1
|
Nunes A, Singh S, Khayachi A, Stern S, Trappenberg T, Alda M. The Impact of Electrophysiological Diversity on Pattern Completion in Lithium Nonresponsive Bipolar Disorder: A Computational Modeling Approach. Brain Behav 2025; 15:e70209. [PMID: 39832133 PMCID: PMC11745123 DOI: 10.1002/brb3.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3. METHODS We simulated pattern completion tasks using a computational model of the CA3 with different degrees of pyramidal cell excitability variance. Since pyramidal cell excitability variance naturally leads to a mix of hyperexcitability and hypoexcitability, we also examined what fraction (hyper- vs. hypoexcitable) was predominantly responsible for pattern completion errors in our model. RESULTS Pyramidal cell excitability variance impaired pattern completion (linear model β = -2.00, SE = 0.03, p < 0.001). The effect was invariant to all other parameter settings in the model. Excitability variance, specifically hyperexcitability, increased the number of spuriously active neurons, increasing false alarm rates and producing pattern completion deficits. Excessive inhibition also induces pattern completion deficits by limiting the number of correctly active neurons during pattern retrieval. CONCLUSIONS Excitability variance in CA3 pyramidal cell-like neurons observed in lithium nonresponders may predict pattern completion deficits in these patients. These cognitive deficits may not be fully corrected by medications that minimize excitability. Future studies should test our predictions by examining behavioral correlates of pattern completion in lithium-responsive and -nonresponsive BD patients.
Collapse
Affiliation(s)
- Abraham Nunes
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Selena Singh
- Department of Psychology, Neuroscience & BehaviourMcMaster UniversityHamiltonOntarioCanada
| | - Anouar Khayachi
- Montreal Neurological Institute, Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | | | - Martin Alda
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
2
|
Li M, Jiang YQ, Lee DK, Wang H, Lu MC, Sun Q. Dorsoventral Heterogeneity of Synaptic Connectivity in Hippocampal CA3 Pyramidal Neurons. J Neurosci 2024; 44:e0370242024. [PMID: 39025678 PMCID: PMC11326861 DOI: 10.1523/jneurosci.0370-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
The hippocampal CA3 region plays an important role in learning and memory. CA3 pyramidal neurons (PNs) receive two prominent excitatory inputs-mossy fibers (MFs) from dentate gyrus (DG) and recurrent collaterals (RCs) from CA3 PNs-that play opposing roles in pattern separation and pattern completion, respectively. Although the dorsoventral heterogeneity of the hippocampal anatomy, physiology, and behavior has been well established, nothing is known about the dorsoventral heterogeneity of synaptic connectivity in CA3 PNs. In this study, we performed Timm's sulfide silver staining, dendritic and spine morphological analyses, and ex vivo electrophysiology in mice of both sexes to investigate the heterogeneity of MF and RC pathways along the CA3 dorsoventral axis. Our morphological analyses demonstrate that ventral CA3 (vCA3) PNs possess greater dendritic lengths and more complex dendritic arborization, compared with dorsal CA3 (dCA3) PNs. Moreover, using ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording, we found that the ratio of the RC-to-MF excitatory drive onto CA3 PNs increases substantially from dCA3 to vCA3, with vCA3 PNs receiving significantly weaker MFs, but stronger RCs, excitation than dCA3 PNs. Given the distinct roles of MF versus RC inputs in pattern separation versus completion, our findings of the significant dorsoventral variations of MF and RC excitation in CA3 PNs may have important functional implications for the contribution of CA3 circuit to the dorsoventral difference in hippocampal function.
