1
|
Martínez-Sánchez FD, Corredor-Nassar MJ, Feria-Agudelo SM, Paz-Zarza VM, Martinez-Perez C, Diaz-Jarquin A, Manzo-Santana F, Sánchez-Gómez VA, Rosales-Padron A, Baca-García M, Mejía-Ramírez J, García-Juárez I, Higuera-de la Tijera F, Pérez-Hernandez JL, Barranco-Fragoso B, Méndez-Sánchez N, Córdova-Gallardo J. Factors Associated With Advanced Liver Fibrosis in a Population With Type 2 Diabetes: A Multicentric Study in Mexico City. J Clin Exp Hepatol 2025; 15:102536. [PMID: 40226389 PMCID: PMC11982025 DOI: 10.1016/j.jceh.2025.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/23/2025] [Indexed: 04/15/2025] Open
Abstract
Background and objectives Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of chronic liver disease, primarily due to insulin resistance and type 2 diabetes (T2D). Despite the strong link between T2D and MASLD, identifying and treating liver fibrosis in T2D patients is still poor. This study aimed to identify the factors related to advanced liver fibrosis in T2D patients. Methods This retrospective observational study used medical records from four centers in Mexico City from 2018 to 2023. The study included 2000 patients with T2D. Liver fibrosis was evaluated using the Fibrosis-4 (FIB-4) index, and insulin resistance was assessed using the estimated glucose disposal rate (eGDR). Results The mean age of the patients was 58.9 years, with 63.7% being women. The median duration of T2D was 7 years, and the mean HbA1c was 7.63%. Overall, 20.4% had advanced liver fibrosis. The multivariate logistic regression analysis showed that diabetes duration >10 years {odds ratio (OR) = 2.105 (95% confidence interval [CI] 1.321-3.355)}, fasting glucose >126 mg/dL (OR = 1.568 [95% CI 1.085-2.265]), and microalbuminuria >300 mg/24 h (OR = 2.007 [95% CI 1.134-3.552]) were associated with advanced liver fibrosis. Conversely, the eGDR (OR = 0.805 [95% CI 0.703-0.888]), statins (OR = 0.111 [95% CI 0.073-0.168]), and pioglitazone (OR = 0.082 [95% CI 0.010-0.672]) were inversely associated. Conclusion Longer diabetes duration, insulin resistance, and microalbuminuria are independently linked to advanced liver fibrosis in T2D patients. Statins and pioglitazone may protect against liver fibrosis. Enhanced screening and management strategies targeting these factors could slow fibrosis progression and reduce the global burden of MASLD.
Collapse
Affiliation(s)
- Froylan D. Martínez-Sánchez
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Escolar 411A, Copilco Universidad, Coyoacán, 04360 Ciudad de México, Mexico
- Department of Internal Medicine, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
- Department of Hepatology, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Maria J. Corredor-Nassar
- Department of Internal Medicine, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Sandra M. Feria-Agudelo
- Department of Internal Medicine, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Victor M. Paz-Zarza
- Department of Internal Medicine, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Carolina Martinez-Perez
- Department of Hepatology, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Alejandra Diaz-Jarquin
- Department of Internal Medicine, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Fátima Manzo-Santana
- Department of Gastroneterology, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran”, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Victor A. Sánchez-Gómez
- Department of Gastroneterology, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran”, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Alondra Rosales-Padron
- Department of Gastroneterology, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran”, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Mónica Baca-García
- Department of Gastroneterology and Hepatology, Hospital General de Mexico “Dr. Eduardo Liceaga”, Dr. Balmis 148, Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Jessica Mejía-Ramírez
- Department of Gastroneterology and Hepatology, Hospital General de Mexico “Dr. Eduardo Liceaga”, Dr. Balmis 148, Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Ignacio García-Juárez
- Department of Gastroneterology, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran”, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| | - Fatima Higuera-de la Tijera
- Department of Gastroneterology and Hepatology, Hospital General de Mexico “Dr. Eduardo Liceaga”, Dr. Balmis 148, Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Jose L. Pérez-Hernandez
- Department of Gastroneterology and Hepatology, Hospital General de Mexico “Dr. Eduardo Liceaga”, Dr. Balmis 148, Doctores, Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Beatriz Barranco-Fragoso
- Department of Gastroneterology, Centro Medico Nacional 20 de Noviembre, ISSSTE, Félix Cuevas 540, Col del Valle Sur, Benito Juárez, 03104 Ciudad de México, Mexico
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Tlalpan, 14050, Ciudad de México, Mexico
| | - Jacqueline Córdova-Gallardo
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Escolar 411A, Copilco Universidad, Coyoacán, 04360 Ciudad de México, Mexico
- Department of Hepatology, Hospital General “Dr. Manuel Gea González”, Calz. de Tlalpan 4800, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, Mexico
| |
Collapse
|
2
|
Wang L, Zhang C, Ma J, Li J, Wu Y, Ren Y, Li J, Li Y, Yang Y. Mammalian Ste20-like kinase 1 regulates AMPK to mitigate the progression of non-alcoholic fatty liver disease. Eur J Med Res 2025; 30:296. [PMID: 40247356 PMCID: PMC12004885 DOI: 10.1186/s40001-025-02557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) progression is strongly associated with deteriorating hepatic function, primarily driven by free cholesterol (FC) accumulation-induced lipotoxicity. Emerging evidence highlights the regulatory role of mammalian Ste20-like kinase 1 (MST1) in modulating intrahepatic lipid homeostasis, suggesting its therapeutic potential for non-alcoholic fatty liver disease (NAFLD) management. This investigation seeks to elucidate the pathophysiological mechanisms through which MST1 modulates NASH progression. METHODS The experimental design employed two murine genetic models-wild-type (WT) controls and MST1-knockout (MST1-KO) specimens-subjected to a nutritionally modified Western diet (WD) enriched with saturated fats, simple carbohydrates, and dietary cholesterol to induce non-alcoholic steatohepatitis (NASH) pathogenesis. Lentiviral transduction techniques facilitated targeted MST1 overexpression in WT animals maintained on this dietary regimen. Parallel in vitro investigations utilized HepG2 hepatocyte cultures exposed to free fatty acid (FFA) cocktails comprising palmitic and oleic acids, coupled with CRISPR-mediated MST1 suppression and complementary gain-of-function manipulations to delineate molecular mechanisms. RESULTS NASH triggers hepatic sterol biosynthesis activation, resulting in pathological FC overload concurrent with MST1 transcriptional suppression. Genetic ablation of MST1 amplifies intrahepatic FC retention and potentiates histopathological inflammation, while MST1 reconstitution mitigates steatotic FC deposition and attenuates inflammatory cascades. Mechanistic profiling revealed MST1-mediated AMPKα phosphorylation at Thr172, which suppresses cholesterogenic enzyme expression via sterol regulatory element-binding transcription factor 2 (SREBP2) axis modulation. This phosphorylation cascade demonstrates dose-dependent inhibition of HMGCR activity, resolving FC-induced hepatotoxicity. Crucially, MST1 orchestrates AMPK/SREBP2 crosstalk to maintain sterol homeostasis, with knockout models exhibiting 67% elevated SREBP2 nuclear translocation compared to controls. CONCLUSIONS The regulatory axis involving MST1-mediated AMPK phosphorylation emerges as a promising therapeutic modality for modulating hepatic sterol metabolism. It demonstrates significant potential in arresting the progression of inflammatory cascades and extracellular matrix remodeling characteristic of NASH pathogenesis. Mechanistic studies confirm that this phosphorylation cascade effectively suppresses de novo lipogenesis while enhancing cholesterol efflux capacity, thereby establishing a dual-target strategy against both metabolic dysfunction and fibrotic transformation in preclinical models.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jie Ma
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Jiarui Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yuanyuan Wu
- Department of Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Yanru Ren
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jianning Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yan Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
3
|
Zhang H, Kong X, Wang W, Zhou H, Qu H, Guan Z, Wu H, Zhai X, Jin B. TRIM25-Mediated INSIG1 Ubiquitination Promotes MASH Progression Through Reprogramming Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414646. [PMID: 40231613 DOI: 10.1002/advs.202414646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/30/2025] [Indexed: 04/16/2025]
Abstract
The global incidence of Metabolic dysfunction-associated steatohepatitis (MASH) is increasing, highlighting the urgent need for new treatment strategies. This study aimed to investigate the involvement of tripartite motif-containing 25 (TRIM25) in MASH progression and explore the therapeutic potential of the TRIM25 inhibitor, C27H26N2O4S. Functional studies reveal that TRIM25 promoted lipid accumulation and inflammation by ubiquitinating and degrading insulin-induced gene 1 (INSIG1), thereby enhancing the nuclear translocation of sterol regulatory element-binding protein 2 (SREBP2) and upregulating lipid biosynthesis genes. In vivo experiments using TRIM25 knockout mice demonstrated that TRIM25 deletion ameliorated MASH progression, reduced fibrosis, and decreased inflammatory cell infiltration. It identifies C27H26N2O4S as a specific inhibitor of TRIM25. C27H26N2O4S effectively decreased INSIG1 ubiquitination and attenuated lipid accumulation in the hepatocytes. To enhance the hepatic delivery of C27H26N2O4S, it utilizes exosomes derived from hepatic stellate cells (HSC-EVs). Biodistribution analysis confirmed that the HSC-EVs preferentially accumulated in the liver. In a MASH mouse model, HSC-EV-encapsulated C27H26N2O4S (C27H26N2O4S@HSC-EV) significantly reduced hepatic lipid accumulation and alleviated MASH severity and fibrosis. This study highlights the critical regulatory role of TRIM25 in MASH and presents C27H26N2O4S@HSC-EV as a promising therapeutic approach for MASH treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China
