1
|
Li G, Meex RCR, Goossens GH. The role of tissue oxygenation in obesity-related cardiometabolic complications. Rev Endocr Metab Disord 2025; 26:19-30. [PMID: 39298040 PMCID: PMC11790814 DOI: 10.1007/s11154-024-09910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/21/2024]
Abstract
Obesity is a complex, multifactorial, chronic disease that acts as a gateway to a range of other diseases. Evidence from recent studies suggests that changes in oxygen availability in the microenvironment of metabolic organs may exert an important role in the development of obesity-related cardiometabolic complications. In this review, we will first discuss results from observational and controlled laboratory studies that examined the relationship between reduced oxygen availability and obesity-related metabolic derangements. Next, the effects of alterations in oxygen partial pressure (pO2) in the adipose tissue, skeletal muscle and the liver microenvironment on physiological processes in these key metabolic organs will be addressed, and how this might relate to cardiometabolic complications. Since many obesity-related chronic diseases, including type 2 diabetes mellitus, cardiovascular diseases, chronic kidney disease, chronic obstructive pulmonary disease and obstructive sleep apnea, are characterized by changes in pO2 in the tissue microenvironment, a better understanding of the metabolic impact of altered tissue oxygenation can provide valuable insights into the complex interplay between environmental and biological factors involved in the pathophysiology of metabolic impairments. This may ultimately contribute to the development of novel strategies to prevent and treat obesity-related cardiometabolic diseases.
Collapse
Affiliation(s)
- Geng Li
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, PO Box 616, Maastricht, 6200 MD, The Netherlands
| | - Ruth C R Meex
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, PO Box 616, Maastricht, 6200 MD, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, PO Box 616, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
2
|
梁 钰, 李 凌, 刘 柏, 高 洁, 陈 星, 李 进, 柯 阳, 陈 勇. [Research Advances in the Roles of High-Altitude Hypoxic Stress in Hepatocellular Carcinoma]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1436-1445. [PMID: 39990853 PMCID: PMC11839340 DOI: 10.12182/20241160605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 02/25/2025]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent malignant tumors causing the highest mortality globally, imposes an especially heavy burden of disease in China. Individuals living in high-altitude areas have a lower incidence of and mortality resulting from HCC compared with those in low-altitude regions do, potentially due to adaptive evolution in responses to hypoxic stress. Notably, high-altitude hypoxic stress is associated with the development and progression of HCC. Hypoxic stress may be involved in the development and progression of HCC by modulating the senescence, apoptosis, metabolism, tumor microenvironment, and tumor immunity of HCC cells. Additionally, the latest clinical findings indicate that high-altitude hypoxic environment has a significant impact on liver regeneration after HCC resection surgery. However, there is still a debate going on regarding whether high-altitude hypoxic stress promotes or inhibits the progression of HCC. This review covers three main aspects, the impact of adaptive evolution to high-altitude hypoxic stress on the development and progression of HCC in long-term residents of high-altitude areas, the effects of high-altitude hypoxic stress on the senescence, apoptosis, metabolism, tumor microenvironment, tumor metabolism, and tumor immunity of HCC cells, and the effect of high-altitude hypoxic stress on liver regeneration after HCC resection. We discussed the effect of changes in oxygen concentrations, cellular context, and tissue microenvironment on HCC development and progression. Moreover, we highlighted the potential for using research findings on mechanisms underlying high-altitude hypoxic stress to optimize HCC treatment strategies.
Collapse
Affiliation(s)
- 钰博 梁
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 凌娟 李
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 柏杨 刘
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 洁 高
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 星明 陈
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 进 李
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 阳 柯
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - 勇彬 陈
- 昆明医科大学第二附属医院 肝胆胰外科 (昆明 650101)Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
- 郑州大学第一附属医院 (郑州 450052)The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Matsuda T, Kaji K, Nishimura N, Asada S, Koizumi A, Tanaka M, Yorioka N, Tsuji Y, Kitagawa K, Sato S, Namisaki T, Akahane T, Yoshiji H. Cabozantinib prevents the progression of metabolic dysfunction-associated steatohepatitis by inhibiting the activation of hepatic stellate cell and macrophage and attenuating angiogenic activity. Heliyon 2024; 10:e38647. [PMID: 39398008 PMCID: PMC11470516 DOI: 10.1016/j.heliyon.2024.e38647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Cabozantinib, a multiple tyrosine kinase inhibitor targeting AXL, vascular endothelial growth factor receptor (VEGFR), and MET, is used clinically to treat certain cancers, including hepatocellular carcinoma. This study aimed to assess the impact of cabozantinib on liver fibrosis and hepatocarcinogenesis in a rat model of metabolic dysfunction-associated steatohepatitis (MASH). MASH-based liver fibrosis and hepatocarcinogenesis were induced in rats by feeding them a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for eight and 16 weeks, respectively. Cabozantinib (1 or 2 mg/kg, daily) was administered concurrently with the diet in the fibrosis model and after eight weeks in the carcinogenesis model. Treatment with cabozantinib significantly attenuated hepatic inflammation and fibrosis without affecting hepatocyte steatosis and ballooning in CDAHFD-fed rats. Cabozantinib-treated rats exhibited a marked reduction in α-smooth muscle actin+ activated hepatic stellate cell (HSC) expansion, CD68+ macrophage infiltration, and CD34+ pathological angiogenesis, along with reduced hepatic AXL, VEGF, and VEGFR2 expression. Consistently, cabozantinib downregulated the hepatic expression of profibrogenic markers (Acta2, Col1a1, Tgfb1), inflammatory cytokines (Tnfa, Il1b, Il6), and proangiogenic markers (Vegfa, Vwf, Ang2). In a cell-based assay of human activated HSCs, cabozantinib inhibited Akt activation induced by GAS6, a ligand of AXL, leading to reduced cell proliferation and profibrogenic activity. Cabozantinib also suppressed lipopolysaccharide-induced proinflammatory responses in human macrophages, VEGFA-induced collagen expression and proliferation in activated HSCs, and VEGFA-stimulated proliferation in vascular endothelial cells. Meanwhile, administration of cabozantinib did not affect Ki67+ hepatocyte proliferation or serum albumin levels, indicating no negative impact on regenerative capacity. Treatment with cabozantinib also reduced the placental glutathione transferase+ preneoplastic lesions in CDAHFD-fed rats. In conclusion, cabozantinib shows promise as a novel option for preventing MASH progression.
Collapse
Affiliation(s)
- Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Misako Tanaka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
4
|
El Hajji S, Lacotte S, Moeckli B, Cauchy F, Compagnon P, Toso C. Transjugular Intrahepatic Portosystemic Shunt Is Associated With Better Waitlist Management of Liver Transplant Candidates With Hepatocellular Carcinoma. Transpl Int 2024; 37:12781. [PMID: 39044902 PMCID: PMC11265282 DOI: 10.3389/ti.2024.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024]
Abstract
Transjugular intrahepatic portosystemic shunt (TIPS) reduces portal hypertension complications. Its impact on hepatocellular carcinoma (HCC) remains unclear. We evaluated 42,843 liver transplant candidates with HCC from the Scientific Registry of Transplant Recipients (2002-2022). 4,484 patients with and without TIPS were propensity score-matched 1:3. Analysing wait-list changes in total tumor volume, HCC count, and alpha-fetoprotein levels, and assessing survival from listing and transplantation; TIPS correlated with a decreased nodule count (-0.24 vs. 0.04, p = 0.028) over a median wait period of 284 days (IQR 195-493) and better overall survival from listing (95.6% vs. 91.5% at 1 year, p < 0.0001). It was not associated with changes in tumor volume (0.28 vs. 0.11 cm³/month, p = 0.58) and AFP (14.37 vs. 20.67 ng/mL, p = 0.42). Post-transplant survival rates (91.8% vs. 91.7% at 1 year, p = 0.25) and HCC recurrence (5.1% vs. 5.9% at 5 years, p = 0.14) were similar, with a median follow-up of 4.98 years (IQR 2.5-8.08). While TIPS was associated with a reduced nodule count and improved waitlist survival, it did not significantly impact HCC growth or aggressiveness. These findings suggest potential benefits of TIPS in HCC management, but further studies need to confirm TIPS safety.
Collapse
Affiliation(s)
- Sofia El Hajji
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Transplantation and Hepatology, University of Geneva, Geneva, Switzerland
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Transplantation and Hepatology, University of Geneva, Geneva, Switzerland
| | - Beat Moeckli
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Transplantation and Hepatology, University of Geneva, Geneva, Switzerland
| | - François Cauchy
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Compagnon
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
- Division of Transplantation, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Transplantation and Hepatology, University of Geneva, Geneva, Switzerland
- Division of Transplantation, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
5
|
El‐Ayoubi A, Arakelyan A, Klawitter M, Merk L, Hakobyan S, Gonzalez‐Menendez I, Quintanilla Fend L, Holm PS, Mikulits W, Schwab M, Danielyan L, Naumann U. Development of an optimized, non-stem cell line for intranasal delivery of therapeutic cargo to the central nervous system. Mol Oncol 2024; 18:528-546. [PMID: 38115217 PMCID: PMC10920084 DOI: 10.1002/1878-0261.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.
