1
|
Zhang X, Lau HCH, Yu J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options. Pharmacol Rev 2025; 77:100018. [PMID: 40148030 DOI: 10.1016/j.pharmr.2024.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as nonalcoholic fatty liver disease) is a chronic liver disease affecting over a billion individuals worldwide. MASLD can gradually develop into more severe liver pathologies, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and liver malignancy. Notably, although being a global health problem, there are very limited therapeutic options against MASLD and its related diseases. While a thyroid hormone receptor agonist (resmetirom) is recently approved for MASH treatment, other efforts to control these diseases remain unsatisfactory. Given the projected rise in MASLD and MASH incidence, it is urgent to develop novel and effective therapeutic strategies against these prevalent liver diseases. In this article, the pathogenic mechanisms of MASLD and MASH, including insulin resistance, dysregulated nuclear receptor signaling, and genetic risk factors (eg, patatin-like phospholipase domain-containing 3 and hydroxysteroid 17-β dehydrogenase-13), are introduced. Various therapeutic interventions against MASH are then explored, including approved medication (resmetirom), drugs that are currently in clinical trials (eg, glucagon-like peptide 1 receptor agonist, fibroblast growth factor 21 analog, and PPAR agonist), and those failed in previous trials (eg, obeticholic acid and stearoyl-CoA desaturase 1 antagonist). Moreover, given that the role of gut microbes in MASLD is increasingly acknowledged, alterations in the gut microbiota and microbial mechanisms in MASLD development are elucidated. Therapeutic approaches that target the gut microbiota (eg, dietary intervention and probiotics) against MASLD and related diseases are further explored. With better understanding of the multifaceted pathogenic mechanisms, the development of innovative therapeutics that target the root causes of MASLD and MASH is greatly facilitated. The possibility of alleviating MASH and achieving better patient outcomes is within reach. SIGNIFICANCE STATEMENT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, and it can progress to more severe pathologies, including steatohepatitis, cirrhosis, and liver cancer. Better understanding of the pathogenic mechanisms of these diseases has facilitated the development of innovative therapeutic strategies. Moreover, increasing evidence has illustrated the crucial role of gut microbiota in the pathogenesis of MASLD and related diseases. It may be clinically feasible to target gut microbes to alleviate MASLD in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Otkur W, Zhang Y, Li Y, Bao W, Feng T, Wu B, Ma Y, Shi J, Wang L, Pei S, Wang W, Wang J, Zhao Y, Liu Y, Li X, Xia T, Wang F, Chen D, Liang X, Piao HL. Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD. LIFE METABOLISM 2024; 3:loae021. [PMID: 39873004 PMCID: PMC11748505 DOI: 10.1093/lifemeta/loae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 01/30/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner. Here, we aimed to identify spatially distributed specific genes and metabolites in different liver zonation that are regulated by GPR35 in MASLD, by combining lipid metabolomics, spatial transcriptomics (ST), and spatial metabolomics (SM). We found that GPR35 influenced lipid accumulation, inflammatory and metabolism-related factors in specific regions, notably affecting the anti-inflammation factor ELF4 (E74 like E-twenty six (ETS) transcription factor 4), lipid homeostasis key factor CIDEA (cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector A), and the injury response-related genes SAA1/2/3 (serum amyloid A1/2/3), thereby impacting MASLD progression. Furthermore, SM elucidated specific metabolite distributions across different liver regions, such as C10H11N4O7P (3',5'-cyclic inosine monophosphate (3',5'-IMP)) for the central vein, and this metabolite significantly decreased in the liver zones of GPR35-deficient mice during MASLD progression. Taken together, GPR35 regulates hepatocyte damage repair, controls inflammation, and prevents MASLD progression by influencing phospholipid homeostasis and gene expression in a zonal manner.
Collapse
Affiliation(s)
- Wuxiyar Otkur
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shengyang, Liaoning 110016, China
| | - Yiran Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Li
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Bao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingze Feng
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yaolu Ma
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Shi
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Li Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shaojun Pei
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yaopeng Zhao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xiuling Li
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Tian Xia
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Fangjun Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-long Piao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
4
|
Li X, Hu S, Shen X, Zhang R, Liu C, Xiao L, Lin J, Huang L, He W, Wang X, Huang L, Zheng Q, Wu L, Sun C, Peng Z, Chen M, Li Z, Feng R, Zhu Y, Wang Y, Li Z, Mao R, Feng ST. Multiomics reveals microbial metabolites as key actors in intestinal fibrosis in Crohn's disease. EMBO Mol Med 2024; 16:2427-2449. [PMID: 39271960 PMCID: PMC11473649 DOI: 10.1038/s44321-024-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Intestinal fibrosis is the primary cause of disability in patients with Crohn's disease (CD), yet effective therapeutic strategies are currently lacking. Here, we report a multiomics analysis of gut microbiota and fecal/blood metabolites of 278 CD patients and 28 healthy controls, identifying characteristic alterations in gut microbiota (e.g., Lachnospiraceae, Ruminococcaceae, Muribaculaceae, Saccharimonadales) and metabolites (e.g., L-aspartic acid, glutamine, ethylmethylacetic acid) in moderate-severe intestinal fibrosis. By integrating multiomics data with magnetic resonance enterography features, putative links between microbial metabolites and intestinal fibrosis-associated morphological alterations were established. These potential associations were mediated by specific combinations of amino acids (e.g., L-aspartic acid), primary bile acids, and glutamine. Finally, we provided causal evidence that L-aspartic acid aggravated intestinal fibrosis both in vitro and in vivo. Overall, we offer a biologically plausible explanation for the hypothesis that gut microbiota and its metabolites promote intestinal fibrosis in CD while also identifying potential targets for therapeutic trials.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Shixian Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Xiaodi Shen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ruonan Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lin Xiao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Jinjiang Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Weitao He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Xinyue Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Lili Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Qingzhu Zheng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Luyao Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Canhui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Ziping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Rui Feng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
| | - Yijun Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, 510080, Guangzhou, Guangdong, People's Republic of China
| | - Yangdi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Zhoulei Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan II Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Sharma SP, Gupta H, Kwon GH, Lee SY, Song SH, Kim JS, Park JH, Kim MJ, Yang DH, Park H, Won SM, Jeong JJ, Oh KK, Eom JA, Lee KJ, Yoon SJ, Ham YL, Baik GH, Kim DJ, Suk KT. Gut microbiome and metabolome signatures in liver cirrhosis-related complications. Clin Mol Hepatol 2024; 30:845-862. [PMID: 39048520 PMCID: PMC11540350 DOI: 10.3350/cmh.2024.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND/AIMS Shifts in the gut microbiota and metabolites are interrelated with liver cirrhosis progression and complications. However, causal relationships have not been evaluated comprehensively. Here, we identified complication-dependent gut microbiota and metabolic signatures in patients with liver cirrhosis. METHODS Microbiome taxonomic profiling was performed on 194 stool samples (52 controls and 142 cirrhosis patients) via V3-V4 16S rRNA sequencing. Next, 51 samples (17 controls and 34 cirrhosis patients) were selected for fecal metabolite profiling via gas chromatography mass spectrometry and liquid chromatography coupled to time-of-flight mass spectrometry. Correlation analyses were performed targeting the gut-microbiota, metabolites, clinical parameters, and presence of complications (varices, ascites, peritonitis, encephalopathy, hepatorenal syndrome, hepatocellular carcinoma, and deceased). RESULTS Veillonella bacteria, Ruminococcus gnavus, and Streptococcus pneumoniae are cirrhosis-related microbiotas compared with control group. Bacteroides ovatus, Clostridium symbiosum, Emergencia timonensis, Fusobacterium varium, and Hungatella_uc were associated with complications in the cirrhosis group. The areas under the receiver operating characteristic curve (AUROCs) for the diagnosis of cirrhosis, encephalopathy, hepatorenal syndrome, and deceased were 0.863, 0.733, 0.71, and 0.69, respectively. The AUROCs of mixed microbial species for the diagnosis of cirrhosis and complication were 0.808 and 0.847, respectively. According to the metabolic profile, 5 increased fecal metabolites in patients with cirrhosis were biomarkers (AUROC >0.880) for the diagnosis of cirrhosis and complications. Clinical markers were significantly correlated with the gut microbiota and metabolites. CONCLUSION Cirrhosis-dependent gut microbiota and metabolites present unique signatures that can be used as noninvasive biomarkers for the diagnosis of cirrhosis and its complications.