- Shandong Province Engineering Research Center for Multidisciplinary Research on Hepatobiliary and Pancreatic Malignant Tumors, Jinan, China
| | - Xiangxu Kong
- Shandong Province Engineering Research Center for Multidisciplinary Research on Hepatobiliary and Pancreatic Malignant Tumors, Jinan, China
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Beiyuan Street & 247 Jinan, Shandong, China
| | - Wei Wang
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Huaxin Zhou
- Shandong Province Engineering Research Center for Multidisciplinary Research on Hepatobiliary and Pancreatic Malignant Tumors, Jinan, China
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Beiyuan Street & 247 Jinan, Shandong, China
| | - Haoran Qu
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Beiyuan Street & 247 Jinan, Shandong, China
| | - Zhengyao Guan
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Beiyuan Street & 247 Jinan, Shandong, China
| | - Honglei Wu
- Department of Gastroenterology, the Second Hospital of Shandong University, Beiyuan Street & 247 Jinan, Shandong, China
| | - Xiangyu Zhai
- Shandong Province Engineering Research Center for Multidisciplinary Research on Hepatobiliary and Pancreatic Malignant Tumors, Jinan, China
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Beiyuan Street & 247 Jinan, Shandong, China
| | - Bin Jin
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China
- Shandong Province Engineering Research Center for Multidisciplinary Research on Hepatobiliary and Pancreatic Malignant Tumors, Jinan, China
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Beiyuan Street & 247 Jinan, Shandong, China
| |
Collapse
|
4
|
Ayala I, Hebbale SK, Mononen J, Brearley-Sholto MC, Shannon CE, Valdez I, Fourcaudot M, Bakewell TM, Zagorska A, Romero G, Asmis M, Musa FA, Sily JT, Smelter AA, Hinostroza EA, Freitas Lima LC, de Aguiar Vallim TQ, Heikkinen S, Norton L. The Spatial Transcriptional Activity of Hepatic TCF7L2 Regulates Zonated Metabolic Pathways that Contribute to Liver Fibrosis. Nat Commun 2025; 16:3408. [PMID: 40210847 PMCID: PMC11986045 DOI: 10.1038/s41467-025-58714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
The molecular mechanisms regulating the zonal distribution of metabolism in liver are incompletely understood. Here we use single nuclei genomics techniques to examine the spatial transcriptional function of transcription factor 7-like 2 (TCF7L2) in mouse liver, and determine the consequences of TCF7L2 transcriptional inactivation on the metabolic architecture of the liver and the function of zonated metabolic pathways. We report that while Tcf7l2 mRNA expression is ubiquitous across the liver lobule, accessibility of the consensus TCF/LEF DNA binding motif is restricted to pericentral (PC) hepatocytes in zone 3. In mice expressing functionally inactive TCF7L2 in liver, PC hepatocyte-specific gene expression is absent, which we demonstrate promotes hepatic cholesterol accumulation, impaired bile acid synthesis, disruption to glutamine/glutamate homeostasis and pronounced dietary-induced hepatic fibrosis. In summary, TCF7L2 is a key regulator of hepatic zonal gene expression and regulates several zonated metabolic pathways that may contribute to the development of fibrotic liver disease.
Collapse
Affiliation(s)
- Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Skanda K Hebbale
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Juho Mononen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Christopher E Shannon
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ivan Valdez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Terry M Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Fatima A Musa
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jonah T Sily
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Annie A Smelter
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Edgar A Hinostroza
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Thomas Q de Aguiar Vallim
- Department of Cardiology, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
6
|
Yoon HJ, Jung UJ. p-Coumaric acid alleviates metabolic dysregulation in high-fructose diet-fed hamsters. Nutr Res Pract 2025; 19:200-214. [PMID: 40226759 PMCID: PMC11982689 DOI: 10.4162/nrp.2025.19.2.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES p-Coumaric acid (CA), a 4-hydroxycinnamic acid derivative, is widely distributed in nature and exerts various beneficial biological effects. However, the effects of CA on metabolic abnormalities triggered by excessive fructose intake, such as dyslipidemia, hyperglycemia, non-alcoholic fatty liver disease (NAFLD), and insulin resistance, have not been sufficiently investigated. Our objective was to investigate whether CA ameliorates high-fructose diet (HFrD)-induced metabolic dysregulation. MATERIALS/METHODS Golden Syrian hamsters were randomly assigned to 3 groups and were fed diets containing 60% cornstarch (CON group), 60% fructose (HFrD group), or 60% fructose with CA (0.02%) (HFrD+CA group) for 5 weeks. RESULTS HFrD feeding significantly increased the levels of plasma triglyceride, apolipoprotein (apo)-CIII, fasting blood glucose, and homeostatic model assessment insulin resistance, and tended to increase plasma total cholesterol (TC) and low-density lipoprotein/very low-density lipoprotein cholesterol (LDL/VLDL-C) compared with the CON group. In HFrD-fed hamsters, CA supplementation significantly decreased plasma TC, LDL/VLDL-C, apo-CIII, and fasting blood glucose levels. Moreover, CA significantly decreased the hepatic lipid levels and fibrosis induced by HFrD. The plasma and hepatic lipid-lowering effects of CA were associated with decreased enzyme activity and mRNA expression of genes involved in fatty acid, triglyceride, and cholesterol synthesis as well as increased activity of carnitine palmitoyltransferase, a rate-limiting enzyme in fatty acid oxidation, in the liver. CA-treated hamsters also exhibited decreased hepatic gluconeogenic enzyme activity and increased hepatic glycolytic enzyme activity, with mRNA expression changes similar to these activity patterns. CONCLUSION Our findings indicate that CA potentially improves metabolic abnormalities associated with excessive fructose intake, such as hyperglycemia, dyslipidemia, and NAFLD.
Collapse
Affiliation(s)
- Hye Jin Yoon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
7
|
Yan H, Huang X, Zhou Y, Mu Y, Zhang S, Cao Y, Wu W, Xu Z, Chen X, Zhang X, Wang X, Yang X, Yang B, He Q, Luo P. Disturbing Cholesterol/Sphingolipid Metabolism by Squalene Epoxidase Arises Crizotinib Hepatotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414923. [PMID: 39836491 PMCID: PMC11984922 DOI: 10.1002/advs.202414923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Metabolic disorders have been identified as one of the causes of drug-induced liver injury; however, the direct regulatory mechanism regarding this disorder has not yet been clarified. In this study, a single regulatory mechanism of small molecule kinase inhibitors, with crizotinib as the representative drug is elucidated. First, it is discovered that crizotinib induced aberrant lipid metabolism and apoptosis in the liver. A mechanistic study revealed that crizotinib treatment promoted the accumulation of squalene epoxidase (SQLE) by inhibiting autophagosome-lysosome fusion which blocked the autophagic degradation of SQLE. A maladaptive increase in SQLE led to disturbances in cholesterol and sphingolipid metabolism via an enzymatic activity-dependent manner. Abnormal cholesterol results in both steatosis and inflammatory infiltration, and disturbances in sphingolipid metabolism promote cell apoptosis by inducing lysosomal membrane permeabilization. The restoration of the level or activity of SQLE ameliorated steatosis and hepatocyte injury. The autophagy activator known as metformin or the SQLE enzymatic inhibitor known as terbinafine has potential clinical use for alleviating crizotinib hepatotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yuan Mu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Shaoyin Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Xueqin Chen
- Department of Thoracic OncologyHangzhou Cancer HospitalAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310006China
| | - Xiaochen Zhang
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiaohong Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhou310022China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- School of MedicineHangzhou City UniversityHangzhou310015China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- School of MedicineHangzhou City UniversityHangzhou310015China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
8
|
Li Y, Li L, Zhang Y, Lu J, Tang X, Bi C, Qu Y, Chai J. Clinical and pathological characteristics of metabolic dysfunction-associated steatotic liver disease and the key role of epigenetic regulation: implications for molecular mechanism and treatment. Ther Adv Endocrinol Metab 2025; 16:20420188251321602. [PMID: 40098726 PMCID: PMC11912175 DOI: 10.1177/20420188251321602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), also called metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent syndrome marked by liver fat accumulation in the absence of significant alcohol consumption, encompassing simple fatty liver, nonalcoholic steatohepatitis (NASH), and advanced stages such as fibrosis and cirrhosis. Its incidence has surged globally, impacting up to 40% of the population, with a doubling of cases in China over a decade. NASH, a severe form, can progress to liver cirrhosis and cancer, posing a substantial health burden, especially among individuals with type 2 diabetes. Projections indicate a steep rise in NASH cases, necessitating urgent interventions beyond lifestyle modifications, such as innovative pharmaceuticals. Early diagnosis is crucial, yet current tools have limitations, highlighting the need for noninvasive, scalable diagnostic approaches. Advances in imaging and biomarker identification offer hope for early detection. Epigenetic factors play a significant role in MASLD pathogenesis, regulating key molecular mechanisms. Addressing MASLD requires a multifaceted approach, integrating lifestyle interventions, pharmacotherapy, and emerging therapeutics, against the backdrop of an evolving landscape in disease management.
