity, but without body mass changes. Paradoxically, hepatic hCES2 expression rescued these metabolic phenotypes but increased liver size, adipose tissue mass and overall body weight, suggesting a "healthy" obesity phenotype. In contrast, intestinal hCES2 expression efficiently rescued all phenotypes, and even improved some parameters, including body weight, relative to the wild-type baseline values. Our results suggest that the induction of intestinal hCES2 may combat most, if not all, of the adverse effects of metabolic syndrome. These CES2 mouse models will provide powerful preclinical tools to enhance drug development, increase physiological insights, and explore potential solutions for metabolic syndrome-associated disorders.
Collapse
Affiliation(s)
- Yao-Geng Wang
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Chang-Pei Gan
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Joke Beukers-Korver
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Wen-Long Li
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Els Wagenaar
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, the Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ivo Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Maharajan N, Kim KH, Vijayakumar KA, Cho GW. Unlocking Therapeutic Potential: Camphorquinone's Role in Alleviating Non-Alcoholic Fatty Liver Disease via SIRT1/LKB1/AMPK Pathway Activation. Tissue Eng Regen Med 2025; 22:129-144. [PMID: 39680356 PMCID: PMC11712022 DOI: 10.1007/s13770-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a pathological condition that increase the risk of simple steatosis to hepatocellular carcinoma. This study aimed to investigate the biological effects of camphorquinone (CQ) in a high-fat diet (HFD)-fed and low dose streptozotocin (STZ)-induced mouse model, widely used to mimic the concurrent development of NAFLD pathological conditions in vivo, and a free fatty acid-induced hepatic steatosis cell model in vitro. METHODS CQ (10 or 30 mg/kg/day; i.p.) was injected for three weeks, and fasting blood glucose levels, glucose tolerance, and liver lipid metabolism were assessed. RESULTS CQ administration alleviated the increase in body and liver weights and improved glucose tolerance in NAFLD mice model. CQ also reduced the gene expression levels of lipid biosynthesis and inflammation markers, while increasing the levels of fatty acid oxidation markers in liver tissues and HepG2 cells. These beneficial effects of CQ were mediated via activation of the sirtuin 1 (SIRT1)/adenosine monophosphate-activated protein kinase (AMPK) signalling pathway in vitro and in vivo. CONCLUSION Collectively, our data suggest that CQ improves liver lipid metabolism and reduces blood glucose levels via activation of the SIRT1/serine/threonine kinase 11 (STK11/LKB1)/AMPK axis.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kil Hwan Kim
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, 05368, Korea
| | - Karthikeyan A Vijayakumar
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea.
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea.
- Department of Integrative Biological Science, BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Korea.
| |
Collapse
|
7
|
Liu P, Gao C, Li W, Chen W, Zhang Z, Wu D, Li T, Sun S, Yang Y. Wet pulverization combined with temperature cycling strategy for extraction of Stropharia rugosoannulata protein with attenuating hepatic steatosis on obese mice. Food Chem X 2025; 25:102170. [PMID: 39897974 PMCID: PMC11782863 DOI: 10.1016/j.fochx.2025.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Stropharia rugosoannulata is an edible fungus with high protein content and excellent bioactivities. However, the effective extraction of S. rugosoannulata protein has been a challenge, and the amelioration of it against obesity still remain unclear. Herein, S. rugosoannulata protein (SRA) with mainly molecular weight of 15, 40 and 50 kDa, complete amino acid composition and typical α-helix structure, was obtained by wet pulverization combined with temperature cycling strategy. SRA alleviated the pathological progression in obese mice induced by high-fat diet via regulating lipid metabolism in liver and adipose tissues. SRA could obviously improve hepatic steatosis, which may be attributed to inhibiting MAPK/PGC-1α pathway. Moreover, SRA repaired the cross-talk between gut microbiota and liver via modulating intestinal microecology, and restoring the integrity and function of the intestinal barrier in obese mice. This study highlights an efficient and easy strategy for preparing S. rugosoannulata protein and its effects against obesity.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Chen Gao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Tingzhao Li
- Amway Innovation & Science Co, Ltd, Shanghai 201203, China
- Amway Botanical R&D Center, Wuxi 214115, China
| | - Shuai Sun
- Amway Innovation & Science Co, Ltd, Shanghai 201203, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| |
Collapse
|
8
|
Chen X, Zhu X, Wu G, Wang X, Zhang Y, Jiang N. Structure-based identification of HNF4α agonists: Rosmarinic acid as a promising candidate for NAFLD treatment. Comput Struct Biotechnol J 2024; 27:171-183. [PMID: 39850659 PMCID: PMC11755020 DOI: 10.1016/j.csbj.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development. In this study, we investigated the structural characteristics and binding interactions of four HNF4α agonists: Alverine, Benfluorex, N-trans caffeoyltyramine (NCT), and N-trans feruloyltyramine (NFT). Our results indicate that the conjugated structure formed by the amide bond and the aromatic ring in NCT and NFT enhances electron density, potentially contributing to their increased specificity for HNF4α relative to Alverine and Benfluorex. Additionally, electrostatic interactions between the aromatic moieties of the compounds and HNF4α residues were found to play a crucial role in ligand binding. Leveraging these insights, we performed a high-throughput virtual screening of 2131 natural compounds, using the binding modes of NCT and NFT as reference templates. Rosmarinic acid emerged as a promising HNF4α agonist, exhibiting a high consensus score and favorable binding affinity. Subsequent biological assays demonstrated that rosmarinic acid significantly inhibited HepG2 cell proliferation which related to the enhancement of autophagy. After the knockdown of P2 isoform of HNF4α, HepG2 was more sensitive to the administration of NCT and rosmarinic acid. Furthermore, the proliferation of DLD-1 cell, which only expresses the P2 isoform of HNF4α, was not significantly inhibited by the administration of NCT and rosmarinic acid. Collectively, these findings suggest that rosmarinic acid is a promising HNF4α agonist which is more effective to activate the P1 isoform of HNF4α and holds potential as an effective treatment for NAFLD, providing a foundation for the development of novel lipid-lowering drugs with enhanced efficacy and reduced side effect. Data Availability Data will be made available on request.
Collapse
Affiliation(s)
- Xi Chen
- National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xinqi Zhu
- National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Gang Wu
- NanjingMinova Pharmaceutical Co., Ltd.Jiangsu Biotech Innovation Park, Nanjing 211166, China
| | - Xiaobo Wang
- NanjingMinova Pharmaceutical Co., Ltd.Jiangsu Biotech Innovation Park, Nanjing 211166, China
| | - Yu Zhang
- National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Nan Jiang
- National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Li J, Ma M, Zhang Z, Xu L, Yang B, Diao Q, Ma P, Song D. A novel carboxylesterase 2-targeted fluorescent probe with cholic acid as a recognition group for early diagnosis of drug- and environment-related liver diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135966. [PMID: 39342850 DOI: 10.1016/j.jhazmat.2024.135966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Due to the detrimental effects of various harmful substances-such as carcinogens, drug toxicity, and environmental pollutants-on the liver, which can trigger or exacerbate conditions like hepatocellular carcinoma (HCC), drug-induced liver injury (DILI), and non-alcoholic fatty liver disease (NAFLD), accurate detection and monitoring of these diseases are crucial for effective treatment. Carboxylesterase 2 (CES2) is primarily found in the liver and, as a potential biomarker, its accurate detection can enhance the early diagnosis and treatment efficacy of liver diseases. Traditional fluorescence probes for CES2 detection suffer from non-specific recognition groups, leading to poor targeting specificity. To address this limitation, we propose a novel CES2-responsive fluorescent probe utilizing cholic acid (CA) as a recognition group. The probe, LAN-CA, was synthesized by esterifying CA with a near-infrared fluorophore, LAN-OH. This novel fluorescent probe leverages the unique affinity of CA for hepatocytes, ensuring that LAN-CA remains and accumulates specifically within the hepatoenteric circulation. In vitro experiments showed that the probe exhibits superior optical performance compared to traditional benzoate-based probe (LAN-PH), with a detection limit of 0.015 μg/mL. Examination of 56 common biological interferents demonstrated that using CA as a recognition group offers high selectivity. Cell experiments confirmed that LAN-CA is an effective tool for monitoring endogenous CES2 in live cells. Comprehensive evaluations of fluorescence imaging in various mouse models of liver diseases, such as HCC, DILI, and NAFLD, demonstrated that LAN-CA provides exceptional imaging accuracy and therapeutic monitoring capabilities. In conclusion, this probe not only can be a promising tool for accurate liver disease diagnosis, but also can provide valuable insights into treatment efficacy.
