1
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
2
|
Zhu M, Pu J, Zhang T, Shao H, Su R, Tang C. Inhibiting TRIM8 alleviates adipocyte inflammation and insulin resistance by regulating the DUSP14/MAPKs pathway. Adipocyte 2024; 13:2381262. [PMID: 39039652 PMCID: PMC11268219 DOI: 10.1080/21623945.2024.2381262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a low-grade chronic inflammation induced by the pathological expansion of adipocytes which allows the development of obesity-associated metabolic diseases like type 2 diabetes mellitus (T2D) and non-alcoholic fatty liver disease (NAFLD). However, mechanisms regulating adipocyte inflammation remain poorly understood. Here, we observed that TRIM8 was upregulated in adipocyte inflammation and insulin resistance while DUSP14 was downregulated. TRIM8 deficiency and DUSP14 over-expression decreased the level of inflammatory cytokines, increased glucose uptake content, and improved insulin signalling transduction compared to LPS treatment alone. Conversely, silencing DUSP14 increased the expression of inflammatory cytokines. It decreased the glucose uptake content and the phosphorylation level of proteins involved in insulin signalling, further impairing insulin signalling and aggravating insulin resistance. Furthermore, The decreased level of inflammatory cytokines, increased glucose uptake, and improved insulin signalling transduction caused by TRIM8 deficiency were reversed by down-regulated DUSP14. Collectively, our findings revealed that TRIM8 can regulate adipocyte inflammation and insulin resistance by regulating the MAPKs pathway which is dependent on DUSP14.
Collapse
Affiliation(s)
- Mingxue Zhu
- Phase I Clinical Research Center, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Junliang Pu
- Phase I Clinical Research Center, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- Phase I Clinical Research Center, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Huarui Shao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Rui Su
- Phase I Clinical Research Center, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Chengyong Tang
- Phase I Clinical Research Center, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
4
|
Tang M, Cao H, Ma Y, Yao S, Wei X, Tan Y, Liu F, Peng Y, Fan N. USP13 ameliorates nonalcoholic fatty liver disease through inhibiting the activation of TAK1. J Transl Med 2024; 22:671. [PMID: 39033101 PMCID: PMC11264885 DOI: 10.1186/s12967-024-05465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The molecular mechanisms underlying nonalcoholic fatty liver disease (NAFLD) remain to be fully elucidated. Ubiquitin specific protease 13 (USP13) is a critical participant in inflammation-related signaling pathways, which are linked to NAFLD. Herein, the roles of USP13 in NAFLD and the underlying mechanisms were investigated. METHODS L02 cells and mouse primary hepatocytes were subjected to free fatty acid (FFA) to establish an in vitro model reflective of NAFLD. To prepare in vivo model of NAFLD, mice fed a high-fat diet (HFD) for 16 weeks and leptin-deficient (ob/ob) mice were used. USP13 overexpression and knockout (KO) strategies were employed to study the function of USP13 in NAFLD in mice. RESULTS The expression of USP13 was markedly decreased in both in vitro and in vivo models of NAFLD. USP13 overexpression evidently inhibited lipid accumulation and inflammation in FFA-treated L02 cells in vitro. Consistently, the in vivo experiments showed that USP13 overexpression ameliorated hepatic steatosis and metabolic disorders in HFD-fed mice, while its deficiency led to contrary outcomes. Additionally, inflammation was similarly attenuated by USP13 overexpression and aggravated by its deficiency in HFD-fed mice. Notably, overexpressing of USP13 also markedly alleviated hepatic steatosis and inflammation in ob/ob mice. Mechanistically, USP13 bound to transforming growth factor β-activated kinase 1 (TAK1) and inhibited K63 ubiquitination and phosphorylation of TAK1, thereby dampening downstream inflammatory pathways and promoting insulin signaling pathways. Inhibition of TAK1 activation reversed the exacerbation of NAFLD caused by USP13 deficiency in mice. CONCLUSIONS Our findings indicate the protective role of USP13 in NAFLD progression through its interaction with TAK1 and inhibition the ubiquitination and phosphorylation of TAK1. Targeting the USP13-TAK1 axis emerges as a promising therapeutic strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Min Tang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Cao
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Endocrinology, Songjiang District Central Hospital, Shanghai, China
| | - Yunqin Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijiong Tan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| | - Nengguang Fan
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Chen P, Huang X, Li W, Wen W, Cao Y, Li J, Huang Y, Hu Y. Myeloid-derived growth factor in diseases: structure, function and mechanisms. Mol Med 2024; 30:103. [PMID: 39030488 PMCID: PMC11264862 DOI: 10.1186/s10020-024-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Myeloid-derived growth factor (MYDGF) is a novel secreted protein with potent antiapoptotic and tissue-repairing properties that is present in nearly 140 human tissues and cell lines, with the highest abundance in the oral epithelium and skin. Initially, MYDGF was found in bone marrow-derived monocytes and macrophages for cardioprotection and repair after myocardial infarction. Subsequent studies have shown that MYDGF plays an important role in other cardiovascular diseases (e.g., atherosclerosis and heart failure), metabolic disorders, renal disease, autoimmune/inflammatory disorders, and cancers. Although the underlying mechanisms have not been fully explored, the role of MYDGF in health and disease may involve cell apoptosis and proliferation, tissue repair and regeneration, anti-inflammation, and glycolipid metabolism regulation. In this review, we summarize the current progress in understanding the role of MYDGF in health and disease, focusing on its structure, function and mechanisms. The graphical abstract shows the current role of MYDGF in different organs and diseases (Fig. 1).
Collapse
Affiliation(s)
- Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW2006, Australia.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, 510000, China.
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
| |
Collapse
|
6
|
Luo M, Chen N, Han D, Hu B, Zuo H, Weng S, He J, Xu X. A Negative Regulatory Feedback Loop within the JAK-STAT Pathway Mediated by the Protein Tyrosine Phosphatase DUSP14 in Shrimp. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:63-74. [PMID: 38767414 DOI: 10.4049/jimmunol.2300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.
Collapse
Affiliation(s)
- Mengting Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nuo Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Deyu Han
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bangping Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Zuo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Luo J, Tian Z, Song F, Ren C, Liu W. Dual-specificity phosphatase 5-mediated fatty acid oxidation promotes Mycobacterium bovis BCG -induced inflammatory responses. Exp Cell Res 2024; 434:113869. [PMID: 38049081 DOI: 10.1016/j.yexcr.2023.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) reprograms FAs metabolism of macrophages during infection and affects inflammatory reaction eventually, however, the mechanism remains poorly understood. Here we show that Mycobacterium bovis (BCG) induces DUSP5 expression through TLR2-MAPKs signaling pathway and promotes fatty acid oxidation (FAO). Silencing DUSP5 by adeno-associated virus vector (AAV) ameliorates lung injury and DUSP5 knockdown reduces the expression of IL-1β, IL-6 and inactivated NF-κB signaling in BCG-infected macrophages. Of note, DUSP5 specific siRNA increases the content of free fatty acids (FFAs) and triglyceride (TG), but represses the expression of FAO associated enzymes such as CPT1A and PPARα, suggesting DUSP5 mediated FAO during BCG infection. Moreover, Inhibiting FAO by pharmacological manner suppresses IL-1β, IL-6, TNF-α expression and relieves lung damage. Taken together, our data indicates DUSP5 mediates FAO reprogramming and promotes inflammatory response to BCG infection.