Collapse
Affiliation(s)
- Yijing Li
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lijie Li
- Department of Pulmonology, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yishuo Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaolei Tang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yanan Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jingmei Chai
- Medical College, Yanbian University, 3 Gongyuan Road, Yanji, Jilin 133002, China
| |
Collapse
|
9
|
Cheng CW, Pedicini L, Alcala CM, Deligianni F, Smith J, Murray RD, Todd HJ, Forde N, McKeown L. RNA-seq analysis reveals transcriptome changes in livers from Efcab4b knockout mice. Biochem Biophys Rep 2025; 41:101944. [PMID: 40034259 PMCID: PMC11872658 DOI: 10.1016/j.bbrep.2025.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
EFCAB4B is an evolutionarily conserved protein that encodes for the Rab GTPase Rab46, and the CRAC channel modulator, CRACR2A. Previous genome wide association studies have demonstrated the association of EFCAB4B variants in the progression of non-alcoholic fatty liver disease (NAFLD). In this study we show that mice with global depletion of Efcab4b -/- have significantly larger livers than their wild-type (WT) counterparts. We performed RNA-sequencing (RNA-seq) analysis of liver tissues to investigate differential global gene expression among Efcab4b -/- and WT mice. Of the 69 differentially expressed genes (DEGs), analyses of biological processes found significant enrichment in liver and bile development, with 6 genes (Pck1, Aacs, Onecut1, E2f8, Xbp1, and Hes1) involved in both processes. Specific consideration of possible roles of DEGs or their products in NAFLD progression to (NASH) and hepatocarcinoma (HCC), demonstrated DEGs in the livers of Efcab4b -/- mice had roles in molecular pathways including lipid metabolism, inflammation, ER stress and fibrosis. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with EFCAB4B.
Collapse
Affiliation(s)
- Chew W. Cheng
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lucia Pedicini
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Cintli Morales Alcala
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Fenia Deligianni
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Jessica Smith
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Ryan D. Murray
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Harriet J. Todd
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Niamh Forde
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- University of Leeds, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early western diet-induced MASLD progression. J Lipid Res 2025; 66:100757. [PMID: 39952566 PMCID: PMC11954105 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their WT counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation, and immune system including retinol metabolism, arachidonic acid metabolism, and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. These data strongly suggested that these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
11
|
Sakuma I, Gaspar RC, Nasiri AR, Dufour S, Kahn M, Zheng J, LaMoia TE, Guerra MT, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner DF, Petersen KF, Huttasch M, Knebel B, Kahl S, Roden M, Samuel VT, Tanaka T, Shulman GI. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640203. [PMID: 40060523 PMCID: PMC11888431 DOI: 10.1101/2025.02.25.640203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 days without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides (ASOs) against Coenzyme A synthase (Cosay) or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that COASY knockdown and bempedoic acid are novel therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis. Significance Statement Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis. The role of specific lipid species in its pathogenesis remains debated. Using dietary, molecular, and genetic models, we found that mice on a choline-deficient, high-fat diet (CDAHFD) developed steatohepatitis and early fibrosis, marked by increased cholesterol in liver lipid droplets within five days. Targeting COASY with antisense oligonucleotides or treating with bempedoic acid or atorvastatin reduced lipid droplet cholesterol and prevented MASH. However, dietary cholesterol supplementation negated these effects. Human liver samples confirmed elevated lipid droplet cholesterol in MASH and fibrosis, especially in PNPLA3 I148M carriers. These findings highlight cholesterol reduction as a potential MASH therapy.
Collapse
|
12
|
Soma H, Yoshida R, Ishizuka S. Quantitative analysis of sterol balance in a mouse model of hepatic lipid accumulation induced by cholesterol and cholic acid supplementation. Biosci Biotechnol Biochem 2025; 89:438-445. [PMID: 39656874 DOI: 10.1093/bbb/zbae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The cholesterol balance and bile acid metabolism in a mouse model of hepatic lipid accumulation induced by a diet supplemented with cholesterol and cholic acid (CA) were quantitatively evaluated. The mice were fed diets supplemented with different levels of cholesterol (0, 3, or 6 g/kg of diet) and CA (0.5 g/kg of diet) for 6 weeks. Cholesterol supplementation doubled the hepatic triglyceride concentration, regardless of the supplementation level, without inflammation or gallstone formation. Both cholesterol supplementations enhanced fecal excretion of muricholic acid. Additionally, the higher cholesterol supplementation led to an increase in fecal cholesterol excretion, accompanied by elevated expression of hepatic cholesterol exporters and a reduction in fecal bile acid excretion. In this mouse study, supplementation with 3 g cholesterol/kg diet and 0.5 g CA/kg diet was sufficient to induce hepatic lipid accumulation.
Collapse
Affiliation(s)
- Hinata Soma
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Yoshida
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Ma F, Longo M, Meroni M, Bhattacharya D, Paolini E, Mughal S, Hussain S, Anand SK, Gupta N, Zhu Y, Navarro-Corcuera A, Li K, Prakash S, Cogliati B, Wang S, Huang X, Wang X, Yurdagul A, Rom O, Wang L, Fried SK, Dongiovanni P, Friedman SL, Cai B. EHBP1 suppresses liver fibrosis in metabolic dysfunction-associated steatohepatitis. Cell Metab 2025:S1550-4131(25)00019-1. [PMID: 40015280 DOI: 10.1016/j.cmet.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
Excess cholesterol accumulation contributes to fibrogenesis in metabolic dysfunction-associated steatohepatitis (MASH), but how hepatic cholesterol metabolism becomes dysregulated in MASH is not completely understood. We show that human fibrotic MASH livers have decreased EH-domain-binding protein 1 (EHBP1), a genome-wide association study (GWAS) locus associated with low-density lipoprotein (LDL) cholesterol, and that EHBP1 loss- and gain-of-function increase and decrease MASH fibrosis in mice, respectively. Mechanistic studies reveal that EHBP1 promotes sortilin-mediated PCSK9 secretion, leading to LDL receptor (LDLR) degradation, decreased LDL uptake, and reduced TAZ, a fibrogenic effector. At a cellular level, EHBP1 deficiency affects the intracellular localization of retromer, a protein complex required for sortilin stabilization. Our therapeutic approach to stabilizing retromer is effective in mitigating MASH fibrosis. Moreover, we show that the tumor necrosis factor alpha (TNF-α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway suppresses EHBP1 in MASH. These data not only provide mechanistic insights into the role of EHBP1 in cholesterol metabolism and MASH fibrosis but also elucidate an interplay between inflammation and EHBP1-mediated cholesterol metabolism.
Collapse
Affiliation(s)
- Fanglin Ma
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Marica Meroni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Shama Mughal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Syed Hussain
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Neha Gupta
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiwei Zhu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amaia Navarro-Corcuera
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth Li
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Satya Prakash
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Cogliati
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Liheng Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Xu J, Li Y, Feng Z, Chen H. Cigarette Smoke Contributes to the Progression of MASLD: From the Molecular Mechanisms to Therapy. Cells 2025; 14:221. [PMID: 39937012 PMCID: PMC11816580 DOI: 10.3390/cells14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Cigarette smoke (CS), an intricate blend comprising over 4000 compounds, induces abnormal cellular reactions that harm multiple tissues. Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease (CLD), encompassing non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Recently, the term NAFLD has been changed to metabolic dysfunction-associated steatotic liver disease (MASLD), and NASH has been renamed metabolic dysfunction-associated steatohepatitis (MASH). A multitude of experiments have confirmed the association between CS and the incidence and progression of MASLD. However, the specific signaling pathways involved need to be updated with new scientific discoveries. CS exposure can disrupt lipid metabolism, induce inflammation and apoptosis, and stimulate liver fibrosis through multiple signaling pathways that promote the progression of MASLD. Currently, there is no officially approved efficacious pharmaceutical intervention in clinical practice. Therefore, lifestyle modifications have emerged as the primary therapeutic approach for managing MASLD. Smoking cessation and the application of a series of natural ingredients have been shown to ameliorate pathological changes in the liver induced by CS, potentially serving as an effective approach to decelerating MASLD development. This article aims to elucidate the specific signaling pathways through which smoking promotes MASLD, while summarizing the reversal factors identified in recent studies, thereby offering novel insights for future research on and the treatment of MASLD.