Collapse
Affiliation(s)
- Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Goo-Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Sang Yoon Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Seol Hee Song
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jeoung Su Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jeong Ha Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Min Ju Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Dong-Hoon Yang
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Hyunjoon Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Kyeong Jin Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Young Lim Ham
- Department of Nursing Daewon University College Jecheon, Korea
| | - Gwang Ho Baik
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
6
|
Kwan SY, Sabotta CM, Cruz LR, Wong MC, Ajami NJ, McCormick JB, Fisher-Hoch SP, Beretta L. Gut phageome in Mexican Americans: a population at high risk for metabolic dysfunction-associated steatotic liver disease and diabetes. mSystems 2024; 9:e0043424. [PMID: 39166873 PMCID: PMC11406975 DOI: 10.1128/msystems.00434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Mexican Americans are disproportionally affected by metabolic dysfunction-associated steatotic liver disease (MASLD), which often co-occurs with diabetes. Despite extensive evidence on the causative role of the gut microbiome in MASLD, studies determining the involvement of the gut phageome are scarce. In this cross-sectional study, we characterized the gut phageome in Mexican Americans of South Texas by stool shotgun metagenomic sequencing of 340 subjects, concurrently screened for liver steatosis by transient elastography. Inter-individual variations in the phageome were associated with gender, country of birth, diabetes, and liver steatosis. The phage signatures for diabetes and liver steatosis were subsequently determined. Enrichment of Inoviridae was associated with both diabetes and liver steatosis. Diabetes was further associated with the enrichment of predominantly temperate Escherichia phages, some of which possessed virulence factors. Liver steatosis was associated with the depletion of Lactococcus phages r1t and BK5-T, and enrichment of the globally prevalent Crassvirales phages, including members of genus cluster IX (Burzaovirus coli, Burzaovirus faecalis) and VI (Kahnovirus oralis). The Lactococcus phages showed strong correlations and co-occurrence with Lactococcus lactis, while the Crassvirales phages, B. coli, B. faecalis, and UAG-readthrough crAss clade correlated and co-occurred with Prevotella copri. In conclusion, we identified the gut phageome signatures for two closely linked metabolic diseases with significant global burden. These phage signatures may have utility in risk modeling and disease prevention in this high-risk population, and identification of potential bacterial targets for phage therapy.IMPORTANCEPhages influence human health and disease by shaping the gut bacterial community. Using stool samples from a high-risk Mexican American population, we provide insights into the gut phageome changes associated with diabetes and liver steatosis, two closely linked metabolic diseases with significant global burden. Common to both diseases was an enrichment of Inoviridae, a group of phages that infect bacterial hosts chronically without lysis, allowing them to significantly influence bacterial growth, virulence, motility, biofilm formation, and horizontal gene transfer. Diabetes was additionally associated with the enrichment of Escherichia coli-infecting phages, some of which contained virulence factors. Liver steatosis was additionally associated with the depletion of Lactococcus lactis-infecting phages, and enrichment of Crassvirales phages, a group of virulent phages with high global prevalence and persistence across generations. These phageome signatures may have utility in risk modeling, as well as identify potential bacterial targets for phage therapy.
Collapse
Affiliation(s)
- Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caroline M. Sabotta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lorenzo R. Cruz
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew C. Wong
- The Platform for Innovative Microbiome and Translational Research (PRIME-TR), Moon Shots Program, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nadim J. Ajami
- The Platform for Innovative Microbiome and Translational Research (PRIME-TR), Moon Shots Program, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph B. McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas, USA
| | - Susan P. Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Maki KA, Wallen GR, Bastiaanssen TF, Hsu LY, Valencia ME, Ramchandani VA, Schwandt ML, Diazgranados N, Cryan JF, Momenan R, Barb JJ. The gut-brain axis in individuals with alcohol use disorder: An exploratory study of associations among clinical symptoms, brain morphometry, and the gut microbiome. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1261-1277. [PMID: 38982564 PMCID: PMC11239122 DOI: 10.1111/acer.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is commonly associated with distressing psychological symptoms. Pathologic changes associated with AUD have been described in both the gut microbiome and brain, but the mechanisms underlying gut-brain signaling in individuals with AUD are unknown. This study examined associations among the gut microbiome, brain morphometry, and clinical symptoms in treatment-seeking individuals with AUD. METHODS We performed a secondary analysis of data collected during inpatient treatment for AUD in subjects who provided gut microbiome samples and had structural brain magnetic resonance imaging (MRI; n = 16). Shotgun metagenomics sequencing was performed, and the morphometry of brain regions of interest was calculated. Clinical symptom severity was quantified using validated instruments. Gut-brain modules (GBMs) used to infer neuroactive signaling potential from the gut microbiome were generated in addition to microbiome features (e.g., alpha diversity and bacterial taxa abundance). Bivariate correlations were performed between MRI and clinical features, microbiome and clinical features, and MRI and microbiome features. RESULTS Amygdala volume was significantly associated with alpha diversity and the abundance of several bacteria including taxa classified to Blautia, Ruminococcus, Bacteroides, and Phocaeicola. There were moderate associations between amygdala volume and GBMs, including butyrate synthesis I, glutamate synthesis I, and GABA synthesis I & II, but these relationships were not significant after false discovery rate (FDR) correction. Other bacterial taxa with shared associations to MRI features and clinical symptoms included Escherichia coli and Prevotella copri. CONCLUSIONS We identified gut microbiome features associated with MRI morphometry and AUD-associated symptom severity. Given the small sample size and bivariate associations performed, these results require confirmation in larger samples and controls to provide meaningful clinical inferences. Nevertheless, these results will inform targeted future research on the role of the gut microbiome in gut-brain communication and how signaling may be altered in patients with AUD.
Collapse
Affiliation(s)
- Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Gwenyth R. Wallen
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Thomaz F.S. Bastiaanssen
- APC Microbiome Ireland and Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Li-Yueh Hsu
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael E. Valencia
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A. Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melanie L. Schwandt
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nancy Diazgranados
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - John F. Cryan
- APC Microbiome Ireland and Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer J. Barb
- Translational Biobehavioral and Health Disparities Branch, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Ochoteco-Asensio J, Zigovski G, Batista Costa L, Rio-López R, Clavell-Sansalvador A, Ramayo-Caldas Y, Dalmau A. Effect on Feeding Behaviour and Growing of Being a Dominant or Subordinate Growing Pig and Its Relationship with the Faecal Microbiota. Animals (Basel) 2024; 14:1906. [PMID: 38998018 PMCID: PMC11240813 DOI: 10.3390/ani14131906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Pigs are a social species, and they establish hierarchies for better use of resources and to reduce conflicts. However, in pig production, the opportunities for growth can differ between dominant and subordinate animals. In the present study, a system was tested to perform a dominant versus subordinate test in growing pigs to investigate how the hierarchy affects feeding behaviour, growth, and gut microbiota assessed in faeces. Sixty-four animals housed in eight different pens were used, with four castrated males and four females in each one, weighing 18 kg at arrival and maintained during the whole growing period, until 140 kg. Three stool samples were obtained from the animals directly from the anus to avoid contamination of the faeces 58, 100, and 133 days after the start of the study to investigate the microbiota composition. The dominant animals had higher gains during the growing period than the subordinates. In addition, they were performing more visits to the feeder throughout the day. Differential abundance patterns were observed in five bacterial genera, with Oliverpabstia, Peptococcus, and Faecalbacterium being more abundant in dominant animals and Holdemanella and Acetitomaculum being overrepresented in subordinate ones. This microbial biomarker accurately classified dominant versus subordinate groups of samples with an AUC of 0.92.
Collapse
Affiliation(s)
- Juan Ochoteco-Asensio
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Gustavo Zigovski
- Graduate Program of Animal Science, Pontificia Universidade Católica do Paraná-PUCPR, Curitibia 80215-901, Paraná, Brazil; (G.Z.); (L.B.C.)
| | - Leandro Batista Costa
- Graduate Program of Animal Science, Pontificia Universidade Católica do Paraná-PUCPR, Curitibia 80215-901, Paraná, Brazil; (G.Z.); (L.B.C.)
| | - Raquel Rio-López
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Adrià Clavell-Sansalvador
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Yuliaxis Ramayo-Caldas
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| | - Antoni Dalmau
- Animal Welfare Program and Animal Breeding and Genetics Program, Institute of Agrifood and Technology (IRTA), Veïnat de Sies s/n, 17121 Monells, Spain; (J.O.-A.); (R.R.-L.); (A.C.-S.); (Y.R.-C.)