Collapse
Affiliation(s)
- Ali El‐Ayoubi
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Arsen Arakelyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
| | - Moritz Klawitter
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Luisa Merk
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Siras Hakobyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
- Armenian Institute of BioinformaticsYerevanArmenia
| | - Irene Gonzalez‐Menendez
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Leticia Quintanilla Fend
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der IsarTechnical University of MunichGermany
- Department of Oral and Maxillofacial SurgeryMedical University InnsbruckAustria
- XVir Therapeutics GmbHMunichGermany
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Lusine Danielyan
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
- Gene and RNA Therapy Center (GRTC)Faculty of Medicine University TübingenGermany
| |
Collapse
|
6
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Cai P, Ni R, Lv M, Liu H, Zhao J, He J, Luo L. VEGF signaling governs the initiation of biliary-mediated liver regeneration through the PI3K-mTORC1 axis. Cell Rep 2023; 42:113028. [PMID: 37632748 DOI: 10.1016/j.celrep.2023.113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023] Open
Abstract
Biliary epithelial cells (BECs) are a potential source to repair the damaged liver when hepatocyte proliferation is compromised. Promotion of BEC-to-hepatocyte transdifferentiation could be beneficial to the clinical therapeutics of patients with end-stage liver diseases. However, mechanisms underlying the initiation of BEC transdifferentiation remain largely unknown. Here, we show that upon extreme hepatocyte injury, vegfaa and vegfr2/kdrl are notably induced in hepatic stellate cells and BECs, respectively. Pharmacological and genetic inactivation of vascular endothelial growth factor (VEGF) signaling would disrupt BEC dedifferentiation and proliferation, thus restraining hepatocyte regeneration. Mechanically, VEGF signaling regulates the activation of the PI3K-mammalian target of rapamycin complex 1 (mTORC1) axis, which is essential for BEC-to-hepatocyte transdifferentiation. In mice, VEGF signaling exerts conserved roles in oval cell activation and BEC-to-hepatocyte differentiation. Taken together, this study shows VEGF signaling as an initiator of biliary-mediated liver regeneration through activating the PI3K-mTORC1 axis. Modulation of VEGF signaling in BECs could be a therapeutic approach for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mengzhu Lv
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jieqiong Zhao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
van Son KC, Verschuren L, Hanemaaijer R, Reeves H, Takkenberg RB, Drenth JPH, Tushuizen ME, Holleboom AG. Non-Parenchymal Cells and the Extracellular Matrix in Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2023; 15:1308. [PMID: 36831649 PMCID: PMC9954729 DOI: 10.3390/cancers15041308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) in the setting of non-alcoholic fatty liver disease (NAFLD)-related cirrhosis and even in the pre-cirrhotic state is increasing in incidence. NAFLD-related HCC has a poor clinical outcome as it is often advanced at diagnosis due to late diagnosis and systemic treatment response is poor due to reduced immune surveillance. Much of the focus of molecular research has been on the pathological changes in hepatocytes; however, immune cells, hepatic stellate cells, liver sinusoidal endothelial cells and the extracellular matrix may play important roles in the pathogenesis of NAFLD-related HCC as well. Here, we review the role of non-parenchymal cells in the liver in the pathogenesis of HCC in the context of NAFLD-NASH, with a particular focus on the innate and the adaptive immune system, fibrogenesis and angiogenesis. We review the key roles of macrophages, hepatic stellate cells (HSCs), T cells, natural killer (NK) cells, NKT cells and liver sinusoidal endothelial cells (LSECs) and the role of the extracellular matrix in hepatocarcinogenesis within the steatotic milieu.
Collapse
Affiliation(s)
- Koen C. van Son
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Roeland Hanemaaijer
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research, 2333 BE Leiden, The Netherlands
| | - Helen Reeves
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne NE2 4HH, UK
| | - R. Bart Takkenberg
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular and Internal Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wang D, Li M, Ling J, Chen S, Zhang Q, Liu Z, Huang Y, Pan C, Lin Y, Shi Z, Zhang P, Zheng Y. Assessing the effects of aging on the liver endothelial cell landscape using single-cell RNA sequencing. Hepatol Commun 2023; 7:e0021. [PMID: 36724124 PMCID: PMC9894352 DOI: 10.1097/hc9.0000000000000021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/25/2022] [Indexed: 02/02/2023] Open
Abstract
Endothelial cell (EC) function declines with age and contributes to the development of many vascular-related disease processes. Currently, the effects of aging on the molecular regulatory mechanisms of liver ECs have not been fully elucidated. Here, we employed single-cell RNA sequencing to map the transcriptome of ECs and analyzed their relationship with aging. We identified 8 different EC subtypes, interestingly, 2 of which were specially expressed in aged mice ECs namely aged capillary ECs (Aged ECs) and pro-inflammation capillary ECs (Proinfla.ECs). Double immunostaining for an EC marker (Cd31) and a marker of these specialized EC phenotypes confirmed the single-cell RNA sequencing data. Gene ontology analysis revealed that Aged ECs and Proinfla.ECs were associated with inflammatory response. Then we found that liver proliferating capillary ECs (Prolife.ECs) were most affected by senescence. Single-cell transcript analysis suggests that Prolife.ECs and angiogenic capillary ECs may form a poor microenvironment that promotes angiogenesis and tumorigenesis. Pseudo-temporal trajectories revealed that Prolife.ECs have different differentiation pathways in young and aged mice. In aged mice, Prolife.ECs could specifically differentiate into an unstable state, which was mainly composed of angiogenic capillary ECs. Intercellular communication revealed inflammatory activation in old group. Overall, this work compared the single-cell RNA profiles of liver ECs in young and aged mice. These findings provide a new insight into liver aging and its molecular mechanisms, and further exploration of Aged ECs and Proinfla.ECs may help to elucidate the molecular mechanisms associated with senescence.
Collapse
|
10
|
The immunosuppressive tumor microenvironment in hepatocellular carcinoma-current situation and outlook. Mol Immunol 2022; 151:218-230. [PMID: 36179604 DOI: 10.1016/j.molimm.2022.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe malignant tumors that threaten human health, and its incidence is still on the rise recently. In spite of the current emerging treatment strategies, the overall prognosis of liver cancer remains worrying. Currently, immunotherapy has become a new research-active spot. The emergence of immune checkpoints and targeted immune cell therapy can significantly improve the prognosis of HCC. To a large extent, the effect of this immunotherapy depends on the tumor immune microenvironment (TME), an intricate system in which cancer cells and other non-cancer cells display various interactions. Understanding the immunosuppressive situation of these cells, along with the malignant behavior of cancer cells, can assist us to design new therapeutic approaches against tumors. Therefore, it is necessary to clarify the TME of HCC for further improvement of clinical treatment. This review discussed the functions of several immunosuppressive cells and exosomes in the latest research progress of HCC, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) and tumor-associated neutrophils (TANs) interacted actively to facilitate tumor progression. It further describes the treatment methods targeting them and the potential that needs to be explored in the future.
Collapse
|
11
|
Nasiri-Ansari N, Androutsakos T, Flessa CM, Kyrou I, Siasos G, Randeva HS, Kassi E, Papavassiliou AG. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022; 11:2511. [PMID: 36010588 PMCID: PMC9407007 DOI: 10.3390/cells11162511] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, ‘Sotiria’ Thoracic Diseases General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Wu M, Miao H, Fu R, Zhang J, Zheng W. Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma. Curr Mol Pharmacol 2021; 13:261-272. [PMID: 32091349 DOI: 10.2174/1874467213666200224102820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Liver cancer is a leading cause of cancer-related death worldwide, in which hepatocellular carcinoma (HCC) accounts for the majority. Despite the progression in treatment, the prognosis remains extremely poor for HCC patients. The mechanisms of hepatocarcinogenesis are complex, of which fibrosis is acknowledged as the pre-cancerous stage of HCC. Approximately, 80-90% of HCC develops in the fibrotic or cirrhotic livers. Hepatic stellate cells (HSCs), the main effector cells of liver fibrosis, could secret various biological contents to maintain the liver inflammation. By decades, HSCs are increasingly correlated with HCC in the tumor microenvironment. In this review, we summarized the underlying mechanisms that HSCs participated in the genesis and progression of HCC. HSCs secrete various bioactive contents and regulate tumor-related pathways, subsequently contribute to metastasis, angiogenesis, immunosuppression, chemoresistance and cancer stemness. The study indicates that HSC plays vital roles in HCC progression, suggesting it as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Mengna Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Huajie Miao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Rong Fu
- Department of Pathology, Affiliated Haian Hospital of Nantong University, 17 Zhongba Road, 226600, Haian, Jiangsu, China
| | - Jie Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| |
Collapse
|
13
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
14
|
Yuen VWH, Wong CCL. Hypoxia-inducible factors and innate immunity in liver cancer. J Clin Invest 2021; 130:5052-5062. [PMID: 32750043 DOI: 10.1172/jci137553] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver has strong innate immunity to counteract pathogens from the gastrointestinal tract. During the development of liver cancer, which is typically driven by chronic inflammation, the composition and biological roles of the innate immune cells are extensively altered. Hypoxia is a common finding in all stages of liver cancer development. Hypoxia drives the stabilization of hypoxia-inducible factors (HIFs), which act as central regulators to dampen the innate immunity of liver cancer. HIF signaling in innate immune cells and liver cancer cells together favors the recruitment and maintenance of pro-tumorigenic immune cells and the inhibition of anti-tumorigenic immune cells, promoting immune evasion. HIFs represent attractive therapeutic targets to inhibit the formation of an immunosuppressive microenvironment and growth of liver cancer.