Collapse
Affiliation(s)
- Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Bin Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| |
Collapse
|
10
|
Wang S, Xu B, Liang J, Feng Y, Han P, Shen J, Li X, Zheng M, Zhang T, Zhang C, Mi P, Zhang Y, Liu Z, Li S, Yuan D. Spatial Transcriptomic Study Reveals Heterogeneous Metabolic Adaptation and a Role of Pericentral PPARα/CAR/Ces2a Axis During Fasting in Mouse Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405240. [PMID: 39234807 PMCID: PMC11538668 DOI: 10.1002/advs.202405240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Spatial heterogeneity and plasticity of the mammalian liver are critical for systemic metabolic homeostasis in response to fluctuating nutritional conditions. Here, a spatially resolved transcriptomic landscape of mouse livers across fed, fasted and refed states using spatial transcriptomics is generated. This approach elucidated dynamic temporal-spatial gene cascades and how liver zonation-both expression levels and patterns-adapts to shifts in nutritional status. Importantly, the pericentral nuclear receptor Nr1i3 (CAR) as a pivotal regulator of triglyceride metabolism is pinpointed. It is showed that the activation of CAR in the pericentral region is transcriptionally governed by Pparα. During fasting, CAR activation enhances lipolysis by upregulating carboxylesterase 2a, playing a crucial role in maintaining triglyceride homeostasis. These findings lay the foundation for future mechanistic studies of liver metabolic heterogeneity and plasticity in response to nutritional status changes, offering insights into the zonated pathology that emerge during liver disease progression linked to nutritional imbalances.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Penghu Han
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jing Shen
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Mengqi Zheng
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yi Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiping Liu
- Department of Biomedical Engineering, School of Control Science and EngineeringShandong UniversityJinanShandong250061China
| | - Shiyang Li
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| |
Collapse
|
11
|
Cheng X, Baki VB, Moran M, Liu B, Yu J, Zhao M, Li Q, Riethoven JJ, Gurumurth CB, Harris EN, Sun X. Liver matrin-3 protects mice against hepatic steatosis and stress response via constitutive androstane receptor. Mol Metab 2024; 86:101977. [PMID: 38936659 PMCID: PMC11267048 DOI: 10.1016/j.molmet.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise with the increasing obesity epidemic. Rezdiffra as an activator of a thyroid hormone receptor-beta is the only Food and Drug Administration approved therapy. As such, there is a critical need to improve our understanding of gene expression regulation and signaling transduction in MASLD to develop new therapies. Matrin-3 is a DNA- and RNA-binding protein involved in the pathogenesis of human diseases. Here we examined its previously uncharacterized role in limiting hepatic steatosis and stress response via the constitutive androstane receptor (CAR). METHODS Matrin-3 floxed and liver-specific knockout mice were fed either a chow diet or 60 kcal% high-fat diet (HFD) for up to 16 weeks. The mice were euthanized for different analysis including liver histology, lipid levels, and gene expression. Bulk RNA-seq, bulk ATAC-seq, and single-nucleus Multiome were used to examine changes of transcriptome and chromatin accessibility in the liver. Integrative bioinformatics analysis of our data and publicly available datasets and different biochemical assays were performed to identify underlying the molecular mechanisms mediating matrin-3's effects. Liver-tropic adeno-associated virus was used to restore the expression of CAR for lipid, acute phase genes, and histological analysis. RESULTS Matrin-3 expression is induced in the steatotic livers of mice. Liver-specific matrin-3 deletion exacerbated HFD-induced steatosis, acute phase response, and inflammation in the liver of female mice. The transcriptome and chromatin accessibility were re-programmed in the liver of these mice with signatures indicating that CAR signaling is dysregulated. Mechanistically, matrin-3 interacts with CAR mRNA, and matrin-3 deficiency promotes CAR mRNA degradation. Consequently, matrin-3 deletion impaired CAR signaling by reducing CAR expression. Matrin-3 levels positively correlate with CAR expression in human livers. Ces2a and Il1r1 were identified as new target genes of CAR. Interestingly, we found that CAR discords with the expression of its target genes including Cyp2b10 and Ces2a in response to HFD, indicating CAR signaling is dysregulated by HFD despite increased CAR expression. Dysregulated CAR signaling upon matrin-3 deficiency reduced Ces2a and de-repressed Il1r1 expression. CAR restoration partially abrogated the dysregulated gene expression, exacerbated hepatic steatosis, acute phase response, and inflammation in liver-specific matrin-3 knockout mice fed a HFD. CONCLUSIONS Our findings demonstrate that matrin-3 is a key upstream regulator maintaining CAR signaling upon metabolic stress, and the matrin-3-CAR axis limits hepatic steatosis and stress response signaling that may give insights for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Vijaya Bhaskar Baki
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | | | - Edward N Harris
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
12
|
Mahmoudi A, Meidany P, Almahmeed W, Jamialahmadi T, Sahebkar A. Stem Cell Therapy as a Potential Treatment of Non-Alcoholic Steatohepatitis-Related End-Stage Liver Disease: A Narrative Review. CURRENT STEM CELL REPORTS 2024; 10:85-107. [DOI: 10.1007/s40778-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 01/04/2025]
|
13
|
Pan X, Hu S, Xu Y, Gopoju R, Zhu Y, Cassim Bawa FN, Wang H, Wang J, Batayneh Z, Clark A, Zeng Y, Lin L, Wang X, Yin L, Zhang Y. Krüppel-like factor 10 protects against metabolic dysfunction-associated steatohepatitis by regulating HNF4α-mediated metabolic pathways. Metabolism 2024; 155:155909. [PMID: 38582490 PMCID: PMC11178432 DOI: 10.1016/j.metabol.2024.155909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Krüppel-like factor 10 (KLF10), a zinc finger transcription factor, plays a pivotal role in modulating TGF-β-mediated cellular processes such as growth, apoptosis, and differentiation. Recent studies have implicated KLF10 in regulating lipid metabolism and glucose homeostasis. This study aimed to elucidate the precise role of hepatic KLF10 in developing metabolic dysfunction-associated steatohepatitis (MASH) in diet-induced obese mice. METHODS We investigated hepatic KLF10 expression under metabolic stress and the effects of overexpression or ablation of hepatic KLF10 on MASH development and lipidemia. We also determined whether hepatocyte nuclear factor 4α (HNF4α) mediated the metabolic effects of KLF10. RESULTS Hepatic KLF10 was downregulated in MASH patients and genetically or diet-induced obese mice. AAV8-mediated overexpression of KLF10 in hepatocytes prevented Western diet-induced hypercholesterolemia and steatohepatitis, whereas inactivation of hepatocyte KLF10 aggravated Western diet-induced steatohepatitis. Mechanistically, KLF10 reduced hepatic triglyceride and free fatty acid levels by inducing lipolysis and fatty acid oxidation and inhibiting lipogenesis, and reducing hepatic cholesterol levels by promoting bile acid synthesis. KLF10 highly induced HNF4α expression by directly binding to its promoter. The beneficial effect of KLF10 on MASH development was abolished in mice lacking hepatocyte HNF4α. In addition, the inactivation of KLF10 in hepatic stellate cells exacerbated Western diet-induced liver fibrosis by activating the TGF-β/SMAD2/3 pathway. CONCLUSIONS Our data collectively suggest that the transcription factor KLF10 plays a hepatoprotective role in MASH development by inducing HNF4α. Targeting hepatic KLF10 may offer a promising strategy for treating MASH.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Hui Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jiayou Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Zaid Batayneh
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Alyssa Clark
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yuhao Zeng
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
14
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
15
|
Xiao MC, Jiang N, Chen LL, Liu F, Liu SQ, Ding CH, Wu SH, Wang KQ, Luo YY, Peng Y, Yan FZ, Zhang X, Qian H, Xie WF. TRIB3-TRIM8 complex drives NAFLD progression by regulating HNF4α stability. J Hepatol 2024; 80:778-791. [PMID: 38237865 DOI: 10.1016/j.jhep.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.
Collapse
Affiliation(s)
- Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Nan Jiang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li-Lin Chen
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke-Qi Wang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Peng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
16
|
Gopoju R, Wang J, Pan X, Hu S, Lin L, Clark A, Xu Y, Yin L, Wang X, Zhang Y. Hepatic FOXA3 overexpression prevents Western diet-induced obesity and MASH through TGR5. J Lipid Res 2024; 65:100527. [PMID: 38447926 PMCID: PMC10999823 DOI: 10.1016/j.jlr.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Forkhead transcription factor 3 (FOXA3) has been shown to regulate metabolism and development. Hepatic FOXA3 is reduced in obesity and fatty liver disease. However, the role of hepatic FOXA3 in regulating obesity or steatohepatitis remains to be investigated. In this work, C57BL/6 mice were i.v. injected with AAV8-ALB-FOXA3 or the control virus. The mice were then fed a chow or Western diet for 16 weeks. The role of hepatic FOXA3 in energy metabolism and steatohepatitis was investigated. Plasma bile acid composition and the role of Takeda G protein-coupled receptor 5 (TGR5) in mediating the metabolic effects of FOXA3 were determined. Overexpression of hepatic FOXA3 reduced hepatic steatosis in chow-fed mice and attenuated Western diet-induced obesity and steatohepatitis. FOXA3 induced lipolysis and inhibited hepatic genes involved in bile acid uptake, resulting in elevated plasma bile acids. The beneficial effects of hepatic FOXA3 overexpression on Western diet-induced obesity and steatohepatitis were abolished in Tgr5-/- mice. Our data demonstrate that overexpression of hepatic FOXA3 prevents Western diet-induced obesity and steatohepatitis via activation of TGR5.