| |
Collapse
|
9
|
Ortiz-López N, Madrid AM, Aleman L, Zazueta A, Smok G, Valenzuela-Pérez L, Poniachik J, Beltrán CJ. Small intestinal bacterial overgrowth in obese patients with biopsy-confirmed metabolic dysfunction-associated steatotic liver disease: a cross-sectional study. Front Med (Lausanne) 2024; 11:1376148. [PMID: 38854668 PMCID: PMC11157043 DOI: 10.3389/fmed.2024.1376148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Background/aims The metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity are frequent comorbidities with a high prevalence worldwide. Their pathogenesis are multifactorial, including intestinal dysbiosis. The role of small intestinal bacterial overgrowth (SIBO) in MASLD progression in obese patients remains unknown. We aimed to determine the association between SIBO and the severity of MASLD in obese patients. Methods An observational and cross-sectional study was conducted in obese patients, diagnosed with or without MASLD by liver biopsy. Metabolic dysfunction-associated steatotic liver (MASL), metabolic dysfunction-associated steatohepatitis without fibrosis (MASH-NF), MASH with fibrosis (MASH-F), or without MASLD (control subjects, CS) were identified by presence of steatosis, portal and lobular inflammation, and fibrosis. SIBO was determined by standardized lactulose breath tests. Results A total of 59 patients with MASLD, 16 with MASL, 20 with MASH-NF, 23 with MASH-F, and 14 CS were recruited. Higher percentages of SIBO were observed in MASLD patients (44.2%) compared to CS (14.2%; p = 0.0363). Interestingly, MASH-F showed higher percentages of SIBO (65.2%) in comparison to non-fibrotic MASLD (33.3%; p = 0.0165). The presence of SIBO was not correlated with the level of hepatic steatosis in MASLD patients. Conclusions A positive correlation between MASLD and SIBO in obese patients was principally explained by the presence of liver fibrosis. Our findings suggest a pathogenic role of intestinal dysbiosis in the progression of MASLD. Future research will elucidate the underlying mechanisms of SIBO in MASLD advancement.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Inmunogatroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- Section of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ana María Madrid
- Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Larissa Aleman
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Inmunogatroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Gladys Smok
- Department of Pathologist Anatomy, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Inmunogatroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
11
|
Zhang X, Daniel CR, Soltero V, Vargas X, Jain S, Kanwal F, Thrift AP, Balakrishnan M. A Study of Dietary Patterns Derived by Cluster Analysis and Their Association With Metabolic Dysfunction-Associated Steatotic Liver Disease Severity Among Hispanic Patients. Am J Gastroenterol 2024; 119:505-511. [PMID: 37737674 PMCID: PMC11001785 DOI: 10.14309/ajg.0000000000002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Diet is a modifiable metabolic dysfunction-associated steatotic liver disease (MASLD) risk factor, but few studies have been conducted among Hispanic patients, despite the fact that MASLD prevalence and severity are highest among this ethnic subgroup. We aimed to identify prevalent dietary patterns among Hispanic patients using cluster analysis and to investigate associations with MASLD severity. METHODS This cross-sectional analysis included 421 Harris County MASLD Cohort participants who self-reported Hispanic ethnicity and completed baseline food frequency questionnaires. All included patients had MASLD, diagnosed per standard clinical criteria. K-means analysis was used to identify clusters of patients sharing similar dietary habits. Multivariable adjusted logistic regression was used to estimate associations of dietary clusters with aminotransferases among the overall sample and with histologic steatosis, metabolic dysfunction-associated steatohepatitis, and fibrosis among a subsample of patients who underwent liver biopsy within 6 months of their baseline food frequency questionnaire (n = 186). RESULTS We identified 2 clusters: a plant-food/prudent and a fast-food/meat pattern. The fast-food/meat pattern was associated with 2.47-fold increased odds (95% confidence interval 1.31-4.65) of more severe steatosis than the plant-food/prudent pattern after adjusting for demographics, metabolic score, physical activity, and alcohol ( q = 0.0159). No significant association was observed between diet and aminotransferases, metabolic dysfunction-associated steatohepatitis, or fibrosis. DISCUSSION Given the importance of sociocultural influences on diet, it is important to understand dietary patterns prevalent among Hispanic patients with MASLD. Using cluster analysis, we identified 1 plant-based pattern vs 1 distinct fast-food/meat-based pattern associated with detrimental effects among our population. This information is an important starting point for tailoring dietary interventions for Hispanic patients with MASLD.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institute for Translational Epidemiology & Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carrie R Daniel
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Valeria Soltero
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ximena Vargas
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shilpa Jain
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Fasiha Kanwal
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Internal Medicine, Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Maya Balakrishnan
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Ou Y, Belzer C, Smidt H, de Weerth C. Development of the gut microbiota in the first 14 years of life and its relations to internalizing and externalizing difficulties and social anxiety during puberty. Eur Child Adolesc Psychiatry 2024; 33:847-860. [PMID: 37071196 PMCID: PMC10894087 DOI: 10.1007/s00787-023-02205-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
Relations between the gut microbiota and host mental health have been suggested by a growing number of case-control and cross-sectional studies, while supporting evidence is limited in large community samples followed during an extended period. Therefore, the current preregistered study ( https://osf.io/8ymav , September 7, 2022) described child gut microbiota development in the first 14 years of life and explored its relations to internalizing and externalizing difficulties and social anxiety in puberty, a period of high relevance for the development of mental health problems. Fecal microbiota composition was analysed by 16S ribosomal RNA gene amplicon sequencing in a total of 1003 samples from 193 children. Through a clustering method, four distinct microbial clusters were newly identified in puberty. Most children within three of these clusters remained in the same clusters from the age of 12 to 14 years, suggesting stability in microbial development and transition during this period. These three clusters were compositionally similar to enterotypes (i.e., a robust classification of the gut microbiota based on its composition across different populations) enriched in Bacteroides, Prevotella, and Ruminococcus, respectively. Two Prevotella 9-predominated clusters, including one reported by us earlier in middle childhood and the other one in puberty, were associated with more externalizing behavior at age 14. One Faecalibacterium-depleted pubertal cluster was related to more social anxiety at age 14. This finding was confirmed by a negative cross-sectional relation between Faecalibacterium and social anxiety in the 14-year-olds. The findings of this study continue to map gut microbiota development in a relatively large community sample followed from birth onwards, importantly extending our knowledge to puberty. Results indicate that Prevotella 9 and Faecalibacterium may be relevant microbial taxa in relation to externalizing behavior and social anxiety, respectively. These correlational findings need validations from other similar cohort studies, as well as well-designed mechanistic pre-clinical investigations before inferring cause and effect.
Collapse
Affiliation(s)
- Yangwenshan Ou
- Laboratory of Microbiology, Wageningen University and Research, P.O. Box 8033, 6700 EH, Wageningen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, P.O. Box 8033, 6700 EH, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, P.O. Box 8033, 6700 EH, Wageningen, The Netherlands
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Kong L, Ma J, Dong L, Zhu C, Zhang J, Li J. Metformin exerts anti-liver fibrosis effect based on the regulation of gut microbiota homeostasis and multi-target synergy. Heliyon 2024; 10:e24610. [PMID: 38288020 PMCID: PMC10823097 DOI: 10.1016/j.heliyon.2024.e24610] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Liver fibrosis can progress to cirrhosis if left untreated. Therefore, identifying effective antifibrotic drugs is crucial. This study aimed to investigate the role and potential mechanism of metformin in treating hepatic fibrosis based on the synergistic effect of multiple targets and the "intestine-liver axis" theory. A CCl4-induced liver fibrosis mouse model was established. We measured liver function, liver fibrosis indicators, oxidative stress and inflammation indices. Hematoxylin and eosin and Masson's trichrome staining were used to detect collagen deposition. The expression of apoptotic proteins, TGF-β/Smads and TIMP-1/MMPs was assessed. 16S rRNA and untargeted metabolomics (liquid chromatography-mass spectrometry) were used to assess mouse intestinal flora and metabolites, performing a comprehensive correlation analysis. Metformin improved the general status and liver function and decreased liver collagen deposition in CCl4-induced liver fibrotic mice. Compared with the control group, IL-6, TNF-α and COX-2 serum levels in the liver fibrosis group increased. Although not significantly different, the serum inflammatory marker levels in the metformin group were lower than those in the model group. Metformin decreased serum MDA and increased serum SOD activity, which increased and decreased, respectively, in the model group. Furthermore, metformin inhibited liver cell apoptosis, TGF-β1 expression and TIMP-1, while promoting Smad7 expression, MMP-1 and MMP-2 in fibrotic mice. 16S rRNA analysis indicated that metformin significantly ameliorated the Bacteroides, Helicobacter, Parabacteroides and Parasutterella imbalance. We identified 385 differential metabolites between the metformin and model groups. Prevotella abundance significantly decreased in the metformin group and positively correlated with decreased taurocholic acid levels. Metformin potentially reverses liver fibrosis by inhibiting inflammation, mitigating oxidative stress damage and suppressing hepatocyte apoptosis via intestinal flora metabolite regulation. Metformin also regulates the TGF-β/Smads and TIMP-1/MMPs signalling pathways. This study provides a theoretical basis for the clinical use of metformin in patients with liver fibrosis.
Collapse
Affiliation(s)
- Lianhua Kong
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Juncong Ma
- Department of Emergency. Lian Shui People's Hospital, Huai'an, 223400, Jiangsu, China
| | - Li Dong
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jie Zhang
- Department of Endocrinology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| |
Collapse
|
14
|
Li HJ, Wang YS, Wang YN, Liu AR, Su XH, Ma ZA, Wang LX, Zhang ZY, Lv SQ, Miao J, Cui HT. Mechanical study of alisol B 23-acetate on methionine and choline deficient diet-induced nonalcoholic steatohepatitis based on untargeted metabolomics. Biomed Chromatogr 2024; 38:e5763. [PMID: 37858975 DOI: 10.1002/bmc.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.