Collapse
Affiliation(s)
- Jia Luo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zengjian Tian
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Fuyang Song
- College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Chao Ren
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenmiao Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; The Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
8
|
Li YM, He HW, Zhang N. Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease. Curr Drug Targets 2024; 25:171-189. [PMID: 38213163 DOI: 10.2174/0113894501278886231221092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Yi-Ming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Wei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
9
|
Li Z, Bao X, Liu X, Wang W, Yang J, Zhu X, Wang S. Transcriptome Profiling Based at Different Time Points after Hatching Deepened Our Understanding on Larval Growth and Development of Amphioctopus fangsiao. Metabolites 2023; 13:927. [PMID: 37623871 PMCID: PMC10456336 DOI: 10.3390/metabo13080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
As the quality of life improves, there is an increasing demand for nutrition-rich marine organisms like fish, shellfish, and cephalopods. To address this, artificial cultivation of these organisms is being explored along with ongoing research on their growth and development. A case in point is Amphioctopus fangsiao, a highly valued cephalopod known for its tasty meat, nutrient richness, and rapid growth rate. Despite its significance, there is a dearth of studies on the A. fangsiao growth mechanism, particularly of its larvae. In this study, we collected A. fangsiao larvae at 0, 4, 12, and 24 h post-hatching and conducted transcriptome profiling. Our analysis identified 4467, 5099, and 4181 differentially expressed genes (DEGs) at respective intervals, compared to the 0 h sample. We further analyzed the expression trends of these DEGs, noting a predominant trend of continuous upregulation. Functional exploration of this trend entailed GO and KEGG functional enrichment along with protein-protein interaction network analyses. We identified GLDC, DUSP14, DPF2, GNAI1, and ZNF271 as core genes, based on their high upregulation rate, implicated in larval growth and development. Similarly, CLTC, MEF2A, PPP1CB, PPP1R12A, and TJP1, marked by high protein interaction numbers, were identified as hub genes and the gene expression levels identified via RNA-seq analysis were validated through qRT-PCR. By analyzing the functions of key and core genes, we found that the ability of A. fangsiao larvae to metabolize carbohydrates, lipids, and other energy substances during early growth may significantly improve with the growth of the larvae. At the same time, muscle related cells in A. fangsiao larvae may develop rapidly, promoting the growth and development of larvae. Our findings provide preliminary insights into the growth and developmental mechanism of A. fangsiao, setting the stage for more comprehensive understanding and broader research into cephalopod growth and development mechanisms.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xibo Zhu
- Fishery Technology Service Center of Lanshan District, Rizhao 276800, China
| | - Shuhai Wang
- Ocean and Aquatic Research Center of Hekou District, Dongying 257200, China
| |
Collapse
|
10
|
Ding Y, Xu X, Meng B, Wang L, Zhu B, Guo B, Zhang J, Xiang L, Dong J, Liu M, Xiang G. Myeloid-derived growth factor alleviates non-alcoholic fatty liver disease alleviates in a manner involving IKKβ/NF-κB signaling. Cell Death Dis 2023; 14:376. [PMID: 37365185 DOI: 10.1038/s41419-023-05904-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Whether bone marrow modulates systemic metabolism remains unknown. Our recent study suggested that myeloid-derived growth factor (MYDGF) improves insulin resistance. Here, we found that myeloid cell-specific MYDGF deficiency aggravated hepatic inflammation, lipogenesis, and steatosis, and show that myeloid cell-derived MYDGF restoration alleviated hepatic inflammation, lipogenesis, and steatosis. Additionally, recombinant MYDGF attenuated inflammation, lipogenesis, and fat deposition in primary mouse hepatocytes (PMHs). Importantly, inhibitor kappa B kinase beta/nuclear factor-kappa B (IKKβ/NF-κB) signaling is involved in protection of MYDGF on non-alcoholic fatty liver disease (NAFLD). These data revealed that myeloid cell-derived MYDGF alleviates NAFLD and inflammation in a manner involving IKKβ/NF-κB signaling, and serves as a factor involved in the crosstalk between the liver and bone marrow that regulates liver fat metabolism. Bone marrow functions as an endocrine organ and serves as a potential therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Yan Ding
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan Province, China
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
- The First School of Clinical Medicine, Southern Medical University, NO.1023, South Shatai Road, Guangzhou, 510515, Guangdong Province, China
| | - Biying Meng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
- The First School of Clinical Medicine, Southern Medical University, NO.1023, South Shatai Road, Guangzhou, 510515, Guangdong Province, China
| | - Li Wang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Bei Guo
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
- The First School of Clinical Medicine, Southern Medical University, NO.1023, South Shatai Road, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
11
|
Xiong P, Zhang F, Liu F, Zhao J, Huang X, Luo D, Guo J. Metaflammation in glucolipid metabolic disorders: Pathogenesis and treatment. Biomed Pharmacother 2023; 161:114545. [PMID: 36948135 DOI: 10.1016/j.biopha.2023.114545] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
The public health issue of glucolipid metabolic disorders (GLMD) has grown significantly, posing a grave threat to human wellness. Its prevalence is rising yearly and tends to affect younger people. Metaflammation is an important mechanism regulating body metabolism. Through a complicated multi-organ crosstalk network involving numerous signaling pathways such as NLRP3/caspase-1/IL-1, NF-B, p38 MAPK, IL-6/STAT3, and PI3K/AKT, it influences systemic metabolic regulation. Numerous inflammatory mediators are essential for preserving metabolic balance, but more research is needed to determine how they contribute to the co-morbidities of numerous metabolic diseases. Whether controlling the inflammatory response can influence the progression of GLMD determines the therapeutic strategy for such diseases. This review thoroughly examines the role of metaflammation in GLMD and combs the research progress of related therapeutic approaches, including inflammatory factor-targeting drugs, traditional Chinese medicine (TCM), and exercise therapy. Multiple metabolic diseases, including diabetes, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, and others, respond therapeutically to anti-inflammatory therapy on the whole. Moreover, we emphasize the value and open question of anti-inflammatory-based means for treating GLMD.
Collapse
Affiliation(s)
- Pingjie Xiong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fan Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fang Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiayu Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Xiaoqiang Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
12
|
Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov 2023; 9:26. [PMID: 36878899 PMCID: PMC9988979 DOI: 10.1038/s41421-022-00515-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/30/2022] [Indexed: 03/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. However, it is not well known how metabolism affects cancer progression. We identified that metabolic enzyme acyl-CoA oxidase 1 (ACOX1) suppresses colorectal cancer (CRC) progression by regulating palmitic acid (PA) reprogramming. ACOX1 is highly downregulated in CRC, which predicts poor clinical outcome in CRC patients. Functionally, ACOX1 depletion promotes CRC cell proliferation in vitro and colorectal tumorigenesis in mouse models, whereas ACOX1 overexpression inhibits patient-derived xenograft growth. Mechanistically, DUSP14 dephosphorylates ACOX1 at serine 26, promoting its polyubiquitination and proteasomal degradation, thereby leading to an increase of the ACOX1 substrate PA. Accumulated PA promotes β-catenin cysteine 466 palmitoylation, which inhibits CK1- and GSK3-directed phosphorylation of β-catenin and subsequent β-Trcp-mediated proteasomal degradation. In return, stabilized β-catenin directly represses ACOX1 transcription and indirectly activates DUSP14 transcription by upregulating c-Myc, a typical target of β-catenin. Finally, we confirmed that the DUSP14-ACOX1-PA-β-catenin axis is dysregulated in clinical CRC samples. Together, these results identify ACOX1 as a tumor suppressor, the downregulation of which increases PA-mediated β-catenin palmitoylation and stabilization and hyperactivates β-catenin signaling thus promoting CRC progression. Particularly, targeting β-catenin palmitoylation by 2-bromopalmitate (2-BP) can efficiently inhibit β-catenin-dependent tumor growth in vivo, and pharmacological inhibition of DUSP14-ACOX1-β-catenin axis by Nu-7441 reduced the viability of CRC cells. Our results reveal an unexpected role of PA reprogramming induced by dephosphorylation of ACOX1 in activating β-catenin signaling and promoting cancer progression, and propose the inhibition of the dephosphorylation of ACOX1 by DUSP14 or β-catenin palmitoylation as a viable option for CRC treatment.
Collapse
|
13
|
Osteoprotegerin deficiency aggravates methionine-choline-deficient diet-induced nonalcoholic steatohepatitis in mice. Sci Rep 2023; 13:3194. [PMID: 36823220 PMCID: PMC9950492 DOI: 10.1038/s41598-023-30001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Clinical studies have shown that osteoprotegerin (OPG) is reduced in patients with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms are unclear. The current study focuses on the role of OPG in the NASH pathogenesis. OPG knockout mice and wild-type control mice fed a methionine choline-deficient diet (MCD) for 4 weeks resulted in an animal model of NASH. Measurement of triglycerides (TG) in serum and liver to assess steatosis. Hematoxylin eosin (HE), Sirius Red and Masson staining were used to assess the liver damage. Transcriptome sequencing analysis, qPCR and western blot were to analyze changes in lipid metabolism and inflammation-related indicators in the liver. In vivo knockout of OPG resulted in a reduction of TG levels in the liver and a significant increase in serum ALT and AST. The expression of inflammatory factors and fibrosis genes was significantly upregulated in the livers of OPG knockout mice. Transcriptome sequencing analysis showed that OPG knockout significantly enhanced MCD diet-induced activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Mechanistically, OPG may inhibit MAPK signaling pathway activity by upregulating the expression of dual specificity phosphatase 14 (DUSP14), thereby reducing inflammatory injury. OPG could regulate the activity of the MAPK signaling pathway via DUSP14, thus regulating the expression of some inflammatory factors in NASH, it may be a promising target for the treatment of NASH.
Collapse
|
14
|
Liu Z, Wang J, Dai F, Zhang D, Li W. DUSP1 mediates BCG induced apoptosis and inflammatory response in THP-1 cells via MAPKs/NF-κB signaling pathway. Sci Rep 2023; 13:2606. [PMID: 36788275 PMCID: PMC9926451 DOI: 10.1038/s41598-023-29900-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Tuberculosis (TB) is a zoonotic infectious disease caused by Mycobacterium tuberculosis (Mtb). Apoptosis and necrosis caused by the interaction between the host and the pathogen, as well as the host's inflammatory response, play an important role in the pathogenesis of TB. Dual-specificity phosphatase 1 (DUSP1) plays a vital role in regulating the host immune responses. However, the role of DUSP1 in the regulation of THP-1 macrophage apoptosis induced by attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection remains unclear. In the present study, we report that infection with BCG significantly induces macrophage apoptosis and induces the production of DUSP1, TNF-α and IL-1β. DUSP1 knockdown significantly inhibited BCG-induced macrophage apoptosis and activation of MAPKs/NF-κB signaling pathway. In addition, DUSP1 knockdown suppressed BCG-induced inflammation in vivo. Taken together, this study demonstrates that DUSP1, as a regulator of MAPKs/NF-κB signaling pathway, plays a novel role in BCG-induced macrophage apoptosis and inflammatory response.
Collapse
Affiliation(s)
- Zhanyou Liu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Jianhong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Fan Dai
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Dongtao Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Wu Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China.
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
15
|
Hepatocyte phosphatase DUSP22 mitigates NASH-HCC progression by targeting FAK. Nat Commun 2022; 13:5945. [PMID: 36209205 PMCID: PMC9547917 DOI: 10.1038/s41467-022-33493-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a common clinical disease, is becoming a leading cause of hepatocellular carcinoma (HCC). Dual specificity phosphatase 22 (DUSP22, also known as JKAP or JSP-1) expressed in numerous tissues plays essential biological functions in immune responses and tumor growth. However, the effects of DUSP22 on NASH still remain unknown. Here, we find a significant decrease of DUSP22 expression in human and murine fatty liver, which is mediated by reactive oxygen species (ROS) generation. Hepatic-specific DUSP22 deletion particularly exacerbates lipid deposition, inflammatory response and fibrosis in liver, facilitating NASH and non-alcoholic fatty liver disease (NAFLD)-associated HCC progression. In contrast, transgenic over-expression, lentivirus or adeno-associated virus (AAV)-mediated DUSP22 gene therapy substantially inhibit NASH-related phenotypes and HCC development in mice. We provide mechanistic evidence that DUSP22 directly interacts with focal adhesion kinase (FAK) and restrains its phosphorylation at Tyr397 (Y397) and Y576 + Y577 residues, subsequently prohibiting downstream activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) cascades. The binding of DUSP22 to FAK and the dephosphorylation of FAK are indispensable for DUSP22-meliorated NASH progression. Collectively, our findings identify DUSP22 as a key suppressor of NASH-HCC, and underscore the DUSP22-FAK axis as a promising therapeutic target for treatment of the disease.