Collapse
Affiliation(s)
- Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jiayou Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Alyssa Clark
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
17
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Yang B, Ding X, Zhang Z, Li J, Fan S, Lai J, Su R, Wang X, Wang B. Visualization of production and remediation of acetaminophen-induced liver injury by a carboxylesterase-2 enzyme-activatable near-infrared fluorescent probe. Talanta 2024; 269:125418. [PMID: 37988783 DOI: 10.1016/j.talanta.2023.125418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Acetaminophen (APAP) overdose, also known as APAP poisoning, may directly result in hepatic injury, acute liver failure and even death. Nowadays, APAP-induced liver injury (AILI) has become an urgent public health issue in the developing world so the early accurate diagnosis and the revelation of underlying molecular mechanism of AILI are of great significance. As a major detoxifying organ, liver is responsible for metabolizing chemical substances, in which human carboxylesterase-2 (CES2) is present. Hence, we chose CES2 as an effective biomarker for evaluating AILI. By developing a CES2-activatable and water-soluble fluorescent probe PFQ-E with superior affinity (Km = 5.9 μM), great sensitivity (limit of detection = 1.05 ng/mL), near-infrared emission (655 nm) and large Stokes shift (135 nm), activity and distribution of CES2 in cells were determined or imaged effectively. More importantly, the APAP-induced hepatotoxicity and the underlying molecular mechanism of pathogenesis of AILI were investigated by measuring the "light-up" response of PFQ-E towards endogenous CES2 in vivo for the first time. Based on the superior performance of the probe PFQ-E for sensing CES2, we believe that it has broad potential in clinical diagnosis and therapy response evaluation of AILI.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China; College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangdong Ding
- China-Japan Union Hospital, Jilin University, Changchun, 130012, China
| | - Zhimin Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shengyu Fan
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jinyu Lai
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Rui Su
- College of Chemistry, Jilin University, Changchun, 130012, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Bo Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China; College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Yang C, Guo L, Du J, Zhang Q, Zhang L. SPINK1 Overexpression Correlates with Hepatocellular Carcinoma Treatment Resistance Revealed by Single Cell RNA-Sequencing and Spatial Transcriptomics. Biomolecules 2024; 14:265. [PMID: 38540686 PMCID: PMC10968071 DOI: 10.3390/biom14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 01/04/2025] Open
Abstract
Low efficacy of treatments and chemoresistance are challenges in addressing refractory hepatocellular carcinoma (HCC). SPINK1, an oncogenic protein, is frequently overexpressed in many HCC cases. However, the impact of SPINK1 on HCC treatment resistance remains poorly understood. Here, we elucidate the functions of SPINK1 on HCC therapy resistance. Analysis of SPINK1 protein level reveals a correlation between elevated SPINK1 expression and unfavorable prognosis. Furthermore, intercellular variations in SPINK1 expression levels are observed. Subsequent examination of single cell RNA-sequencing data from two HCC cohorts further suggest that SPINK1-high cells exhibit heightened activity in drug metabolic pathways compared to SPINK1-low HCC cells. High SPINK1 expression is associated with reduced sensitivities to both chemotherapy drugs and targeted therapies. Moreover, spatial transcriptomics data indicate that elevated SPINK1 expression correlates with non-responsive phenotype during treatment with targeted therapy and immune checkpoint inhibitors. This is attributed to increased levels of drug metabolic regulators, especially CES2 and CYP3A5, in SPINK1-high cells. Experimental evidence further demonstrates that SPINK1 overexpression induces the expression of CES2 and CYP3A5, consequently promoting chemoresistance to sorafenib and oxaliplatin. In summary, our study unveils the predictive role of SPINK1 on HCC treatment resistance, identifying it as a potential therapeutic target for refractory HCC.
Collapse
Affiliation(s)
- Chunyuan Yang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Limei Guo
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Juan Du
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Qiulu Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (C.Y.); (J.D.); (Q.Z.)
| | - Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China;
| |
Collapse
|
20
|
Hou Y, Shi P, Du H, Zhu C, Tang C, Que L, Zhu G, Liu L, Chen Q, Li C, Shao G, Li Y, Li J. HNF4α ubiquitination mediated by Peli1 impairs FAO and accelerates pressure overload-induced myocardial hypertrophy. Cell Death Dis 2024; 15:135. [PMID: 38346961 PMCID: PMC10861518 DOI: 10.1038/s41419-024-06470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Impaired fatty acid oxidation (FAO) is a prominent feature of metabolic remodeling observed in pathological myocardial hypertrophy. Hepatocyte nuclear factor 4alpha (HNF4α) is closely associated with FAO in both cellular processes and disease conditions. Pellino 1 (Peli1), an E3 ligase containing a RING-like domain, plays a crucial role in catalyzing polyubiquitination of various substrates. In this study, we aimed to investigate the involvement of HNF4α and its ubiquitination, facilitated by Peli1, in FAO during pressure overload-induced cardiac hypertrophy. Peli1 systemic knockout mice (Peli1KO) display improved myocardial hypertrophy and cardiac function following transverse aortic constriction (TAC). RNA-seq analysis revealed that changes in gene expression related to lipid metabolism caused by TAC were reversed in Peli1KO mice. Importantly, both HNF4α and its downstream genes involved in FAO showed a significant increase in Peli1KO mice. We further used the antagonist BI6015 to inhibit HNF4α and delivered rAAV9-HNF4α to elevate myocardial HNF4α level, and confirmed that HNF4α inhibits the development of cardiac hypertrophy after TAC and is essential for the enhancement of FAO mediated by Peli1 knockout. In vitro experiments using BODIPY incorporation and FAO stress assay demonstrated that HNF4α enhances FAO in cardiomyocytes stimulated with angiotension II (Ang II), while Peli1 suppresses the effect of HNF4α. Mechanistically, immunoprecipitation and mass spectrometry analyses confirmed that Peli1 binds to HNF4α via its RING-like domain and promotes HNF4α ubiquitination at residues K307 and K309. These findings shed light on the underlying mechanisms contributing to impaired FAO and offer valuable insights into a promising therapeutic strategy for addressing pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Yuxing Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Pengxi Shi
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Haiyang Du
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Guoqing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN, 37614-0575, USA
| | - Guoqiang Shao
- Department of nuclear medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China.
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
21
|
Kawano Y, Tanaka M, Satoh Y, Sugino S, Suzuki J, Fujishima M, Okumura E, Takekoshi H, Uehara O, Sugita S, Abiko Y, Tomonari T, Tanaka H, Takeda H, Takayama T. Acanthopanax senticosus ameliorates steatohepatitis through HNF4 alpha pathway activation in mice. Sci Rep 2024; 14:110. [PMID: 38167633 PMCID: PMC10762184 DOI: 10.1038/s41598-023-50625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Non-alcoholic fatty liver disease is a common liver disease worldwide, and is associated with dysregulation of lipid metabolism, leading to inflammation and fibrosis. Acanthopanax senticosus Harms (ASH) is widely used in traditional medicine as an adaptogen food. We examined the effect of ASH on steatohepatitis using a high-fat diet mouse model. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet with ASH extract (ASHE). After 6 weeks, liver RNA transcriptome sequencing (RNA-Seq) was performed, followed by Ingenuity Pathway Analysis (IPA). Our findings revealed that mice fed a high-fat diet with 5% ASHE exhibited significantly reduced liver steatosis. These mice also demonstrated alleviated inflammation and reduced fibrosis in the liver. IPA of RNA-Seq indicated that hepatocyte nuclear factor 4 alpha (HNF4 alpha), a transcription factor, was the activated upstream regulator (P-value 0.00155, z score = 2.413) in the liver of ASHE-fed mice. Adenosine triphosphate binding cassette transporter 8 and carboxylesterase 2, downstream targets of HNF4 alpha pathway, were upregulated. Finally, ASHE-treated HepG2 cells exposed to palmitate exhibited significantly decreased lipid droplet contents. Our study provides that ASHE can activate HNF4 alpha pathway and promote fat secretion from hepatocytes, thereby serving as a prophylactic treatment for steatohepatitis in mice.
Collapse
Affiliation(s)
- Yutaka Kawano
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 770-0042, Japan.