Collapse
Affiliation(s)
- Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Haoran Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Melissa C Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
3
|
Espadas I, Wingfield JL, Nakahata Y, Chanda K, Grinman E, Ghosh I, Bauer KE, Raveendra B, Kiebler MA, Yasuda R, Rangaraju V, Puthanveettil S. Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity. Nat Commun 2024; 15:2694. [PMID: 38538603 PMCID: PMC10973417 DOI: 10.1038/s41467-024-46972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Karl E Bauer
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
4
|
Li M, Kinney JL, Jiang YQ, Lee DK, Wu Q, Lee D, Xiong WC, Sun Q. Hypothalamic Supramammillary Nucleus Selectively Excites Hippocampal CA3 Interneurons to Suppress CA3 Pyramidal Neuron Activity. J Neurosci 2023; 43:4612-4624. [PMID: 37117012 PMCID: PMC10286942 DOI: 10.1523/jneurosci.1910-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
A key mode of neuronal communication between distant brain regions is through excitatory synaptic transmission mediated by long-range glutamatergic projections emitted from principal neurons. The long-range glutamatergic projection normally forms numerous en passant excitatory synapses onto both principal neurons and interneurons along its path. Under physiological conditions, the monosynaptic excitatory drive onto postsynaptic principal neurons outweighs disynaptic feedforward inhibition, with the net effect of depolarizing principal neurons. In contrast with this conventional doctrine, here we report that a glutamatergic projection from the hypothalamic supramammillary nucleus (SuM) largely evades postsynaptic pyramidal neurons (PNs), but preferentially target interneurons in the hippocampal CA3 region to predominantly provide feedforward inhibition. Using viral-based retrograde and anterograde tracing and ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording in mice of either sex, we show that SuM projects sparsely to CA3 and provides minimal excitation onto CA3 PNs. Surprisingly, despite its sparse innervation, the SuM input inhibits all CA3 PNs along the transverse axis. Further, we find that SuM provides strong monosynaptic excitation onto CA3 parvalbumin-expressing interneurons evenly along the transverse axis, which likely mediates the SuM-driven feedforward inhibition. Together, our results demonstrate that a novel long-range glutamatergic pathway largely evades principal neurons, but rather preferentially innervates interneurons in a distant brain region to suppress principal neuron activity. Moreover, our findings reveal a new means by which SuM regulates hippocampal activity through SuM-to-CA3 circuit, independent of the previously focused projections from SuM to CA2 or dentate gyrus.SIGNIFICANCE STATEMENT The dominant mode of neuronal communication between brain regions is the excitatory synaptic transmission mediated by long-range glutamatergic projections, which form en passant excitatory synapses onto both pyramidal neurons and interneurons along its path. Under normal conditions, the excitation onto postsynaptic neurons outweighs feedforward inhibition, with the net effect of depolarization. In contrast with this conventional doctrine, here we report that a glutamatergic input from hypothalamic supramammillary nucleus (SuM) largely evades PNs but selectively targets interneurons to almost exclusively provide disynaptic feedforward inhibition onto hippocampal CA3 PNs. Thus, our findings reveal a novel subcortical-hippocampal circuit that enables SuM to regulate hippocampal activity via SuM-CA3 circuit, independent of its projections to CA2 or dentate gyrus.
Collapse
Affiliation(s)
- Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jessica L Kinney
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qiwen Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
5
|
Huang KY, Huang YJ, Chen SJ, Lin CH, Lane HY. The associations between cognitive functions and TSNAX genetic variations in patients with schizophrenia. Pharmacol Biochem Behav 2023; 225:173554. [PMID: 37030547 DOI: 10.1016/j.pbb.2023.173554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND The translin-associated factor X (TSNAX) gene, located adjacent to the DISC1 gene, has been implicated in schizophrenia. While cognitive impairment determines long-term the functional outcome of schizophrenia, the role of TSNAX in cognitive dysfunction of schizophrenia patients remains elusive. This study aimed to explore the genetic effect of TSNAX on cognitive functions of schizophrenia. METHODS We recruited 286 chronic schizophrenia patients who had been stabilized with antipsychotics for at least 2 months and genotyped three TSNAX SNPs (rs1630250, rs766288, rs6662926). Clinical symptoms and seven cognitive domains were assessed. The score of cognitive tests was standardized to T score. RESULTS Clinical symptoms were similar among genotypes of all the three SNPs. The GLM analysis demonstrated that TSNAX genetic polymorphisms influenced cognitive function of schizophrenia patients after adjustment for gender, age, and education. The patients with the rs1630250 C/G genotype performed better than the G/G homozygotes in the Trail Making A (p = 0.034). Those with the rs766288 G/T genotype also performed better than the G/G homozygotes in the Trail Making A (p = 0.012). The patients with the G/G genotype of rs6662926 also performed better than the C/C homozygotes in verbal learning and memory test (p = 0.044). CONCLUSIONS This study suggests that the TSNAX gene variation may influence the cognitive functions of the patients with schizophrenia.