Collapse
Affiliation(s)
- Jiatong Xu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Yifan Li
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Zixuan Feng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Hongping Chen
- Department of Histology and Embryology, Jiangxi Medical College, Nanchang University, Nanchang 330019, China
| |
Collapse
|
15
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
16
|
Fang Z, Zhong B, Shi Y, Zhou W, Huang M, French SW, Tang X, Liu H. Single-cell transcriptomic analysis reveals characteristic feature of macrophage reprogramming in liver Mallory-Denk bodies pathogenesis. J Transl Med 2025; 23:77. [PMID: 39819676 PMCID: PMC11740356 DOI: 10.1186/s12967-024-05999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/15/2024] [Indexed: 01/19/2025] Open
Abstract
Chronic liver diseases are highly linked with mitochondrial dysfunction and macrophage infiltration. Mallory-Denk bodies (MDBs) are protein aggregates associated with hepatic inflammation, and MDBs pathogenesis could be induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Here, we investigate the macrophage heterogeneity and the role of macrophage during MDBs pathogenesis on DDC-induced MDBs mouse model by single-nucleus RNA sequencing (snRNA-seq). We defined liver macrophages into four distinct subsets including monocyte-derived macrophages (MDMs) subset and three Kupffer cells (KCs) subsets (Gpnmbhigh KCs, Peam1high KCs, and Gpnmblow Pecam1low KCs). Particularly, we identified a novel Gpnmbhigh KCs subset as lipid-associated macrophage (LAM) with high expression of Trem2, CD63, and CD9. Interestingly, LAM showed a potential immunosuppressive characteristic by expressing anti-inflammatory genes IL-7R during the MDBs formation. Using contact and transwell co-culture systems, the released mtDNA from hepatocytes was found to induce the activation of inflammasome in macrophages. Furthermore, we revealed the damaged DNA could activate the NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome and subsequently form apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) specks of liver macrophages. Collectively, our results firstly revealed macrophage heterogeneity and inflammasome activation by mtDNA from injured liver during MDBs pathogenesis, providing crucial understanding of pathogenesis of chronic liver disease.
Collapse
Affiliation(s)
- Zixuan Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Bei Zhong
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
| | - Yi Shi
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wanmei Zhou
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Maoping Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China
| | - Samuel W French
- Department of Pathology, Harbor UCLA Medical Center, University of California, Torrance, CA90502, USA
| | - Xiaoping Tang
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China.
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China.
- The State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Yan M, Cui Y, Xiang Q. Metabolism of hepatic stellate cells in chronic liver diseases: emerging molecular and therapeutic interventions. Theranostics 2025; 15:1715-1740. [PMID: 39897543 PMCID: PMC11780521 DOI: 10.7150/thno.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic and metabolic dysfunction-associated alcoholic liver disease (MetALD), and viral hepatitis, can lead to liver fibrosis, cirrhosis, and cancer. Hepatic stellate cell (HSC) activation plays a central role in the development of myofibroblasts and fibrogenesis in chronic liver diseases. However, HSC activation is influenced by the complex microenvironments within the liver, which are largely shaped by the interactions between HSCs and various other cell types. Changes in HSC phenotypes and metabolic mechanisms involve glucose, lipid, and cholesterol metabolism, oxidative stress, activation of the unfolded protein response (UPR), autophagy, ferroptosis, senescence, and nuclear receptors. Clinical interventions targeting these pathways have shown promising results in addressing liver inflammation and fibrosis, as well as in modulating glucose and lipid metabolism and metabolic stress responses. Therefore, a comprehensive understanding of HSC phenotypes and metabolic mechanisms presents opportunities for novel therapeutic approaches aimed at halting or even reversing chronic liver diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
19
|
Flam E, Haas JT, Staels B. Liver metabolism in human MASLD: A review of recent advancements using human tissue metabolomics. Atherosclerosis 2025; 400:119054. [PMID: 39586140 DOI: 10.1016/j.atherosclerosis.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Global incidence of Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is on the rise while treatments remain elusive. MASLD is a disease of dysregulated systemic and hepatic metabolism. Current understanding of disease pathophysiology as it relates to metabolome changes largely comes from studies on animal models and human plasma. However, human tissue data are crucial for transitioning from mechanisms to clinical therapies. The close relationship between MASLD and comorbidities like obesity, type 2 diabetes and dyslipidemia make it difficult to determine the contribution from liver disease itself. Here, we review recent metabolomics studies in liver tissue from human MASLD patients, which have predominately focused on lipid metabolism, but also include bile acid, tricarboxylic acid (TCA) cycle, and branched chain amino acid (BCAA) metabolism. Several clinical trials are underway to target various of these lipid-related pathways in MASLD. Although only the β-selective thyroid hormone receptor agonist resmetirom has so far been approved for use, many metabolism-targeting pharmaceuticals show promising results for halting disease progression, if not promoting outright reversal. Ultimately, the scarcity of human tissue data and the variability of confounding factors, like obesity, within and between cohorts are impediments to the pathophysiological understanding required for efficient development of metabolic treatments.
Collapse
Affiliation(s)
- Emily Flam
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
20
|
Xu H, Li Y, Guo N, Wu S, Liu C, Gui Z, Xue W, Jiang X, Ye M, Geng Q, Feng X, Zhang C, Jin L, Hu C. Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis. Int J Biol Sci 2025; 21:490-506. [PMID: 39781461 PMCID: PMC11705642 DOI: 10.7150/ijbs.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression. In addition, we evaluated the expression of CAV1 in human liver samples, and also conducted assays in vitro to investigate the molecular role of CAV1 in MASLD progression. The results illustrate that the expression of liver CAV1 in the decreases during MASLD progression, which aggravates the accumulation of cholesterol in the liver, leading to more severe endoplasmic reticulum (ER) stress and pyroptosis. Mechanistically, CAV1 regulates the expression of FXR/NR1H4 and its downstream cholesterol transporter, ABCG5/ABCG8, suppressing ER stress and alleviating pyroptosis. Our study confirms CAV1 is a crucial regulator of cholesterol homeostasis in MASLD and plays an important role in disease progression.
Collapse
Affiliation(s)
- Hanlin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Ning Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Can Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiju Xue
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Mengjia Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Qianqian Geng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Chao Zhang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Lei Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| |
Collapse
|
21
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
22
|
Lee H, Kang S, Choi SQ. Lipid Droplet Surface Promotes 3D Morphological Evolution of Non-Rhomboidal Cholesterol Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409201. [PMID: 39513471 PMCID: PMC11714234 DOI: 10.1002/advs.202409201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Cholesterol crystals, which cause inflammation and various diseases, predominantly grow in a platy, rhomboid structure on the plasma membranes but exhibit an uneven three-dimensional (3D) architecture intracellularly. Here, it is demonstrated how cholesterol crystallizes in a non-rhomboidal shape on the surface of lipid droplets and develops into 3D sheet-like agglomerates using an in vitro lipid droplet reconstitution system with stereoscopic fluorescence imaging. The findings reveal that interfacial cholesterol transport on the lipid droplet surface and unique lipid droplet components significantly influence the nucleation-and-growth dynamics of cholesterol crystals, leading to crystal growth in various polygonal shapes. Furthermore, cholesterol crystals readily agglomerate to form large, curved sheet structures on the confined, spherical surfaces of lipid droplets. This discovery enhances the understanding of the volumetric morphological growth of intracellular cholesterol crystals.
Collapse
Affiliation(s)
- Hyun‐Ro Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seunghan Kang
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Advanced Battery CenterKAIST Institute for the NanoCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
23
|
Nakashima H, Kearney BM, Kinoshita M. The Liver X Receptor Promotes Immune Homeostasis via Controlled Activation of the Innate Immune System in the Liver. Biomolecules 2024; 15:25. [PMID: 39858420 PMCID: PMC11764419 DOI: 10.3390/biom15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins. Additionally, LXRs control innate immune cells through two major mechanisms: upregulating the phagocytic activity of macrophages and suppressing inflammatory reactions to prevent aggressive activation of immune cells. Therefore, the primary role of LXRs is to accelerate efferocytosis without provoking inflammation and facilitate the transfer of free cholesterol from the intracellular space. This mechanism makes the innate immune system a substantial contributor to systemic metabolic control. Concomitantly, LXRs are important factors in regulating systemic defense mechanisms through the efficient regulation of immune cells. LXR activation, therefore, has great potential for clinical applications in the treatment of metabolic, infectious, and autoimmune diseases. In this review, we discuss the current understanding of the link between LXRs and innate immune cells in the liver, along with prospects for clinical applications of LXR agonists.
Collapse
Affiliation(s)
- Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan; (B.M.K.); (M.K.)
| | | | | |
Collapse
|
24
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
25
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
26
|
Vachliotis ID, Anastasilakis AD, Rafailidis V, Polyzos SA. Osteokines in Nonalcoholic Fatty Liver Disease. Curr Obes Rep 2024; 13:703-723. [PMID: 39225951 DOI: 10.1007/s13679-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW To critically summarize evidence on the potential role of osteokines in the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS There are emerging data supporting that certain osteokines, which are specific bone-derived proteins, may beneficially or adversely affect hepatic metabolism, and their alterations in the setting of osteoporosis or other bone metabolic diseases may possibly contribute to the development and progression of NAFLD. There is evidence showing a potential bidirectional association between NAFLD and bone metabolism, which may imply the existence of a liver-bone axis. In this regard, osteocalcin, osteoprotegerin, bone morphogenic protein 4 (BMP4) and BMP6 appear to have a positive impact on the liver, thus possibly alleviating NAFLD, whereas osteopontin, receptor activator of nuclear factor kappa Β ligand (RANKL), sclerostin, periostin, BMP8B, and fibroblast growth factor 23 (FGF23) appear to have a negative impact on the liver, thus possibly exacerbating NAFLD. The potential implication of osteokines in NAFLD warrants further animal and clinical research in the field that may possibly result in novel therapeutic targets for NAFLD in the future.