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan.
| | - Maki Tanaka
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, 002-8072, Japan
| | - Yasushi Satoh
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| | - Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Jun Suzuki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Masaki Fujishima
- Production and Development Department, Sun Chlorella Co., Ltd, Kyoto, 600-8177, Japan
| | - Eri Okumura
- Production and Development Department, Sun Chlorella Co., Ltd, Kyoto, 600-8177, Japan
| | - Hideo Takekoshi
- Production and Development Department, Sun Chlorella Co., Ltd, Kyoto, 600-8177, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293, Japan
| | - Tetsu Tomonari
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| | - Hironori Tanaka
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| | - Hidekatsu Takeda
- Department of Physical Therapy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| |
Collapse
|
22
|
Lan L, Li M, Xu Y, Ren X, Zhang C. Evaluation on the Metabolic Activity of Two Carboxylesterase Isozymes in Mouse Liver Microsomes by a LC-MS/MS Method. J Chromatogr Sci 2023; 61:980-987. [PMID: 36585777 DOI: 10.1093/chromsci/bmac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 01/01/2023]
Abstract
An applicable method for the precise measurement of major carboxylesterase (CESs) activity in liver still limited. Clopidogrel and irinotecan are specific substrates for CES1 and CES2, respectively. Clopidogrel is metabolized to the inactive metabolite clopidogrel carboxylate (CCAM) by CES1. Irinotecan is metabolized to the active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) by CES2. In the present study, the LC-MS/MS method for the determination of CCAM and SN-38 were separately developed to characterize the metabolic activities of CES1 and CES2 in mouse liver microsomal. CCAM was separated on a Ecosil ODS column with an isocratic mobile phase consisted of 5 mmol/L ammonium formate and 0.1% formic acid in water and acetonitrile (15:85, V:V) at a flow rate of 0.4mL/min. SN-38 was separated on a Waters symmetry C18 column with an gradient mobile phase consisted of 5 mmol/L ammonium formate and 0.1% formic acid in water and acetonitrile at a flow rate of 0.3 mL/min. Calibration curves were linear within the concentration range of 100-20,000 ng/mL for CCAM and 1-200 ng/mL for SN-38. The results of method showed excellent accuracy and precision. The recovery rate, matrix effect and stability inspection results were within the acceptance criteria. The optimized incubation conditions were as follows: protein concentration of microsomes were all 0.1 mg/mL, incubation time was 60 min for clopidogrel and 30 min for irinotecan, respectively. This method was sensitive and applicable for the determination of the activity of CESs in the mouse liver microsomes.
Collapse
Affiliation(s)
- Lulu Lan
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Qingxiu District, Nanning, Guangxi 530021, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 jiefang Dadao, Wuhan, Hubei 430030, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 jiefang Dadao, Wuhan, Hubei 430030, China
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 jiefang Dadao, Wuhan, Hubei 430030, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 jiefang Dadao, Wuhan, Hubei 430030, China
| |
Collapse
|
23
|
Jing K, Mipam TD, Zhang P, Peng W, Wang M, Yue B, Chen X, Wang J, Shu S, Fu C, Zhong J, Cai X. Transcriptomic analysis of yak longissimus dorsi muscle identifies genes associated with tenderness. Anim Biotechnol 2023; 34:3978-3987. [PMID: 37593948 DOI: 10.1080/10495398.2023.2248493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Meat tenderness is an important sensory index when consumers choose meat products, which determines the value of meat products and consumers' buying intentions. Yak meat is rich in nutrition and unique in flavor, which is favored by consumers. However, its meat has the deficiencies of low tenderness and poor taste, which has a negative impact on the value of its meat products and customer satisfaction. To identify the genes affecting the yak meat tenderness, we used RNA-seq to analyze the longissimus dorsi muscle of yaks with different tenderness, screened a total of 1120 differentially expressed genes (DEGs). Meanwhile, 23 pathways were significantly enriched. By further analysis, we identified eight genes related to yak meat tenderness (WNT5A, ARID5B, SERPINE1 KLHL40, RUNX1, MAFF, RFX7 and ARID5A). Notably, SERPINE1 was involved in the significant enrichment pathways of 'complement and coagulation cascade pathway', 'HIF-1 signaling pathway' and 'AGE-RAGE signaling pathway in diabetic complications' which can regulate meat tenderness. This implies that SERPINE1 may play an important regulatory role among them. The DEGs associated with yak meat quality screened in this work will be helpful to identify potential biomarkers related to meat tenderness.
Collapse
Affiliation(s)
- Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Tserang Donko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Wei Peng
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Shi Shu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Changqi Fu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| |
Collapse
|
24
|
Fan Y, Zhang T, Song Y, Sang Z, Zeng H, Liu P, Wang P, Ge G. Rationally Engineered hCES2A Near-Infrared Fluorogenic Substrate for Functional Imaging and High-Throughput Inhibitor Screening. Anal Chem 2023; 95:15665-15672. [PMID: 37782032 DOI: 10.1021/acs.analchem.3c02873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Human carboxylesterase 2A (hCES2A) is an important endoplasmic reticulum (ER)-resident enzyme that is responsible for the hydrolytic metabolism or activation of numerous ester-bearing drugs and environmental toxins. The previously reported hCES2A fluorogenic substrates suffer from limited emission wavelength, low specificity, and poor localization accuracy, thereby greatly limiting the in situ functional imaging of hCES2A and drug discovery. Herein, a rational ligand design strategy was adopted to construct a highly specific near-infrared (NIR) substrate for hCES2A. Following scaffold screening and recognition group optimization, HTCF was identified as a desirable NIR fluorophore with excellent photophysical properties and high ER accumulation ability, while several HTCF esters held a high potential to be good hCES2A substrates. Further investigations revealed that TP-HTCF (the tert-pentyl ester of HTCF) was an ideal substrate with ultrahigh sensitivity, excellent specificity, and a substantial signal-to-noise ratio. Upon the addition of hCES2A, TP-HTCF could be rapidly hydrolyzed to release HTCF, a chemically stable product that emitted bright fluorescent signals at around 670 nm. A TP-HTCF-based biochemical assay was then established for the high-throughput screening of potent and cell-active hCES2A inhibitors from an in-house compound library. Furthermore, TP-HTCF displayed high imaging resolution for imaging hCES2A in living cells as well as mouse liver slices and tumor-xenograft mice. Collectively, this study demonstrates a rational strategy for developing highly specific fluorogenic substrates for an ER-resident target enzyme, while TP-HTCF can act as a practical tool for sensing hCES2A in living systems.
Collapse
Affiliation(s)
- Yufan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tiantian Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunqing Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhipei Sang
- School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Hairong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peiqi Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Shreya S, Grosset CF, Jain BP. Unfolded Protein Response Signaling in Liver Disorders: A 2023 Updated Review. Int J Mol Sci 2023; 24:14066. [PMID: 37762367 PMCID: PMC10531763 DOI: 10.3390/ijms241814066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endoplasmic reticulum (ER) is the site for synthesis and folding of secreted and transmembrane proteins. Disturbance in the functioning of ER leads to the accumulation of unfolded and misfolded proteins, which finally activate the unfolded protein response (UPR) signaling. The three branches of UPR-IRE1 (Inositol requiring enzyme 1), PERK (Protein kinase RNA-activated (PKR)-like ER kinase), and ATF6 (Activating transcription factor 6)-modulate the gene expression pattern through increased expression of chaperones and restore ER homeostasis by enhancing ER protein folding capacity. The liver is a central organ which performs a variety of functions which help in maintaining the overall well-being of our body. The liver plays many roles in cellular physiology, blood homeostasis, and detoxification, and is the main site at which protein synthesis occurs. Disturbance in ER homeostasis is triggered by calcium level imbalance, change in redox status, viral infection, and so on. ER dysfunction and subsequent UPR signaling participate in various hepatic disorders like metabolic (dysfunction) associated fatty liver disease, liver cancer, viral hepatitis, and cholestasis. The exact role of ER stress and UPR signaling in various liver diseases is not fully understood and needs further investigation. Targeting UPR signaling with drugs is the subject of intensive research for therapeutic use in liver diseases. The present review summarizes the role of UPR signaling in liver disorders and describes why UPR regulators are promising therapeutic targets.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, Bihar, India;
| | - Christophe F. Grosset
- MIRCADE Team, U1312, Bordeaux Institute in Oncology, BRIC, Université de Bordeaux, 146 Rue Léo Saignat, F-33000 Bordeaux, France
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, Bihar, India;
| |
Collapse
|
26
|
Xue L, Liu K, Yan C, Dun J, Xu Y, Wu L, Yang H, Liu H, Xie L, Wang G, Liang Y. Schisandra lignans ameliorate nonalcoholic steatohepatitis by regulating aberrant metabolism of phosphatidylethanolamines. Acta Pharm Sin B 2023; 13:3545-3560. [PMID: 37655337 PMCID: PMC10465965 DOI: 10.1016/j.apsb.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 09/02/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a spectrum of chronic liver disease characterized by hepatic lipid metabolism disorder. Recent reports emphasized the contribution of triglyceride and diglyceride accumulation to NASH, while the other lipids associated with the NASH pathogenesis remained unexplored. The specific purpose of our study was to explore a novel pathogenesis and treatment strategy of NASH via profiling the metabolic characteristics of lipids. Herein, multi-omics techniques based on LC-Q-TOF/MS, LC-MS/MS and MS imaging were developed and used to screen the action targets related to NASH progress and treatment. A methionine and choline deficient (MCD) diet-induced mouse model of NASH was then constructed, and Schisandra lignans extract (SLE) was applied to alleviate hepatic damage by regulating the lipid metabolism-related enzymes CES2A and CYP4A14. Hepatic lipidomics indicated that MCD-diet led to aberrant accumulation of phosphatidylethanolamines (PEs), and SLE could significantly reduce the accumulation of intrahepatic PEs. Notably, exogenous PE (18:0/18:1) was proved to significantly aggravate the mitochondrial damage and hepatocyte apoptosis. Supplementing PE (18:0/18:1) also deteriorated the NASH progress by up regulating intrahepatic proinflammatory and fibrotic factors, while PE synthase inhibitor exerted a prominent hepatoprotective role. The current work provides new insights into the relationship between PE metabolism and the pathogenesis of NASH.