Collapse
|
6
|
Espadas I, Wingfield J, Grinman E, Ghosh I, Chanda K, Nakahata Y, Bauer K, Raveendra B, Kiebler M, Yasuda R, Rangaraju V, Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. RESEARCH SQUARE 2023:rs.3.rs-2489387. [PMID: 36993323 PMCID: PMC10055528 DOI: 10.21203/rs.3.rs-2489387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute, Jupiter, FL, USA
| | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael Kiebler
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
7
|
Nomoto M, Murayama E, Ohno S, Okubo-Suzuki R, Muramatsu SI, Inokuchi K. Hippocampus as a sorter and reverberatory integrator of sensory inputs. Nat Commun 2022; 13:7413. [PMID: 36539403 PMCID: PMC9768143 DOI: 10.1038/s41467-022-35119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
The hippocampus must be capable of sorting and integrating multiple sensory inputs separately but simultaneously. However, it remains to be elucidated how the hippocampus executes these processes simultaneously during learning. Here we found that synchrony between conditioned stimulus (CS)-, unconditioned stimulus (US)- and future retrieval-responsible cells occurs in the CA1 during the reverberatory phase that emerges after sensory inputs have ceased, but not during CS and US inputs. Mutant mice lacking N-methyl-D-aspartate receptors (NRs) in CA3 showed a cued-fear memory impairment and a decrease in synchronized reverberatory activities between CS- and US-responsive CA1 cells. Optogenetic CA3 silencing at the reverberatory phase during learning impaired cued-fear memory. Thus, the hippocampus uses reverberatory activity to link CS and US inputs, and avoid crosstalk during sensory inputs.
Collapse
Affiliation(s)
- Masanori Nomoto
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Emi Murayama
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Shuntaro Ohno
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Reiko Okubo-Suzuki
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Shin-ichi Muramatsu
- grid.410804.90000000123090000Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, 329−0498 Japan ,grid.26999.3d0000 0001 2151 536XCenter for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108−8639 Japan
| | - Kaoru Inokuchi
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| |
Collapse
|
8
|
Dabaghian Y. From Topological Analyses to Functional Modeling: The Case of Hippocampus. Front Comput Neurosci 2021; 14:593166. [PMID: 33505262 PMCID: PMC7829363 DOI: 10.3389/fncom.2020.593166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Topological data analyses are widely used for describing and conceptualizing large volumes of neurobiological data, e.g., for quantifying spiking outputs of large neuronal ensembles and thus understanding the functions of the corresponding networks. Below we discuss an approach in which convergent topological analyses produce insights into how information may be processed in mammalian hippocampus—a brain part that plays a key role in learning and memory. The resulting functional model provides a unifying framework for integrating spiking data at different timescales and following the course of spatial learning at different levels of spatiotemporal granularity. This approach allows accounting for contributions from various physiological phenomena into spatial cognition—the neuronal spiking statistics, the effects of spiking synchronization by different brain waves, the roles played by synaptic efficacies and so forth. In particular, it is possible to demonstrate that networks with plastic and transient synaptic architectures can encode stable cognitive maps, revealing the characteristic timescales of memory processing.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
9
|
Zinn R, Leake J, Krasne FB, Corbit LH, Fanselow MS, Vissel B. Maladaptive Properties of Context-Impoverished Memories. Curr Biol 2020; 30:2300-2311.e6. [DOI: 10.1016/j.cub.2020.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
|
10
|
Zhao X, Wang Y, Spruston N, Magee JC. Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus. Nat Neurosci 2020; 23:881-891. [PMID: 32451487 DOI: 10.1038/s41593-020-0646-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
As animals navigate, they must identify features within context. In the mammalian brain, the hippocampus has the ability to separately encode different environmental contexts, even when they share some prominent features. To do so, neurons respond to sensory features in a context-dependent manner; however, it is not known how this encoding emerges. To examine this, we performed electrical recordings in the hippocampus as mice navigated in two distinct virtual environments. In CA1, both synaptic input to single neurons and population activity strongly tracked visual cues in one environment, whereas responses were almost completely absent when the same cue was presented in a second environment. A very similar, highly context-dependent pattern of cue-driven spiking was also observed in CA3. These results indicate that CA1 inherits a complex spatial code from upstream regions, including CA3, that have already computed a context-dependent representation of environmental features.