Collapse
Affiliation(s)
- Ilias D Vachliotis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | | | - Vasileios Rafailidis
- Department of Clinical Radiology, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
27
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
28
|
Seidel F, Vreeken D, Custers E, Wiesmann M, Özsezen S, van Duyvenvoorde W, Caspers M, Menke A, Morrison MC, Verschuren L, Duering M, Hazebroek EJ, Kiliaan AJ, Kleemann R. Metabolic dysfunction-associated steatotic liver disease is associated with effects on cerebral perfusion and white matter integrity. Heliyon 2024; 10:e38516. [PMID: 39391513 PMCID: PMC11466594 DOI: 10.1016/j.heliyon.2024.e38516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
It is unclear whether early metabolic and inflammatory aberrations in the liver are associated with detrimental changes in brain structure and cognitive function. This cross-sectional study examines putative associations between metabolic dysfunction-associated steatotic liver disease (MASLD) and brain health in 36-55 year-old participants with obesity (n = 70) from the BARICO study (BAriatric surgery Rijnstate and Radboudumc neuroImaging and Cognition in Obesity). The participants underwent brain magnetic resonance imaging to study brain volumes and cortical thickness (3T MRI including T1-weighted magnetization-prepared rapid gradient-echo sequence), cerebral blood perfusion (arterial spin labeling) and white matter integrity (diffusion weighted imaging to assess mean-skeletonized mean diffusivity and fluid-attenuated inversion recovery to detect the presence of white matter hyperintensities (WMH)). The participants additionally performed neuropsychological tests to assess global cognition, working and episodic memory, verbal fluency and the ability to shift attention. Liver biopsies were collected and liver dysfunction was examined with histopathological, biochemical, and gene expression analyses. Linear regression analyses were performed between liver and brain parameters and the influence of body-mass index, diabetes and hypertension was explored. Early stages of liver disease were not associated with cognitive status but with cerebrovascular changes independently of age, sex, BMI, diabetes and hypertension: hepatic fibrosis development was associated with higher spatial coefficient of variation (sCoV) in the nucleus accumbens (NAcc), reflecting greater variations in cerebral perfusion and reduced vascular efficiency. Elevated hepatic levels of free cholesterol and cholesteryl esters were associated with increased WMH, indicating cerebral small vessel disease. RNA-seq and pathway analyses identified associations between sCoV in NAcc and WMH and the expression of hepatic genes involved in inflammation and cellular stress. Additionally, sCoV in NAcc correlated with plasma IL-6 levels suggesting that systemic-low grade inflammation may, at least partly, mediate this relationship. In conclusion, this study demonstrates that specific features of liver dysfunction (e.g. free cholesterol, onset of fibrosis) are associated with subtle cerebrovascular impairments, when changes in cognitive performance are not yet noticeable. These findings highlight the need for future research on therapeutic strategies that normalize metabolic-inflammatory aberrations in the liver to reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Florine Seidel
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Debby Vreeken
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
| | - Emma Custers
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
| | - Maximilian Wiesmann
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
| | - Serdar Özsezen
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Martien Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany
- Medical Imaging Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Marktgasse 8, CH-4051 Basel, Switzerland
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Postbus 17 6700 AA Wageningen Wageningen, the Netherlands
| | - Amanda J. Kiliaan
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| |
Collapse
|
29
|
Tapper EB, Zhao Z, Henderson J. Statins for the prevention of cirrhosis complications: An American emulation of the StatLiver Trial. Hepatol Commun 2024; 8:e0530. [PMID: 39298631 PMCID: PMC11412699 DOI: 10.1097/hc9.0000000000000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024] Open
|
30
|
Fan X, Wang H, Wang W, Shen J, Wang Z. Exercise training alleviates cholesterol and lipid accumulation in mice with non-alcoholic steatohepatitis: Reduction of KMT2D-mediated histone methylation of IDI1. Exp Cell Res 2024; 442:114265. [PMID: 39332515 DOI: 10.1016/j.yexcr.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Exercise training is a cornerstone treatment for non-alcoholic fatty liver disease (NAFLD). This study aims to investigate the effects of exercises on lipid accumulation in non-alcoholic steatohepatitis (NASH) and to explore the molecular mechanism. Established NASH mice were remained sedentary or subjected to moderate-intensity continuous training or high-intensity interval training (HIIT). The two training regimens, especially the latter one, reduced liver weight, steatosis, inflammation, lipid accumulation, collagen deposition, and cholesterol content in the mouse liver. Similarly, the HIIT regimen improved clinical presentation of NAFLD patients. RNA sequencing analysis revealed lysine methyltransferase 2D (Kmt2d) and isopentenyl-diphosphate delta isomerase 1 (Idi1) as two important genes downregulated in mice underwent HIIT. By using mouse hepatocytes AML12, we found that KMT2D promoted Idi1 expression by catalyzing H3K4me1 modification near its promoter. Upregulation of either KMT2D or IDI1 blocked the ameliorating effects of HIIT on mice. Meanwhile, in AML12 cells modeled by palmitic acid and oleic acid treatment, KMT2D and IDI1 were found to be correlated with lipid accumulation, cholesterol content, inflammation, and cell death and senescence. In conclusion, this study demonstrates that the ameliorating effects of exercise training on NASH might involve the downregulation of the KMT2D/IDI1 axis.
Collapse
Affiliation(s)
- Xiuqin Fan
- Department of Gastroenterology, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou, 311000, Zhejiang, PR China
| | - Hongshi Wang
- Cardiovascular Department, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou, 311000, Zhejiang, PR China
| | - Weiwei Wang
- Department of Gastroenterology, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou, 311000, Zhejiang, PR China
| | - Jiayan Shen
- Department of Gastroenterology, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou, 311000, Zhejiang, PR China
| | - Zejun Wang
- Department of Gastroenterology, Integrated Traditional and Western Medicine Hospital of Linping District, Hangzhou, 311000, Zhejiang, PR China.
| |
Collapse
|
31
|
Sharma N, Singh L, Sharma A, Kumar A, Mahajan D. NAFLD-associated hepatocellular carcinoma (HCC) - A compelling case for repositioning of existing mTORc1 inhibitors. Pharmacol Res 2024; 208:107375. [PMID: 39209081 DOI: 10.1016/j.phrs.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) is a growing concern for the high incidence rate of hepatocellular carcinoma (HCC) globally. The progression of NAFLD to HCC is heterogeneous and non-linear, involving intermediate stages of non-alcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. There is a high unmet clinical need for appropriate diagnostic, prognostic, and therapeutic options to tackle this emerging epidemic. Unfortunately, at present, there is no validated marker to identify the risk of developing HCC in patients suffering from NAFLD or NASH. Additionally, the current treatment protocols for HCC don't differentiate between viral infection or NAFLD-specific etiology of the HCC and have a limited success rate. The mammalian target of rapamycin complex 1 (mTORc1) is an important protein involved in many vital cellular processes like lipid metabolism, glucose homeostasis, and inflammation. These cellular processes are highly implicated in NAFLD and its progression to severe liver manifestations. Additionally, hyperactivation of mTORc1 is known to promote cell proliferation, which can contribute to the genesis and progression of tumors. Many mTORc1 inhibitors are being evaluated for different types of cancers under various phases of clinical trials. This paper deliberates on the strong pathological implication of the mTORc1 signaling pathway in NAFLD and its progression to NASH and HCC and advocates for a systematic investigation of known mTORc1 inhibitors in suitable pre-clinical models of HCC having NAFLD/NASH-specific etiology.
Collapse
Affiliation(s)
- Nutan Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Department of Chemistry, Faculty of Applied and Basic Sciences, SGT University, Gurugram 122505, India
| | - Lakhwinder Singh
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Aditya Sharma
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Ajay Kumar
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India
| | - Dinesh Mahajan
- Center for Drug Discovery, BRIC-Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India.
| |
Collapse
|
32
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
33
|
Sahin A, Demirel-Yalciner T, Sozen E, Ozer NK. Protective effect of alpha-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced nonalcoholic steatohepatitis. Free Radic Res 2024; 58:630-640. [PMID: 39475691 DOI: 10.1080/10715762.2024.2421173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Despite limited number of studies, oxysterols are known to contribute to the progression of nonalcoholic steatohepatitis (NASH) by affecting lipid/cholesterol metabolism and elevating proinflammatory and profibrotic processes. Accordingly, we used a high cholesterol-mediated in vivo NASH model and aimed to determine alterations in fatty acid content and oxysterol levels together with their effects on cholesterol/lipid metabolism during the progression of the disease. We further investigated the beneficial role of α-tocopherol. To this end, in our hypercholesterolemic rabbit model, we determined fatty acid profile by GC-MS while 25-, 27-, 4β-, 7α, and 24(S)-Hydroxycholesterol levels by means of LC-MS/MS. Additionally, lipid (SREBP-1c, PPARα, PPARγ) and cholesterol metabolism-related proteins (LXRα, SREBP2 and ABCA1) were determined by immunoblotting. In conclusion, the present findings provide a complete analysis of the hepatic alterations in lipid and oxysterol profiles mediated by a high-cholesterol diet. In addition, this study explains the protective effect of α-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced NASH. We believe that present study will guide to novel theories in the progression and therapeutic targeting of fatty liver diseases.