Collapse
Affiliation(s)
- Hua-Jun Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuan-Song Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ya-Nan Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ai-Ru Liu
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiu-Hai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zi-Ang Ma
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li-Xin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhong-Yong Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Shu-Quan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Huan-Tian Cui
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
15
|
Hao QY, Yan J, Wei JT, Zeng YH, Feng LY, Que DD, Li SC, Guo JB, Fan Y, Ding YF, Zhang XL, Yang PZ, Gao JW, Li ZH. Prevotella copri promotes vascular calcification via lipopolysaccharide through activation of NF-κB signaling pathway. Gut Microbes 2024; 16:2351532. [PMID: 38727248 PMCID: PMC11093026 DOI: 10.1080/19490976.2024.2351532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Rats
- Feces/microbiology
- Gastrointestinal Microbiome
- Inflammasomes/metabolism
- Lipopolysaccharides/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- NF-kappa B/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Osteogenesis/drug effects
- Prevotella/metabolism
- Rats, Sprague-Dawley
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/microbiology
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Toll-Like Receptor 4/metabolism
- Toll-Like Receptor 4/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/microbiology
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Qing-Yun Hao
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jin-Tao Wei
- Department of Cardiology, Dongguan Hospital of Southern Medical University, Southern Medical University, Dongguan, China
| | - Yu-Hong Zeng
- Medical Apparatus and Equipment Deployment, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Yun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dong-Dong Que
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Chao Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Bin Guo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Fan
- Department of Cardiology, Dongguan Hospital of Southern Medical University, Southern Medical University, Dongguan, China
| | - Yun-Fa Ding
- Department of General Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-Li Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping-Zhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Wei Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Hua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Kwan SY, Gonzales KA, Jamal MA, Stevenson HL, Tan L, Lorenzi PL, Futreal PA, Hawk ET, McCormick JB, Fisher-Hoch SP, Jenq RR, Beretta L. Protection against fibrosis by a bacterial consortium in metabolic dysfunction-associated steatohepatitis and the role of amino acid metabolism. Gut Microbes 2024; 16:2399260. [PMID: 39239875 PMCID: PMC11382720 DOI: 10.1080/19490976.2024.2399260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The gut microbiota drives progression to liver fibrosis, the main determinant of mortality in metabolic dysfunction-associated steatohepatitis (MASH). In this study, we aimed to identify bacterial species associated with protection against liver fibrosis in a high-risk population, and test their potential to protect against liver fibrosis in vivo. Based on stool shotgun metagenomic sequencing of 340 subjects from a population cohort disproportionally affected by MASH, we identified bacterial species from the Bacteroidales and Clostridiales orders associated with reduced risk of liver fibrosis. A bacterial consortium was subsequently tested in a mouse model of MASH, which demonstrated protective effects against liver fibrosis. Six of the eight inoculated bacteria were detected in mouse stool and liver. Intrahepatic presence of bacteria was further confirmed by bacterial culture of mouse liver tissue. Changes in liver histological parameters, gut functional profiles, and amino acid profiles were additionally assessed. Comparison between fibrosis-associated human metagenome and bacteria-induced metagenome changes in mice identified microbial functions likely to mediate the protective effect against liver fibrosis. Amino acid profiling confirmed an increase in cysteine synthase activity, associated with reduced fibrosis. Other microbiota-induced changes in amino acids associated with reduced fibrosis included increased gut asparaginase activity and decreased hepatic tryptophan-to-kynurenine conversion. This human-to-mouse study identified bacterial species and their effects on amino acid metabolism as innovative strategies to protect against liver fibrosis in MASH.
Collapse
Affiliation(s)
- Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristyn A Gonzales
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed A Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather L Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ernest T Hawk
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph B McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Susan P Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Wu L, Zhou J, Zhou A, Lei Y, Tang L, Hu S, Wang S, Xiao X, Chen Q, Tu D, Lu C, Lai Y, Li Y, Zhang X, Tang B, Yang S. Lactobacillus acidophilus ameliorates cholestatic liver injury through inhibiting bile acid synthesis and promoting bile acid excretion. Gut Microbes 2024; 16:2390176. [PMID: 39205654 PMCID: PMC11364073 DOI: 10.1080/19490976.2024.2390176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Gut microbiota dysbiosis is involved in cholestatic liver diseases. However, the mechanisms remain to be elucidated. The purpose of this study was to examine the effects and mechanisms of Lactobacillus acidophilus (L. acidophilus) on cholestatic liver injury in both animals and humans. Bile duct ligation (BDL) was performed to mimic cholestatic liver injury in mice and serum liver function was tested. Gut microbiota were analyzed by 16S rRNA sequencing. Fecal bacteria transplantation (FMT) was used to evaluate the role of gut microbiota in cholestasis. Bile acids (BAs) profiles were analyzed by targeted metabolomics. Effects of L. acidophilus in cholestatic patients were evaluated by a randomized controlled clinical trial (NO: ChiCTR2200063330). BDL induced different severity of liver injury, which was associated with gut microbiota. 16S rRNA sequencing of feces confirmed the gut flora differences between groups, of which L. acidophilus was the most distinguished genus. Administration of L. acidophilus after BDL significantly attenuated hepatic injury in mice, decreased liver total BAs and increased fecal total BAs. Furthermore, after L. acidophilus treatment, inhibition of hepatic Cholesterol 7α-hydroxylase (CYP7α1), restored ileum Fibroblast growth factor 15 (FGF15) and Small heterodimer partner (SHP) accounted for BAs synthesis decrease, whereas enhanced BAs excretion was attributed to the increase of unconjugated BAs by enriched bile salt hydrolase (BSH) enzymes in feces. Similarly, in cholestasis patients, supplementation of L. acidophilus promoted the recovery of liver function and negatively correlated with liver function indicators, possibly in relationship with the changes in BAs profiles and gut microbiota composition. L. acidophilus treatment ameliorates cholestatic liver injury through inhibited hepatic BAs synthesis and enhances fecal BAs excretion.
Collapse
Affiliation(s)
- Lingyi Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jianchun Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiping Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xu Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiao Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Dianji Tu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Lai
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiding Li
- Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Tibet, China
| | - Xiao Zhang
- Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Tibet, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Effenberger M, Grander C, Grabherr F, Tilg H. Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome: An Inseparable Link. J Clin Transl Hepatol 2023; 11:1498-1507. [PMID: 38161503 PMCID: PMC10752805 DOI: 10.14218/jcth.2023.00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 01/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) particularly affects patients with type 2 diabetes and obesity. The incidence of NAFLD has increased significantly over the last decades and is now pandemically across the globe. It is a complex systemic disease comprising hepatic lipid accumulation, inflammation, lipotoxicity, gut dysbiosis, and insulin resistance as main features and with the potential to progress to cirrhosis and hepatocellular carcinoma (HCC). In numerous animal and human studies the gut microbiota plays a key role in the pathogenesis of NAFLD, NAFLD-cirrhosis and NAFLD-associated HCC. Lipotoxicity is the driver of inflammation, insulin resistance, and liver injury. Likewise, western diet, obesity, and metabolic disorders may alter the gut microbiota, which activates innate and adaptive immune responses and fuels hereby hepatic and systemic inflammation. Indigestible carbohydrates are fermented by the gut microbiota to produce important metabolites, such as short-chain fatty acids and succinate. Numerous animal and human studies suggested a pivotal role of these metabolites in the progression of NAFLD and its comorbidities. Though, modification of the gut microbiota and/or the metabolites could even be beneficial in patients with NAFLD, NAFLD-cirrhosis, and NAFLD-associated HCC. In this review we collect the evidence that exogenous and endogenous hits drive liver injury in NAFLD and propel liver fibrosis and the progressing to advanced disease stages. NAFLD can be seen as the product of a complex interplay between gut microbiota, the immune response and metabolism. Thus, the challenge will be to understand its pathogenesis and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Quesada-Vázquez S, Castells-Nobau A, Latorre J, Oliveras-Cañellas N, Puig-Parnau I, Tejera N, Tobajas Y, Baudin J, Hildebrand F, Beraza N, Burcelin R, Martinez-Gili L, Chilloux J, Dumas ME, Federici M, Hoyles L, Caimari A, Del Bas JM, Escoté X, Fernández-Real JM, Mayneris-Perxachs J. Potential therapeutic implications of histidine catabolism by the gut microbiota in NAFLD patients with morbid obesity. Cell Rep Med 2023; 4:101341. [PMID: 38118419 PMCID: PMC10772641 DOI: 10.1016/j.xcrm.2023.101341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/18/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.
Collapse
Affiliation(s)
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Puig-Parnau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemi Tejera
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yaiza Tobajas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Falk Hildebrand
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Naiara Beraza
- Microbes in the Food Chain, Institute Strategic Program, Microbes and Gut Health, Institute Strategic Program - Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Laura Martinez-Gili
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Julien Chilloux
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK; Section of Genomic and Environmental Medicine, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK; European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille, 59045 Lille, France; McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montréal, QC H3A 0G1, Canada
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Korobeinikova AV, Zlobovskaya OA, Sheptulina AF, Ashniev GA, Bobrova MM, Yafarova AA, Akasheva DU, Kabieva SS, Bakoev SY, Zagaynova AV, Lukashina MV, Abramov IA, Pokrovskaya MS, Doludin YV, Tolkacheva LR, Kurnosov AS, Zyatenkova EV, Lavrenova EA, Efimova IA, Glazunova EV, Kiselev AR, Shipulin GA, Kontsevaya AV, Keskinov AA, Yudin VS, Makarov VV, Drapkina OM, Yudin SM. Gut Microbiota Patterns in Patients with Non-Alcoholic Fatty Liver Disease: A Comprehensive Assessment Using Three Analysis Methods. Int J Mol Sci 2023; 24:15272. [PMID: 37894951 PMCID: PMC10607775 DOI: 10.3390/ijms242015272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests that functional and compositional changes in the gut microbiota may contribute to the development and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used to determine specific features of the NAFLD microbiome, but a complex system such as the gut microbiota requires a comprehensive approach. We used three different approaches: MALDI-TOF-MS of bacterial cultures, qPCR, and 16S NGS sequencing, as well as a wide variety of statistical methods to assess the differences in gut microbiota composition between NAFLD patients without significant fibrosis and the control group. The listed methods showed enrichment in Collinsella sp. and Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular Dorea sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae (particularly Enterococcus faecium and Enterococcus faecalis), were also found to be important taxa for NAFLD microbiome evaluation. Considering individual method observations, an increase in Candida krusei and a decrease in Bacteroides uniformis for NAFLD patients were detected using MALDI-TOF-MS. An increase in Gracilibacteraceae, Chitinophagaceae, Pirellulaceae, Erysipelatoclostridiaceae, Muribaculaceae, and Comamonadaceae, and a decrease in Acidaminococcaceae in NAFLD were observed with 16S NGS, and enrichment in Fusobacterium nucleatum was shown using qPCR analysis. These findings confirm that NAFLD is associated with changes in gut microbiota composition. Further investigations are required to determine the cause-and-effect relationships and the impact of microbiota-derived compounds on the development and progression of NAFLD.