Collapse
Affiliation(s)
| | - Carmen Chak-Lui Wong
- Department of Pathology and.,State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Chen Y, Qian B, Sun X, Kang Z, Huang Z, Ding Z, Dong L, Chen J, Zhang J, Zang Y. Sox9/INHBB axis-mediated crosstalk between the hepatoma and hepatic stellate cells promotes the metastasis of hepatocellular carcinoma. Cancer Lett 2020; 499:243-254. [PMID: 33246092 DOI: 10.1016/j.canlet.2020.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023]
Abstract
The activation of hepatic stellate cells (HSCs) and liver fibrosis in the peri-tumoral tissue contributes to the progression of hepatocellular carcinoma (HCC). However, the mechanisms underlying the crosstalk between hepatoma and peri-tumoral HSCs remain elusive. We found that the Sox9/INHBB axis is upregulated in HCC and is associated with tumor metastasis. Using gain- and loss-of-function approaches, we revealed that the Sox9/INHBB axis promotes the growth and metastasis of an orthotopic HCC tumor by activating the peri-tumoral HSCs. Mechanistically, Sox9 induces INHBB expression by directly binding to its enhancer, thus aiding in the secretion of activin B from hepatoma cells, and in turn, promoting the activation of the surrounding HSCs through activin B/Smad signaling. Furthermore, inhibition of activin B/Smad singaling attenuates the fibrotic response in the peri-tumoral tissue and decreases the incidence of metastasis. Finally, clinical analyses indicated a positive correlation between Sox9 and INHBB expression in HCC specimens and identified the Sox9/INHBB axis as a positive regulator of liver fibrosis. In conclusion, Sox9/INHBB axis-mediated crosstalk between hepatoma cells and HSCs induces a fertile environment favoring HCC metastasis, thereby exhibiting as a potential therapeutic target.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Baowei Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Xiaolin Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Zhiqian Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China; State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing, 210093, PR China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China.
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
16
|
Bai X, Su G, Zhai S. Recent Advances in Nanomedicine for the Diagnosis and Therapy of Liver Fibrosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1945. [PMID: 33003520 PMCID: PMC7599596 DOI: 10.3390/nano10101945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis, a reversible pathological process of inflammation and fiber deposition caused by chronic liver injury and can cause severe health complications, including liver failure, liver cirrhosis, and liver cancer. Traditional diagnostic methods and drug-based therapy have several limitations, such as lack of precision and inadequate therapeutic efficiency. As a medical application of nanotechnology, nanomedicine exhibits great potential for liver fibrosis diagnosis and therapy. Nanomedicine enhances imaging contrast and improves tissue penetration and cellular internalization; it simultaneously achieves targeted drug delivery, combined therapy, as well as diagnosis and therapy (i.e., theranostics). In this review, recent designs and development efforts of nanomedicine systems for the diagnosis, therapy, and theranostics of liver fibrosis are introduced. Relative to traditional methods, these nanomedicine systems generally demonstrate significant improvement in liver fibrosis treatment. Perspectives and challenges related to these nanomedicine systems translated from laboratory to clinical use are also discussed.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
17
|
Häussinger D, Kordes C. Space of Disse: a stem cell niche in the liver. Biol Chem 2020; 401:81-95. [PMID: 31318687 DOI: 10.1515/hsz-2019-0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Recent evidence indicates that the plasticity of preexisting hepatocytes and bile duct cells is responsible for the appearance of intermediate progenitor cells capable of restoring liver mass after injury without the need of a stem cell compartment. However, mesenchymal stem cells (MSCs) exist in all organs and are associated with blood vessels which represent their perivascular stem cell niche. MSCs are multipotent and can differentiate into several cell types and are known to support regenerative processes by the release of immunomodulatory and trophic factors. In the liver, the space of Disse constitutes a stem cell niche that harbors stellate cells as liver resident MSCs. This perivascular niche is created by extracellular matrix proteins, sinusoidal endothelial cells, liver parenchymal cells and sympathetic nerve endings and establishes a microenvironment that is suitable to maintain stellate cells and to control their fate. The stem cell niche integrity is important for the behavior of stellate cells in the normal, regenerative, aged and diseased liver. The niche character of the space of Disse may further explain why the liver can become an organ of extra-medullar hematopoiesis and why this organ is frequently prone to tumor metastasis.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Abstract
Chronic liver injury due to viral hepatitis, alcohol abuse, and metabolic disorders is a worldwide health concern. Insufficient treatment of chronic liver injury leads to fibrosis, causing liver dysfunction and carcinogenesis. Most cases of hepatocellular carcinoma (HCC) develop in the fibrotic liver. Pathological features of liver fibrosis include extracellular matrix (ECM) accumulation, mesenchymal cell activation, immune deregulation, and angiogenesis, all of which contribute to the precancerous environment, supporting tumor development. Among liver cells, hepatic stellate cells (HSCs) and macrophages play critical roles in fibrosis and HCC. These two cell types interplay and remodel the ECM and immune microenvironment in the fibrotic liver. Once HCC develops, HCC-derived factors influence HSCs and macrophages to switch to protumorigenic cell populations, cancer-associated fibroblasts and tumor-associated macrophages, respectively. This review aims to summarize currently available data on the roles of HSCs and macrophages in liver fibrosis and HCC, with a focus on their interaction.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
19
|
Chan YT, Wang N, Tan HY, Li S, Feng Y. Targeting Hepatic Stellate Cells for the Treatment of Liver Fibrosis by Natural Products: Is It the Dawning of a New Era? Front Pharmacol 2020; 11:548. [PMID: 32425789 PMCID: PMC7212390 DOI: 10.3389/fphar.2020.00548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition that is worth studying widely. It is important to target and alleviate the disease at an early stage before turning into later cirrhosis or liver cancer. There are currently no direct medicines targeting the attenuation or reversal of liver fibrosis, and so there is an urgent need to look into this area. Traditional Chinese Medicine has a long history in using herbal medicines to treat liver diseases including fibrosis. It is time to integrate the ancient wisdom with modern science and technology to look for the best solution to the disease. In this review, the principal concept of the pathology of liver fibrosis will be described, and then some of the single compounds isolated from herbal medicines, including salvianolic acids, oxymatrine, curcumin, tetrandrine, etc. will be discussed from their effects to the molecular mechanism behind. Molecular targets of the compounds are analyzed by network pharmacology approach, and TGFβ/SMAD was identified as the most common pathway. This review serves to summarize the current findings of herbal medicines combining with modern medicines in the area of fibrosis. It hopefully provides insights in further pharmaceutical research directions.
Collapse
Affiliation(s)
| | | | | | | | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
20
|
Hypoxia sensing by hepatic stellate cells leads to VEGF-dependent angiogenesis and may contribute to accelerated liver regeneration. Sci Rep 2020; 10:4392. [PMID: 32152325 PMCID: PMC7062856 DOI: 10.1038/s41598-020-60709-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Portal vein ligation (PVL) induces liver growth prior to resection. Associating liver partition and portal vein ligation (PVL plus transection=ALPPS) or the addition of the prolyl-hydroxylase inhibitor dimethyloxalylglycine (DMOG) to PVL both accelerate growth via stabilization of HIF-α subunits. This study aims at clarifying the crosstalk of hepatocytes (HC), hepatic stellate cells (HSC) and liver sinusoidal endothelial cells (LSEC) in accelerated liver growth. In vivo, liver volume, HC proliferation, vascular density and HSC activation were assessed in PVL, ALPPS, PVL+DMOG and DMOG alone. Proliferation of HC, HSC and LSEC was determined under DMOG in vitro. Conditioned media experiments of DMOG-exposed cells were performed. ALPPS and PVL+DMOG accelerated liver growth and HC proliferation in comparison to PVL. DMOG alone did not induce HC proliferation, but led to increased vascular density, which was also observed in ALPPS and PVL+DMOG. Activated HSC were detected in ALPPS, PVL+DMOG and DMOG, again not in PVL. In vitro, DMOG had no proliferative effect on HC, but conditioned supernatant of DMOG-treated HSC induced VEGF-dependent proliferation of LSEC. Transcriptome analysis confirmed activation of proangiogenic factors in hypoxic HSC. Hypoxia signaling in HSC induces VEGF-dependent angiogenesis. HSC play a crucial role in the cellular crosstalk of rapid liver regeneration.
Collapse
|
21
|
The Gastrointestinal Tumor Microenvironment: An Updated Biological and Clinical Perspective. JOURNAL OF ONCOLOGY 2019; 2019:6240505. [PMID: 31885581 PMCID: PMC6893275 DOI: 10.1155/2019/6240505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal cancers are still responsible for high numbers of cancer-related deaths despite advances in therapy. Tumor-associated cells play a key role in tumor biology, by supporting or halting tumor development through the production of extracellular matrix, growth factors, cytokines, and extracellular vesicles. Here, we review the roles of these tumor-associated cells in the initiation, angiogenesis, immune modulation, and resistance to therapy of gastrointestinal cancers. We also discuss novel diagnostic and therapeutic strategies directed at tumor-associated cells and their potential benefits for the survival of these patients.