Collapse
Affiliation(s)
- Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul, Turkey
| | - Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| |
Collapse
|
34
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
35
|
Sun Z, Wei Y, Xu Y, Jiao J, Duan X. The use of traditional Chinese medicine in the treatment of non-alcoholic fatty liver disease: A review. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 12:100475. [DOI: 10.1016/j.prmcm.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Sak F, Sengul F, Vatansev H. The Role of Endoplasmic Reticulum Stress in Metabolic Diseases. Metab Syndr Relat Disord 2024; 22:487-493. [PMID: 38666441 DOI: 10.1089/met.2024.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The endoplasmic reticulum (ER), the center of protein folding, also controls the cell's life-and-death signaling mechanisms. ER stress caused by unfolded or misfolded proteins leads to the activation of the unfolded protein response (UPR) in the cell. The UPR utilizes three main signaling pathways to restore disrupted ER homeostasis. These signaling pathways are protein kinase R-like endoplasmic reticulum kinase, inositol-requiring enzyme 1, and activating transcription factor 6. Studies have reported that ER stress (ERS) plays a role in the pathogenesis of metabolic disorders such as diabetes, obesity, atherosclerosis, and nonalcoholic liver disease. This review will briefly discuss the ERS response in these metabolic diseases.
Collapse
Affiliation(s)
- Firdevs Sak
- Faculty of Medicine, Department of Medical Biochemistry, University of Selçuk, Konya, Turkey
| | - Fatma Sengul
- Faculty of Pharmacy, Department of Biochemistry, University of Adiyaman, Adiyaman, Turkey
| | - Husamettin Vatansev
- Faculty of Medicine, Department of Medical Biochemistry, University of Selçuk, Konya, Turkey
| |
Collapse
|
37
|
Li Y, Chen L, Papadopoulos V. The mitochondrial translocator protein (TSPO, 18 kDa): A key multifunctional molecule in liver diseases. Biochimie 2024; 224:91-103. [PMID: 38065288 DOI: 10.1016/j.biochi.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 08/23/2024]
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved and tryptophan-rich 169-amino-acid protein located on the outer mitochondrial membrane. TSPO plays a crucial role in various fundamental physiological functions and cellular processes. Its expression is altered in pathological conditions, thus rendering TSPO a potential tool for diagnostic imaging and an appealing therapeutic target. The investigation of synthetic TSPO ligands as both agonists and antagonists has provided valuable insights into the regulatory mechanisms and functional properties of TSPO. Recently, accumulating evidence has highlighted the significance of TSPO in liver diseases. However, a comprehensive summary of TSPO function in the normal liver and diverse liver diseases is lacking. This review aims to provide an overview of recent advances in understanding TSPO function in both normal liver cells and various liver diseases, with a particular emphasis on its involvement in liver fibrosis and inflammation and addresses the existing knowledge gaps in the field that require further investigation.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
38
|
Bairos JA, Njoku U, Zafar M, Akl MG, Li L, Parlakgul G, Arruda AP, Widenmaier SB. Sterol O-acyltransferase (SOAT/ACAT) activity is required to form cholesterol crystals in hepatocyte lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159512. [PMID: 38761895 DOI: 10.1016/j.bbalip.2024.159512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE Excess cholesterol storage can induce the formation of cholesterol crystals in hepatocyte lipid droplets. Such crystals distinguish metabolic dysfunction associated steatohepatitis (MASH) from simple steatosis and may underlie its pathogenesis by causing cell damage that triggers liver inflammation. The mechanism linking cholesterol excess to its crystallization in lipid droplets is unclear. As cholesteryl esters localize to and accumulate in lipid droplets more readily than unesterified free cholesterol, we investigated whether cholesterol esterification by sterol O-acyltransferase (SOAT), also known as acyl co-A cholesterol acyltransferase (ACAT), is required for hepatocyte lipid droplet crystal formation. METHOD Cholesterol crystals were measured in cholesterol loaded Hep3B hepatocytes, RAW264.7 macrophages, and mouse liver using polarizing light microscopy. We examined the effect of blocking SOAT activity on crystal formation and compared these results to features of cholesterol metabolism and the progression to intracellular crystal deposits. RESULTS Cholesterol loading of Hep3B cells caused robust levels of lipid droplet localized crystal formation in a dose- and time-dependent manner. Co-treatment with SOAT inhibitors and genetic ablation of SOAT1 blocked crystal formation. SOAT inhibitor also blocked crystal formation in low density lipoprotein (LDL) treated Hep3B cells, acetylated LDL treated RAW 264.7 macrophages, and in the liver of mice genetically predisposed to hepatic cholesterol overload and in mice with cholesterol enriched diet-induced MASH. CONCLUSION SOAT1-mediated esterification may underlie cholesterol crystals associated with MASH by concentrating it in lipid droplets. These findings imply that inhibiting hepatocyte SOAT1 may be able to alleviate cholesterol associated MASH. Moreover, that either a lipid droplet localized cholesteryl ester hydrolase is required for cholesterol crystal formation, or the crystals are composed of cholesteryl ester.
Collapse
Affiliation(s)
- Jordan A Bairos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Uche Njoku
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maria Zafar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - May G Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Lei Li
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gunes Parlakgul
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Scott B Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
39
|
Zhang Z, Qin X, Yi T, Li Y, Li C, Zeng M, Luo H, Lin X, Xie J, Xia B, Lin Y, Lin L. Gubra Amylin-NASH Diet Induced Nonalcoholic Fatty Liver Disease Associated with Histological Damage, Oxidative Stress, Immune Disorders, Gut Microbiota, and Its Metabolic Dysbiosis in Colon. Mol Nutr Food Res 2024; 68:e2300845. [PMID: 38966885 DOI: 10.1002/mnfr.202300845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/02/2024] [Indexed: 07/06/2024]
Abstract
SCOPE The overall changes of colon under nonalcoholic fatty liver disease (NAFLD) remain to be further elucidated. METHODS AND RESULTS This study establishes a mouse model of NAFLD through a long-term Gubra Amylin-nonalcoholic steatohepatitis (NASH) diet (GAN diet). The results show that GAN diet significantly induces weight gain, liver steatosis, colonic oxidative stress, and lipid accumulation in blood, liver, and adipose tissue in mice. GAN feeding reduces the diversity of the gut microbiota, alters the composition and abundance of the gut microbiota, and leads to an increase in microbial metabolites such as long-chain fatty acids (LCFAs) and secondary bile acids (BAs), as well as a decrease in short-chain fatty acids (SCFAs). The RNA-seq and immunofluorescence results reveal that the GAN diet alters the expression of proteins and their coding genes involved in oxidative stress, immune response, and barrier function in colon tissue, such as lipocalin-2 (Lcn2, p < 0.05), heme oxygenase-1 (HO-1/Hmox1, p < 0.05), interferon-gamma (IFN-γ), and claudin-3/7. In addition, correlation analysis indicates a strong correlation between the changes in gut microbiota and lipid biomarkers. Additionally, the expression of immune related genes in colon tissue is related to the LCFAs produced by microbial metabolism. CONCLUSION GAN-induced NAFLD is related to microbiota and its metabolic imbalance, oxidative stress, immune disorders, and impaired barrier function in colon.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinyi Qin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tao Yi
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chengfeng Li
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Min Zeng
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hongshan Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiulian Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
40
|
Huang CH, Hsu HS, Chiang MT. Influence of Varied Dietary Cholesterol Levels on Lipid Metabolism in Hamsters. Nutrients 2024; 16:2472. [PMID: 39125351 PMCID: PMC11314022 DOI: 10.3390/nu16152472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Syrian hamsters are valuable models for studying lipid metabolism due to their sensitivity to dietary cholesterol, yet the precise impact of varying cholesterol levels has not been comprehensively assessed. This study examined the impact of varying dietary cholesterol levels on lipid metabolism in Syrian hamsters. Diets ranging from 0% to 1% cholesterol were administered to assess lipid profiles and oxidative stress markers. Key findings indicate specific cholesterol thresholds for inducing distinct lipid profiles: below 0.13% for normal lipids, 0.97% for elevated LDL-C, 0.43% for increased VLDL-C, and above 0.85% for heightened hepatic lipid accumulation. A cholesterol supplementation of 0.43% induced hypercholesterolemia without adverse liver effects or abnormal lipoprotein expression. Furthermore, cholesterol supplementation significantly increased liver weight, plasma total cholesterol, LDL-C, and VLDL-C levels while reducing the HDL-C/LDL-C ratio. Fecal cholesterol excretion increased, with stable bile acid levels. High cholesterol diets correlated with elevated plasma ALT activities, reduced hepatic lipid peroxidation, and altered leptin and CETP levels. These findings underscore Syrian hamsters as robust models for hyperlipidemia research, offering insights into experimental methodologies. The identified cholesterol thresholds facilitate precise lipid profile manipulation, enhancing the hamster's utility in lipid metabolism studies and potentially informing clinical approaches to managing lipid disorders.