Collapse
Affiliation(s)
- Anna V. Korobeinikova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Olga A. Zlobovskaya
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anna F. Sheptulina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - German A. Ashniev
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Maria M. Bobrova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Adel A. Yafarova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Dariga U. Akasheva
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Shuanat Sh. Kabieva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Siroj Yu. Bakoev
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anjelica V. Zagaynova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Maria V. Lukashina
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Ivan A. Abramov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Mariya S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Yurii V. Doludin
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Larisa R. Tolkacheva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Alexander S. Kurnosov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Elena V. Zyatenkova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Evgeniya A. Lavrenova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Irina A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Evgeniya V. Glazunova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anna V. Kontsevaya
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Anton A. Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Vladimir S. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Valentin V. Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Sergey M. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| |
Collapse
|
21
|
Guo C, Zhang P, Li J, Zhou C, Yang Z, Zhang Y, Luo Y, Zhou J, Cai Y, Ming Y. The characteristics of intestinal microbiota in patients with chronic schistosomiasis japonica-induced liver fibrosis by 16S rRNA gene sequence. Front Microbiol 2023; 14:1276404. [PMID: 37854336 PMCID: PMC10579597 DOI: 10.3389/fmicb.2023.1276404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Background The intestinal microbiota is known to play a role in the development of liver disease, there is a limited understanding of the intestinal microbiota associated with chronic schistosomiasis japonica. This study sought to explore the characteristics of the intestinal microbiota in patients with chronic schistosomiasis japonica and identify potential biomarkers that could aid diagnosis. Methods A total of 40 residents of Qingshan Island in Yueyang (Hunan, China) were enrolled in this cross-sectional study. These individuals were divided into two groups for analysis of the intestinal microbiota: patients with chronic schistosomiasis japonica-induced liver fibrosis group (CSJ group, n = 10) and a healthy control group (HC group, n = 30). Feces were collected from each participant and analyzed by 16S rRNA gene sequencing, which included species composition analysis at the phylum and family levels, α and β diversity analysis, LEfSe, Kyoto Encyclopedia of Genes and Genome (KEGG) and Clusters of Orthologous Groups of proteins (COG) analysis. Results Our results indicated that Schistosoma japonicum infection changed the composition and abundance of intestinal microbiota at the phylum and family levels. Compared with the HC group, the α and β diversity results showed that CSJ group had low diversity of species of the intestinal microbiome. LEfSe and relative abundance analysis found that the Prevotella 7, Alloprevotella, and Holdemanella genera were significantly higher in the CSJ group than in the HC group. Meanwhile, the ROC analysis showed that the area under the curve (AUC) of Prevotella 7, Alloprevotella, and Holdemanella genera was 0.779, 0.769, and 0.840, respectively. KEGG and COG analysis showed that the Replication and Repair, and Defense Mechanism pathways correlated strongly with chronic schistosomiasis japonica infection. Conclusion The current study was the first to explore differences in the intestinal microbiota of patients with chronic schistosomiasis japonica-induced liver fibrosis and healthy people from Qingshan Island, which indicated that Prevotella 7, Alloprevotella, and Holdemanella genera could have a potential value in non-invasive diagnosis of chronic schistosomiasis japonica-induced fibrosis.
Collapse
Affiliation(s)
- Chen Guo
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengpeng Zhang
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junhui Li
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chen Zhou
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhen Yang
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Zhang
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yulin Luo
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Zhou
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Yu Cai
- Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Yingzi Ming
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Transplantation Medicine of the National Ministry of Health, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Fisher-Hoch SP, Below JE, North KE, McCormick JB. Challenges and strategies for recruitment of minorities to clinical research and trials. J Clin Transl Sci 2023; 7:e154. [PMID: 37528943 PMCID: PMC10388414 DOI: 10.1017/cts.2023.559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 08/03/2023] Open
Abstract
Minority populations are largely absent from clinical research trials. The neglect of these populations has become increasingly apparent, with escalating cancer burdens and chronic disease. The challenges to recruitment of minorities in the United States are multiple including trust or lack thereof. Keys to successful recruitment are responding to community issues, its history, beliefs, and its social and economic pressures. The strategy we have used in many low-income, sometimes remote, communities is to recruit staff from the same community and train them in the required basic research methods. They are the first line of communication. After our arrival in the Texas Rio Grande Valley in 2001, we applied these principles learned over years of global research, to studies of chronic diseases. Beginning in 2004, we recruited and trained a team of local women who enrolled in a cohort of over five thousand Mexican Americans from randomly selected households. This cohort is being followed, and the team has remained, acquiring not only advanced skills (ultrasound, FibroScan, retinal photos, measures of cognition, etc.) but capacity to derive key health information. Currently, we are participating in multiple funded studies, including an NIH clinical trial, liver disease, obesity, and diabetes using multiomics aimed at developing precision medicine approaches to chronic disease prevention and treatment.
Collapse
Affiliation(s)
- Susan P. Fisher-Hoch
- UTHealth Houston School of Public Health, Brownsville Campus, Brownsville, TX, USA
| | - Jennifer E. Below
- Vanderbilt University Medical Center, Division of Genetic Medicine, Nashville, TN, USA
| | - Kari E. North
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Joseph B. McCormick
- UTHealth Houston School of Public Health, Brownsville Campus, Brownsville, TX, USA
| |
Collapse
|
23
|
Leung H, Xiong L, Ni Y, Busch A, Bauer M, Press AT, Panagiotou G. Impaired flux of bile acids from the liver to the gut reveals microbiome-immune interactions associated with liver damage. NPJ Biofilms Microbiomes 2023; 9:35. [PMID: 37286586 DOI: 10.1038/s41522-023-00398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Currently, there is evidence that alteration in the gut ecosystem contributes to the development of liver diseases, however, the complex mechanisms involved are still unclear. We induced cholestasis in mice by bile duct ligation (BDL), mirroring the phenotype of a bile duct obstruction, to understand how gut microbiota alterations caused by an impaired flow of bile acid to the gut contribute to the pathogenesis and progression of liver disease. We performed longitudinal stool, heart, and liver sampling using mice receiving BDL and controls receiving sham operation (ShamOP). Shotgun metagenomics profiling using fecal samples taken before and on day 1, day 3, and day 7 after surgery was performed, and the cytokines and clinical chemistry profiles from heart blood, as well as the liver bile acids profile, were measured. The BDL surgery reshaped the microbiome of mice, resulting in highly distinct characteristics compared to the ShamOP. Our analysis of the microbiome pathways and ECs revealed that BDL reduces the production of hepatoprotective compounds in the gut, such as biotin, spermidine, arginine, and ornithine, which were negatively associated with inflammatory cytokines (IL-6, IL-23, MCP-1). The reduction of the functional potential of the gut microbiota in producing those hepatoprotective compounds is associated with the decrease of beneficial bacteria species from Anaerotruncus, Blautia, Eubacterium, and Lachnoclostridium genera, as well as the increase of disease-associated bacteria e.g., Escherichia coli and Entercoccus faecalis. Our findings advances our knowledge of the gut microbiome-bile acids-liver triangle, which may serve as a potential therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Ling Xiong
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Yueqiong Ni
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Anne Busch
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
- Friedrich Schiller University, Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany.
- Friedrich Schiller University, Medical Faculty, Jena, Germany.