Collapse
|
16
|
Xu D, Qu X, Tian Y, Jie Z, Xi Z, Xue F, Ma X, Zhu J, Xia Q. Macrophage Notch1 inhibits TAK1 function and RIPK3-mediated hepatocyte necroptosis through activation of β-catenin signaling in liver ischemia and reperfusion injury. Cell Commun Signal 2022; 20:144. [PMID: 36114543 PMCID: PMC9479434 DOI: 10.1186/s12964-022-00901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Notch signaling is highly conserved and critically involved in cell differentiation, immunity, and survival. Activation of the Notch pathway modulates immune cell functions during the inflammatory response. However, it remains unknown whether and how the macrophage Notch1 may control the innate immune signaling TAK1, and RIPK3-mediated hepatocyte necroptosis in liver ischemia and reperfusion injury (IRI). This study investigated the molecular mechanisms of macrophage Notch1 in modulating TAK1-mediated innate immune responses and RIPK3 functions in liver IRI. Methods Myeloid-specific Notch1 knockout (Notch1M−KO) and floxed Notch1 (Notch1FL/FL) mice (n = 6/group) were subjected to 90 min partial liver warm ischemia followed by 6 h of reperfusion. In a parallel in vitro study, bone marrow-derived macrophages (BMMs) were isolated from these conditional knockout mice and transfected with CRISPR/Cas9-mediated β-catenin knockout (KO) vector followed by LPS (100 ng/ml) stimulation. Results IR stress-induced Notch1 activation evidenced by increased nuclear Notch intracellular domain (NICD) expression in liver macrophages. Myeloid Notch1 deficiency exacerbated IR-induced liver damage, with increased serum ALT levels, macrophage/neutrophil accumulation, and proinflammatory cytokines/chemokines production compared to the Notch1FL/FL controls. Unlike in the Notch1FL/FL controls, Notch1M−KO enhanced TRAF6, TAK1, NF-κB, RIPK3, and MLKL but reduced β-catenin activation in ischemic livers. However, adoptive transfer of lentivirus β-catenin-modified macrophages markedly improved liver function with reduced TRAF6, p-TAK1, RIPK3 and p-MLKL in IR-challenged livers. Moreover, disruption of RIPK3 in Notch1M−KO mice with an in vivo mannose-mediated RIPK3 siRNA delivery system diminished IR-triggered hepatocyte death. In vitro studies showed that macrophage NICD and β-catenin co-localized in the nucleus, whereby β-catenin interacted with NICD in response to LPS stimulation. Disruption of β-catenin with a CRISPR/Cas9-mediated β-catenin KO in Notch1FL/FL macrophage augmented TRAF6 activation leading to enhanced TAK1 function. While CRISPR/Cas9-mediated TRAF6 KO in Notch1M−KO macrophage inhibited RIPK3-mediated hepatocyte necroptosis after co-culture with primary hepatocytes. Conclusions Macrophage Notch1 controls TAK1-mediated innate immune responses and RIPK3-mediated hepatocyte necroptosis through activation of β-catenin. β-catenin is required for the macrophage Notch1-mediated immune regulation in liver IRI. Our findings demonstrate that the macrophage Notch1-β-catenin axis is a crucial regulatory mechanism in IR-triggered liver inflammation and provide novel therapeutic potential in organ IRI and transplant recipients. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00901-8.
Collapse
|
17
|
Min RWM, Aung FWM, Liu B, Arya A, Win S. Mechanism and Therapeutic Targets of c-Jun-N-Terminal Kinases Activation in Nonalcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10082035. [PMID: 36009582 PMCID: PMC9406172 DOI: 10.3390/biomedicines10082035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver (NAFL) is the most common chronic liver disease. Activation of mitogen-activated kinases (MAPK) cascade, which leads to c-Jun N-terminal kinase (JNK) activation occurs in the liver in response to the nutritional and metabolic stress. The aberrant activation of MAPKs, especially c-Jun-N-terminal kinases (JNKs), leads to unwanted genetic and epi-genetic modifications in addition to the metabolic stress adaptation in hepatocytes. A mechanism of sustained P-JNK activation was identified in acute and chronic liver diseases, suggesting an important role of aberrant JNK activation in NASH. Therefore, modulation of JNK activation, rather than targeting JNK protein levels, is a plausible therapeutic application for the treatment of chronic liver disease.
Collapse
Affiliation(s)
| | | | - Bryant Liu
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Aliza Arya
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Sanda Win
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
18
|
Wei G, Zhang X, Cai C, Sheng J, Xu M, Wang C, Gu Q, Guo C, Chen F, Liu D, Qian F. Dual-Specificity Phosphatase 14 Regulates Zebrafish Hair Cell Formation Through Activation of p38 Signaling Pathway. Front Cell Neurosci 2022; 16:840143. [PMID: 35401113 PMCID: PMC8984152 DOI: 10.3389/fncel.2022.840143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Most cases of acquired hearing loss are due to degeneration and subsequent loss of cochlear hair cells. Whereas mammalian hair cells are not replaced when lost, in zebrafish, they constantly renew and regenerate after injury. However, the molecular mechanism among this difference remains unknown. Dual-specificity phosphatase 14 (DUSP14) is an important negative modulator of mitogen-activated protein kinase (MAPK) signaling pathways. Our study was to investigate the effects of DUSP14 on supporting cell development and hair cell regeneration and explore the potential mechanism. Our results showed that dusp14 gene is highly expressed in zebrafish developing neuromasts and otic vesicles. Behavior analysis showed that dusp14 deficiency resulted in hearing defects in zebrafish larvae, which were reversed by dusp14 mRNA treatment. Moreover, knockdown of dusp14 gene caused a significant decrease in the number of neuromasts and hair cells in both neuromast and otic vesicle, mainly due to the inhibition of the proliferation of supporting cells, which results in a decrease in the number of supporting cells and ultimately in the regeneration of hair cells. We further found significant changes in a series of MAPK pathway genes through transcriptome sequencing analysis of dusp14-deficient zebrafish, especially mapk12b gene in p38 signaling. Additionally, inhibiting p38 signaling effectively rescued all phenotypes caused by dusp14 deficiency, including hair cell and supporting cell reduction. These results suggest that DUSP14 might be a key gene to regulate supporting cell development and hair cell regeneration and is a potential target for the treatment of hearing loss.
Collapse
Affiliation(s)
- Guanyun Wei
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xu Zhang
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Translational Medical Research Center, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Chengyun Cai
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiajing Sheng
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengting Xu
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Wang
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuxiang Gu
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chao Guo
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Fangyi Chen,
| | - Dong Liu
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Dong Liu, ;
| | - Fuping Qian
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Fuping Qian,
| |
Collapse
|
19
|
Li W, Liu J, Cai J, Zhang XJ, Zhang P, She ZG, Chen S, Li H. NAFLD as a continuous driver in the whole spectrum of vascular disease. J Mol Cell Cardiol 2022; 163:118-132. [PMID: 34737121 DOI: 10.1016/j.yjmcc.2021.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
Vascular disease is the prime determinant to cardiovascular morbidities and mortalities, which comprises the early vascular damage and subsequent cardiovascular events. Non-alcohol Fatty Liver Disease (NAFLD) is a systemic metabolic disorder that drives the progression of vascular disease through complex interactions. Although a causal relationship between NAFLD and cardiovascular disease (CVD) has not been established, a growing number of epidemiological studies have demonstrated an independent association between NAFLD and early vascular disease and subsequent cardiovascular events. In addition, mechanistic studies suggest that NAFLD initiates and accelerates vascular injury by increasing systemic inflammation and oxidative stress, impairing insulin sensitivity and lipid metabolism, and modulating epigenetics, the intestinal flora and hepatic autonomic nervous system; thus, NAFLD is a putative driving force for CVD progression. In this review, we summarize the clinical evidence supporting the association of NAFLD with subclinical vascular disease and cardiovascular events and discuss the potential mechanisms by which NAFLD promotes the progression of vascular disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Shaoze Chen
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Wang W, Gao W, Zhu Q, Alasbahi A, Seki E, Yang L. TAK1: A Molecular Link Between Liver Inflammation, Fibrosis, Steatosis, and Carcinogenesis. Front Cell Dev Biol 2021; 9:734749. [PMID: 34722513 PMCID: PMC8551703 DOI: 10.3389/fcell.2021.734749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic insult and persistent injury can cause liver inflammation, fibrosis, and carcinogenesis; it can also be associated with metabolic disorders. Identification of critical molecules that link the process of inflammation and carcinogenesis will provide prospective therapeutic targets for liver diseases. Rapid advancements in gene engineering technology have allowed the elucidation of the underlying mechanism of transformation, from inflammation and metabolic disorders to carcinogenesis. Transforming growth factor-β-activated kinase 1 (TAK1) is an upstream intracellular protein kinase of nuclear factor kappa-B (NF-κB) and c-Jun N-terminal kinases, which are activated by numerous cytokines, growth factors, and microbial products. In this study, we highlighted the functional roles of TAK1 and its interaction with transforming growth factor-β, WNT, AMP-activated protein kinase, and NF-κB signaling pathways in liver inflammation, steatosis, fibrosis, and carcinogenesis based on previously published articles.