Collapse
Affiliation(s)
- Xinyu Zhao
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Yingxue Wang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.,Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Nelson Spruston
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| | - Jeffrey C Magee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA. .,Howard Hughes Medical Institute, Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Cereb Cortex 2020; 30:2555-2572. [PMID: 31832634 PMCID: PMC7174998 DOI: 10.1093/cercor/bhz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.
Collapse
Affiliation(s)
- Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Sb Finnie
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taekeun Kim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eitan S Kaplan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Samuel F Cooke
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Maurice Wohl Institute for Clinical Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- The Medical Research Council Centre for Neurodevelopmental Disorders (MRC CNDD), King's College London, London SE5 8AF, UK
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Segev A, Yanagi M, Scott D, Southcott SA, Lister JM, Tan C, Li W, Birnbaum SG, Kourrich S, Tamminga CA. Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. Mol Psychiatry 2020; 25:2832-2843. [PMID: 30038231 PMCID: PMC6344327 DOI: 10.1038/s41380-018-0124-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
Recent findings from in vivo-imaging and human post-mortem tissue studies in schizophrenic psychosis (SzP), have demonstrated functional and molecular changes in hippocampal subfields that can be associated with hippocampal hyperexcitability. In this study, we used a subfield-specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and psychosis-like behaviors. First, we used whole-cell patch-clamp recordings to measure the physiological changes in hippocampal subfields and cFos immunohistochemistry to examine cellular excitability. DG-GluN1 KO mice show CA3 cellular hyperactivity, detected using two approaches: (1) increased excitatory glutamate transmission at mossy fibers (MF)-CA3 synapses, and (2) an increased number of cFos-activated pyramidal neurons in CA3, an outcome that appears to project downstream to CA1 and basolateral amygdala (BLA). Furthermore, we examined psychosis-like behaviors and pathological memory processing; these show an increase in fear conditioning (FC), a reduction in prepulse inhibition (PPI) in the KO animal, along with a deterioration in memory accuracy with Morris Water Maze (MWM) and reduced social memory (SM). Moreover, with DREADD vectors, we demonstrate a remarkably similar behavioral profile when we induce CA3 hyperactivity. These hippocampal subfield changes could provide the basis for the observed increase in human hippocampal activity in SzP, based on the shared DG-specific GluN1 reduction. With further characterization, these animal model systems may serve as targets to test psychosis mechanisms related to hippocampus and assess potential hippocampus-directed treatments.