Collapse
Affiliation(s)
- Lijuan Xue
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keanqi Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Caixia Yan
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Yexin Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Linlin Wu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huizhu Yang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huafang Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
27
|
Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Sheng-Hwa Tung A, Li VL, Huang W, Wiggenhorn AL, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab 2023; 35:1261-1279.e11. [PMID: 37141889 PMCID: PMC10524249 DOI: 10.1016/j.cmet.2023.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nicholas M Riley
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wentao Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Zhu R, Liu L, Zhang G, Dong J, Ren Z, Li Z. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis. Biosci Rep 2023; 43:BSR20222524. [PMID: 37279097 PMCID: PMC10272964 DOI: 10.1042/bsr20222524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disease occurring in patients with hepatic insufficiency and/or portal-systemic blood shunting based on cirrhosis. The pathogenesis is not completely clear till now, but it is believed that hyperammonemia is the core of HE. Hyperammonemia caused by increased sources of ammonia and decreased metabolism further causes mental problems through the gut-liver-brain axis. The vagal pathway also plays a bidirectional role in the axis. Intestinal microorganisms play an important role in the pathogenesis of HE through the gut-liver-brain axis. With the progression of cirrhosis to HE, intestinal microbial composition changes gradually. It shows the decrease of potential beneficial taxa and the overgrowth of potential pathogenic taxa. Changes in gut microbiota may lead to a variety of effects, such as reduced production of short-chain fatty acids (SCFAs), reduced production of bile acids, increased intestinal barrier permeability, and bacterial translocation. The treatment aim of HE is to decrease intestinal ammonia production and intestinal absorption of ammonia. Prebiotics, probiotics, antibiotics, and fecal microbiota transplantation (FMT) can be used to manipulate the gut microbiome to improve hyperammonemia and endotoxemia. Especially the application of FMT, it has become a new treated approach to target microbial composition and function. Therefore, restoring intestinal microbial homeostasis can improve the cognitive impairment of HE, which is a potential treatment method.
Collapse
Affiliation(s)
- Ruirui Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liwen Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Guizhen Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Jianxia Dong
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Zhiqin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
29
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
30
|
Goshisht MK, Tripathi N, Patra GK, Chaskar M. Organelle-targeting ratiometric fluorescent probes: design principles, detection mechanisms, bio-applications, and challenges. Chem Sci 2023; 14:5842-5871. [PMID: 37293660 PMCID: PMC10246671 DOI: 10.1039/d3sc01036h] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Biological species, including reactive oxygen species (ROS), reactive sulfur species (RSS), reactive nitrogen species (RNS), F-, Pd2+, Cu2+, Hg2+, and others, are crucial for the healthy functioning of cells in living organisms. However, their aberrant concentration can result in various serious diseases. Therefore, it is essential to monitor biological species in cellular organelles such as the cell membrane, mitochondria, lysosome, endoplasmic reticulum, Golgi apparatus, and nucleus. Among various fluorescent probes for species detection within the organelles, ratiometric fluorescent probes have drawn special attention as a potential way to get beyond the drawbacks of intensity-based probes. This method depends on measuring the intensity change of two emission bands (caused by an analyte), which produces an efficient internal referencing that increases the detection's sensitivity. This review article discusses the literature publications (from 2015 to 2022) on organelle-targeting ratiometric fluorescent probes, the general strategies, the detecting mechanisms, the broad scope, and the challenges currently faced by fluorescent probes.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay 2420 Nicolet Drive Green Bay WI 54311-7001 USA
- Department of Chemistry, Government Naveen College Tokapal Bastar Chhattisgarh 494442 India
| | - Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Goutam Kumar Patra
- Department of Chemistry, Faculty of Physical Sciences Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh 495009 India
| | - Manohar Chaskar
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| |
Collapse
|
31
|
Chalhoub G, Jamnik A, Pajed L, Kolleritsch S, Hois V, Bagaric A, Prem D, Tilp A, Kolb D, Wolinski H, Taschler U, Züllig T, Rechberger GN, Fuchs C, Trauner M, Schoiswohl G, Haemmerle G. Carboxylesterase 2a deletion provokes hepatic steatosis and insulin resistance in mice involving impaired diacylglycerol and lysophosphatidylcholine catabolism. Mol Metab 2023; 72:101725. [PMID: 37059417 PMCID: PMC10148186 DOI: 10.1016/j.molmet.2023.101725] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE Hepatic triacylglycerol accumulation and insulin resistance are key features of NAFLD. However, NAFLD development and progression are rather triggered by the aberrant generation of lipid metabolites and signaling molecules including diacylglycerol (DAG) and lysophosphatidylcholine (lysoPC). Recent studies showed decreased expression of carboxylesterase 2 (CES2) in the liver of NASH patients and hepatic DAG accumulation was linked to low CES2 activity in obese individuals. The mouse genome encodes several Ces2 genes with Ces2a showing highest expression in the liver. Herein we investigated the role of mouse Ces2a and human CES2 in lipid metabolism in vivo and in vitro. METHODS Lipid metabolism and insulin signaling were investigated in mice lacking Ces2a and in a human liver cell line upon pharmacological CES2 inhibition. Lipid hydrolytic activities were determined in vivo and from recombinant proteins. RESULTS Ces2a deficient mice (Ces2a-ko) are obese and feeding a high-fat diet (HFD) provokes severe hepatic steatosis and insulin resistance together with elevated inflammatory and fibrotic gene expression. Lipidomic analysis revealed a marked rise in DAG and lysoPC levels in the liver of Ces2a-ko mice fed HFD. Hepatic lipid accumulation in Ces2a deficiency is linked to lower DAG and lysoPC hydrolytic activities in liver microsomal preparations. Moreover, Ces2a deficiency significantly increases hepatic expression and activity of MGAT1, a PPAR gamma target gene, suggesting aberrant lipid signaling upon Ces2a deficiency. Mechanistically, we found that recombinant Ces2a and CES2 show significant hydrolytic activity towards lysoPC (and DAG) and pharmacological inhibition of CES2 in human HepG2 cells largely phenocopies the lipid metabolic changes present in Ces2a-ko mice including reduced lysoPC and DAG hydrolysis, DAG accumulation and impaired insulin signaling. CONCLUSIONS Ces2a and CES2 are critical players in hepatic lipid signaling likely via the hydrolysis of DAG and lysoPC at the ER.
Collapse
Affiliation(s)
- Gabriel Chalhoub
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Alina Jamnik
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Victoria Hois
- Division of Endocrinology and Diabetology, Medical University of Graz, Austria
| | - Antonia Bagaric
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Dominik Prem
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anna Tilp
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Claudia Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schoiswohl
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria.
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
32
|
Tannouri N, Simmons DBD. Characterizing the origin of blood plasma proteins from organ tissues in rainbow trout (Oncorhynchus mykiss) using a comparative non-targeted proteomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101070. [PMID: 36871493 DOI: 10.1016/j.cbd.2023.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Protein expression patterns adapt to various cues to meet the needs of an organism. The dynamicity of an organism's proteome can therefore reveal information about an organism's health. Proteome databases contain limited information regarding organisms outside of medicinal biology. The UniProt human and mouse proteomes are extensively reviewed and ∼50 % of both proteomes include tissue specificity, while >99 % of the rainbow trout proteome lacks tissue specificity. This study aimed to expand knowledge on the rainbow trout proteome with a focus on understanding the origin of blood plasma proteins. Blood, brain, heart, liver, kidney, and gills were collected from adult rainbow trout, plasma and tissue proteins were analyzed using liquid chromatography tandem mass spectrometry. Over 10,000 proteins were identified across all groups. Our data indicated that the majority of the plasma proteome is shared amongst multiple tissue types, though 4-7 % of the plasma proteome is uniquely originated from each tissue (gill > heart > liver > kidney > brain).