Collapse
Affiliation(s)
- Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjing Zhu
- Department of Liver Diseases, Wuhan Jinyintan Hospital, Wuhan, China
| | - Afnan Alasbahi
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Ge QY, Chen J, Li GX, Tan XL, Song J, Ning D, Mo J, Du PC, Liu QM, Liang HF, Ding ZY, Zhang XW, Zhang BX. GRAMD4 inhibits tumour metastasis by recruiting the E3 ligase ITCH to target TAK1 for degradation in hepatocellular carcinoma. Clin Transl Med 2021; 11:e635. [PMID: 34841685 PMCID: PMC8597946 DOI: 10.1002/ctm2.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aberrant TAK1 (transforming growth factor β-activated kinase 1) activity is known to be involved in a variety of malignancies, but the regulatory mechanisms of TAK1 remain poorly understood. GRAMD4 (glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4) is a newly discovered p53-independent proapoptotic protein with an unclear role in HCC (hepatocellular carcinoma). RESULTS In this research, we found that GRAMD4 expression was lower in HCC samples, and its downregulation predicted worse prognosis for patients after surgical resection. Functionally, GRAMD4 inhibited HCC migration, invasion and metastasis. Mechanistically, GRAMD4 interacted with TAK1 to promote its protein degradation, thus, resulting in the inactivation of MAPK (Mitogen-activated protein kinase) and NF-κB pathways. Furthermore, GRAMD4 was proved to recruit ITCH (itchy E3 ubiquitin protein ligase) to promote the ubiquitination of TAK1. Moreover, high expression of TAK1 was correlated with low expression of GRAMD4 in HCC patients. CONCLUSIONS GRAMD4 inhibits the migration and metastasis of HCC, mainly by recruiting ITCH to promote the degradation of TAK1, which leads to the inactivation of MAPK and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Qian yun Ge
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jin Chen
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Gan xun Li
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Xiao long Tan
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jia Song
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Deng Ning
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jie Mo
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Peng cheng Du
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Qiu meng Liu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Hui fang Liang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Ze yang Ding
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Xue wu Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Bi xiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanP. R. China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanP. R. China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanP. R. China
| |
Collapse
|
22
|
Qu W, Ma T, Cai J, Zhang X, Zhang P, She Z, Wan F, Li H. Liver Fibrosis and MAFLD: From Molecular Aspects to Novel Pharmacological Strategies. Front Med (Lausanne) 2021; 8:761538. [PMID: 34746195 PMCID: PMC8568774 DOI: 10.3389/fmed.2021.761538] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and this nomenclature MAFLD was proposed to renovate its former name, non-alcoholic fatty liver disease (NAFLD). MAFLD/NAFLD have shared and predominate causes from nutrition overload to persistent liver damage and eventually lead to the development of liver fibrosis and cirrhosis. Unfortunately, there is an absence of effective treatments to reverse MAFLD/NAFLD-associated fibrosis. Due to the significant burden of MAFLD/NAFLD and its complications, there are active investigations on the development of novel targets and pharmacotherapeutics for treating this disease. In this review, we cover recent discoveries in new targets and molecules for antifibrotic treatment, which target pathways intertwined with the fibrogenesis process, including lipid metabolism, inflammation, cell apoptosis, oxidative stress, and extracellular matrix formation. Although marked advances have been made in the development of antifibrotic therapeutics, none of the treatments have achieved the endpoints evaluated by liver biopsy or without significant side effects in a large-scale trial. In addition to the discovery of new druggable targets and pharmacotherapeutics, personalized medication, and combinatorial therapies targeting multiple profibrotic pathways could be promising in achieving successful antifibrotic interventions in patients with MAFLD/NAFLD.
Collapse
Affiliation(s)
- Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Feng Wan
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
23
|
Zhao Z, Yang J, Zhang L, Zhou Y. Enhancement of DUSP14 (dual specificity phosphatase 14) limits osteoarthritis progression by alleviating chondrocyte injury, inflammation and metabolic homeostasis. Bioengineered 2021; 12:7495-7507. [PMID: 34605731 PMCID: PMC8806663 DOI: 10.1080/21655979.2021.1979355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is a proverbial inflammatory degenerative joint disease associated with the acceleration of the aging process and is characterized by chondrocyte injury and articular cartilage degradation. Dual-specificity phosphatase 14 (Dusp14), a common member of the DUSP family, has been implicated in multiple inflammatory diseases and bone loss. Nevertheless, the function of DUSP14 in OA remains unclear. In the present study, down-regulation of DUSP14 was corroborated in anterior cruciate ligament transection (ACLT)-induced OA rats and interleukin-1β (IL-1β)-stimulated chondrocytes. Additionally, the gain of DUSP14 reversed IL-1β-induced inhibition of chondrocyte viability but attenuated cell apoptosis. Concomitantly, DUSP14 overexpression muted IL-1β-induced release of pro-inflammatory mediators NO and prostaglandin E2 (PGE2), as well as pro-inflammatory cytokine levels (IL-6 and TNF-α). Furthermore, up-regulation of DUSP14 overturned the effects of IL-1β on the inhibition of collagen II and aggrecan expression, and enhancement of A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 (ADAMTS5) and matrix metalloproteinases (MMPs; MMP3 and MMP-13). Mechanistically, DUSP14 elevation increased the p-Adenosine 5ʹ-monophosphate-activated protein activated protein kinase(AMPK), inhibitor of NF-κB (IκB) expression and decreased p-p65 NF-κB expression, indicating that DUSP14 might restore the AMPK-IκB pathway to restrain NF-κB signaling under IL-1β exposure. Notably, blockage of AMPK signaling muted the protective efficacy of DUSP14 elevation against IL-1β-induced inflammatory injury and metabolism disturbance in chondrocytes. Interestingly, histological evaluation substantiated that DUSP14 injection alleviated cartilage degradation in OA rats. Together, DUSP14 may ameliorate OA progression by affecting chondrocyte injury, inflammatory response and cartilage metabolism homeostasis, implying a promising therapeutic strategy against OA.
Collapse
Affiliation(s)
- Zandong Zhao
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| | - Jie Yang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| | - Yunping Zhou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| |
Collapse
|
24
|
Liu Y, Song J, Yang J, Zheng J, Yang L, Gao J, Tian S, Liu Z, Meng X, Wang JC, Dai Z, Tang YD. Tumor Necrosis Factor α-Induced Protein 8-Like 2 Alleviates Nonalcoholic Fatty Liver Disease Through Suppressing Transforming Growth Factor Beta-Activated Kinase 1 Activation. Hepatology 2021; 74:1300-1318. [PMID: 33768585 DOI: 10.1002/hep.31832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS NAFLD prevalence has increased rapidly and become a major global health problem. Tumor necrosis factor α-induced protein 8-like 2 (TIPE2) plays a protective role in a cluster of liver diseases, such as autoimmune hepatitis, hepatitis B, and hepatocellular carcinoma. However, the function of TIPE2 in NAFLD remains unknown. Here, we investigated the role of TIPE2 in the development of NAFLD. APPROACH AND RESULTS Our study found that in vitro overexpression or knockout of TIPE2 significantly ameliorated or aggravated lipid accumulation and inflammation in hepatocytes exposed to metabolic stimulation, respectively. Consistently, in vivo hepatic steatosis, insulin resistance, inflammation, and fibrosis were alleviated in hepatic Tipe2-transgenic mice but exaggerated in hepatic Tipe2-knockout mice treated by metabolic challenges. RNA sequencing revealed that TIPE2 was significantly associated with the mitogen-activated protein kinase pathway. Mechanistic experiments demonstrated that TIPE2 bound with transforming growth factor beta-activated kinase 1 (TAK1), prevented tumor necrosis factor receptor-associated factor 6-mediated TAK1 ubiquitination and subsequently inhibited the TAK1 phosphorylation and activation of TAK1-c-Jun N-terminal kinase (JNK)/p38 signaling. Further investigation showed that blocking the activity of TAK1 reversed the worsening of hepatic metabolic disorders and inflammation in hepatic-specific Tipe2-knockout hepatocytes and mice treated with metabolic stimulation. CONCLUSIONS TIPE2 suppresses NAFLD advancement by blocking TAK1-JNK/p38 pathway and is a promising target molecule for NAFLD therapy.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Song
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jilin Zheng
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Gao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangbin Meng
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Zhengzhou University People's Hospital, Central China Fuwai Hospital, Central China Branch of the National Cardiovascular Center, Henan Provincial People's Hospital, Henan, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
25
|
Li Q, Ge C, Tan J, Sun Y, Kuang Q, Dai X, Zhong S, Yi C, Hu LF, Lou DS, Xu M. Juglanin protects against high fat diet-induced renal injury by suppressing inflammation and dyslipidemia via regulating NF-κB/HDAC3 signaling. Int Immunopharmacol 2021; 95:107340. [PMID: 33667999 DOI: 10.1016/j.intimp.2020.107340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Obesity is an important factor implicated in chronic kidney disease (CKD). Juglanin (Jug) is a natural compound extracted from the crude Polygonumaviculare, showing anti-inflammatory and anti-diabetic effects. However, whether Jug has protective effects against obesity-induced renal injury, little has been investigated. Herein, we attempted to explore the potential of Jug in mediating obesity-induced kidney disease in high fat diet (HFD)-challenged mice. Our results suggested that chronic HFD feeding markedly increased the body weights of mice compared to the ones fed with normal chow diet (NCD), along with significant glucose intolerance and insulin resistance. However, these metabolic disorders induced by HFD were effectively alleviated by Jug treatments in a dose-dependent manner. Moreover, HFD-challenged mice showed apparent histopathological changes in renal tissues with significant collagen accumulation, which were attenuated by Jug supplementation. In addition, Jug treatment decreased the expression levels of kidney injury molecule-1 (KIM-1), while increased nephrin and podocin expression levels in kidney of HFD-challenged mice, improving the renal dysfunction. Furthermore, HFD led to lipid deposition in kidney samples of mice by enhancing abnormal lipid metabolism. In addition, HFD promoted the releases of circulating pro-inflammatory cytokines, and enhanced the renal inflammation by activating nuclear factor-kappa B/histone deacetylase 3 (NF-κB/HDAC3) signaling. HFD-induced dyslipidemia and inflammation were considerably abrogated by Jug administration in mice. The protective effects of Jug against renal injury were confirmed in palmitate (PA)-stimulated HK2 cells in vitro mainly through suppressing the nuclear translocation of NF-κB and HDAC3, repressing inflammation and lipid accumulation eventually. Hence, Jug could ameliorate HFD-induced kidney injury mainly through blocking the NF-κB/HDAC3 nuclear translocation.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - De-Shuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
26
|