Collapse
Affiliation(s)
- Amir Segev
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Masaya Yanagi
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA ,grid.258622.90000 0004 1936 9967Present Address: Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daniel Scott
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Sarah A. Southcott
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Jacob M. Lister
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA ,grid.47100.320000000419368710Yale University, School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA ,grid.47100.320000000419368710Present Address: Yale University, School of Medicine, New Haven, CT USA
| | - Chunfeng Tan
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Wei Li
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Shari G. Birnbaum
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA.
| | - Carol A. Tamminga
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| |
Collapse
|
13
|
Lin CH, Yang S, Huang YJ, Lane HY. Polymorphism in the LASP1 gene promoter region alters cognitive functions of patients with schizophrenia. Sci Rep 2019; 9:18840. [PMID: 31827227 PMCID: PMC6906281 DOI: 10.1038/s41598-019-55414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022] Open
Abstract
Schizophrenia's pathogenesis remains elusive. Cognitive dysfunction is the endophenotype and outcome predictor of schizophrenia. The LIM and SH3 domain protein (LASP1) protein, a component of CNS synapses and dendritic spines, has been related to the N-methyl-D-aspartate receptor (NMDAR) dysfunction hypothesis and schizophrenia. A single-nucleotide polymorphism (rs979607) in the LASP1 gene promoter region has been also implicated in schizophrenia susceptibility. The aim of this study was to investigate the role of the LASP1 rs979607 polymorphism in the cognitive functions of patients with schizophrenia. Two hundred and ninety-one Han Taiwanese patients with schizophrenia were recruited. Ten cognitive tests and two clinical rating scales were assessed. The scores of cognitive tests were standardized to T-scores. The genotyping of the LASP1 rs979607 polymorphism was performed using TaqMan assay. Among the 291 patients, 85 were C/C homozygotes of rs979607, 141 C/T heterozygotes, and 65 T/T homozygotes, which fitted the Hardy-Weinberg equilibrium. After adjusting age, gender, and education with general linear model, the C/C homozygotes performed better than C/T heterozygotes in overall composite score (p = 0.023), Category Fluency test (representing processing speed and semantic memory) (p = 0.045), and Wechsler Memory Scale (WMS)-III backward Spatial Span test (p = 0.025), albeit without correction for multiple comparisons for the latter two individual tests. To the best of our knowledge, this is the first study suggesting that the genetic variation of LASP1 may be associated with global cognitive function, category verbal fluency, and spatial working memory of patients with schizophrenia. The finding also lends support to the NMDAR dysfunction hypothesis of schizophrenia. More studies with longitudinal designs are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sheng Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Jhen Huang
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.
- Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
Tzakis N, Holahan MR. Social Memory and the Role of the Hippocampal CA2 Region. Front Behav Neurosci 2019; 13:233. [PMID: 31632251 PMCID: PMC6779725 DOI: 10.3389/fnbeh.2019.00233] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
The CA2 region of the hippocampus is a somewhat obscure area lacking in an understanding of its form and function. Until recently, the CA2 has been thought of as merely an extension of the CA3, with some referring to it as the CA3a region. Recent investigations into this area have not only delineated the CA2, but also defined it as a region distinct from both CA1 and CA3, with a unique set of cortical inputs and outputs and contributions to cognitive processes. One such process that has been shown to depend on the CA2 is the ability to recognize a novel or familiar conspecific, known as social recognition memory. Here, we review these findings and discuss the parallels between CA2 dysfunction and social impairments.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
15
|
Hippocampal Arc protein expression and conditioned fear. Neurobiol Learn Mem 2019; 161:175-191. [DOI: 10.1016/j.nlm.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022]
|
16
|