Collapse
Affiliation(s)
- Nancy Tannouri
- Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada. https://twitter.com/nancytannouri
| | | |
Collapse
|
33
|
Song J, Yu J, Sun K, Chen Z, Xing X, Yang Y, Sun C, Wang Z. Preparation of a Highly Selective “Off-On” Rhodamine-Based Fluorescent Probe for the Specific Determination of Carboxylesterase 2 and Cell Imaging. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2175213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Xiaoxiao Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yumeng Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Chunyu Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Chen Z, Yu J, Sun K, Song J, Chen L, Jiang Y, Wang Z. Rational design of a turn-on near-infrared fluorescence probe for the highly sensitive and selective monitoring of carboxylesterase 2 in living systems. Analyst 2023; 148:876-887. [PMID: 36661088 DOI: 10.1039/d2an01874h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In vivo selective fluorescence imaging of carboxylesterase 2 (CES2) remains a great challenge because existing fluorescence probes can potentially suffer from interference by other hydrolases. In addition, some fluorescent probes that have been separately reported for measuring CES2 activity in vitro are affected by autofluorescence and absorption of the biological matrix due to their limited emission wavelength or short Stokes shift. Herein, based on the substrate preference and catalytic performance of CES2, a novel and NIR fluorescent probe was developed, in which a hemi-cyanine dye ester derivative was used as the basic fluorescent group. In the presence of CES2, the probe was hydrolyzed to expose the fluorophore CZX-OH (λabs ∼ 675 nm, λem ∼ 850 nm), which led to a notable red-shift in the fluorescence (∼175 nm) spectrum. Confocal imaging of cells and live mice demonstrated that the fluorescent signal of this probe was related to the real activities of CES2 in cancer cells. All these results will powerfully promote the screening of CES2 regulators and the analysis of CES2-related physiological and pathological processes.
Collapse
Affiliation(s)
- Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Lucheng Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
35
|
Wang JS, Liu JC. Intestinal microbiota in the treatment of metabolically associated fatty liver disease. World J Clin Cases 2022; 10:11240-11251. [PMID: 36387806 PMCID: PMC9649557 DOI: 10.12998/wjcc.v10.i31.11240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolically associated fatty liver disease (MAFLD) is a common cause of chronic liver disease, the hepatic manifestation of metabolic syndrome. Despite the increasing incidence of MAFLD, no effective treatment is available. Recent research indicates a link between the intestinal microbiota and liver diseases such as MAFLD. The composition and characteristics of the intestinal microbiota and therapeutic perspectives of MAFLD are reviewed in the current study. An imbalance in the intestinal microbiota increases intestinal permeability and exposure of the liver to adipokines. Furthermore, we focused on reviewing the latest "gut-liver axis" targeted therapy.
Collapse
Affiliation(s)
- Ji-Shuai Wang
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Chun Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
36
|
Eisner H, Riegler-Berket L, Gamez CFR, Sagmeister T, Chalhoub G, Darnhofer B, Jazleena PJ, Birner-Gruenberger R, Pavkov-Keller T, Haemmerle G, Schoiswohl G, Oberer M. The Crystal Structure of Mouse Ces2c, a Potential Ortholog of Human CES2, Shows Structural Similarities in Substrate Regulation and Product Release to Human CES1. Int J Mol Sci 2022; 23:13101. [PMID: 36361897 PMCID: PMC9655854 DOI: 10.3390/ijms232113101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/01/2025] Open
Abstract
Members of the carboxylesterase 2 (Ces2/CES2) family have been studied intensively with respect to their hydrolytic function on (pro)drugs, whereas their physiological role in lipid and energy metabolism has been realized only within the last few years. Humans have one CES2 gene which is highly expressed in liver, intestine, and kidney. Interestingly, eight homologous Ces2 (Ces2a to Ces2h) genes exist in mice and the individual roles of the corresponding proteins are incompletely understood. Mouse Ces2c (mCes2c) is suggested as potential ortholog of human CES2. Therefore, we aimed at its structural and biophysical characterization. Here, we present the first crystal structure of mCes2c to 2.12 Å resolution. The overall structure of mCes2c resembles that of the human CES1 (hCES1). The core domain adopts an α/β hydrolase-fold with S230, E347, and H459 forming a catalytic triad. Access to the active site is restricted by the cap, the flexible lid, and the regulatory domain. The conserved gate (M417) and switch (F418) residues might have a function in product release similar as suggested for hCES1. Biophysical characterization confirms that mCes2c is a monomer in solution. Thus, this study broadens our understanding of the mammalian carboxylesterase family and assists in delineating the similarities and differences of the different family members.
Collapse
Affiliation(s)
- Helgit Eisner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | | | - Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Gabriel Chalhoub
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - P J Jazleena
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, 1060 Vienna, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - Gabriele Schoiswohl
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| |
Collapse
|
37
|
Cassim Bawa FN, Xu Y, Gopoju R, Plonski N, Shiyab A, Hu S, Chen S, Zhu Y, Jadhav K, Kasumov T, Zhang Y. Hepatic retinoic acid receptor alpha mediates all-trans retinoic acid's effect on diet-induced hepatosteatosis. Hepatol Commun 2022; 6:2665-2675. [PMID: 35852305 PMCID: PMC9512485 DOI: 10.1002/hep4.2049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 12/30/2022] Open
Abstract
All-trans retinoic acid (AtRA) is an active metabolite of vitamin A that influences many biological processes in development, differentiation, and metabolism. AtRA functions through activation of retinoid acid receptors (RARs). AtRA is shown to ameliorate hepatic steatosis, but the underlying mechanism is not well understood. In this study, we investigated the role of hepatocyte RAR alpha (RARα) in mediating the effect of AtRA on hepatosteatosis in mice. Hepatocyte-specific Rarα-/- (L-Rarα-/- ) mice and their control mice were fed a chow diet, high-fat diet (HFD), or a high-fat/cholesterol/fructose (HFCF) diet. Some of the mice were also treated with AtRA. Loss of hepatocyte RARα-induced hepatosteatosis in chow-fed aged mice and HFD-fed mice. AtRA prevented and reversed HFCF diet-induced obesity and hepatosteatosis in the control mice but not in L-Rarα-/- mice. Furthermore, AtRA reduced hepatocyte fatty acid uptake and lipid droplet formation, dependent on hepatocyte RARα. Our data suggest that hepatocyte RARα plays an important role in preventing hepatosteatosis and mediates AtRA's effects on diet-induced hepatosteatosis.
Collapse
Affiliation(s)
- Fathima N. Cassim Bawa
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Yanyong Xu
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of EducationDepartment of Pathology of School of Basic Medical SciencesFudan UniversityShanghaiChina.