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
- Friedrich Schiller University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany.
| |
Collapse
|
24
|
Cabello-Olmo M, Oneca M, Urtasun R, Pajares MJ, Goñi S, Riezu-Boj JI, Milagro FI, Ayo J, Encio IJ, Barajas M, Araña M. Pediococcus acidilactici pA1c ® Improves the Beneficial Effects of Metformin Treatment in Type 2 Diabetes by Controlling Glycaemia and Modulating Intestinal Microbiota. Pharmaceutics 2023; 15:pharmaceutics15041203. [PMID: 37111688 PMCID: PMC10143274 DOI: 10.3390/pharmaceutics15041203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease, which involves maintained hyperglycemia, mainly due to the development of an insulin resistance process. Metformin administration is the most prescribed treatment for diabetic patients. In a previously published study, we demonstrated that Pediococcus acidilactici pA1c® (pA1c) protects from insulin resistance and body weight gain in HFD-induced diabetic mice. The present work aimed to evaluate the possible beneficial impact of a 16-week administration of pA1c, metformin, or the combination of pA1c and metformin in a T2D HFD-induced mice model. We found that the simultaneous administration of both products attenuated hyperglycemia, increased high-intensity insulin-positive areas in the pancreas and HOMA-β, decreased HOMA-IR and also provided more beneficial effects than metformin treatment (regarding HOMA-IR, serum C-peptide level, liver steatosis or hepatic Fasn expression), and pA1c treatment (regarding body weight or hepatic G6pase expression). The three treatments had a significant impact on fecal microbiota and led to differential composition of commensal bacterial populations. In conclusion, our findings suggest that P. acidilactici pA1c® administration improved metformin beneficial effects as a T2D treatment, and it would be a valuable therapeutic strategy to treat T2D.
Collapse
Affiliation(s)
- Miriam Cabello-Olmo
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - María Oneca
- Genbioma Aplicaciones S.L. Polígono Industrial Noain-Esquíroz, Calle S, Nave 4, 31191 Esquíroz, Spain
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - María J Pajares
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
| | - Saioa Goñi
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - José I Riezu-Boj
- IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josune Ayo
- Genbioma Aplicaciones S.L. Polígono Industrial Noain-Esquíroz, Calle S, Nave 4, 31191 Esquíroz, Spain
| | - Ignacio J Encio
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| |
Collapse
|
25
|
Moran-Ramos S, Cerqueda-García D, López-Contreras B, Larrieta-Carrasco E, Villamil-Ramírez H, Molina-Cruz S, Torres N, Sánchez-Tapia M, Hernández-Pando R, Aguilar-Salinas C, Villarreal-Molina T, Canizales-Quinteros S. A metagenomic study identifies a Prevotella copri enriched microbial profile associated with non-alcoholic steatohepatitis in subjects with obesity. J Gastroenterol Hepatol 2023; 38:791-799. [PMID: 36807933 DOI: 10.1111/jgh.16147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease. Increasing evidence indicates that the gut microbiota can play an important role in the pathophysiology of NAFLD. Recently, several studies have tested the predictive value of gut microbiome profiles in NAFLD progression; however, comparisons of microbial signatures in NAFLD or non-alcoholic steatohepatitis (NASH) have produced discrepant results, possibly due to ethnic and environmental factors. Thus, we aimed to characterize the gut metagenome composition of patients with fatty liver disease. METHODS Gut microbiome of 45 well-characterized patients with obesity and biopsy-proven NAFLD was evaluated using shot-gun sequencing: 11 non-alcoholic fatty liver controls (non-NAFL), 11 with fatty liver, and 23 with NASH. RESULTS Our study showed that Parabacteroides distasonis and Alistipes putredenis were enriched in fatty liver but not in NASH patients. Notably, in a hierarchical clustering analysis, microbial profiles were differentially distributed among groups, and membership to a Prevotella copri dominant cluster was associated with a greater risk of developing NASH. Functional analyses showed that although no differences in LPS biosynthesis pathways were observed, Prevotella-dominant subjects had higher circulating levels of LPS and a lower abundance of pathways encoding butyrate production. CONCLUSIONS Our findings suggest that a Prevotella copri dominant bacterial community is associated with a greater risk for NAFLD disease progression, probably linked to higher intestinal permeability and lower capacity for butyrate production.
Collapse
Affiliation(s)
- Sofía Moran-Ramos
- Facultad de Química, Unidad de Genómica de Poblaciones Aplicada a la Salud, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.,Departamento de Alimentos y Biotecnologia, Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Daniel Cerqueda-García
- Facultad de Química, Unidad de Genómica de Poblaciones Aplicada a la Salud, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Blanca López-Contreras
- Facultad de Química, Unidad de Genómica de Poblaciones Aplicada a la Salud, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elena Larrieta-Carrasco
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Hugo Villamil-Ramírez
- Facultad de Química, Unidad de Genómica de Poblaciones Aplicada a la Salud, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Selene Molina-Cruz
- Facultad de Química, Unidad de Genómica de Poblaciones Aplicada a la Salud, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos Aguilar-Salinas
- Dirección de Nutrición/Unidad de Investigación en Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Samuel Canizales-Quinteros
- Facultad de Química, Unidad de Genómica de Poblaciones Aplicada a la Salud, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
26
|
Huang X, Yang Y, Li X, Zhu X, Lin D, Ma Y, Zhou M, Cui X, Zhang B, Dang D, Lü Y, Yue C. The gut microbiota: A new perspective for tertiary prevention of hepatobiliary and gallbladder diseases. Front Nutr 2023; 10:1089909. [PMID: 36814514 PMCID: PMC9940272 DOI: 10.3389/fnut.2023.1089909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
The gut microbiota is a complex ecosystem that has coevolved with the human body for hundreds of millions of years. In the past 30 years, with the progress of gene sequencing and omics technology, the research related to gut microbiota has developed rapidly especially in the field of digestive system diseases and systemic metabolic diseases. Mechanical, biological, immune, and other factors make the intestinal flora form a close bidirectional connection with the liver and gallbladder, which can be called the "gut-liver-biliary axis." Liver and gallbladder, as internal organs of the peritoneum, suffer from insidious onset, which are not easy to detect. The diagnosis is often made through laboratory chemical tests and imaging methods, and intervention measures are usually taken only when organic lesions have occurred. At this time, some people may have entered the irreversible stage of disease development. We reviewed the literature describing the role of intestinal flora in the pathogenesis and biotherapy of hepatobiliary diseases in the past 3-5 years, including the dynamic changes of intestinal flora at different stages of the disease, as well as the signaling pathways involved in intestinal flora and its metabolites, etc. After summarizing the above contents, we hope to highlight the potential of intestinal flora as a new clinical target for early prevention, early diagnosis, timely treatment and prognosis of hepatobiliary diseases. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xueli Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaoya Zhu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Dan Lin
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yueran Ma
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiangyi Cui
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Bingyu Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Dongmei Dang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lü
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
27
|
Poor Prognostic Biomarker KIAA1522 Is Associated with Immune Infiltrates in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:3538928. [PMID: 36761433 PMCID: PMC9904920 DOI: 10.1155/2023/3538928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Background The prognosis is poor for hepatocellular carcinoma (HCC), a tumor and cancer associated with inflammation that is common. New data showed that significant levels of KIAA1522 were expressed in HCC tissues and cell lines, suggesting that KIAA1522 may be a highly useful prognostic marker for HCC. However, its biochemical processes and impacts on the immune system go deeper. Objective To verify the significance of KIAA1522 in HCC and investigate its related carcinogenic mechanisms. Methods Studies examining the relationship between KIAA1522 expression and clinical-pathologic characteristics in HCC have been checked in the Cancer Genome Atlas (TCGA) database. A receiver operating characteristic (ROC) curve was used to assess the diagnostic efficacy of KIAA1522 in HCC. Western blot analysis was used to find the presence of the KIAA1522 protein in the tumor and paraneoplastic tissues of eight randomly chosen HCC patients. The GSVA program in R language was used to evaluate the relationship between KIAA1522 and immune cell infiltration in HCC. We searched the Search Tool for the Retrieval of Interacting Genes (STRING) database for interacting proteins connected to the expression of KIAA1522. Pathways were involved in the enrichment analysis of KIAA1522 to anticipate potential mechanisms through which KIAA1522 may affect immunological infiltration. Results Our study found that KIAA1522 was commonly elevated in HCC tumor tissues and that it also signaled a bad outcome. We found an inverse link between KIAA1522 and cytotoxic cells and an inverse relationship between KIAA1522 and Th2 cell infiltration. In STRING analysis, the top 5 coexpressed proteins of KIAA1522 were BAIAP2, NCK2, TSNAXIP1, POGK, and KLHL31. The effect of KIAA1522 on HCC may entail cell cycle alteration, an immunological response, and suppression of the PPAR signaling pathway. Conclusion High expression of KIAA1522 was linked to HCC immune cell infiltration, disease progression, and a poor prognosis.