Flasbeck V, Atucha E, Nakamura NH, Yoshida M, Sauvage MM. Spatial information is preferentially processed by the distal part of CA3: Implication for memory retrieval. Behav Brain Res 2018; 354:31-38. [DOI: 10.1016/j.bbr.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Chiang MC, Huang AJ, Wintzer ME, Ohshima T, McHugh TJ. A role for CA3 in social recognition memory. Behav Brain Res 2018; 354:22-30. [DOI: 10.1016/j.bbr.2018.01.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/15/2022]
|
18
|
PSD-95-nNOS Coupling Regulates Contextual Fear Extinction in the Dorsal CA3. Sci Rep 2018; 8:12775. [PMID: 30143658 PMCID: PMC6109109 DOI: 10.1038/s41598-018-30899-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Fear extinction depends on N-methyl-D-aspartate glutamate receptors (NMDARs) and brain-derived neurotrophic factor (BDNF) activation in the limbic system. However, postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) coupling, the downstream signaling of NMDARs activation, obstructs the BDNF signaling transduction. Thus, we wondered distinct roles of NMDAR activation and PSD-95-nNOS coupling on fear extinction. To explore the mechanisms, we detected protein-protein interaction using coimmunoprecipitation and measured protein expression by western blot. Contextual fear extinction induced a shift from PSD-95-nNOS to PSD-95-TrkB association in the dorsal hippocampus and c-Fos expression in the dorsal CA3. Disrupting PSD-95-nNOS coupling in the dorsal CA3 up-regulated phosphorylation of extracellular signal-regulates kinase (ERK) and BDNF, enhanced the association of BDNF-TrkB signaling with PSD-95, and promoted contextual fear extinction. Conversely, blocking NMDARs in the dorsal CA3 down-regulated BDNF expression and hindered contextual fear extinction. NMDARs activation and PSD-95-nNOS coupling play different roles in modulating contextual fear extinction in the hippocampus. Because inhibitors of PSD-95-nNOS interaction produce antidepressant and anxiolytic effect without NMDAR-induced side effects, PSD-95-nNOS could be a valuable target for PTSD treatment.
Collapse
|
19
|
Flasbeck V, Atucha E, Nakamura NH, Yoshida M, Sauvage MM. Spatial information is preferentially processed by the distal part of CA3: implication for memory retrieval. Behav Brain Res 2018. [PMID: 29518437 DOI: 10.1016/j.bbr.2018.02.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory.
Collapse
Affiliation(s)
- Vera Flasbeck
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, 44780, Bochum, Germany
| | - Erika Atucha
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, 44780, Bochum, Germany; Leibniz-Institute for Neurobiology, Functional Architecture of Memory Dept., 39118, Magdeburg, Germany
| | - Nozomu H Nakamura
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501 Japan
| | - Motoharu Yoshida
- German Center for Neurodegenerative Diseases (DZNE), cognitive neurophysiology laboratory, Magdeburg
| | - Magdalena M Sauvage
- Mercator Research Group, Functional Architecture of Memory Unit, Ruhr-University, 44780, Bochum, Germany; Leibniz-Institute for Neurobiology, Functional Architecture of Memory Dept., 39118, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Dept., 39120, Magdeburg Germany; Otto von Guericke University, Center for Behavioral Brain Sciences, 39106, Magdeburg Germany.
| |
Collapse
|
20
|
Sun Q, Sotayo A, Cazzulino AS, Snyder AM, Denny CA, Siegelbaum SA. Proximodistal Heterogeneity of Hippocampal CA3 Pyramidal Neuron Intrinsic Properties, Connectivity, and Reactivation during Memory Recall. Neuron 2017; 95:656-672.e3. [PMID: 28772124 DOI: 10.1016/j.neuron.2017.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 05/25/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
The hippocampal CA3 region is classically viewed as a homogeneous autoassociative network critical for associative memory and pattern completion. However, recent evidence has demonstrated a striking heterogeneity along the transverse, or proximodistal, axis of CA3 in spatial encoding and memory. Here we report the presence of striking proximodistal gradients in intrinsic membrane properties and synaptic connectivity for dorsal CA3. A decreasing gradient of mossy fiber synaptic strength along the proximodistal axis is mirrored by an increasing gradient of direct synaptic excitation from entorhinal cortex. Furthermore, we uncovered a nonuniform pattern of reactivation of fear memory traces, with the most robust reactivation during memory retrieval occurring in mid-CA3 (CA3b), the region showing the strongest net recurrent excitation. Our results suggest that heterogeneity in both intrinsic properties and synaptic connectivity may contribute to the distinct spatial encoding and behavioral role of CA3 subregions along the proximodistal axis.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| | - Alaba Sotayo
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Alejandro S Cazzulino