| | - Raja Gopoju
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | | | - Amy Shiyab
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shuwei Hu
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shaoru Chen
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Yingdong Zhu
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Kavita Jadhav
- School of Biomedical SciencesKent State University KentKentOhioUSA
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Takhar Kasumov
- Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Yanqiao Zhang
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| |
Collapse
|
38
|
Liu J, Yao B, Gao L, Zhang Y, Huang S, Wang X. Emerging role of carboxylesterases in nonalcoholic fatty liver disease. Biochem Pharmacol 2022; 205:115250. [PMID: 36130649 DOI: 10.1016/j.bcp.2022.115250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a global public health problem. Carboxylesterases (CESs), as potential influencing factors of NAFLD, are very important to improve clinical outcomes. This review aims to deeply understand the role of CESs in the progression of NAFLD and proposes that CESs can be used as potential targets for NAFLD treatment. We first introduced CESs and analyzed the relationship between CESs and hepatic lipid metabolism and inflammation. Then, we further reviewed the regulation of nuclear receptors on CESs, including PXR, CAR, PPARα, HNF4α and FXR, which may influence the progression of NAFLD. Finally, we evaluated the advantages and disadvantages of existing NAFLD animal models and summarized the application of CES-related animal models in NAFLD research. In general, this review provides an overview of the relationship between CESs and NAFLD and discusses the role and potential value of CESs in the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
39
|
Carboxylesterase 2 induces mitochondrial dysfunction via disrupting lipid homeostasis in oral squamous cell carcinoma. Mol Metab 2022; 65:101600. [PMID: 36113774 PMCID: PMC9508558 DOI: 10.1016/j.molmet.2022.101600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is characterized by high recurrence and metastasis and places a heavy burden on societies worldwide. Cancer cells thrive in a changing microenvironment by reprogramming lipidomic metabolic processes to provide nutrients and energy, activate oncogenic signaling pathways, and manage redox homeostasis to avoid lipotoxicity. The mechanism by which OSCC cells maintain lipid homeostasis during malignant progression is unclear. METHODS The altered expression of fatty acid (FA) metabolism genes in OSCC, compared with that in normal tissues, and in OSCC patients with or without recurrence or metastasis were determined using public data from the TCGA and GEO databases. Immunohistochemistry was performed to examine the carboxylesterase 2 (CES2) protein level in our own cohort. CCK-8 and Transwell assays and an in vivo xenograft model were used to evaluate the biological functions of CES2. Mass spectrometry and RNA sequencing were performed to determine the lipidome and transcriptome alterations induced by CES2. Mitochondrial mass, mtDNA content, mitochondrial membrane potential, ROS levels, and oxygen consumption and apoptosis rates were evaluated to determine the effects of CES2 on mitochondrial function in OSCC. RESULTS CES2 was downregulated in OSCC patients, especially those with recurrence or metastasis. CES2high OSCC patients showed better overall survival than CES2low OSCC patients. Restoring CES2 expression reduced OSCC cell viability and suppressed their migration and invasion in vitro, and it inhibited OSCC tumor growth in vivo. CES2 reprogrammed lipid metabolism in OSCC cells by hydrolyzing neutral lipid diacylglycerols (DGs) to release free fatty acids and reduce the membrane structure lipid phospholipids (PLs) synthesis. Free FAs were converted to acyl-carnitines (CARs) and transferred to mitochondria for oxidation, which induced reactive oxygen species (ROS) accumulation, mitochondrial damage, and apoptosis activation. Furthermore, the reduction in signaling lipids, e.g., DGs, PLs and substrates, suppressed PI3K/AKT/MYC signaling pathways. Restoring MYC rescued the diminished cell viability, suppressed migratory and invasive abilities, damaged mitochondria and reduced apoptosis rate induced by CES2. CONCLUSIONS We demonstrated that CES2 downregulation plays an important role in OSCC by maintaining lipid homeostasis and reducing lipotoxicity during tumor progression and may provide a potential therapeutic target for OSCC.
Collapse
|
40
|
Liu SY, Zou X, Guo Y, Gao X. A highly sensitive and selective enzyme activated fluorescent probe for in vivo profiling of carboxylesterase 2. Anal Chim Acta 2022; 1221:340126. [DOI: 10.1016/j.aca.2022.340126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
|
41
|
Nakano M, Nakajima M. Adenosine-to-Inosine RNA Editing and N 6-Methyladenosine Modification Modulating Expression of Drug Metabolizing Enzymes. Drug Metab Dispos 2022; 50:624-633. [PMID: 35152204 DOI: 10.1124/dmd.121.000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/02/2022] [Indexed: 02/13/2025] Open
Abstract
Interindividual differences in the expression and activity of drug metabolizing enzymes including cytochrome P450, UDP-glucuronosyltransferase, and esterases cause variable therapeutic efficacy or adverse events of drugs. As the major mechanisms causing the variability in the expression of drug metabolizing enzymes, transcriptional regulation by transcription factors, epigenetic regulation including DNA methylation, and posttranscriptional regulation by microRNA are well known. Recently, adenosine-to-inosine RNA editing and methylation of adenosine at the N 6 position on RNA have emerged as novel regulators of drug metabolism potency. In this review article, the current knowledge of these two prevalent types of posttranscriptional modification mediated modulation of drug metabolism involved genes is introduced. SIGNIFICANCE STATEMENT: Elucidation of the significance of adenosine-to-inosine RNA editing and N 6-methyladenosine in the regulation of drug metabolizing enzymes is expected to lead to a deeper understanding of interindividual variability in the therapeutic efficacy or adverse effects of medicines.
Collapse
Affiliation(s)
- Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (Ma.N., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., Mi.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (Ma.N., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., Mi.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
42
|
Grabner GF, Guttenberger N, Mayer N, Migglautsch-Sulzer AK, Lembacher-Fadum C, Fawzy N, Bulfon D, Hofer P, Züllig T, Hartig L, Kulminskaya N, Chalhoub G, Schratter M, Radner FPW, Preiss-Landl K, Masser S, Lass A, Zechner R, Gruber K, Oberer M, Breinbauer R, Zimmermann R. Small-Molecule Inhibitors Targeting Lipolysis in Human Adipocytes. J Am Chem Soc 2022; 144:6237-6250. [PMID: 35362954 PMCID: PMC9011347 DOI: 10.1021/jacs.1c10836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Chronically elevated
circulating fatty acid levels promote lipid
accumulation in nonadipose tissues and cause lipotoxicity. Adipose
triglyceride lipase (ATGL) critically determines the release of fatty
acids from white adipose tissue, and accumulating evidence suggests
that inactivation of ATGL has beneficial effects on lipotoxicity-driven
disorders including insulin resistance, steatohepatitis, and heart
disease, classifying ATGL as a promising drug target. Here, we report
on the development and biological characterization of the first small-molecule
inhibitor of human ATGL. This inhibitor, designated NG-497, selectively
inactivates human and nonhuman primate ATGL but not structurally and
functionally related lipid hydrolases. We demonstrate that NG-497
abolishes lipolysis in human adipocytes in a dose-dependent and reversible
manner. The combined analysis of mouse- and human-selective inhibitors,
chimeric ATGL proteins, and homology models revealed detailed insights
into enzyme–inhibitor interactions. NG-497 binds ATGL within
a hydrophobic cavity near the active site. Therein, three amino acid
residues determine inhibitor efficacy and species selectivity and
thus provide the molecular scaffold for selective inhibition.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Nikolaus Guttenberger
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Nicole Mayer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | | | | | - Nermeen Fawzy
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Lennart Hartig
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Natalia Kulminskaya
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Gabriel Chalhoub
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Margarita Schratter
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Karina Preiss-Landl
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Sarah Masser
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/2, 8010 Graz, Austria.,BioHealth Field of Excellence, University of Graz, Universitätsplatz 3, 8010 Graz, Austria
| |
Collapse
|
43
|
Li H, Liu NN, Li JR, Dong B, Wang MX, Tan JL, Wang XK, Jiang J, Lei L, Li HY, Sun H, Jiang JD, Peng ZG. Combined Use of Bicyclol and Berberine Alleviates Mouse Nonalcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:843872. [PMID: 35250593 PMCID: PMC8889073 DOI: 10.3389/fphar.2022.843872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), is a liver disease worldwide without approved therapeutic drugs. Anti-inflammatory and hepatoprotective drug bicyclol and multi-pharmacological active drug berberine, respectively, have shown beneficial effects on NAFLD in murine nutritional models and patients, though the therapeutic mechanisms remain to be illustrated. Here, we investigated the combined effects of bicyclol and berberine on mouse steatosis induced by Western diet (WD), and NASH induced by WD/CCl4. The combined use of these was rather safe and better reduced the levels of transaminase in serum and triglycerides and cholesterol in the liver than their respective monotherapy, accompanied with more significantly attenuating hepatic inflammation, steatosis, and ballooning in mice with steatosis and NASH. The combined therapy also significantly inhibited fibrogenesis, characterized by the decreased hepatic collagen deposition and fibrotic surface. As per mechanism, bicyclol enhanced lipolysis and β-oxidation through restoring the p62-Nrf2-CES2 signaling axis and p62-Nrf2-PPARα signaling axis, respectively, while berberine suppressed de novo lipogenesis through downregulating the expression of acetyl-CoA carboxylase and fatty acid synthetase, along with enrichment of lipid metabolism-related Bacteroidaceae (family) and Bacteroides (genus). Of note, the combined use of bicyclol and berberine did not influence each other but enhanced the overall therapeutic role in the amelioration of NAFLD. Conclusion: Combined use of bicyclol and berberine might be a new available strategy to treat NAFLD.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Nan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Xi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Li Tan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease worldwide. It refers to a range of liver conditions affecting people who drink little or no alcohol. NAFLD comprises non-alcoholic fatty liver and non-alcoholic steatohepatitis (NASH), the more aggressive form of NAFLD. NASH is featured by steatosis, lobular inflammation, hepatocyte injury, and various degrees of fibrosis. Although much progress has been made over the past decades, the pathogenic mechanism of NAFLD remains to be fully elucidated. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear hormone receptor that is highly expressed in hepatocytes. Hepatic HNF4α expression is markedly reduced in NAFLD patients and mouse models of NASH. HNF4α has been shown to regulate bile acid, lipid, glucose, and drug metabolism. In this review, we summarize the recent advances in the understanding of the pathogenesis of NAFLD with a focus on the regulation of HNF4α and the role of hepatic HNF4α in NAFLD. Several lines of evidence have shown that hepatic HNF4α plays a key role in the initiation and progression of NAFLD. Recent data suggest that hepatic HNF4α may be a promising target for treatment of NAFLD.