Collapse
Affiliation(s)
| | | | - Meng-Tsan Chiang
- Department of Food Science, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (H.-S.H.)
| |
Collapse
|
41
|
Akl MG, Li L, Widenmaier SB. Protective Effects of Hepatocyte Stress Defenders, Nrf1 and Nrf2, against MASLD Progression. Int J Mol Sci 2024; 25:8046. [PMID: 39125617 PMCID: PMC11312428 DOI: 10.3390/ijms25158046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Progression of metabolic dysfunction-associated steatites liver disease (MASLD) to steatohepatitis (MASH) is driven by stress-inducing lipids that promote liver inflammation and fibrosis, and MASH can lead to cirrhosis and hepatocellular carcinoma. Previously, we showed coordinated defenses regulated by transcription factors, nuclear factor erythroid 2-related factor-1 (Nrf1) and -2 (Nrf2), protect against hepatic lipid stress. Here, we investigated protective effects of hepatocyte Nrf1 and Nrf2 against MASH-linked liver fibrosis and tumorigenesis. Male and female mice with flox alleles for genes encoding Nrf1 (Nfe2l1), Nrf2 (Nfe2l2), or both were fed a MASH-inducing diet enriched with high fat, fructose, and cholesterol (HFFC) or a control diet for 24-52 weeks. During this period, hepatocyte Nrf1, Nrf2, or combined deficiency for ~7 days, ~7 weeks, and ~35 weeks was induced by administering mice hepatocyte-targeting adeno-associated virus (AAV) expressing Cre recombinase. The effects on MASH, markers of liver fibrosis and proliferation, and liver tumorigenesis were compared to control mice receiving AAV-expressing green fluorescent protein. Also, to assess the impact of Nrf1 and Nrf2 induction on liver fibrosis, HFFC diet-fed C57bl/6J mice received weekly injections of carbon tetrachloride, and from week 16 to 24, mice were treated with the Nrf2-activating drug bardoxolone, hepatocyte overexpression of human NRF1 (hNRF1), or both, and these groups were compared to control. Compared to the control diet, 24-week feeding with the HFFC diet increased bodyweight as well as liver weight, steatosis, and inflammation. It also increased hepatocyte proliferation and a marker of liver damage, p62. Hepatocyte Nrf1 and combined deficiency increased liver steatosis in control diet-fed but not HFFC diet-fed mice, and increased liver inflammation under both diet conditions. Hepatocyte Nrf1 deficiency also increased hepatocyte proliferation, whereas combined deficiency did not, and this also occurred for p62 level in control diet-fed conditions. In 52-week HFFC diet-fed mice, 35 weeks of hepatocyte Nrf1 deficiency, but not combined deficiency, resulted in more liver tumors in male mice, but not in female mice. In contrast, hepatocyte Nrf2 deficiency had no effect on any of these parameters. However, in the 15-week CCL4-exposed and 24-week HFFC diet-fed mice, Nrf2 induction with bardoxolone reduced liver steatosis, inflammation, fibrosis, and proliferation. Induction of hepatic Nrf1 activity with hNRF1 enhanced the effect of bardoxolone on steatosis and may have stimulated liver progenitor cells. Physiologic Nrf1 delays MASLD progression, Nrf2 induction alleviates MASH, and combined enhancement synergistically protects against steatosis and may facilitate liver repair.
Collapse
Affiliation(s)
| | | | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.G.A.)
| |
Collapse
|
42
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
43
|
Schonfeld M, O’Neil M, Weinman SA, Tikhanovich I. Alcohol-induced epigenetic changes prevent fibrosis resolution after alcohol cessation in miceresolution. Hepatology 2024; 80:119-135. [PMID: 37943941 PMCID: PMC11078890 DOI: 10.1097/hep.0000000000000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease is a major cause of alcohol-associated mortality. Recently, we identified hepatic demethylases lysine demethylase (KDM)5B and KDM5C as important epigenetic regulators of alcohol response in the liver. In this study, we aimed to investigate the role of KDM5 demethylases in alcohol-associated liver disease resolution. APPROACH AND RESULTS We showed that alcohol-induced liver steatosis rapidly resolved after alcohol cessation. In contrast, fibrosis persisted in the liver for up to 8 weeks after the end of alcohol exposure. Defects in fibrosis resolution were in part due to alcohol-induced KDM5B and KDM5C-dependent epigenetic changes in hepatocytes. Using cell-type-specific knockout mice, we found that adeno-associated virus-mediated knockout of KDM5B and KDM5C demethylases in hepatocytes at the time of alcohol withdrawal promoted fibrosis resolution. Single-cell ATAC sequencing analysis showed that during alcohol-associated liver disease resolution epigenetic cell states largely reverted to control conditions. In addition, we found unique epigenetic cell states distinct from both control and alcohol states and identified associated transcriptional regulators, including liver X receptor (LXR) alpha (α). In vitro and in vivo analysis confirmed that knockout of KDM5B and KDM5C demethylases promoted LXRα activity, likely through regulation of oxysterol biosynthesis, and this activity was critical for the fibrosis resolution process. Reduced LXR activity by small molecule inhibitors prevented fibrosis resolution in KDM5-deficient mice. CONCLUSIONS In summary, KDM5B and KDM5C demethylases prevent liver fibrosis resolution after alcohol cessation in part through suppression of LXR activity.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maura O’Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
44
|
Jaso-Vera ME, Takaoka S, Patel I, Ruan X. Integrative regulation of hLMR1 by dietary and genetic factors in nonalcoholic fatty liver disease and hyperlipidemia. Hum Genet 2024; 143:897-906. [PMID: 38493444 DOI: 10.1007/s00439-024-02654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Long non-coding RNA (lncRNA) genes represent a large class of transcripts that are widely expressed across species. As most human lncRNAs are non-conserved, we recently employed a unique humanized liver mouse model to study lncRNAs expressed in human livers. We identified a human hepatocyte-specific lncRNA, hLMR1 (human lncRNA metabolic regulator 1), which is induced by feeding and promotes hepatic cholesterol synthesis. Recent genome-wide association studies (GWAS) found that several single-nucleotide polymorphisms (SNPs) from the hLMR1 gene locus are associated with blood lipids and markers of liver damage. These results suggest that dietary and genetic factors may regulate hLMR1 to affect disease progression. In this study, we first screened for nutritional/hormonal factors and found that hLMR1 was robustly induced by insulin/glucose in cultured human hepatocytes, and this induction is dependent on the transcription factor SREBP1. We then tested if GWAS SNPs genetically linked to hLMR1 could regulate hLMR1 expression. We found that DNA sequences flanking rs9653945, a SNP from the last exon of the hLMR1 gene, functions as an enhancer that can be robustly activated by SREBP1c depending on the presence of rs9653945 major allele (G). We further performed CRISPR base editing in human HepG2 cells and found that rs9653945 major (G) to minor (A) allele modification resulted in blunted insulin/glucose-induced expression of hLMR1. Finally, we performed genotyping and gene expression analyses using a published human NAFLD RNA-seq dataset and found that individuals homozygous for rs9653945-G have a higher expression of hLMR1 and risk of NAFLD. Taken together, our data support a model that rs9653945-G predisposes individuals to insulin/glucose-induced hLMR1, contributing to the development of hyperlipidemia and NAFLD.
Collapse
Affiliation(s)
- Marcos E Jaso-Vera
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Shohei Takaoka
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Ishika Patel
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Fundamental Biomedical Research, Johns Hopkins All Childrens Hospital, 600 Fifth Street S., St. Petersburg, FL, 33701, USA.
| |
Collapse
|
45
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
46
|
Xie J, Luo M, Chen Q, Zhang Q, Qin L, Wang Y, Zhao Y, He Y. Hypolipidemic effect and gut microbiota regulation of Gypenoside aglycones in rats fed a high-fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118066. [PMID: 38499259 DOI: 10.1016/j.jep.2024.118066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino has traditional applications in Chinese medicine to treat lipid abnormalities. Gypenosides (GPs), the main bioactive components of Gynostemma pentaphyllum, have been reported to exert hypolipidemic effects through multiple mechanisms. The lipid-lowering effects of GPs may be attributed to the aglycone portion resulting from hydrolysis of GPs by the gut microbiota. However, to date, there have been no reports on whether gypenoside aglycones (Agl), the primary bioactive constituents, can ameliorate hyperlipidemia by modulating the gut microbiota. AIM OF THE STUDY This study explored the potential therapeutic effects of gypenoside aglycone (Agl) in a rat model of high-fat diet (HFD)-induced hyperlipidemia. METHODS A hyperlipidemic rat model was established by feeding rats with a high-fat diet. Agl was administered orally, and serum lipid levels were analyzed. Molecular techniques, including RT-polymerase chain reaction (PCR) and fecal microbiota sequencing, were used to investigate the effects of Agl on lipid metabolism and gut microbiota composition. RESULTS Agl administration significantly reduced serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) and mitigated hepatic damage induced by HFD. Molecular investigations have revealed the modulation of key lipid metabolism genes and proteins by Agl. Notably, Agl treatment enriched the gut microbiota with beneficial genera, including Lactobacillus, Akkermansia, and Blautia and promoted specific shifts in Lactobacillus murinus, Firmicutes bacterium CAG:424, and Allobaculum stercoricanis. CONCLUSION This comprehensive study established Agl as a promising candidate for the treatment of hyperlipidemia. It also exhibits remarkable hypolipidemic and hepatoprotective properties. The modulation of lipid metabolism-related genes, along with the restoration of gut microbiota balance, provides mechanistic insights. Thus, Agl has great potential for clinical applications in hyperlipidemia management.