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Anna M Snyder
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Pharmacology, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
HIPP neurons in the dentate gyrus mediate the cholinergic modulation of background context memory salience. Nat Commun 2017; 8:189. [PMID: 28775269 PMCID: PMC5543060 DOI: 10.1038/s41467-017-00205-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 06/11/2017] [Indexed: 12/24/2022] Open
Abstract
Cholinergic neuromodulation in the hippocampus controls the salience of background context memory acquired in the presence of elemental stimuli predicting an aversive reinforcement. With pharmacogenetic inhibition we here demonstrate that hilar perforant path-associated (HIPP) cells of the dentate gyrus mediate the devaluation of background context memory during Pavlovian fear conditioning. The salience adjustment is sensitive to reduction of hilar neuropeptide Y (NPY) expression via dominant negative CREB expression in HIPP cells and to acute blockage of NPY-Y1 receptors in the dentate gyrus during conditioning. We show that NPY transmission and HIPP cell activity contribute to inhibitory effects of acetylcholine in the dentate gyrus and that M1 muscarinic receptors mediate the cholinergic activation of HIPP cells as well as their control of background context salience. Our data provide evidence for a peptidergic local circuit in the dentate gyrus that mediates the cholinergic encoding of background context salience during fear memory acquisition. Intra-hippocampal circuits are essential for associating a background context with behaviorally salient stimuli and involve cholinergic modulation at SST+ interneurons. Here the authors show that the salience of the background context memory is modulated through muscarinic activation of NPY+ hilar perforant path associated interneurons and NPY signaling in the dentate gyrus.
Collapse
|
22
|
Kim SH, Park YR, Lee B, Choi B, Kim H, Kim CH. Reduction of Cav1.3 channels in dorsal hippocampus impairs the development of dentate gyrus newborn neurons and hippocampal-dependent memory tasks. PLoS One 2017; 12:e0181138. [PMID: 28715454 PMCID: PMC5513490 DOI: 10.1371/journal.pone.0181138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Cav1.3 has been suggested to mediate hippocampal neurogenesis of adult mice and contribute to hippocampal-dependent learning and memory processes. However, the mechanism of Cav1.3 contribution in these processes is unclear. Here, roles of Cav1.3 of mouse dorsal hippocampus during newborn cell development were examined. We find that knock-out (KO) of Cav1.3 resulted in the reduction of survival of newborn neurons at 28 days old after mitosis. The retroviral eGFP expression showed that both dendritic complexity and the number and length of mossy fiber bouton (MFB) filopodia of newborn neurons at ≥ 14 days old were significantly reduced in KO mice. Both contextual fear conditioning (CFC) and object-location recognition tasks were impaired in recent (1 day) memory test while passive avoidance task was impaired only in remote (≥ 20 days) memory in KO mice. Results using adeno-associated virus (AAV)-mediated Cav1.3 knock-down (KD) or retrovirus-mediated KD in dorsal hippocampal DG area showed that the recent memory of CFC was impaired in both KD mice but the remote memory was impaired only in AAV KD mice, suggesting that Cav1.3 of mature neurons play important roles in both recent and remote CFC memory while Cav1.3 in newborn neurons is selectively involved in the recent CFC memory process. Meanwhile, AAV KD of Cav1.3 in ventral hippocampal area has no effect on the recent CFC memory. In conclusion, the results suggest that Cav1.3 in newborn neurons of dorsal hippocampus is involved in the survival of newborn neurons while mediating developments of dendritic and axonal processes of newborn cells and plays a role in the memory process differentially depending on the stage of maturation and the type of learning task.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Ye-Ryoung Park
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Byungil Choi
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
- * E-mail:
| |
Collapse
|
23
|
Abstract
One of the mysteries of memory is that it can last despite changes in the underlying synaptic architecture. How can we, for example, maintain an internal spatial map of an environment over months or years when the underlying network is full of transient connections? In the following, we propose a computational model for describing the emergence of the hippocampal cognitive map in a network of transient place cell assemblies and demonstrate, using methods of algebraic topology, how such a network can maintain spatial memory over time.