Collapse
|
22
|
Zhang J, Chu M. Differential roles of VEGF: Relevance to tissue fibrosis. J Cell Biochem 2019; 120:10945-10951. [PMID: 30793361 DOI: 10.1002/jcb.28489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Excessive extracellular matrix deposition and pathological vascularization are characteristics of fibrosis, which compromises the normal functioning of organs. Although whether angiogenesis can be induced and can occur in parallel with the progression of fibrosis has not been definitely determined, angiogenesis undoubtedly plays a vital role in fibrosis. Since vascular endothelial growth factor (VEGF) is one of the most effective proangiogenic factors, VEGF-targeting interventions have been a focus for the development of therapeutic strategies against fibrosis. In this review, we will summarize the current knowledge of the role of VEGF and its relevant mechanisms in fibrotic biology. We especially expect to provide a comprehensive overview of the therapeutic potential of VEGF-targeted therapy strategies to restore vascular function in the organs affected by fibrosis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| |
Collapse
|
23
|
Hettiarachchi GK, Katneni UK, Hunt RC, Kames JM, Athey JC, Bar H, Sauna ZE, McGill JR, Ibla JC, Kimchi-Sarfaty C. Translational and transcriptional responses in human primary hepatocytes under hypoxia. Am J Physiol Gastrointest Liver Physiol 2019; 316:G720-G734. [PMID: 30920299 PMCID: PMC6620582 DOI: 10.1152/ajpgi.00331.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver is the primary source of a large number of plasma proteins and plays a critical role in multiple biological processes. Inadequate oxygen supply characterizing various clinical settings such as liver transplantation exposes the liver to hypoxic conditions. Studies assessing hypoxia-induced global translational changes in liver are lacking. Here, we employed a recently developed ribosome-profiling technique to assess global translational responses of human primary hepatocytes exposed to acute hypoxic stress (1% O2) for the short term. In parallel, transcriptome profiling was performed to assess mRNA expression changes. We found that translational responses appeared earlier and were predominant over transcriptional responses. A significant decrease in translational efficiency of several ribosome genes indicated translational inhibition of new ribosome protein synthesis in hypoxia. Pathway enrichment analysis highlighted altered translational regulation of MAPK signaling, drug metabolism, oxidative phosphorylation, and nonalcoholic fatty liver disease pathways. Gene Ontology enrichment analysis revealed terms related to translation, metabolism, angiogenesis, apoptosis, and response to stress. Transcriptional induction of genes encoding heat shock proteins was observed within 30 min of hypoxia. Induction of genes encoding stress response mediators, metabolism regulators, and proangiogenic proteins was observed at 240 min. Despite the liver being the primary source of coagulation proteins and the implicated role of hypoxia in thrombosis, limited differences were observed in genes encoding coagulation-associated proteins. Overall, our study demonstrates the predominance of translational regulation over transcription and highlights differentially regulated pathways or biological processes in short-term hypoxic stress responses of human primary hepatocytes. NEW & NOTEWORTHY The novelty of this study lies in applying parallel ribosome- and transcriptome-profiling analyses to human primary hepatocytes in hypoxia. To our knowledge, this is the first study to assess global translational responses using ribosome profiling in hypoxic hepatocytes. Our results demonstrate the predominance of translational responses over transcriptional responses in early hepatic hypoxic stress responses. Furthermore, our study reveals multiple pathways and specific genes showing altered regulation in hypoxic hepatocytes.
Collapse
Affiliation(s)
- Gaya K. Hettiarachchi
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Upendra K. Katneni
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Ryan C. Hunt
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jacob M. Kames
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - John C. Athey
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Haim Bar
- 2Department of Statistics, University of Connecticut, Storrs, Connecticut
| | - Zuben E. Sauna
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Joseph R. McGill
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Juan C. Ibla
- 3Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chava Kimchi-Sarfaty
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
24
|
Takahashi T, Yoshioka M, Uchinami H, Nakagawa Y, Otsuka N, Motoyama S, Yamamoto Y. Hepatic Stellate Cells Play a Functional Role in Exacerbating Ischemia-Reperfusion Injury in Rat Liver. Eur Surg Res 2019; 60:74-85. [PMID: 31132769 DOI: 10.1159/000499750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE The involvement of hepatic stellate cells (HSCs) with ischemia-reperfusion (I/R) injury in rat liver was examined using gliotoxin, which is known to induce HSC apoptosis. METHODS Male Sprague-Dawley rats were used. HSC was represented by a glial fibrillary acidic protein (GFAP)-positive cell. Liver ischemia was produced by cross-clamping the hepatoduodenal ligament. The degree of I/R injury was evaluated by a release of aminotransferases. Sinusoidal diameter and sinusoidal perfusion rates were examined using intravital fluorescence microscopy. RESULTS Gliotoxin significantly decreased the number of GFAP-positive cells 48 h after dosing (2.50 ± 0.19% [mean ± SD] in the nontreated group vs. 1.91 ± 0.46% in the gliotoxin-treated group). Liver damage was significantly suppressed by the pretreatment with gliotoxin. Sinusoidal diameters in zone 3 were wider in the gliotoxin group (10.25 ± 0.35 µm) than in the nontreated group (8.21 ± 0.50 µm). The sinusoidal perfusion rate was maintained as well in the gliotoxin group as in normal livers, even after I/R. CONCLUSIONS Pretreatment with gliotoxin significantly reduced the number of HSCs in the liver and further suppressed liver injury following I/R. It is strongly suggested that HSCs play a functional role in exacerbating the degree of I/R injury of the liver.
Collapse
Affiliation(s)
- Tomokazu Takahashi
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Masato Yoshioka
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Hiroshi Uchinami
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yasuhiko Nakagawa
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Naohiko Otsuka
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoru Motoyama
- Department of Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuzo Yamamoto
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
25
|
The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int J Mol Sci 2019. [PMID: 30959975 DOI: 10.3390/ijms20071723.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with cancer cells to affect tumor growth and invasion. In this review, we describe the different components which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME), focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT). New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new therapeutic strategies for liver cancer.
Collapse
|
26
|
Baglieri J, Brenner DA, Kisseleva T. The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20071723. [PMID: 30959975 PMCID: PMC6479943 DOI: 10.3390/ijms20071723] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with cancer cells to affect tumor growth and invasion. In this review, we describe the different components which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME), focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT). New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new therapeutic strategies for liver cancer.
Collapse
Affiliation(s)
- Jacopo Baglieri
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | - David A Brenner
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
27
|
Hüsing-Kabar A, Meister T, Köhler M, Domschke W, Kabar I, Wilms C, Hild B, Schmidt HH, Heinzow HS. Is de novo hepatocellular carcinoma after transjugular intrahepatic portosystemic shunt increased? United European Gastroenterol J 2018; 6:413-421. [PMID: 29774155 PMCID: PMC5949971 DOI: 10.1177/2050640617732886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Portal hypertension is a major complication of liver cirrhosis. Transjugular intrahepatic portosystemic shunt is effective in treatment of portal hypertension. However, decreased parenchymal portal venous flow after transjugular intrahepatic portosystemic shunt insertion favours ischaemic liver injury which has been discussed to induce hepatocarcinogenesis causing hepatocellular cancer. AIM This study aimed to explore the association between transjugular intrahepatic portosystemic shunt placement and the development of hepatocellular cancer. METHODS A total of 1338 consecutive liver cirrhosis patients were included in this retrospective study between January 2004-December 2015. Data were analysed with regard to development of hepatocellular cancer during follow-up. Binary logistic regression and Kaplan-Meier analyses were conducted for the assessment of risk factors for hepatocellular cancer development. In a second step, to rule out confounders of group heterogeneity, case-control matching was performed based on gender, age, model of end-stage liver disease score and underlying cause of cirrhosis (non-alcoholic steatohepatitis, alcoholic liver disease and viral hepatitis). RESULTS Besides established risk factors such as older age, male gender and underlying viral hepatitis, statistical analysis revealed the absence of transjugular intrahepatic portosystemic shunt insertion as a risk factor for hepatocellular cancer development. Furthermore, matched-pair analysis of 432 patients showed a significant difference (p = 0.003) in the emergence of hepatocellular cancer regarding transjugular intrahepatic portosystemic shunt placement versus the non-transjugular intrahepatic portosystemic shunt cohort. CONCLUSION In patients with end-stage liver disease, transjugular intrahepatic portosystemic shunt insertion is significantly associated with reduced rates of hepatocellular cancer development.