Huang C, Liu Q, Tang Q, Jing X, Wu T, Zhang J, Zhang G, Zhou J, Zhang Z, Zhao Y, Huang H, Xia Y, Yan J, Xiao J, Li Y, He J. Hepatocyte-specific deletion of Nlrp6 in mice exacerbates the development of non-alcoholic steatohepatitis. Free Radic Biol Med 2021; 169:110-121. [PMID: 33857628 DOI: 10.1016/j.freeradbiomed.2021.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Previous studies have established that deficiency in Nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain containing 6 (Nlrp6) changes the configuration of the gut microbiota, which leads to hepatic steatosis. Here, we aimed to determine the hepatic function of Nlrp6 in lipid metabolism and inflammation and its role in the development of non-alcoholic steatohepatitis (NASH). METHODS Nlrp6Loxp/Loxp and hepatocyte-specific Nlrp6-knockout mice were fed a high-fat diet (HFD) or methionine-choline deficient (MCD) diet to induce fatty liver or steatohepatitis, respectively. Primary hepatocytes were isolated to further explore the underlying mechanisms in vitro. In addition, we used adenovirus to overexpress Nlrp6 in ob/ob mice to demonstrate its role in NASH. RESULTS Hepatic Nlrp6 expression was downregulated in NASH patients and in obese mice. Hepatocyte-specific Nlrp6 deficiency promoted HFD- or MCD diet-induced lipid accumulation and inflammation, whereas Nlrp6 overexpression in ob/ob mice had beneficial effects. In vitro studies demonstrated that knockdown of Nlrp6 aggravated hepatic steatosis and inflammation in hepatocytes, but its overexpression markedly attenuated these abnormalities. Moreover, both in vitro and in vivo study demonstrated that Nlrp6 inhibited Cd36-mediated lipid uptake. Nlrp6 deficiency-enhanced fatty acid uptake was blocked by a Cd36 inhibitor in hepatocytes. Nlrp6 ablation increased the expression of proinflammatory cytokines, likely as a result of increased NF-κB phosphorylation and activation. Mechanistically, Nlrp6 promoted the degradation of transforming growth factor-β-activated kinase 1 (TAK1)-binding protein 2/3 (TAB2/3) via a lysosomal-dependent pathway, which suppressed NF-κB activation. CONCLUSIONS Nlrp6 may play a key role in the pathological process of NASH by inhibiting Cd36 and NF-κB pathways. It may be a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Cuiyuan Huang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhang Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Guorong Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Zhou
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zijing Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yingnan Zhao
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Huang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiamin Yan
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia Xiao
- Clinical Research Institute, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jinhan He
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
27
|
Xia S, Ji L, Tao L, Pan Y, Lin Z, Wan Z, Pan H, Zhao J, Cai L, Xu J, Cai X. TAK1 Is a Novel Target in Hepatocellular Carcinoma and Contributes to Sorafenib Resistance. Cell Mol Gastroenterol Hepatol 2021; 12:1121-1143. [PMID: 33962073 PMCID: PMC8350196 DOI: 10.1016/j.jcmgh.2021.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Identifying novel and actionable targets in hepatocellular carcinoma (HCC) remains an unmet medical need. TAK1 was originally identified as a transforming growth factor-β-activated kinase and was further proved to phosphorylate and activate numerous downstream targets and promote cancer progression. However, the role of TAK1 in developed HCC progression and targeted therapy resistance is poorly understood. METHODS The expression of TAK1 or MTDH in HCC cell lines, tumor tissues, and sorafenib-resistant models was analyzed by in silico analysis, quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. In vivo and in vitro experiments were introduced to examine the function of TAK1 or MTDH in HCC and sorafenib resistance using small interfering RNA and pharmacologic inhibitors in combination with or without sorafenib. Co-immunoprecipitation and RNA immunoprecipitation were carried out to determine the binding between TAK1 and FBXW2 or between MTDH and FBXW2 mRNA. Protein half-life and in vitro ubiquitination experiment was performed to validate whether FBXW2 regulates TAK1 degradation. RESULTS Our findings unraveled the clinical significance of TAK1 in promoting HCC and sorafenib resistance. We identified a novel E3 ubiquitin ligase, FBXW2, targeting TAK1 for K48-linked polyubiquitylation and subsequent degradation. We also found that MTDH contributes to TAK1 up-regulation in HCC and sorafenib resistance through binding to FBXW2 mRNA and accelerates its degradation. Moreover, combination of TAK1 inhibitor and sorafenib suppressed the growth of sorafenib-resistant HCCLM3 xenograft in mouse models. CONCLUSIONS These results revealed novel mechanism underlying TAK1 protein degradation and highlighted the therapeutic value of targeting TAK1 in suppressing HCC and overcoming sorafenib resistance.
Collapse
Affiliation(s)
- Shunjie Xia
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Lin Ji
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Liye Tao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yu Pan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Zhongjie Lin
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Zhe Wan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Haoqi Pan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jie Zhao
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Liuxin Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China; Zhejiang University Cancer Center, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
28
|
Abstract
One third of the western population suffers from nonalcoholic fatty liver disease (NAFLD), which may ultimately develop into hepatocellular carcinoma (HCC). The molecular event(s) that triggers the disease are not clear. Current understanding, known as the multiple hits model, suggests that NAFLD is a result of diverse events at several tissues (e.g., liver, adipose tissues, and intestine) combined with changes in metabolism and microbiome. In contrast to this prevailing concept, we report that fatty liver could be triggered by a single mutated protein expressed only in the liver. We established a transgenic system that allows temporally controlled activation of the MAP kinase p38α in a tissue-specific manner by induced expression of intrinsically active p38α allele. Here we checked the effect of exclusive activation in the liver. Unexpectedly, induction of p38α alone was sufficient to cause macrovesicular fatty liver. Animals did not become overweight, showing that fatty liver can be imposed solely by a genetic modification in liver per se and can be separated from obesity. Active p38α-induced fatty liver is associated with up-regulation of MUC13, CIDEA, PPARγ, ATF3, and c-jun mRNAs, which are up-regulated in human HCC. Shutting off expression of the p38α mutant resulted in reversal of symptoms. The findings suggest that p38α plays a direct causative role in fatty liver diseases and perhaps in other chronic inflammatory diseases. As p38α activity was induced by point mutations, it could be considered a proto-inflammatory gene (proto-inflammagene).
Collapse
|
29
|
Jacques S, Arjomand A, Perée H, Collins P, Mayer A, Lavergne A, Wéry M, Mni M, Hego A, Thuillier V, Becker G, Bahri MA, Plenevaux A, Di Valentin E, Oury C, Moutschen M, Delvenne P, Paquot N, Rahmouni S. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep 2021; 11:5817. [PMID: 33712680 PMCID: PMC7954796 DOI: 10.1038/s41598-021-85089-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non-alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC. DUSP3 is a small dual-specificity protein phosphatase with a poorly known physiological function. We investigated its role in metabolic syndrome manifestations and in HCC using a mouse knockout (KO) model. While aging, DUSP3-KO mice became obese, exhibited insulin resistance, NAFLD and associated liver damage. These phenotypes were exacerbated under high fat diet (HFD). In addition, DEN administration combined to HFD led to rapid HCC development in DUSP3-KO compared to wild type (WT) mice. DUSP3-KO mice had more serum triglycerides, cholesterol, AST and ALT compared to control WT mice under both regular chow diet (CD) and HFD. The level of fasting insulin was higher compared to WT mice, though, fasting glucose as well as glucose tolerance were normal. At the molecular level, HFD led to decreased expression of DUSP3 in WT mice. DUSP3 deletion was associated with increased and consistent phosphorylation of the insulin receptor (IR) and with higher activation of the downstream signaling pathway. In conclusion, our results support a new role for DUSP3 in obesity, insulin resistance, NAFLD and liver damage.
Collapse
Affiliation(s)
- Sophie Jacques
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Arash Arjomand
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Hélène Perée
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Patrick Collins
- Department of Pathology, Liège University Hospital, Liège, Belgium
| | - Alice Mayer
- GIGA-Genomics Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Arnaud Lavergne
- GIGA-Genomics Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marie Wéry
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Myriam Mni
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Alexandre Hego
- GIGA-Imaging Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Virginie Thuillier
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Guillaume Becker
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Alain Plenevaux
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Emmanuel Di Valentin
- GIGA-Viral Vectors Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, GIGA-Institute, University of Liège, Liège, Belgium
| | - Michel Moutschen
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | | | - Nicolas Paquot
- Division of Diabetes, Nutrition and Metabolic Diseases, Department of Medicine, CHU Sart-Tilman and GIGA-I3, Immunometabolism and Nutrition Unit, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium.
| |
Collapse
|
30
|
Cicuéndez B, Ruiz-Garrido I, Mora A, Sabio G. Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Mol Metab 2021; 50:101190. [PMID: 33588102 PMCID: PMC8324677 DOI: 10.1016/j.molmet.2021.101190] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important component of metabolic syndrome and one of the most prevalent liver diseases worldwide. This disorder is closely linked to hepatic insulin resistance, lipotoxicity, and inflammation. Although the mechanisms that cause steatosis and chronic liver injury in NAFLD remain unclear, a key component of this process is the activation of stress-activated kinases (SAPKs), including p38 and JNK in the liver and immune system. This review summarizes findings which indicate that the dysregulation of stress kinases plays a fundamental role in the development of steatosis and are important players in inducing liver fibrosis. To avoid the development of steatohepatitis and liver cancer, SAPK activity must be tightly regulated not only in the hepatocytes but also in other tissues, including cells of the immune system. Possible cellular mechanisms of SAPK actions are discussed. Hepatic JNK triggers steatosis and insulin resistance, decreasing lipid oxidation and ketogenesis in HFD-fed mice. Decreased liver expression of p38α/β in HFD increases lipogenesis. Hepatic p38γ/δ drive insulin resistance and inhibit autophagy, which may lead to steatosis. Macrophage p38α/β promote cytokine production and M1 polarization, leading to lipid accumulation in hepatocytes. Myeloid p38γ/δ contribute to cytokine production and neutrophil migration, protecting against steatosis, diabetes and NAFLD. JNK1 and p38γ induce HCC while p38α blocks it. However, deletion of hepatic JNK1/2 induces cholangiocarcinoma. SAPK are potential therapeutic target for metabolic disorders, steatohepatitis and liver cancer.