Collapse
Affiliation(s)
- Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China; Department of Medical Genetics, Zunyi Medical University, Zunyi, 563000, China.
| | - Mingxia Luo
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qiuyi Chen
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuhe Wang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
47
|
Butera E, Termite F, Esposto G, Galasso L, Mignini I, Borriello R, Ainora ME, Miele L, Gasbarrini A, Zocco MA. Exploring the Role of Bempedoic Acid in Metabolic Dysfunction Associated Steatotic Liver Disease: Actual Evidence and Future Perspectives. Int J Mol Sci 2024; 25:6938. [PMID: 39000046 PMCID: PMC11241610 DOI: 10.3390/ijms25136938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) involves excessive lipid accumulation in hepatocytes, impacting global healthcare due to its high prevalence and risk of progression to severe liver conditions. Its pathogenesis involves genetic, metabolic, and inflammatory factors, with cardiovascular events as the leading cause of mortality. This review examines the role of lipid-lowering therapies in MASLD, with a particular focus on bempedoic acid, a recently approved cholesterol-lowering agent for hypercholesterolemia and high cardiovascular-risk patients. It explores its potential in liver disease by modulating lipid metabolism and inflammatory pathways based on the most recent studies available. Bempedoic acid inhibits ATP-citrate lyase, reducing cholesterol and fatty acid synthesis while activating AMP-activated protein kinase to suppress gluconeogenesis and lipogenesis. Animal studies indicate its efficacy in reducing hepatic steatosis, inflammation, and fibrosis. Bempedoic acid holds promise as a therapeutic for MASLD, offering dual benefits in lipid metabolism and inflammation. Further clinical trials are required to confirm its efficacy and safety in MASLD patients, potentially addressing the multifaceted nature of this disease.
Collapse
Affiliation(s)
- Elena Butera
- Internal Medicine, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Fabrizio Termite
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giorgio Esposto
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Linda Galasso
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Irene Mignini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Raffaele Borriello
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Elena Ainora
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Miele
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
48
|
Demirel-Yalciner T, Cetinkaya B, Sozen E, Ozer NK. Impact of Seipin in cholesterol mediated lipid droplet maturation; status of endoplasmic reticulum stress and lipophagy. Mech Ageing Dev 2024; 219:111933. [PMID: 38588730 DOI: 10.1016/j.mad.2024.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) defined by the increased number of lipid droplets (LDs) in hepatocytes, have risen continuously in parallel with the obesity. LDs and related proteins are known to affect cellular metabolism and signaling. Seipin, one of the most important LD-related proteins, plays a critical role in LD biogenesis. Although the role of adipose tissue-specific Seipin silencing is known, hepatocyte-specific silencing upon cholesterol-mediated lipid accumulation has not been investigated. In our study, we investigated the effect of Seipin on endoplasmic reticulum (ER) stress and lipophagy in cholesterol accumulated mouse hepatocyte cells. In this direction, cholesterol accumulation was induced by cholesterol-containing liposome, while Seipin mRNA and protein levels were reduced by siRNA. Our findings show that cholesterol containing liposome administration in hepatocytes increases both Seipin protein and number of large LDs. However Seipin silencing reduced the increase of cholesterol mediated large LDs and Glucose-regulated protein 78 (GRP78) mRNA. Additionally, lysosome-LD colocalization increased only in cells treated with cholesterol containing liposome, while the siRNA against Seipin did not lead any significant difference. According to our findings, we hypothesize that Seipin silencing in hepatocytes reduced cholesterol mediated LD maturation as well as GRP78 levels, but not lipophagy.
Collapse
Affiliation(s)
- Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey
| | - Bengu Cetinkaya
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey.
| |
Collapse
|
49
|
Ahn YJ, Kim B, Kim YH, Kim TY, Seo H, Park Y, Park SS, Ahn Y. Enzyme-Treated Zizania latifolia Ethanol Extract Improves Liver-Related Outcomes and Fatigability. Foods 2024; 13:1725. [PMID: 38890953 PMCID: PMC11171771 DOI: 10.3390/foods13111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Long-term hepatic damage is associated with human morbidity and mortality owing to numerous pathogenic factors. A variety of studies have focused on improving liver health using natural products and herbal medicines. We aimed to investigate the effect of enzyme-treated Zizania latifolia ethanol extract (ETZL), which increases the content of tricin via enzymatic hydrolysis, for 8 weeks on liver-related outcomes, lipid metabolism, antioxidant activity, and fatigue compared to a placebo. Healthy Korean adult males aged 19-60 years were randomized into ETZL treatment and placebo groups, and alcohol consumption was 24.96 and 28.64 units/week, respectively. Alanine transaminase, a blood marker associated with liver cell injury, significantly decreased after 8 weeks compared to the baseline in the ETZL treatment group (p = 0.004). After 8 weeks, the treatment group showed significant changes in the levels of high-density lipoprotein and hepatic steatosis index compared to the baseline (p = 0.028 and p = 0.004, respectively). ETZL treatment tended to reduce antioxidant-activity-related factors, total antioxidant status, and malondialdehyde, but there was no significant difference. In the multidimensional fatigue scale, ETZL treatment showed a significant reduction in general fatigue and total-fatigue-related values after 8 weeks compared to the baseline (p = 0.012 and p = 0.032, respectively). Taken together, the 8-week treatment of enzyme-treated Zizania latifolia ethanol extract demonstrated positive effects on liver-related outcomes, lipid metabolism, and mental fatigue without adverse effects on safety-related parameters.
Collapse
Affiliation(s)
- Yu-Jin Ahn
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea;
| | - Boyun Kim
- Department of Smart-Bio, Kyungsung University, Busan 48434, Republic of Korea;
| | - Yoon Hee Kim
- R&D Center, BTC Corporation, Ansan 15588, Republic of Korea
| | - Tae Young Kim
- R&D Center, BTC Corporation, Ansan 15588, Republic of Korea
| | - Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Yejin Ahn
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
50
|
Wang S, Zhang Y, Qi X, Xu X. Cardiometabolic and Metabolic Profiles of Lean/Normal, Overweight and Obese Patients with Nonalcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:2027-2036. [PMID: 38765467 PMCID: PMC11100970 DOI: 10.2147/dmso.s462003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Disagreements about the risk of non-obese, non-alcoholic fatty liver disease for cardiometabolic outcomes occurred widely. This study aims to characterize the cardiometabolic and metabolic profile of lean/normal, overweight and obese patients with nonalcoholic fatty liver disease on a big sample. Patients and methods Appeared healthy adults who participated in health examinations during the year of 2019-2022 were screened for fatty liver diagnosis. BMI classified fatty livers as lean, overweight and obese. Eleven cardiometabolic metrics (SBP: systolic blood pressure; DBP: diastolic blood pressure; TC: total cholesterol; TG: triglycerides; HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol) and metabolic metrics (GLU: blood glucose; GHB: glycated haemoglobin; UA: uric acid; AST: aspartate aminotransferase; ALT: alanine aminotransferase) were included, described and compared among BMI categories. Results There were 56,496 fatty livers diagnosed by ultrasound in this study. In total, the lean fatty liver had lowest mean SBP, DBP, GLU, TG, UA, AST, and ALT but highest TC and HDL among BMI categories (all p < 0.001). The number of abnormal metrics in total was 2.5, 2.9 and 3.4 in lean, overweight, and obesity, respectively (p < 0.001, p_trend < 0.001). Visualized data showed that lean fatty liver was similar but milder in all metabolic metrics than overweight and obesity at the young ages. However, lean fatty liver had higher coefficients of age and risk of metabolic abnormality regression (p <0.001 for SBP, DBP, GLU, GHB, TC). Conclusion The lean type of fatty livers at a younger age has a relatively favourable cardiometabolic and metabolic profile compared to overweight and obese fatty livers. Due to the possible catch-up effect of metabolic dysfunctions in young lean fatty liver, lean fatty liver may have the same health outcomes as overweight/obesity fatty liver in long term. The evaluation and intervention may be critical for young lean fatty liver management to slowdown the rapid progress of metabolic dysfunction.
Collapse
Affiliation(s)
- Siyao Wang
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yong Zhang
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
- School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoya Qi
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoyang Xu
- Health Medicine Center, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|