Collapse
Affiliation(s)
- A Hüsing-Kabar
- Department of Transplant Medicine, University Hospital
Muenster, Muenster, Germany
| | - T Meister
- Department of Gastroenterology, HELIOS
Albert-Schweitzer-Hospital Northeim, Northeim, Germany
| | - M Köhler
- Department of Clinical Radiology, University Hospital
Muenster, Muenster, Germany
| | - W Domschke
- Department of Medicine B, University Hospital
Muenster, Muenster, Germany
| | - I Kabar
- Department of Transplant Medicine, University Hospital
Muenster, Muenster, Germany
| | - C Wilms
- Department of Transplant Medicine, University Hospital
Muenster, Muenster, Germany
| | - B Hild
- Department of Transplant Medicine, University Hospital
Muenster, Muenster, Germany
| | - HH Schmidt
- Department of Transplant Medicine, University Hospital
Muenster, Muenster, Germany
| | - HS Heinzow
- Department of Transplant Medicine, University Hospital
Muenster, Muenster, Germany
| |
Collapse
|
28
|
Störmann P, Kupsch J, Kontradowitz K, Leiblein M, Verboket R, Seebach C, Marzi I, Henrich D, Nau C. Cultivation of EPC and co-cultivation with MSC on β-TCP granules in vitro is feasible without fibronectin coating but influenced by scaffolds' design. Eur J Trauma Emerg Surg 2018. [PMID: 29523894 DOI: 10.1007/s00068-018-0935-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Meanwhile, the osteoconductive properties of frequently used synthetic bone grafts can be improved by the use of osteoinductive cells and growth factors. Nevertheless, the cultivation of endothelial progenitor cells (EPC) seems to be difficult and requires a pre-conditioning of the scaffolds with fibronectin. Additionally, the influence of the scaffolds' design on cell cultivation is not fully elucidated. METHODS As scaffold, a commercially available β-tricalcium phosphate was used. 5 × 105 EPC, or 5 × 105 MSC or a combination of each 2.5 × 105 cells was seeded onto the granules. We investigated seeding efficiency, cell morphology, cell metabolism, adherence, apoptosis and gene expression of EPC and MSC in this in vitro study on days 2, 6 and 10. RESULTS Total number of adherent cells was higher on the β-TCP without fibronectin coating. The number of cells in all approaches significantly declined when a solid β-TCP was used. Metabolic activity of MSC was comparable throughout the scaffolds and increased until day 10. Additionally, the amount of supernatants VEGF was higher for MSC than for EPC. DISCUSSION Our results demonstrate that a coating of the scaffold for successful cultivation of EPC in vitro is not necessary. Furthermore, our study showed that structural differences of the scaffolds significantly influenced cell adherence and metabolic activity. Thereby, the influence on EPC seems to be higher than on MSC.
Collapse
Affiliation(s)
- Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Juliane Kupsch
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Kerstin Kontradowitz
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Maximilian Leiblein
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - René Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Caroline Seebach
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christoph Nau
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
29
|
Modulation of HIF-1α and STAT3 signaling contributes to anti-angiogenic effect of YC-1 in mice with liver fibrosis. Oncotarget 2017; 8:86206-86216. [PMID: 29156788 PMCID: PMC5689678 DOI: 10.18632/oncotarget.21039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The aim of the study was to evaluate the mechanisms of HIF-1α inhibitor, YC-1, during bile duct ligation (BDL)-induced liver fibrosis in mice. Liver fibrosis was induced in mice, and YC-1 was then given intraperitoneally (50 mg/kg) once daily following 5 days. Liver injuries mice that were treated with YC-1 showed improved inflammatory response and diminished angiogenesis and hepatic fibrosis. YC-1 treatment inhibited liver neutrophil infiltration, while a decreased in TNF-α signaling as well as macrophage aggregation. In addition, YC-1 downregulates iNOS and COX-2 levels by inhibiting the activation of NF-κB and STAT3 phosphorylation by negative regulation the expression of SOCS1 and SOCS3 signaling. On the other hand, YC-1 decreased angiogenesis, as shown by the downregulation of hypoxia-inducible cascade genes, i.e. VEGF. YC-1 treatment resulted in a significant decrease in hepatic fibrogenesis, α-SMA abundance, and TGF-βR1 expression as well as hypoxia were assessed using VEGFR1, vWF and HIF-1α immunostaining. These results suggest that multi-targeted therapies directed against angiogenesis, hypoxia, and fibrosis. Therefore, it may be suggested that YC-1 treatment may be a novel therapeutic agent for the treatment of liver disease.
Collapse
|
30
|
Garg M, Kaur S, Banik A, Kumar V, Rastogi A, Sarin SK, Mukhopadhyay A, Trehanpati N. Bone marrow endothelial progenitor cells activate hepatic stellate cells and aggravate carbon tetrachloride induced liver fibrosis in mice via paracrine factors. Cell Prolif 2017; 50:e12355. [PMID: 28682508 PMCID: PMC6529081 DOI: 10.1111/cpr.12355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Bone marrow derived endothelial progenitor cells (BM-EPCs) are increased in chronic liver disease (CLD). Their role in hepatic fibrosis and regeneration remains an area of intense studies. We investigated the migration and secretory functions of BM-EPCs in fibrotic mice liver. MATERIALS AND METHODS Bone marrow cells from C57BL6-GFP mice were transplanted into the femur of irradiated C57BL6 mice, followed by CCl4 doses for 8 weeks, to develop hepatic fibrosis (n = 36). Transplanted C57BL6 mice without CCl4 treatment were used as controls. EPCs were analyzed in BM, blood and liver by flow cytometry and immunofluorescence. VEGF and TGF-β were analysed in the hepatic stellate cells (HSCs) and BM-EPCs co-cultures using ELISAs. RESULTS There was a significant migration of EPCs from BM to blood and to the liver (P ≤ 0.01). Percentage of GFP+ CD31+ EPCs and collagen proportionate area was substantially increased in the liver at 4th week of CCl4 dosage compared to the controls (19.8% vs 1.9%, P ≤ 0.05). Levels of VEGF (533.6 pg/ml) and TGF-β (327.44 pg/ml) also increased significantly, when HSCs were treated with the EPC conditioned medium, as compared to controls (25.66 pg/ml and 5.87 pg/ml, respectively; P ≤ 0.001). CONCLUSIONS Present findings suggest that BM-EPCs migrate to the liver during CCl4-induced liver injury and contribute to fibrosis.
Collapse
Affiliation(s)
- Manali Garg
- Institute of Liver and Biliary SciencesDepartment of Molecular and Cellular MedicineNew DelhiIndia
| | - Savneet Kaur
- Gautam Buddha UniversityGreater NoidaUttar PradeshIndia
| | - Arpita Banik
- Institute of Liver and Biliary SciencesDepartment of Molecular and Cellular MedicineNew DelhiIndia
| | | | - Archana Rastogi
- Institute of Liver and Biliary SciencesDepartment of PathologyNew DelhiIndia
| | - Shiv K. Sarin
- Institute of Liver and Biliary SciencesDepartment of HepatologyNew DelhiIndia
| | | | - Nirupma Trehanpati
- Institute of Liver and Biliary SciencesDepartment of Molecular and Cellular MedicineNew DelhiIndia
| |
Collapse
|
31
|
Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M. Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G102-G116. [PMID: 28526690 PMCID: PMC5582882 DOI: 10.1152/ajpgi.00452.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 01/31/2023]
Abstract
Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals. Chronic damage and inflammation will ultimately result in pathological repair with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathological biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin that are able to orchestrate a complex process that involves a number of different cell types, under joint control of inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review contributes to the current debate by highlighting a number of new concepts derived from the study of the pathophysiology of chronic cholangiopathies, such as congenital hepatic fibrosis, biliary atresia, and Alagille syndrome.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; .,Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut.,International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Carlo Spirli
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Massimiliano Cadamuro
- 3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| | - Romina Fiorotto
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Mario Strazzabosco
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| |
Collapse
|
32
|
Salum GM, Bader El Din NG, Ibrahim MK, Anany MA, Dawood RM, Khairy A, El Awady MK. Vascular Endothelial Growth Factor Expression in Hepatitis C Virus-Induced Liver Fibrosis: A Potential Biomarker. J Interferon Cytokine Res 2017; 37:310-316. [PMID: 28472595 DOI: 10.1089/jir.2016.0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The major complication of hepatitis C virus (HCV) infection is the induction of hepatic fibrosis. In this study, we investigated the correlation between the expression level of vascular endothelial growth factor (VEGFA) at mRNA and protein levels and the progression of HCV-related liver fibrosis. One hundred twenty subjects were selected for this study: 15 controls and 105 chronic HCV patients with different fibrosis grades (44 F0-F1 and 61 F2-F4). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure VEGFA mRNA in peripheral blood mononuclear cells, while enzyme-linked immunosorbent assay (ELISA) was used to measure the secreted VEGFA protein in serum. Both qRT-PCR and ELISA results showed that HCV patients have significantly higher VEGFA expression than that of controls (P = 0.036 and 0.043, respectively). Moreover, patients with late fibrotic stages (F2-F4) exhibited the highest levels of VEGFA mRNA and protein (P = 0.008 and 0.041, respectively) when compared with controls. An area under the receiver operating characteristic curve (AUC of the ROC) for the circulatory VEGFA protein between HCV patients with fibrosis and healthy controls was 0.92 (P = 0.043). Our data suggest that VEGFA protein is a promising noninvasively diagnostic biomarker for HCV-induced liver fibrosis.