Collapse
Affiliation(s)
- Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
31
|
Hui X, Hu F, Liu J, Li C, Yang Y, Shu S, Liu P, Wang F, Li S. FBXW5 acts as a negative regulator of pathological cardiac hypertrophy by decreasing the TAK1 signaling to pro-hypertrophic members of the MAPK signaling pathway. J Mol Cell Cardiol 2021; 151:31-43. [PMID: 32971071 DOI: 10.1016/j.yjmcc.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Pathological cardiac hypertrophy is a crucial cause of cardiac morbidity and mortality worldwide. However, the molecular mechanisms of this disease remain incompletely understood. As a member of E3 ubiquitin ligases, F-box/WD repeat-containing protein 5 (FBXW5) has been implicated in various pathophysiological processes. However, the role of FBXW5 in pathological cardiac hypertrophy remains largely unknown. In this study, decreased expression of FBXW5 was observed in both neonatal rat cardiomyocytes and mouse hearts with hypertrophic remodeling. Gain- and loss-of-function experiments were performed to study the potential function of FBXW5 in pathological cardiac hypertrophy. The in vitro results showed that FBXW5 had a protective effect against cardiac hypertrophy induced by phenylephrine (PE). FBXW5 knockout mice and mice with AAV9-mediated FBXW5 overexpression were generated. Consistent with the in vitro results, FBXW5 deficiency aggravated cardiac hypertrophy induced by pressure overload. FBXW5 overexpression protected mice from hypertrophic stimuli. Remarkably, FBXW5 ameliorated pathological cardiac hypertrophy by directly interacting with the protein transforming growth factor-beta-activated kinase 1 (TAK1) and blocking the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, inhibition of TAK1 prevented the effects of FBXW5 on agonist- or pressure overload-induced cardiac hypertrophy. These findings imply that FBXW5 is an essential negative regulator and may be a potential therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xuejun Hui
- Jilin University, Changchun, Jilin, China; Second Hospital of Jilin University, Department of Cardiology the Medical Science Research Center, China
| | - Fengjiao Hu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia Liu
- Department of Cardiology, Cang Zhou People's Hospital, Cangzhou, Hebei, China
| | - Changhai Li
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shangzhi Shu
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Peipei Liu
- Department of Cardiology, Cang Zhou People's Hospital, Cangzhou, Hebei, China
| | - Fan Wang
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuyan Li
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
32
|
Post-translational Modification of OTULIN Regulates Ubiquitin Dynamics and Cell Death. Cell Rep 2020; 29:3652-3663.e5. [PMID: 31825842 DOI: 10.1016/j.celrep.2019.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022] Open
Abstract
Linear ubiquitination has emerged as an important post-translational modification that regulates NF-κB activation, inflammation, and cell death in both immune and non-immune compartments, including the skin. The deubiquitinase OTULIN specifically disassembles linear ubiquitin chains generated by the linear ubiquitin assembly complex (LUBAC) and is necessary to prevent embryonic lethality and autoinflammatory disease. Here, we dissect the direct role of OTULIN in cell death and find that OTULIN limits apoptosis and necroptosis in keratinocytes. During apoptosis, OTULIN is cleaved by capase-3 at Asp-31 into a C-terminal fragment that restricts caspase activation and cell death. During necroptosis, OTULIN is hyper-phosphorylated at Tyr-56, which modulates RIPK1 ubiquitin dynamics and promotes cell death. OTULIN Tyr-56 phosphorylation is counteracted by the activity of dual-specificity phosphatase 14 (DUSP14), which we identify as an OTULIN phosphatase that limits necroptosis. Our data provide evidence of dynamic post-translational modifications of OTULIN and highlight their importance in cell death outcome.
Collapse
|
33
|
Douglas T, Saleh M. The plot thickens: OTULIN regulation in cell death. Mol Cell Oncol 2020; 7:1740541. [PMID: 32944611 DOI: 10.1080/23723556.2020.1740541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We recently demonstrated that post-translational modifications of the OTU deubiquitinase with linear linkage specificity (OTULIN) regulate its function in cell death. OTULIN hyper-phosphorylation promotes necroptosis by locking ring finger protein 31 (RNF31, also known as HOIP) away from the cylindromatosis (CYLD) complex, resulting in altered receptor interacting serine/threonine kinase 1 (RIPK1) ubiquitination. Further, we identified dual specificity phosphatase 14 (DUSP14) as an OTULIN phosphatase that limits necroptosis.
Collapse
Affiliation(s)
- Todd Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Life Sciences and Health, University of Bordeaux, CNRS, UMR 5164, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
34
|
Kassouf T, Sumara G. Impact of Conventional and Atypical MAPKs on the Development of Metabolic Diseases. Biomolecules 2020; 10:biom10091256. [PMID: 32872540 PMCID: PMC7563211 DOI: 10.3390/biom10091256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The family of mitogen-activated protein kinases (MAPKs) consists of fourteen members and has been implicated in regulation of virtually all cellular processes. MAPKs are divided into two groups, conventional and atypical MAPKs. Conventional MAPKs are further classified into four sub-families: extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK1, 2 and 3), p38 (α, β, γ, δ), and extracellular signal-regulated kinase 5 (ERK5). Four kinases, extracellular signal-regulated kinase 3, 4, and 7 (ERK3, 4 and 7) as well as Nemo-like kinase (NLK) build a group of atypical MAPKs, which are activated by different upstream mechanisms than conventional MAPKs. Early studies identified JNK1/2 and ERK1/2 as well as p38α as a central mediators of inflammation-evoked insulin resistance. These kinases have been also implicated in the development of obesity and diabetes. Recently, other members of conventional MAPKs emerged as important mediators of liver, skeletal muscle, adipose tissue, and pancreatic β-cell metabolism. Moreover, latest studies indicate that atypical members of MAPK family play a central role in the regulation of adipose tissue function. In this review, we summarize early studies on conventional MAPKs as well as recent findings implicating previously ignored members of the MAPK family. Finally, we discuss the therapeutic potential of drugs targeting specific members of the MAPK family.
Collapse
|
35
|
DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway. Mol Immunol 2020; 126:101-109. [PMID: 32795663 DOI: 10.1016/j.molimm.2020.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is considered as an effective strategy for host cells to eliminate intracellular Mycobacterium tuberculosis (Mtb). Dual-specificity phosphatase 5 (DUSP5) is an endogenous phosphatase of ERK1/2, and plays an important role in host innate immune responses, its function in autophagy regulation however remains unexplored. In the present study, the function of DUSP5 in autophagy in Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-infected RAW264.7 cells, a murine macrophage-like cell line, was examined by assessing the alteration of the cell morphology, expression of autophagy markers, and ERK1/2 signaling activation. The results demonstrated that the BCG infection could induce DUSP5 expression and activate ERK1/2 signaling in RAW264.7 cells; an activation of ERK1/2 signaling contributed to autophagic process in RAW264.7 cells. Moreover, DUSP5 knockdown increased the expression of autophagy-related proteins (Atgs), including LC3-II, Beclin1, Atg5 and Atg7. However, an overexpression of DUSP5 exhibited an opposite effect. Mechanistically, DUSP5 could inhibit the formation of autophagosome by suppressing the phosphorylation of signaling molecules in ERK1/2 signaling cascade. This study thus demonstrated a novel role of DUSP5 in modulating autophagy inRAW264.7 cells in response to BCG infection in particular, and autophagy macrophage to Mtb in general.
Collapse
|
36
|
C-Jun/C7ORF41/NF-κB axis mediates hepatic inflammation and lipid accumulation in NAFLD. Biochem J 2020; 477:691-708. [PMID: 31957809 DOI: 10.1042/bcj20190799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an expanding health problem worldwide. Although many studies have made great efforts to elucidate the pathogenesis of NAFLD, the molecular basis remains poorly understood. Here, we showed that hepatic C7ORF41, a critical regulator of innate immune response, was markedly decreased in diet or genetic-induced NAFLD model. We also demonstrated that C7ORF41 overexpression significantly ameliorated hepatic inflammation and lipid accumulation in palmitic acid (PA)-treated hepatocytes, whereas C7ORF41 knockdown showed the opposite effects. Mechanistically, we found the anti-inflammatory role of C7ORF41 was attributed to the suppression of NF-κB p65-mediated induction of inflammatory cytokines. Moreover, we demonstrated that the suppression of C7ORF41 expression in hepatocytes is due to JNK activation, which promotes c-Jun-mediated transcriptional repression of C7ORF41. In conclusion, our findings suggested that a c-Jun/C7ORF41/NF-κB regulatory network controls the inflammatory response and lipid accumulation in NAFLD and may benefit the development of novel and promising therapeutic targets for NAFLD.
Collapse
|
37
|
Liu D, Zhang P, Zhou J, Liao R, Che Y, Gao MM, Sun J, Cai J, Cheng X, Huang Y, Chen G, Nie H, Ji YX, Zhang XJ, Huang Z, Xu H, She ZG, Li H. TNFAIP3 Interacting Protein 3 Overexpression Suppresses Nonalcoholic Steatohepatitis by Blocking TAK1 Activation. Cell Metab 2020; 31:726-740.e8. [PMID: 32268115 DOI: 10.1016/j.cmet.2020.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/05/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is an unmet clinical challenge due to the rapid increase in its occurrence but the lack of approved drugs to treat it. Further unraveling of the molecular mechanisms underlying NASH may identify potential successful drug targets for this condition. Here, we identified TNFAIP3 interacting protein 3 (TNIP3) as a novel inhibitor of NASH. Hepatocyte-specific TNIP3 transgenic overexpression attenuates NASH in two dietary models in mice. Mechanistically, this inhibitory effect of TNIP3 is independent of its conventional role as an inhibitor of TNFAIP3. Rather, TNIP3 directly interacts with TAK1 and inhibits its ubiquitination and activation by the E3 ligase TRIM8 in hepatocytes in response to metabolic stress. Notably, adenovirus-mediated TNIP3 expression in the liver substantially blocks NASH progression in mice. These results suggest that TNIP3 may be a promising therapeutic target for NASH management.