Collapse
|
28
|
Van Pee T, Hogervorst J, Dockx Y, Witters K, Thijs S, Wang C, Bongaerts E, Van Hamme JD, Vangronsveld J, Ameloot M, Raes J, Nawrot TS. Accumulation of Black Carbon Particles in Placenta, Cord Blood, and Childhood Urine in Association with the Intestinal Microbiome Diversity and Composition in Four- to Six-Year-Old Children in the ENVIR ONAGE Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17010. [PMID: 36719212 PMCID: PMC9888258 DOI: 10.1289/ehp11257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its association with the gut microbiome during susceptible life periods remains scarce. OBJECTIVES In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and bacterial richness and diversity measures, and bacterial families. METHODS A total of 85 stool samples were collected from 4- to 6-y-old children enrolled in the ENVIRonmental influence ON early AGEing birth cohort. We performed 16S rRNA gene sequencing to calculate bacterial richness and diversity indices (Chao1 richness, Shannon diversity, and Simpson diversity) and the relative abundance of bacterial families. Black carbon particles were quantified via white light generation under femtosecond pulsed laser illumination in placental tissue and cord blood, employed as prenatal exposure biomarkers, and in urine, used as a post-natal exposure biomarker. We used robust multivariable-adjusted linear models to examine the associations between quantified black carbon loads and measures of richness (Chao1 index) and diversity (Shannon and Simpson indices), adjusting for parity, season of delivery, sequencing batch, age, sex, weight and height of the child, and maternal education. Additionally, we performed a differential relative abundance analysis of bacterial families with a correction for sampling fraction bias. Results are expressed as percentage difference for a doubling in black carbon loads with 95% confidence interval (CI). RESULTS Two diversity indices were negatively associated with placental black carbon [Shannon: -4.38% (95% CI: -8.31%, -0.28%); Simpson: -0.90% (95% CI: -1.76%, -0.04%)], cord blood black carbon [Shannon: -3.38% (95% CI: -5.66%, -0.84%); Simpson: -0.91 (95% CI: -1.66%, -0.16%)], and urinary black carbon [Shannon: -3.39% (95% CI: -5.77%, -0.94%); Simpson: -0.89% (95% CI: -1.37%, -0.40%)]. The explained variance of black carbon on the above indices varied from 6.1% to 16.6%. No statistically significant associations were found between black carbon load and the Chao1 richness index. After multiple testing correction, placental black carbon was negatively associated with relative abundance of the bacterial families Defluviitaleaceae and Marinifilaceae, and urinary black carbon with Christensenellaceae and Coriobacteriaceae; associations with cord blood black carbon were not statistically significant after correction. CONCLUSION Black carbon particles quantified in prenatal and postnatal biological matrices were associated with the composition and diversity of the childhood intestinal microbiome. These findings address the influential role of exposure to air pollution during pregnancy and early life in human health. https://doi.org/10.1289/EHP11257.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
29
|
Ou-Yang YN, Yuan MD, Yang ZM, Min Z, Jin YX, Tian ZM. Revealing the Pathogenesis of Salt-Sensitive Hypertension in Dahl Salt-Sensitive Rats through Integrated Multi-Omics Analysis. Metabolites 2022; 12:1076. [PMID: 36355159 PMCID: PMC9694938 DOI: 10.3390/metabo12111076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 10/18/2023] Open
Abstract
Salt-induced renal metabolism dysfunction is an important mechanism of salt-sensitive hypertension. Given that the gut-liver axis is the first hit of a high-salt diet (HSD), we aimed to identify the extra-renal mechanism from hepatic metabolism and gut microbiota, and attempted to relieve the salt-induced metabolic dysfunctions by curcumin. Untargeted metabolomics analysis was performed to identify the changes in hepatic metabolic pathways, and integrated analysis was employed to reveal the relationship between hepatic metabolic dysfunction and gut microbial composition. HSD induced significant increase in fumaric acid, l-lactic acid, creatinine, l-alanine, glycine, and l-cysteine levels, and amino acids metabolism pathways associated with glycolysis were significantly altered, including alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism, which were involved in the regulation of blood pressure. Integrated multi-omics analysis revealed that changes in Paraprevotella, Erysipelotrichaceae, and genera from Clostridiales are associated with metabolic disorders. Gene functional predication analysis based on 16S Ribosomal RNA sequences showed that the dysfunction in hepatic metabolism were correlated with enhanced lipopolysaccharide (LPS) biosynthesis and apoptosis in gut microbes. Curcumin (50 mg/kg/d) might reduce gut microbes-associated LPS biosynthesis and apoptosis, partially reverse metabolic dysfunction, ameliorate renal oxidative stress, and protect against salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ya-nan Ou-Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Meng-di Yuan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | | | - Zhuo Min
- Department of Brewing Engineering, Moutai University, Renhuai 564500, China
| | - Yue-xin Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhong-min Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
30
|
Sharpton SR, Oh TG, Madamba E, Wang C, Yu RT, Atkins AR, Huan T, Downes M, Evans RM, Loomba R. Gut metagenome-derived signature predicts hepatic decompensation and mortality in NAFLD-related cirrhosis. Aliment Pharmacol Ther 2022; 56:1475-1485. [PMID: 36164267 PMCID: PMC9746351 DOI: 10.1111/apt.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/14/2022] [Accepted: 09/15/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND There are limited data on the diagnostic accuracy of gut microbial signatures for predicting hepatic decompensation in patients with cirrhosis. AIMS To determine whether a stool metagenome-derived signature accurately detects hepatic decompensation and mortality risk in cirrhosis secondary to non-alcoholic fatty liver disease (NAFLD) METHODS: Shotgun metagenomic sequencing was performed on faecal samples collected at study entry from a prospective cohort of adults with NAFLD-related cirrhosis. A Random Forest machine learning algorithm was utilised to identify a metagenomic signature of decompensated cirrhosis (defined by ascites, hepatic encephalopathy or variceal haemorrhage) and subsequently validated in an external cohort. A Cox proportional hazards regression model was used to examine predictors of all-cause mortality. RESULTS In all, 25 adults with NAFLD-related cirrhosis (training cohort) were included. Among the 16 participants with decompensated cirrhosis, 33% had ascites, 56% had hepatic encephalopathy and 22% had experienced a variceal haemorrhage (not mutually exclusive). We identified a stool metagenomic signature comprising 13 discriminatory species that reliably distinguished decompensated NAFLD-related cirrhosis (diagnostic accuracy, 0.97, 95% confidence interval [CI] 0.96-0.99). Diagnostic accuracy of the 13-species signature remained high after adjustment for lactulose (area under the curve [AUC] 0.99) and rifaximin use (AUC 0.93). The discriminative ability of 13-species metagenomic signature was robust in an independent test cohort (AUC 0.95, 95% CI 0.81-1.00). The 13-species metagenomic signature (hazard ratio [HR] 1.54, 95% CI 1.10-2.15, p = 0.01) was a stronger predictor of mortality than the Model for End-Stage Liver Disease score (HR 1.25, 95% CI 1.03-1.53, p = 0.03). CONCLUSIONS This study provides evidence for a gut metagenome-derived signature with high diagnostic accuracy for hepatic decompensation that predicts risk of mortality in NAFLD-related cirrhosis.
Collapse
Affiliation(s)
- Suzanne R. Sharpton
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Egbert Madamba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Chenjingyi Wang
- Faculty of Science, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tao Huan
- Faculty of Science, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Sabotta CM, Kwan SY, Petty LE, Below JE, Joon A, Wei P, Fisher-Hoch SP, McCormick JB, Beretta L. Genetic variants associated with circulating liver injury markers in Mexican Americans, a population at risk for non-alcoholic fatty liver disease. Front Genet 2022; 13:995488. [PMID: 36386790 PMCID: PMC9644071 DOI: 10.3389/fgene.2022.995488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 02/03/2023] Open
Abstract
Objective: Mexican Americans are disproportionally affected by non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma. Noninvasive means to identify those in this population at high risk for these diseases are urgently needed. Approach: The Cameron County Hispanic Cohort (CCHC) is a population-based cohort with high rates of obesity (51%), type 2 diabetes (28%) and NAFLD (49%). In a subgroup of 564 CCHC subjects, we evaluated 339 genetic variants previously reported to be associated with liver injury markers aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in United Kingdom and Japanese cohorts. Results: Association was confirmed for 86 variants. Among them, 27 had higher effect allele frequency in the CCHC than in the United Kingdom and Japanese cohorts, and 16 had stronger associations with AST and ALT than rs738409 (PNPLA3). These included rs17710008 (MYCT1), rs2519093 (ABO), rs1801690 (APOH), rs10409243 (S1PR2), rs1800759 (LOC100507053) and rs2491441 (RGL1), which were also associated with steatosis and/or liver fibrosis measured by vibration-controlled transient elastography. Main contributors to advanced fibrosis risk were rs11240351 (CNTN2), rs1800759 (LOC100507053), rs738409 (PNPLA3) and rs1801690 (APOH), with advanced fibrosis detected in 37.5% of subjects with 3 of these 4 variants [AOR = 11.6 (95% CI) = 3.8-35.3]. AST- and ALT-associated variants implicated distinct pathways (ethanol and galactose degradation versus antigen presentation and B cell development). Finally, 8 variants, including rs62292950 (DNAJC13), were associated with gut microbiome changes. Conclusion: These genotype-phenotype findings may have utility in risk modeling and disease prevention in this high-risk population.