Collapse
Affiliation(s)
- Ghada M Salum
- 1 Department of Microbial Biotechnology, Genetic Engineering Division, National Research Center, Giza, Egypt
| | - Noha G Bader El Din
- 1 Department of Microbial Biotechnology, Genetic Engineering Division, National Research Center, Giza, Egypt
| | - Marwa K Ibrahim
- 1 Department of Microbial Biotechnology, Genetic Engineering Division, National Research Center, Giza, Egypt
| | - Mohamed A Anany
- 1 Department of Microbial Biotechnology, Genetic Engineering Division, National Research Center, Giza, Egypt
| | - Reham M Dawood
- 1 Department of Microbial Biotechnology, Genetic Engineering Division, National Research Center, Giza, Egypt
| | - Ahmed Khairy
- 2 Department of Endemic Medicine, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Mostafa K El Awady
- 1 Department of Microbial Biotechnology, Genetic Engineering Division, National Research Center, Giza, Egypt
| |
Collapse
|
33
|
Li X, Yao QY, Liu HC, Jin QW, Xu BL, Zhang SC, Tu CT. Placental growth factor silencing ameliorates liver fibrosis and angiogenesis and inhibits activation of hepatic stellate cells in a murine model of chronic liver disease. J Cell Mol Med 2017; 21:2370-2385. [PMID: 28378526 PMCID: PMC5618674 DOI: 10.1111/jcmm.13158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/13/2017] [Indexed: 01/18/2023] Open
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family and is involved in pathological angiogenesis associated with chronic liver diseases. However, the precise mechanisms underlying PlGF signalling contributing to liver fibrosis and angiogenesis remain largely unexplored. This study aimed to assess the effect of reducing PlGF expression using small interfering RNA (siRNA) on experimental liver fibrosis and angiogenesis, and to elucidate the underlying molecular mechanisms. Fibrosis was induced in mice by carbon tetrachloride (CCl4) for 8 weeks, and mice were treated with PlGF siRNA or non‐targeting control siRNA starting two weeks after initiating CCl4 injections. The results showed that PlGF was highly expressed in cirrhotic human and mice livers; which mainly distributed in activated hepatic stellate cells (HSCs). PlGF silencing robustly reduced liver inflammation, fibrosis, intrahepatic macrophage recruitment, and inhibited the activation of HSCs in vivo. Moreover, PlGF siRNA‐treated fibrotic mice showed diminished hepatic microvessel density and angiogenic factors, such as hypoxia‐inducible factor‐1α (HIF‐1α), VEGF and VEGF receptor‐1. Moreover, down‐regulation of PlGF with siRNA in HSCs inhibited the activation and proliferation of HSCs. Mechanistically, overexpression of PlGF in activated HSCs was induced by hypoxia dependent on HIF‐1α, and PlGF induces HSC activation and proliferation via activation the phosphatidylinositol 3‐kinase (PI3K)/Akt signalling pathways. These findings indicate that PlGF plays an important role in liver fibrosis‐associated angiogenesis and that blockage of PlGF could be an effective strategy for chronic liver disease.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun-Yan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Hong-Chun Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Qian-Wen Jin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Bei-Li Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shun-Cai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| | - Chuan-Tao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University and Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
34
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
35
|
Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:153-186. [PMID: 27959632 DOI: 10.1146/annurev-pathol-052016-100322] [Citation(s) in RCA: 490] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver cancer is the second leading cause of cancer mortality worldwide, causing more than 700,000 deaths annually. Because of the wide landscape of genomic alterations and limited therapeutic success of targeting tumor cells, a recent focus has been on better understanding and possibly targeting the microenvironment in which liver tumors develop. A unique feature of liver cancer is its close association with liver fibrosis. More than 80% of hepatocellular carcinomas (HCCs) develop in fibrotic or cirrhotic livers, suggesting an important role of liver fibrosis in the premalignant environment (PME) of the liver. Cholangiocarcinoma (CCA), in contrast, is characterized by a strong desmoplasia that typically occurs in response to the tumor, suggesting a key role of cancer-associated fibroblasts (CAFs) and fibrosis in its tumor microenvironment (TME). Here, we discuss the functional contributions of myofibroblasts, CAFs, and fibrosis to the development of HCC and CCA in the hepatic PME and TME, focusing on myofibroblast- and extracellular matrix-associated growth factors, fibrosis-associated immunosuppressive pathways, as well as mechanosensitive signaling cascades that are activated by increased tissue stiffness. Better understanding of the role of myofibroblasts in HCC and CCA development and progression may provide the basis to target these cells for tumor prevention or therapy.
Collapse
Affiliation(s)
- Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Le-Xing Yu
- Department of Medicine, Columbia University, New York, NY 10032;
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032;
| |
Collapse
|
36
|
Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6841-6850. [PMID: 27570421 PMCID: PMC4974583 DOI: 10.3748/wjg.v22.i30.6841] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression.
Collapse
|
37
|
Park S, Kim JW, Kim JH, Lim CW, Kim B. Differential Roles of Angiogenesis in the Induction of Fibrogenesis and the Resolution of Fibrosis in Liver. Biol Pharm Bull 2016; 38:980-5. [PMID: 26133707 DOI: 10.1248/bpb.b15-00325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver fibrosis is a wound healing process that includes inflammation, deposition of extracellular matrix molecules, and pathological neovascularization. Angiogenesis, which is defined by the formation of new blood vessels from pre-existing vessels, is a complex and dynamic process under both physiological and pathological conditions. Although whether angiogenesis can induce or occur in parallel with the progression of hepatic fibrosis has not yet been determined, intrahepatic sinusoidal formation and remodeling are key features of liver fibrosis. Some recent evidence has suggested that experimental inhibition of angiogenesis ameliorates the development of liver fibrosis, while other recent studies indicate that neutralization or genetic ablation of vascular endothelial growth factor (VEGF) in myeloid cells can delay tissue repair and fibrosis resolution in damaged liver. In this review, we briefly summarize the current knowledge about the differential roles of angiogenesis in the induction of fibrogenesis and the resolution of fibrosis in damaged livers. Possible strategies for the prevention and treatment of liver fibrosis are also discussed.
Collapse
Affiliation(s)
- Surim Park
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine
(BK21 Plus Program), Chonbuk National University
| | | | | | | | | |
Collapse
|
38
|
Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and Fibrogenesis in Chronic Liver Diseases. Cell Mol Gastroenterol Hepatol 2015; 1:477-488. [PMID: 28210697 PMCID: PMC5301407 DOI: 10.1016/j.jcmgh.2015.06.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
Pathologic angiogenesis appears to be intrinsically associated with the fibrogenic progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several laboratories have suggested that this association is relevant for chronic liver disease progression, with angiogenesis proposed to sustain fibrogenesis. This minireview offers a synthesis of relevant findings and opinions that have emerged in the last few years relating liver angiogenesis to fibrogenesis. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role of hypoxia and hypoxia-inducible factors and assess the evidence supporting a clear relationship between angiogenesis and fibrogenesis. A section is dedicated to the critical interactions between liver sinusoidal endothelial cells and either quiescent hepatic stellate cells or myofibroblast-like stellate cells. Finally, we introduce the unusual, dual (profibrogenic and proangiogenic) role of hepatic myofibroblasts and emerging evidence supporting a role for specific mediators like vasohibin and microparticles and microvesicles.
Collapse
Key Words
- ANGPTL3, angiopoietin-like-3 peptide
- Akt, protein kinase B
- Ang-1, angiopoietin-1
- CCL2, chemokine ligand 2
- CCR, chemokine receptor
- CLD, chronic liver disease
- ET-1, endothelin 1
- HCC, hepatocellular carcinoma
- HIF, hypoxia-inducible factor
- HSC, hepatic stellate cell
- HSC/MFs, myofibroblast-like cells from activated hepatic stellate cells
- Hh, Hedgehog
- Hypoxia
- LSEC, liver sinusoidal endothelial cell
- Liver Angiogenesis
- Liver Fibrogenesis
- MF, myofibroblast
- MP, microparticle
- Myofibroblasts
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NO, nitric oxide
- PDGF, platelet-derived growth factor
- ROS, reactive oxygen species
- VEGF, vascular endothelial growth factor
- VEGF-R2, vascular endothelial growth factor receptor type 2
- eNOS, endothelial nitric oxide synthase
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | | | | | - Maurizio Parola
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, School of Medicine, University of Torino, Torino, Italy
| |
Collapse
|
39
|
Elshal M, Abu-Elsaad N, El-Karef A, Ibrahim TM. The multi-kinase inhibitor pazopanib targets hepatic stellate cell activation and apoptosis alleviating progression of liver fibrosis. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1293-304. [DOI: 10.1007/s00210-015-1157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
|
40
|
Thompson AI, Conroy KP, Henderson NC. Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterol 2015; 15:63. [PMID: 26013123 PMCID: PMC4445994 DOI: 10.1186/s12876-015-0291-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/15/2015] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related death worldwide, and is increasing in incidence. Currently, our therapeutic repertoire for the treatment of HCC is severely limited, and therefore effective new therapies are urgently required. Recently, there has been increasing interest focusing on the cellular and molecular interactions between cancer cells and their microenvironment. HCC represents a unique opportunity to study the relationship between a diseased stroma and promotion of carcinogenesis, as 90 % of HCCs arise in a cirrhotic liver. Hepatic stellate cells (HSC) are the major source of extracellular proteins during fibrogenesis, and may directly, or via secreted products, contribute to tumour initiation and progression. In this review we explore the complex cellular and molecular interplay between HSC biology and hepatocarcinogenesis. We focus on the molecular mechanisms by which HSC modulate HCC growth, immune cell evasion and angiogenesis. This is followed by a discussion of recent progress in the field in understanding the mechanistic crosstalk between HSC and HCC, and the pathways that are potentially amenable to therapeutic intervention. Furthermore, we summarise the exciting recent developments in strategies to target HSC specifically, and novel techniques to deliver pharmaceutical agents directly to HSC, potentially allowing tailored, cell-specific therapy for HCC.