Collapse
Affiliation(s)
- Dan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Basic Medical School, Wuhan University, Wuhan 430071, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Junjie Zhou
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mao-Mao Gao
- Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Jiaqi Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jingjing Cai
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Yongping Huang
- Institute of Model Animal, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guopeng Chen
- Basic Medical School, Wuhan University, Wuhan 430071, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Hongyu Nie
- Basic Medical School, Wuhan University, Wuhan 430071, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430071, China; Institute of Model Animal, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
38
|
Hong L, Ai J, Ma D. Activation of Dusp14 protects against osteoclast generation and bone loss by regulating AMPKα-dependent manner. Biochem Biophys Res Commun 2019; 519:445-452. [PMID: 31526569 DOI: 10.1016/j.bbrc.2019.07.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023]
Abstract
Osteoporosis is a progressive systematic skeletal disorder featured by decreased bone and enhanced risk of fracture due to an uncoupling of bone resorption. Chronic inflammatory response plays an essential role in osteoporosis progression. Unfortunately, the pathogenesis that contributes to osteoporosis still remains unclear. Dual-specificity phosphatase 14 (Dusp14, also known as MKP6) is a MAP kinase phosphatase, and has important roles in regulating various cellular processes. In the study, we attempted to explore the effects of Dusp14 on osteoporosis development. The results indicated that Dusp14 expression was decreased during osteoclast differentiation and that Dusp14 over-expression markedly alleviated osteoclast generation regulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In M-CSF/RANKL-treated bone marrow-derived cells (BMMs), promoting Dusp14 expression significantly alleviated inflammation and apoptosis by suppressing nuclear factor (NF)-κB and Caspase-3 signaling pathways, respectively. Furthermore, AMP-activated protein kinase (AMPK)-α activation was markedly increased by Dusp14 over-expression in M-CSF/RANKL-incubated BMMs. Importantly, we found that AMPKα blockage obviously abolished the role of Dusp14 in preventing osteoclasts differentiation at least partly via elevating M-CSF/RANKL-elicited inflammation and apoptosis. In vivo, magnesium silicate-induced inflammatory osteoporosis was obviously alleviated in Dusp14 transgenic (TG) mice. Taken together, we defined Dusp14 as an important molecular switch resulting in osteoporosis through an AMPKα-dependent manner.
Collapse
Affiliation(s)
- Lei Hong
- Department of Orthopedic Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, 100048, China
| | - Jiangbo Ai
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Danian Ma
- Department of Orthopedics, Xuyi County People's Hospital, Huai'an, 211700, China.
| |
Collapse
|
39
|
Abstract
Nonalcoholic steatohepatitis (NASH) is the second leading cause of liver transplantation in the US with a high risk of liver-related morbidities and mortality. Given the global burden of NASH, development of appropriate therapeutic strategies is an important clinical need. Where applicable, lifestyle modification remains the primary recommendation for the treatment of NASH, even though such changes are difficult to sustain and even insufficient to cure NASH. Bariatric surgery resolves NASH in such patients where lifestyle modifications have failed, and is recommended for morbidly obese patients with NASH. Thus, pharmacotherapies are of high value for NASH treatment. Though no drug has been approved by the US Food and Drug Administration for treatment of NASH, substantial progress in pharmacological development has been made in the last few years. Agents such as vitamin E and pioglitazone are recommended in patients with NASH, and yet concerns about their side effects remain. Many agents targeting various vital molecules and pathways, including those impacting metabolic perturbations, inflammatory cascades, and oxidative stress, are in clinical trials for the treatment of NASH. Some agents have shown promising results in phase II or III clinical trials, but more studies are required to assess their long-term effects. Herein, we review the potential strategies and challenges in therapeutic approaches to treating NASH.
Collapse
Affiliation(s)
- Ming-Ming Chen
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Jing-Jing Cai
- †Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yao Yu
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
| | - Zhi-Gang She
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| | - Hongliang Li
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
- ‡Institute of Model Animals of Wuhan University, Wuhan, P.R. China
- §Basic Medical School, Wuhan University, Wuhan, P.R. China
- ¶Medical Research Institute, School of Medicine, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
40
|
Liu Q, Zhang Y. PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis. Biochem Biophys Res Commun 2019; 519:453-461. [PMID: 31526567 DOI: 10.1016/j.bbrc.2019.08.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Stroke is still a leading cause of death across the world. Despite various signals or molecules that contribute to the pathophysiological process have been investigated, the exact molecular mechanisms revealing stroke damage still remain to be explored. Peroxiredoxin 1 (PRDX1) has been identified as a stress-induced macrophage redox protein with multiple functions. Although PRDX1 is a critical factor related to the regulation of immunity, inflammation, apoptosis and oxidative stress, its effects on cerebral ischemia-reperfusion (I-R) injury were presently unclear. In the study, by using a mouse model of I-R injury, we found that PRDX1 expression was up-regulated during I-R injury in a time-dependent manner. Additionally, PRDX1-knockout mice showed reduced infarction area and alleviated neuropathological scores with decreased brain water contents. Furthermore, cell death and inflammatory response in mice with cerebral I-R injury were markedly attenuated by PRDX1 knockout, which were associated with the blockage of Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways. Mechanistically, PRDX1-regulated cerebral I-R injury was through the promotion of toll-like receptor-4 (TLR4), as proved by the evidence that TLR4 suppression abrogated the exacerbated effect of TLR4 on inflammatory response and apoptosis in oxygen and glucose deprivation (OGD)-treated primary microglial cells. These data demonstrated that PRDX1 contributed to cerebral stroke by interacting with TLR4, providing an effective therapeutic approach for cerebral I-R injury.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Yan'an University Affiliated Hospital, Yan'an, Shannxi, 716000, China
| | - Yuan Zhang
- Department of EMG Evoked Potential Chamber, Heze Municipal Hospital, Shandong Province, Heze City, Shandong Province, 274000, China.
| |
Collapse
|
41
|
Xia D, Wu J, Xing M, Wang Y, Zhang H, Xia Y, Zhou P, Xu S. Iron overload threatens the growth of osteoblast cells via inhibiting the PI3K/AKT/FOXO3a/DUSP14 signaling pathway. J Cell Physiol 2019; 234:15668-15677. [PMID: 30693516 DOI: 10.1002/jcp.28217] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Iron overload is a common stress in the development of cells. Growing evidence has indicated that iron overload is associated with osteoporosis. Therefore, enhancing the understanding of iron overload would benefit the development of novel approaches to the treatment of osteoporosis. The purpose of the present study was to analyze the effect of iron overload on osteoblast cells, via the MC3T3-E1 cell line, and to explore its possible underlying molecular mechanisms. Ferric ammonium citrate (FAC) was utilized to simulate iron overload conditions in vitro. FAC-induced iron overload strongly suppressed proliferation of osteoblast cells and induced apoptosis. Moreover, iron overload strongly suppressed the expression of dual-specificity phosphatase 14 (DUSP14). Additionally, overexpression of DUSP14 protected osteoblast cells from the deleterious effects of iron overload, and this protective effect was mediated by FOXO3a. Additionally, matrine rescued the function of DUSP14 in osteoblast cells. Most importantly, our analysis demonstrated the essential role of the PI3K/AKT/FOXO3a/DUSP14 signaling pathway in the defense against iron overload in osteoblast cells. Overall, our results not only elucidate deleterious effects of iron overload, but also unveil its possible signaling pathway in osteoblast cells.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianghong Wu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| | - Yang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongyue Zhang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Xia
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Panyu Zhou
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
42
|
Chenxu G, Minxuan X, Yuting Q, Tingting G, Jing F, Jinxiao L, Sujun W, Yongjie M, Deshuai L, Qiang L, Linfeng H, Xuyuan N, Mingxing W, Ping H, Jun T. Loss of RIP3 initiates annihilation of high-fat diet initialized nonalcoholic hepatosteatosis: A mechanism involving Toll-like receptor 4 and oxidative stress. Free Radic Biol Med 2019; 134:23-41. [PMID: 30599260 DOI: 10.1016/j.freeradbiomed.2018.12.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and complex disease that confers a high risk of severe liver disorders. Although such public and clinical health importance, very few effective therapies are presently available for NAFLD. Here, we showed that receptor-interacting kinase-3 (RIP3) was up-regulated in liver of mouse with hepatic steatosis induced by high fat diet (HFD). After 16 weeks on a HFD, obesity, insulin resistance, metabolic syndrome, hepatic steatosis, inflammatory response and oxidative stress were significantly alleviated in liver of mice with the loss of RIP3. We provided mechanistic evidence that RIP3 knockdown attenuated hepatic dyslipidemia through preventing the expression of lipogenesis-associated genes. Furthermore, in the absence of RIP3, the transcription factor of nuclear factor-κB (NF-κB) signaling pathway activated by HFD was blocked, accompanied with the inhibition of NLRP3 inflammasome. We also found that RIP3 knockdown-induced activation of nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (Nrf-2/HO-1) led to the inhibition of oxidative stress. The detrimental effects of RIP3 on hepatic steatosis and related pathologies were confirmed in palmitate (PAL)-treated mouse liver cells. Of note, lipopolysaccharide (LPS)- or PAL-activated TLR-4 resulted in the up-regulation of RIP3 that was accompanied by the elevated inflammation and lipid deposition, and these effects were reversed in TLR-4 knockdown cells. Furthermore, promoting Nrf-2 pathway activation effectively reduced reactive oxygen species (ROS) generation and RIP3 expression in PAL-stimulated cells, consequently leading to the suppression of cellular inflammation and lipid accumulation. In contrast, blocking Nrf-2/HO-1 signaling abrogated RIP3 knockdown-reduced reactive oxygen species (ROS), inflammatory response and lipid deposition in PAL-stimulated cells. Taken together, the present study helped to elucidate how HFD-induced hepatic steatosis was regulated by RIP3, via the TLR-4/NF-κB and Nrf-2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Ge Chenxu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xu Minxuan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Qin Yuting
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, PR China
| | - Gu Tingting
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, PR China
| | - Feng Jing
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Lv Jinxiao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, PR China
| | - Wang Sujun
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Ma Yongjie
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Li Qiang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Hu Linfeng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Nie Xuyuan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Wang Mingxing
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Huang Ping
- Department Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| |
Collapse
|
43
|
Zhou JH, Cai JJ, She ZG, Li HL. Noninvasive evaluation of nonalcoholic fatty liver disease: Current evidence and practice. World J Gastroenterol 2019; 25:1307-1326. [PMID: 30918425 PMCID: PMC6429343 DOI: 10.3748/wjg.v25.i11.1307] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
With the increasing number of individuals with diabetes and obesity, nonalcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent, affecting one-quarter of adults worldwide. The spectrum of NAFLD ranges from simple steatosis or nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). NAFLD, especially NASH, may progress to fibrosis, leading to cirrhosis and hepatocellular carcinoma. NAFLD can impose a severe economic burden, and patients with NAFLD-related terminal or deteriorative liver diseases have become one of the main groups receiving liver transplantation. The increasing prevalence of NAFLD and the severe outcomes of NASH make it necessary to use effective methods to identify NAFLD. Although recognized as the gold standard, biopsy is limited by its sampling bias, poor acceptability, and severe complications, such as mortality, bleeding, and pain. Therefore, noninvasive methods are urgently needed to avoid biopsy for diagnosing NAFLD. This review discusses the current noninvasive methods for assessing NAFLD, including steatosis, NASH, and NAFLD-related fibrosis, and explores the advantages and disadvantages of measurement tools. In addition, we analyze potential noninvasive biomarkers for tracking disease processes and monitoring treatment effects, and explore effective algorithms consisting of imaging and nonimaging biomarkers for diagnosing advanced fibrosis and reducing unnecessary biopsies in clinical practice.