Collapse
|
45
|
Chen Y, Capello M, Rios Perez MV, Vykoukal JV, Roife D, Kang Y, Prakash LR, Katayama H, Irajizad E, Fleury A, Ferri-Borgogno S, Baluya DL, Dennison JB, Do KA, Fiehn O, Maitra A, Wang H, Chiao PJ, Katz MHG, Fleming JB, Hanash SM, Fahrmann JF. CES2 sustains HNF4α expression to promote pancreatic adenocarcinoma progression through an epoxide hydrolase-dependent regulatory loop. Mol Metab 2022; 56:101426. [PMID: 34971802 PMCID: PMC8841288 DOI: 10.1016/j.molmet.2021.101426] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution to tumor development in PDAC. METHODS Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic analyses. RESULTS Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4α activation through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4α protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-HNF4α axis using small molecule inhibitors of CES2 or sEH reduced cell viability. CONCLUSIONS We establish a novel regulatory loop between CES2 and HNF4α to sustain the progenitor subtype and promote PDAC progression and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.
Collapse
Affiliation(s)
- Yihui Chen
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michela Capello
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayrim V Rios Perez
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody V Vykoukal
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Roife
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ya'an Kang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura R Prakash
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehsan Irajizad
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alia Fleury
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sammy Ferri-Borgogno
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Departments of Center for Radiation Oncology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oliver Fiehn
- UC Davis Genome Center - Metabolomics, University of California, Davis, 95616, CA, USA
| | - Anirban Maitra
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA; Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Departments of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Chiao
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Samir M Hanash
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Xu Y, Hu S, Jadhav K, Zhu Y, Pan X, Bawa FC, Yin L, Zhang Y. Hepatocytic Activating Transcription Factor 3 Protects Against Steatohepatitis via Hepatocyte Nuclear Factor 4α. Diabetes 2021; 70:2506-2517. [PMID: 34475098 PMCID: PMC8564409 DOI: 10.2337/db21-0181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
Activating transcription factor 3 (ATF3) has been shown to play an important role in HDL metabolism; yet, the role of hepatocytic ATF3 in the development of steatohepatitis remains elusive. Here we show that adenoassociated virus-mediated overexpression of human ATF3 in hepatocytes prevents diet-induced steatohepatitis in C57BL/6 mice and reverses steatohepatitis in db/db mice. Conversely, global or hepatocyte-specific loss of ATF3 aggravates diet-induced steatohepatitis. Mechanistically, hepatocytic ATF3 induces hepatic lipolysis and fatty acid oxidation and inhibits inflammation and apoptosis. We further show that hepatocyte nuclear factor 4α (HNF4α) is required for ATF3 to improve steatohepatitis. Thus, the current study indicates that ATF3 protects against steatohepatitis through, at least in part, hepatic HNF4α. Targeting hepatic ATF3 may be useful for treatment of steatohepatitis.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Kavita Jadhav
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
47
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
48
|
Liu J, Shang X, Huang S, Xu Y, Lu J, Zhang Y, Liu Z, Wang X. Construction and Characterization of CRISPR/Cas9 Knockout Rat Model of Carboxylesterase 2a Gene. Mol Pharmacol 2021; 100:480-490. [PMID: 34503976 DOI: 10.1124/molpharm.121.000357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Carboxylesterase (CES) 2, an important metabolic enzyme, plays a critical role in drug biotransformation and lipid metabolism. Although CES2 is very important, few animal models have been generated to study its properties and functions. Rat Ces2 is similar to human CES2A-CES3A-CES4A gene cluster, with highly similar gene structure, function, and substrate. In this report, CRISPR-associated protein-9 (CRISPR/Cas9) technology was first used to knock out rat Ces2a, which is a main subtype of Ces2 mostly distributed in the liver and intestine. This model showed the absence of CES2A protein expression in the liver. Further pharmacokinetic studies of diltiazem, a typical substrate of CES2A, confirmed the loss of function of CES2A both in vivo and in vitro. At the same time, the expression of CES2C and CES2J protein in the liver decreased significantly. The body and liver weight of Ces2a knockout rats also increased, but the food intake did not change. Moreover, the deficiency of Ces2a led to obesity, insulin resistance, and liver fat accumulation, which are consistent with the symptoms of nonalcoholic fatty liver disease (NAFLD). Therefore, this rat model is not only a powerful tool to study drug metabolism mediated by CES2 but also a good disease model to study NAFLD. SIGNIFICANCE STATEMENT: Human carboxylesterase (CES) 2 plays a key role in the first-pass hydrolysis metabolism of most oral prodrugs as well as lipid metabolism. In this study, CRISPR/Cas9 technology was used to knock out Ces2a gene in rats for the first time. This model can be used not only in the study of drug metabolism and pharmacokinetics but also as a disease model of nonalcoholic fatty liver disease (NAFLD) and other metabolic disorders.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| | - Xuyang Shang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| | - Shengbo Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| | - Jian Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| | - Zongjun Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.Li., X.S., S.H., Y.X., J.Lu., Y.Z., X.W.); and Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Z.L.)
| |
Collapse
|
49
|
Li M, Lan L, Zhang S, Xu Y, He W, Xiang D, Liu D, Ren X, Zhang C. IL-6 downregulates hepatic carboxylesterases via NF-κB activation in dextran sulfate sodium-induced colitis. Int Immunopharmacol 2021; 99:107920. [PMID: 34217990 DOI: 10.1016/j.intimp.2021.107920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Ulcerative colitis (UC) is associated with increased levels of inflammatory factors, which is attributed to the abnormal expression and activity of enzymes and transporters in the liver, affecting drug disposition in vivo. This study aimed to examine the impact of intestinal inflammation on the expression of hepatic carboxylesterases (CESs) in a mouse model of dextran sulfate sodium (DSS)-induced colitis. Two major CESs isoforms, CES1 and CES2, were down-regulated, accompanied by decreases in hepatic microsomal metabolism of clopidogrel and irinotecan. Meanwhile, IL-6 levels significantly increased compared with other inflammatory factors in the livers of UC mice. In contrast, using IL-6 antibody simultaneously reversed the down-regulation of CES1, CES2, pregnane X receptor (PXR), and constitutive androstane receptor (CAR), as well as the nuclear translocation of NF-κB in the liver. We further confirmed that treatment with NF-κB inhibitor abolished IL-6-induced down-regulation of CES1, CES2, PXR, and CAR in vitro. Thus, it was concluded that IL-6 represses hepatic CESs via the NF-κB pathway in DSS-induced colitis. These findings indicate that caution should be exercised concerning the proper and safe use of therapeutic drugs in patients with UC.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Si Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| |
Collapse
|
50
|
Takemoto S, Nakano M, Fukami T, Nakajima M. m 6A modification impacts hepatic drug and lipid metabolism properties by regulating carboxylesterase 2. Biochem Pharmacol 2021; 193:114766. [PMID: 34536357 DOI: 10.1016/j.bcp.2021.114766] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Methylation of adenosine at the N6 position to form N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification of mammalian mRNA. This modification is catalyzed by a methyltransferase-like 3 (METTL3)-METTL14 complex and is erased by demethylases such as fat mass and obesity-associated protein (FTO) or AlkB homolog 5 (ALKBH5). m6A modification regulates mRNA stability, nuclear export, splicing, and/or protein translation via recognition by reader proteins such as members of YT521-B homology (YTH) family. Carboxylesterase 2 (CES2) is a serine esterase responsible for the hydrolysis of drugs and endogenous substrates, such as triglycerides and diacylglycerides. Here, we examined the potential regulation of human CES2 expression by m6A modification. CES2 mRNA level was significantly increased by double knockdown of METTL3 and METTL14 but was decreased by knockdown of FTO or ALKBH5 in HepaRG and HepG2 cells, leading to changes in its protein level and hydrolase activity for 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11), suggesting that m6A modification negatively regulates CES2 expression. Consistent with the changes in CES2 expression, lipid accumulation in the cells was decreased by double knockdown of METTL3 and METTL14 but was increased by knockdown of FTO or ALKBH5. RNA immunoprecipitation assays using an anti-m6A antibody showed that adenosines in the 5'-untranslated region (UTR) and the last exon of CES2 are methylated. Luciferase assays revealed that YTHDC2, which degrades m6A-containing mRNA, downregulates CES2 expression by recognition of m6A in the 5'-UTR of CES2. Collectively, we demonstrated that m6A modification has a great impact on the regulation of CES2, affecting pharmacokinetics, drug response and lipid metabolism.
Collapse
Affiliation(s)
- Seiya Takemoto
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masataka Nakano
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPINano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPINano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- DrugMetabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPINano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|