Collapse
Affiliation(s)
- Alexandra I Thompson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| | - Kylie P Conroy
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| | - Neil C Henderson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| |
Collapse
|
41
|
Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R. Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res 2015; 45:326-36. [PMID: 24827154 DOI: 10.1111/hepr.12356] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 04/21/2014] [Accepted: 05/07/2014] [Indexed: 12/23/2022]
Abstract
AIM Cancer is not only influenced by specific tumor cells but also by the stromal microenvironment. Upon liver damage, activated hepatic stellate cells (aHSC) become highly proliferative myofibroblast-like cells and are thought to secrete molecules that influence development of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of aHSC in the development of HCC. METHODS To assess if aHSC secreted factor(s) that promote microvascular endothelial cell (MEC) tube formation, MEC were plated with aHSC-conditioned medium and tube formation analyzed by light microscopy. An established transendothelial migration assay with MEC was used to evaluate the role of aHSC in migration and metastasis. A novel in vitro and in vivo orthotopic mouse HCC tumor model was used to investigate angiogenic, proliferative and metastatic activity of aHSC. RESULTS We found that aHSC promoted angiogenesis both in vitro and in vivo through vascular endothelial growth factor (VEGF). aHSC-conditioned medium increased the ability of MEC to form tubes which was dependent upon aHSC-secreted VEGF. In addition, HCC orthogenic tumors derived from co-injection of H22 cells plus aHSC into the hepatic lobes of mice had greater cell proliferation and vascularization, as evaluated by the presence of CD34 and VEGF expression, than tumors resulting from H22 injections alone. aHSC also migrated from the primary tumor to sites of metastasis. CONCLUSION Our findings support aHSC playing multiple roles in HCC development and metastasis.
Collapse
Affiliation(s)
- Nan Lin
- Department of Hepatobiliary Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, GuangZhou, Hainan Province, China
| | | | | | | | | | | |
Collapse
|
42
|
Gautam M, Fujita D, Kimura K, Ichikawa H, Izawa A, Hirose M, Kashihara T, Yamada M, Takahashi M, Ikeda U, Shiba Y. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model. J Mol Cell Cardiol 2015; 81:139-49. [PMID: 25724725 DOI: 10.1016/j.yjmcc.2015.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023]
Abstract
The transplantation of adipose tissue-derived stem cells (ADSCs) improves cardiac contractility after myocardial infarction (MI); however, little is known about the electrophysiological consequences of transplantation. The purpose of this study was to clarify whether the transplantation of ADSCs increases or decreases the incidence of ventricular tachyarrhythmias (VT) in a rat model of MI. MI was induced experimentally by permanent occlusion of the left anterior descending artery of Lewis rats. ADSCs were harvested from GFP-transgenic rats, and were cultured until passage four. ADSCs (10×10(6)) resuspended in 100μL saline or pro-survival cocktail (PSC), which enhances cardiac graft survival, were injected directly into syngeneic rat hearts 1week after MI. The recipients of ADSCs suspended in PSC had a larger graft area compared with those receiving ASDCs suspended in saline at 1week post-transplantation (number of graft cells/section: 148.7±10.6 vs. 22.4±3.4, p<0.05, n=5/group). Thereafter, all ADSC recipients were transplanted with ASDCs in PSC. ADSCs were transplanted into infarcted hearts, and the mechanical and electrophysiological functions were assessed. Echocardiography revealed that ADSC recipients had improved contractile function compared with those receiving PSC vehicle (fractional shortening: 21.1±0.9 vs. 14.1±1.2, p<0.05, n≥12/group). Four weeks post-transplantation, VT was induced via in vivo programmed electrical stimulation. The recipients of ADSCs showed a significantly lower incidence of induced VT compared with the control (31.3% vs. 83.3%, p<0.05, n≥12/group). To understand the electrical activity following transplantation, we performed ex vivo optical mapping using a voltage sensitive dye, and found that ADSC transplantation decreased conduction velocity and its dispersion in the peri-infarct area. These results suggest that ADSC transplantation improved cardiac mechanical and electrophysiological functions in subacute MI.
Collapse
Affiliation(s)
- Milan Gautam
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Daiki Fujita
- Department of Anatomy and Organ Technology, Shinshu University, Matsumoto, Japan; Department of Biotechnology and Biomedical Engineering, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Kazuhiro Kimura
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Hinako Ichikawa
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Atsushi Izawa
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Masamichi Hirose
- Department of Molecular and Cellular Pharmacology, Iwate Medical University, Iwate, Japan
| | | | | | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Uichi Ikeda
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan; Department of Biotechnology and Biomedical Engineering, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
43
|
Li SQ, Wang DM, Zhu S, Ma Z, Li RF, Xu ZS, Han HM. The important role of ADAM8 in the progression of hepatocellular carcinoma induced by diethylnitrosamine in mice. Hum Exp Toxicol 2015; 34:1053-72. [DOI: 10.1177/0960327114567767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study focuses on investigating the concrete role of a disintegrin and metalloproteinase 8 (ADAM8) in the progression of hepatocellular carcinoma (HCC). Mice received anti-ADAM8 monoclonal antibody (mAb) of 100 μg/100 μl, 200 μg/100 μl or 300 μg/100 μl, respectively, in phosphate-buffered saline (PBS) or PBS intervention during the progression of HCC induced by diethylnitrosamine. The survival rate, body weight, and relative liver weight were determined in the mice. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and α-fetoprotein (AFP) level, hematoxylin–eosin staining, the expression level of vascular endothelial growth factor A (VEGF-A), proliferating cell nuclear antigen (PCNA), caspase 3 (Casp3), B cell leukemia 2 (Bcl2), B cell leukemia 2-associated X protein (Bax), protein p53 (P53), and ADAM8 were detected in the mice at the end of the 24th week. Our results showed that anti-ADAM8 mAb intervention effectively improved the survival rate, reduced the body weight loss and increased the relative liver weight in mice in a dose-dependent manner ( p < 0.05 or p < 0.01). Anti-ADAM8 mAb intervention also significantly lowered serum AST, ALT, and AFP levels ( p < 0.05 or p < 0.01), slowed the progression of HCC ( p < 0.05 or p < 0.01), induced the expression of Casp3, Bax, and P53 ( p < 0.05 or p < 0.01), and inhibited the expression of VEGF-A, PCNA, and Bcl2 in the liver of mice ( p < 0.05 or p < 0.01) in a dose-dependent manner compared with the mice receiving PBS intervention. Our study suggested that ADAM8 might promote the progression of HCC by regulating the expression of these factors. Anti-ADAM8 mAb intervention might be suitable as a potential method for HCC therapy.
Collapse
Affiliation(s)
- S-Q Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - D-M Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - S Zhu
- Department of Microbiology Immunology, College of Basic Medical Sciences, Zhengzhou University, People’s Republic of China
| | - Z Ma
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - R-F Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Z-S Xu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - H-M Han
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People’s Republic of China
| |
Collapse
|
44
|
Lee TY, Chang HH, Wen CK, Huang TH, Chang YS. Modulation of thioacetamide-induced hepatic inflammations, angiogenesis and fibrosis by andrographolide in mice. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:423-430. [PMID: 25446592 DOI: 10.1016/j.jep.2014.10.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 10/14/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a complex disease in which several pathological processes, such as inflammation and angiogenesis, are closely integrated. MATERIALS AND METHODS We hypothesised that treatment with the pharmacological agent, andrographolide (AP), which has multiple mechanisms of action, will provide a greater understanding of the role of AP during the multiple pathological processes that occur in advanced liver disease. RESULTS Liver fibrogenesis was induced in mice using thioacetamide (TAA), which was administrated for 6 weeks. Andrographolide (5, 20 or 100mg/kg) was then given once daily following TAA injection. Liver collagen was examined using hydroxyproline and α-SMA, while the inflammatory response was quantified by Western blot and RT-PCR assays. Liver angiogenesis, neutrophil infiltration and hypoxia were assessed using CD11b+, vWF and HIF-1α immunostaining. Mice with liver injuries that were treated with andrographolide showed improved inflammatory response and diminished angiogenesis and hepatic fibrosis. Andrographolide treatment inhibited liver neutrophil infiltration, while a decreased in TNF-α and COX-2 signalling indicated macrophage activation. Andrographolide decreased overall liver hypoxia, as shown by the downregulation of hypoxia-inducible cascade genes, such as VEGF. Andrographolide treatment resulted in a significant decrease in hepatic fibrogenesis, α-SMA abundance, and TGF-βR1 expression. CONCLUSIONS The present results suggest that multi-targeted therapies directed against angiogenesis, inflammation, and fibrosis should be considered for the treatment of advanced liver injury. They further suggest that andrographolide treatment may be a novel therapeutic agent for the treatment of liver disease.