Collapse
Affiliation(s)
- Jiang-Hua Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Model Animal of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jing-Jing Cai
- Department of Cardiology, The 3rd Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Model Animal of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Hong-Liang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Model Animal of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
44
|
DUSP14 rescues cerebral ischemia/reperfusion (IR) injury by reducing inflammation and apoptosis via the activation of Nrf-2. Biochem Biophys Res Commun 2019; 509:713-721. [DOI: 10.1016/j.bbrc.2018.12.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|
45
|
Zhang Y, Wan J, Xu Z, Hua T, Sun Q. Exercise ameliorates insulin resistance via regulating TGFβ-activated kinase 1 (TAK1)-mediated insulin signaling in liver of high-fat diet-induced obese rats. J Cell Physiol 2018; 234:7467-7474. [PMID: 30367484 DOI: 10.1002/jcp.27508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Exercise is an effective therapy for insulin resistance. However, the underlying mechanism remains to be elucidated. Previous research demonstrated that TGFβ-activated kinase 1 (TAK1)-dependent signaling plays a crucial character in hepatic insulin resistance. Hepatic ubiquitin specific protease 4 (USP4), USP18, and dual-specificity phosphatases 14 (DUSP14) can suppress TAK1 phosphorylation, besides tumor necrosis factor receptor-associated factor 3 (TRAF3) and tripartite motif 8 (TRIM8) promote its phosphorylation. In this study, we tried to verify our hypothesis that exercise improves insulin resistance in high-fat diet (HFD)-induced obese (DIO) rats via regulating the TAK1 dependent signaling and TAK1 regulators in liver. Forty male Sprague-Dawley rats were randomized into four groups (n = 10): standard diet and sedentary as normal control; fed on HFD and DIO-sedentary; fed on HFD and DIO-chronic exercise; and fed on HFD and DIO-acute exercise. HFD feeding resulted in increased body weight, visceral fat mass, serum FFAs and hepatic lipid deposition, but decreased hepatic glycogen content and insulin sensitivity. Moreover, hepatic TRAF3 and TRIM8 protein levels increased, whereas USP4, USP18, and DUSP14 protein levels were decreased under obese status, which resulted in enhanced TAK1 phosphorylation and impaired insulin signaling. Exercise training, containing chronic and acute mode, both ameliorated insulin resistance. Meanwhile, decreased TAK1, c-Jun N-terminal kinase 1 (JNK1), and insulin receptor substrate 1 (IRS1) phosphorylation enhanced Akt phosphorylation in liver. Moreover, exercise enhanced USP4 and DUSP14 protein levels, whereas decreased TRIM8 protein levels in obese rats' liver. These results showed that exercise triggered a crucial modulation in TAK1-dependent signaling and its regulators in obese rats' liver, and distinct improvement in insulin sensitivity, which provide new insights into the mechanism by which physical exercise improves insulin resistance.
Collapse
Affiliation(s)
- Yong Zhang
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jianyong Wan
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhen Xu
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Tianmiao Hua
- Division of Neurobiology, Neurobiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
46
|
Cai J, Zhang XJ, Li H. Role of Innate Immune Signaling in Non-Alcoholic Fatty Liver Disease. Trends Endocrinol Metab 2018; 29:712-722. [PMID: 30131212 DOI: 10.1016/j.tem.2018.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most epidemic liver disease worldwide owing to rapid changes in lifestyle over the past few decades. This chronic condition intertwines with low-grade inflammation and metabolic disequilibrium, and potentiates the onset and progression of devastating hepatic and extrahepatic complications. In addition to an integral role in promoting host defense, recent studies also implicate innate immune signaling in a multitude of processes that control the progression of NAFLD. The focus of this review is to highlight emerging evidence regarding the role of innate immunity in NAFLD and the integration of different pathways that affect both inflammation and metabolism across the spectrum of this liver morbidity.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; Institute of Model Animal of Wuhan University, Wuhan 430072, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430072, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430072, China; Basic Medical School, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
47
|
Zhao Y, Wang F, Gao L, Xu L, Tong R, Lin N, Su Y, Yan Y, Gao Y, He J, Kong L, Yuan A, Zhuge Y, Pu J. Ubiquitin-Specific Protease 4 Is an Endogenous Negative Regulator of Metabolic Dysfunctions in Nonalcoholic Fatty Liver Disease in Mice. Hepatology 2018; 68:897-917. [PMID: 29573006 DOI: 10.1002/hep.29889] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/05/2018] [Accepted: 03/17/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis (HS), insulin resistance (IR), and inflammation, poses a high risk of cardiometabolic disorders. Ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme, is pivotally involved in regulating multiple inflammatory pathways; however, the role of USP4 in NAFLD is unknown. Here, we report that USP4 expression was dramatically down-regulated in livers from NAFLD patients and different NAFLD mouse models induced by high-fat diet (HFD) or genetic deficiency (ob/ob) as well as in palmitate-treated hepatocytes. Hepatocyte-specific USP4 depletion exacerbated HS, IR, and inflammatory response in HFD-induced NAFLD mice. Conversely, hepatic USP4 overexpression notably alleviated the pathological alterations in two different NAFLD models. Mechanistically, hepatocyte USP4 directly bound to and deubiquitinated transforming growth factor-β activated kinase 1 (TAK1), leading to a suppression of the activation of downstream nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) cascades, which, in turn, reversed the disruption of insulin receptor substrate/protein kinase B/glycogen synthase kinase 3 beta (IRS-AKT-GSK3β) signaling. In addition, USP4-TAK1 interaction and subsequent TAK1 deubiquitination were required for amelioration of metabolic dysfunctions. Conclusion: Collectively, the present study provides evidence that USP4 functions as a pivotal suppressor in NAFLD and related metabolic disorders. (Hepatology 2018; 00:000-000).
Collapse
Affiliation(s)
- Yichao Zhao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Fang Wang
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Longwei Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Renyang Tong
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Nan Lin
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Yuanyuan Su
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Yang Yan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Yu Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Jie He
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Lingcong Kong
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Ancai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Ying Zhuge
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
48
|
Yang CY, Chiu LL, Chang CC, Chuang HC, Tan TH. Induction of DUSP14 ubiquitination by PRMT5-mediated arginine methylation. FASEB J 2018; 32:fj201800244RR. [PMID: 29920217 PMCID: PMC6219832 DOI: 10.1096/fj.201800244rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022]
Abstract
Dual-specificity phosphatase (DUSP)14 (also known as MAP-kinase phosphatase 6) inhibits T-cell receptor (TCR) signaling and T-cell-mediated immune responses by inactivation of the TGF-β activated kinase 1 binding protein (TAB1)-TGF-β activated kinase 1 (TAK1) complex and ERK. DUSP14 phosphatase activity is induced by the E3 ligase TNF receptor associated factor (TRAF)2-mediated Lys63-linked ubiquitination. Here we report an interaction between DUSP14 and protein arginine methyltransferase (PRMT)5 by proximity ligation assay; similarly, DUSP14 directly interacted with TAB1 but not TAK1. DUSP14 is methylated by PRMT5 at arginine 17, 38, and 45 residues. The DUSP14 triple-methylation mutant was impaired in PRMT5-mediated arginine methylation, TRAF2-mediated lysine ubiquitination, and DUSP14 phosphatase activity. Consistently, DUSP14 methylation, TRAF2 binding, and DUSP14 ubiquitination were attenuated by PRMT5 short hairpin RNA knockdown. Furthermore, DUSP14 was inducibly interacted with PRMT5 and was methylated during TCR signaling in T cells. Together, these findings reveal a novel regulatory mechanism of DUSP14 by which PRMT5-mediated arginine methylation may sequentially stimulate TRAF2-mediated DUSP14 ubiquitination and phosphatase activity, leading to inhibition of TCR signaling.-Yang, C.-Y., Chiu, L.-L., Chang, C.-C., Chuang, H.-C., Tan, T.-H. Induction of DUSP14 ubiquitination by PRMT5-mediated arginine methylation.
Collapse
Affiliation(s)
- Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Li Chiu
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan; and
| | - Chih-Chi Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|