Collapse
Affiliation(s)
- Caroline M. Sabotta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lauren E. Petty
- Vanderbilt Genetics Institute and Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer E. Below
- Vanderbilt Genetics Institute and Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Aron Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, TX, United States
| | - Joseph B. McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, TX, United States
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
The Effects of Alcohol Drinking on Oral Microbiota in the Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095729. [PMID: 35565124 PMCID: PMC9103016 DOI: 10.3390/ijerph19095729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/04/2023]
Abstract
The dysbiosis of oral microbiota is linked to numerous diseases and is associated with personal lifestyles, such as alcohol drinking. However, there is inadequate data to study the effect of alcohol drinking on oral microbiota from the Chinese population. Here, we profiled the oral microbiota of 150 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The results showed that drinkers had significantly higher alpha diversity than non-drinkers. A significant difference in overall microbiota composition was observed between non-drinkers and drinkers. Additionally, using DESeq analysis, we found genus Prevotella and Moryella, and species Prevotella melaninogenica and Prevotella tannerae were significantly enriched in drinkers; meanwhile, the genus Lautropia, Haemophilus and Porphyromonas, and species Haemophilus parainfluenzae were significantly depleted in drinkers. PICRUSt analysis showed that significantly different genera were mainly related to metabolism pathways. The oxygen-independent pathways, including galactose, fructose and mannose metabolism pathways, were enriched in drinkers and positively associated with genera enriched in drinkers; while the pyruvate metabolism pathway, an aerobic metabolism pathway, was decreased in drinkers and negatively associated with genera enriched in drinkers. Our results suggested that alcohol drinking may affect health by altering oral microbial composition and potentially affecting microbial functional pathways. These findings may have implications for better understanding the potential role those oral bacteria play in alcohol-related diseases.
Collapse
|
33
|
Rehner J, Schmartz GP, Groeger L, Dastbaz J, Ludwig N, Hannig M, Rupf S, Seitz B, Flockerzi E, Berger T, Reichert MC, Krawczyk M, Meese E, Herr C, Bals R, Becker SL, Keller A, Müller R. Systematic Cross-biospecimen Evaluation of DNA Extraction Kits for Long- and Short-read Multi-metagenomic Sequencing Studies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:405-417. [PMID: 35680095 PMCID: PMC9684153 DOI: 10.1016/j.gpb.2022.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 01/05/2023]
Abstract
High-quality DNA extraction is a crucial step in metagenomic studies. Bias by different isolation kits impairs the comparison across datasets. A trending topic is, however, the analysis of multiple metagenomes from the same patients to draw a holistic picture of microbiota associated with diseases. We thus collected bile, stool, saliva, plaque, sputum, and conjunctival swab samples and performed DNA extraction with three commercial kits. For each combination of the specimen type and DNA extraction kit, 20-gigabase (Gb) metagenomic data were generated using short-read sequencing. While profiles of the specimen types showed close proximity to each other, we observed notable differences in the alpha diversity and composition of the microbiota depending on the DNA extraction kits. No kit outperformed all selected kits on every specimen. We reached consistently good results using the Qiagen QiAamp DNA Microbiome Kit. Depending on the specimen, our data indicate that over 10 Gb of sequencing data are required to achieve sufficient resolution, but DNA-based identification is superior to identification by mass spectrometry. Finally, long-read nanopore sequencing confirmed the results (correlation coefficient > 0.98). Our results thus suggest using a strategy with only one kit for studies aiming for a direct comparison of multiple microbiotas from the same patients.
Collapse
Affiliation(s)
- Jacqueline Rehner
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany
| | | | - Laura Groeger
- Department of Human Genetics, Saarland University, D-66421 Homburg, Germany
| | - Jan Dastbaz
- Helmholtz Institute for Pharmaceutical Research Saarland, D-66123 Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, D-66421 Homburg, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, D-66421 Homburg, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, D-66421 Homburg, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Elias Flockerzi
- Department of Ophthalmology, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Tim Berger
- Department of Ophthalmology, Saarland University Medical Center, D-66421 Homburg, Germany
| | | | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, D-66421 Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, D-66123 Saarbrücken, Germany.
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, D-66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Pailhoriès H, Boursier J, Diehl AM. Determinants of the severity of fatty liver diseases: Need all the pieces to solve the puzzle. Hepatology 2022; 75:782-784. [PMID: 34919744 DOI: 10.1002/hep.32282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/08/2022]
Affiliation(s)
- Hélène Pailhoriès
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208Angers UniversityAngersFrance
| | - Jerome Boursier
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208Angers UniversityAngersFrance.,Hepato-Gastroenterology DepartmentAngers University HospitalAngersFrance
| | - Anna Mae Diehl
- Division of GastroenterologyDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
35
|
Zeybel M, Arif M, Li X, Altay O, Yang H, Shi M, Akyildiz M, Saglam B, Gonenli MG, Yigit B, Ulukan B, Ural D, Shoaie S, Turkez H, Nielsen J, Zhang C, Uhlén M, Borén J, Mardinoglu A. Multiomics Analysis Reveals the Impact of Microbiota on Host Metabolism in Hepatic Steatosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104373. [PMID: 35128832 PMCID: PMC9008426 DOI: 10.1002/advs.202104373] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Indexed: 05/03/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disease involving alterations in multiple biological processes regulated by the interactions between obesity, genetic background, and environmental factors including the microbiome. To decipher hepatic steatosis (HS) pathogenesis by excluding critical confounding factors including genetic variants and diabetes, 56 heterogenous MAFLD patients are characterized by generating multiomics data including oral and gut metagenomics as well as plasma metabolomics and inflammatory proteomics data. The dysbiosis in the oral and gut microbiome is explored and the host-microbiome interactions based on global metabolic and inflammatory processes are revealed. These multiomics data are integrated using the biological network and HS's key features are identified using multiomics data. HS is finally predicted using these key features and findings are validated in a follow-up cohort, where 22 subjects with varying degree of HS are characterized.
Collapse
Affiliation(s)
- Mujdat Zeybel
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust & University of NottinghamNottinghamNG5 1PBUK
- Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamNG7 2UHUK
| | - Muhammad Arif
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Present address:
Laboratory of Cardiovascular Physiology and Tissue Injury and Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMD20852USA
| | - Xiangyu Li
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Ozlem Altay
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Hong Yang
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Mengnan Shi
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Murat Akyildiz
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Burcin Saglam
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Mehmet Gokhan Gonenli
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Buket Yigit
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Burge Ulukan
- Department of Gastroenterology and HepatologySchool of MedicineKoç UniversityIstanbul34010Turkey
| | - Dilek Ural
- School of MedicineKoç UniversityIstanbul34010Turkey
| | - Saeed Shoaie
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 9RTUK
| | - Hasan Turkez
- Department of Medical BiologyFaculty of MedicineAtatürk UniversityErzurum25240Turkey
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSE‐41296Sweden
| | - Cheng Zhang
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenan Province450001China
| | - Mathias Uhlén
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
| | - Jan Borén
- Department of Molecular and Clinical MedicineUniversity of Gothenburg and Sahlgrenska University Hospital GothenburgGothenburgSE‐41345Sweden
| | - Adil Mardinoglu
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSE‐17121Sweden
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonSE1 9RTUK
| |
Collapse
|
36
|
Han W, Huang C, Ji Y, Zhou L, Chen J, Hou J. Alterations in the Gut Microbiota and Hepatitis-B-Virus Infection in Southern Chinese Patients With Coexisting Non-Alcoholic Fatty Liver Disease and Type-2 Diabetes Mellitus. Front Med (Lausanne) 2021; 8:805029. [PMID: 34993216 PMCID: PMC8724037 DOI: 10.3389/fmed.2021.805029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatitis B virus (HBV) infection has been reported to affect the bacterial characteristics in the host. We aimed to elucidate the compositional and functional characteristics of the microbiota in southern Chinese patients with coexistent HBV infection, non-alcoholic fatty liver disease (NAFLD), and type-2 diabetes mellitus (T2DM). Methods: Healthy controls (HCs) and patients with coexistent NAFLD and T2DM were enrolled. Patients were divided into two groups: N1 (without HBV infection) and N2 (with HBV infection). Stool samples were collected for 16s RNA gene sequencing and untargeted metabolomics analysis. Results: Bacterial diversity was decreased in the N2 group. There was a significantly lower abundance of bacteria of Faecalibacterium, Gemmiger, and Clostridium_XIVA genera, but a higher abundance of Megamonas and Phascolarctobacterium genera in the N2 group. Compared with the N1 group, the abundance of Gemmiger species was even lower, and alterations in the abundance of Phascolarctobacterium and Clostridium_XIVA genera only occurred in the N2 group. There were significantly different fecal metabolic features, which were enriched in glucose and lipid metabolic pathways (e.g., fatty acid and glycerophospholipid metabolism) between the N2 and HC groups. Metabolites in glycerophospholipid metabolism, such as Sn-3-o-(geranylgeranyl)glycerol1-phosphate, were even higher in the N2 group than in the N1 group. The decreased Faecalibacterium and Gemmiger contributed to the increased level of Sn-3-o-(geranylgeranyl) glycerol1-phosphate, palmitoylcarnitine, and serum triglycerides. Clostridium_XIVA species were positively correlated to 15(s)-hpete. Megamonas species were positively correlated with the serum level of glucose indirectly. Conclusions: The distinct gut-microbiome profile associated with HBV infection has a role in lipid metabolism and glucose metabolism in patients with coexistent NAFLD and T2DM. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03525769.
Collapse
Affiliation(s)
- Weijia Han
- Department of Liver Disease Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yali Ji
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Zhou
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Hepatology Unit, Zengcheng Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Chinese (Acute on) Chronic Liver Failure Consortium (Ch-CLIF.C), Shanghai, China
| | - Jinlin Hou
- Department of Liver Disease Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|