Collapse
Affiliation(s)
- Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taiwan.
| | - Hen-Hong Chang
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taiwan; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
| | - Chorng-Kai Wen
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Tse-Hung Huang
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ya-Shu Chang
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taiwan
| |
Collapse
|
45
|
Li SQ, Zhu S, Wan XD, Xu ZS, Ma Z. Neutralization of ADAM8 ameliorates liver injury and accelerates liver repair in carbon tetrachloride-induced acute liver injury. J Toxicol Sci 2014; 39:339-51. [PMID: 24646716 DOI: 10.2131/jts.39.339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although some studies have described the function of ADAM8 (a disintegrin and metalloprotease 8) related with rheumatoid arthritis, cancer and asthma, etc., the concrete role of ADAM8 in acute liver injury is still unknown. So mice respectively received anti-ADAM8 monoclonal antibody (mAb) of 100 μg/100 μl, 200 μg/100 μl or 300 μg/100 μl in PBS or PBS pre-injection. Then acute liver injury was induced in the mice by intraperitoneal (i.p.) injection of carbon tetrachloride (CCl₄). Serum AST and ALT level, Haematoxylin-eosin (H&E) staining, the expression level of vascular endothelial growth factor (VEGF), cytochrome P450 1A2 (CYP1A2) and proliferating cell nuclear antigen (PCNA) were detected in the mice after CCl4 administration. Our results showed that anti-ADAM8 mAb pre-injection could effectively lower AST and ALT levels (P < 0.05 or P < 0.01) and reduce liver injury (P < 0.05 or P <0.01), induce the expression of VEGF, CYP1A2 and PCNA (P <0.05 or P < 0.01) in dose-dependent manner compared with the control mice which received PBS pre-injection. In summary, our study suggested that ADAM8 might promote liver injury by inhibiting the proliferation of hepatocytes, angiogenesis and affecting the metabolism function of liver during acute liver injury induced by CCl₄. Anti-ADAM8 mAb injection might be suitable as a potential method for acute liver injury therapy.
Collapse
Affiliation(s)
- San-Qiang Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, China
| | | | | | | | | |
Collapse
|
46
|
Martín-Vílchez S, Rodríguez-Muñoz Y, López-Rodríguez R, Hernández-Bartolomé Á, Borque-Iñurrita MJ, Molina-Jiménez F, García-Buey L, Moreno-Otero R, Sanz-Cameno P. Inhibition of tyrosine kinase receptor Tie2 reverts HCV-induced hepatic stellate cell activation. PLoS One 2014; 9:e106958. [PMID: 25302785 PMCID: PMC4193738 DOI: 10.1371/journal.pone.0106958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/12/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hepatitis C virus (HCV) infection is a major cause of chronic liver disease (CLD) and is frequently linked to intrahepatic microvascular disorders. Activation of hepatic stellate cells (HSC) is a central event in liver damage, due to their contribution to hepatic renewal and to the development of fibrosis and hepatocarcinoma. During the progression of CLDs, HSC attempt to restore injured tissue by stimulating repair processes, such as fibrosis and angiogenesis. Because HSC express the key vascular receptor Tie2, among other angiogenic receptors and mediators, we analyzed its involvement in the development of CLD. Methods Tie2 expression was monitored in HSC cultures that were exposed to media from HCV-expressing cells (replicons). The effects of Tie2 blockade on HSC activation by either neutralizing antibody or specific signaling inhibitors were also examined. Results Media from HCV-replicons enhanced HSC activation and invasion and upregulated Tie2 expression. Notably, the blockade of Tie2 receptor (by a specific neutralizing antibody) or signaling (by selective AKT and MAPK inhibitors) significantly reduced alpha-smooth muscle actin (α-SMA) expression and the invasive potential of HCV-conditioned HSC. Conclusions These findings ascribe a novel profibrogenic function to Tie2 receptor in the progression of chronic hepatitis C, highlighting the significance of its dysregulation in the evolution of CLDs and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Samuel Martín-Vílchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Yolanda Rodríguez-Muñoz
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosario López-Rodríguez
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángel Hernández-Bartolomé
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Jesús Borque-Iñurrita
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisca Molina-Jiménez
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Luisa García-Buey
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ricardo Moreno-Otero
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Paloma Sanz-Cameno
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury. PLoS One 2014; 9:e108505. [PMID: 25290689 PMCID: PMC4188519 DOI: 10.1371/journal.pone.0108505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.
Collapse
|
48
|
Cheung CHY, Chiu JMY, Wu RSS. Hypoxia turns genotypic female medaka fish into phenotypic males. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1260-9. [PMID: 25011919 DOI: 10.1007/s10646-014-1269-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2014] [Indexed: 05/26/2023]
Abstract
Hypoxia caused by eutrophication is amongst the most pressing global problems in aquatic systems. Notably, more than 400 "dead zones" have been identified worldwide, resulting in large scale collapse of fisheries and major changes in the structure and trophodynamics. Recent studies further discovered that hypoxia can also disrupt sex hormone metabolism and alter the sexual differentiation of fish, resulting in male biased F1 generations and therefore posing a threat to the sustainability of natural populations. However, it is not known whether, and if so how, hypoxia can also change the sex ratio in vertebrates that have sex-determining XX/XY chromosomes. Using the Japanese medaka (Oryzias latipes) as a model, we demonstrate, for the first time, that hypoxia can turn genotypic female fish with XX chromosomes into phenotypic males. Over half of the XX females exposed to hypoxia exhibit male secondary sexual characteristics and develop testis instead of ovary. We further revealed that hypoxia can: (a) down-regulate the vasa gene, which controls proliferation of primordial germ cells and gonadal sex differentiation into ovary, and (b) up-regulate the DMY gene which resides at the sex-determining locus of the Y chromosome, and direct testis differentiation. This is the first report that hypoxia can directly act on genes that regulate sex determination and differentiation, thereby turning genotypic females into phenotypic males and leading to a male-dominant F1 population.
Collapse
Affiliation(s)
- Catis Hin Ying Cheung
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | | | | |
Collapse
|
49
|
Lee SH, Do SI, Kim HS. Hyperoxia accelerates progression of hepatic fibrosis by up-regulation of transforming growth factor-β expression. World J Gastroenterol 2014; 20:3011-3017. [PMID: 24659892 PMCID: PMC3961973 DOI: 10.3748/wjg.v20.i11.3011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/10/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of hypoxia or hyperoxia on the progression of hepatic fibrosis and to examine the role of transforming growth factor-β (TGF-β) in the livers of rats exposed to hypoxic or hyperoxic conditions.
METHODS: Male Sprague-Dawley rats were injected intraperitoneally with thioacetamide to induce hepatic fibrosis and were randomly divided into a hypoxia group, a hyperoxia group and an untreated control group. Ten rats in the hypoxia group were exposed to an altitude of 20000 ft for 1 h/d during 7 wk. Ten rats in the hyperoxia group were exposed to a water depth of 20 m with 100% oxygen supply for 1 h/d during 7 wk. We evaluated the degree of hepatic fibrosis using Masson trichrome stain and examined the expression level of hepatic TGF-β mRNA using quantitative real-time reverse transcriptase-polymerase chain reaction analysis.
RESULTS: Eight of 10 rats exposed to hypoxia showed diffuse and confluent fibrosis with the formation of structurally abnormal parenchymal nodules involving the entire liver, consistent with hepatic cirrhosis. Nine of 10 rats exposed to hyperoxia also demonstrated obvious histological findings of hepatic cirrhosis identical to those in hypoxic rat livers. In contrast, 8 of 10 untreated rats had periportal or septal fibrosis only. The frequency of hepatic cirrhosis in hypoxic rats (P = 0.009) and hyperoxic rats (P = 0.003) was significantly higher than that in untreated rats. In addition, hepatic TGF-β mRNA levels in hyperoxic rats were significantly higher than those in untreated rats. The mean value of the normalized TGF-β mRNA/β-actin expression ratio in the hyperoxic rats was 1.9-fold higher than that in the untreated rats (P = 0.027).
CONCLUSION: We demonstrated that both hypoxia and hyperoxia accelerated the progression of hepatic fibrosis in rats. Significant up-regulation of hepatic TGF-β in hyperoxic rats suggests that TGF-β is involved in the acceleration of hepatic fibrosis under hyperoxic conditions.
Collapse
|
50
|
Abstract
Angiogenesis, defined as the formation of new microvasculature from preexisting blood vessels and mature endothelial cells, plays a major role in wound healing and scar formation, and it is associated with inflammatory responses. Angiogenesis can occur in physiological conditions, such as during liver regeneration, and in pathological situations, such as during the progression of fibrosis to cirrhosis and also during tumor angiogenesis. Cellular cross-talk among liver sinusoidal endothelial cells (LSECs), hepatic stellate cells and hepatocytes is believed to play an important role in the angiogenesis process during both liver regeneration and development of cirrhosis. In addition to mature endothelial cells, bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) have been recently identified for their contribution to post-natal vasculogenesis/angiogenesis. In vivo, EPCs are mobilized into the peripheral blood in response to tissue ischemia or traumatic injury, migrate to the sites of injured endothelium and differentiate into mature endothelial cells. In our recent studies, we have explored the role of EPC-mediated angiogenesis in liver regeneration and/or cirrhosis. Results have demonstrated significantly increased endogenous levels of circulating EPCs in cirrhotic patients in comparison to the controls. Also, EPCs from cirrhotic patients have been observed to stimulate substantial angiogenesis by resident LSECs in vitro via paracrine factors such as vascular endothelial growth factor and platelet-derived growth factor. This review gives an overview of the angiogenesis process in liver regeneration and disease and discusses a new mechanism for intrahepatic angiogenesis mediated by BM-derived EPCs.
Collapse
Affiliation(s)
- Savneet Kaur
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, UP, India.
| | - K Anita
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, UP, India
| |
Collapse
|