Collapse
|
24
|
Leake J, Zinn R, Corbit L, Vissel B. Dissociation between complete hippocampal context memory formation and context fear acquisition. ACTA ACUST UNITED AC 2017; 24:153-157. [PMID: 28298553 PMCID: PMC5362699 DOI: 10.1101/lm.044578.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022]
Abstract
Rodents require a minimal time period to explore a context prior to footshock to display plateau-level context fear at test. To investigate whether this rapid fear plateau reflects complete memory formation within that short time-frame, we used the immediate-early gene product Arc as an indicator of hippocampal context memory formation-related activity. We found that hippocampal Arc expression continued to increase well past the minimal time required for plateau-level fear. This raises the possibility that context fear conditioning occurs more rapidly than complete memory formation. Thus, animals may be able to condition robustly to both complete and incomplete contextual representations.
Collapse
Affiliation(s)
- Jessica Leake
- Neurodegenerative Disorders, Neuroscience Department, Garvan Institute of Medical Research, Sydney 2010, Australia.,School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Raphael Zinn
- Neurodegenerative Disorders, Neuroscience Department, Garvan Institute of Medical Research, Sydney 2010, Australia.,Faculty of Medicine, University of New South Wales, Sydney 2052, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Laura Corbit
- School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Bryce Vissel
- Neurodegenerative Disorders, Neuroscience Department, Garvan Institute of Medical Research, Sydney 2010, Australia.,Faculty of Medicine, University of New South Wales, Sydney 2052, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
25
|
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 2017; 18:208-220. [DOI: 10.1038/nrn.2017.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Melnikova T, Park D, Becker L, Lee D, Cho E, Sayyida N, Tian J, Bandeen-Roche K, Borchelt DR, Savonenko AV. Sex-related dimorphism in dentate gyrus atrophy and behavioral phenotypes in an inducible tTa:APPsi transgenic model of Alzheimer's disease. Neurobiol Dis 2016; 96:171-185. [PMID: 27569580 DOI: 10.1016/j.nbd.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 07/07/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Sex differences are a well-known phenomenon in Alzheimer's disease (AD), with women having a higher risk for AD than men. Many AD mouse models display a similar sex-dependent pattern, with females showing earlier cognitive deficits and more severe neuropathology than males. However, whether those differences are relevant to human disease is unclear. Here we show that in AD mouse models that overexpress amyloid precursor protein (APP) under control of the prion protein promoter (PrP), female transgenic mice have higher APP expression than males, complicating interpretations of the role of sex-related factors in such models. By contrast, in a tTa:APPsi model, in which APP expression is driven by the tetracycline transactivator (tTa) from the CaMKIIα promoter, there are no sex-related differences in expression or processing of APP. In addition, the levels of Aβ dimers and tetramers, as well as Aβ peptide accumulation, are similar between sexes. Behavioral testing demonstrated that both male and female tTa:APPsi mice develop age-dependent deficits in spatial recognition memory and conditional freezing to context. These cognitive deficits were accompanied by habituation-associated hyperlocomotion and startle hyper-reactivity. Significant sex-related dimorphisms were observed, due to females showing earlier onsets of the deficits in conditioned freezing and hyperlocomotion. In addition, tTa:APPsi males but not females demonstrated a lack of novelty-induced activation. Both males and females showed atrophy of the dentate gyrus (DG) of the dorsal hippocampus, associated with widening of the pyramidal layer of the CA1 area in both sexes. Ventral DG was preserved. Sex-related differences were limited to the DG, with females showing more advanced degeneration than males. Collectively, our data show that the tTa:APPsi model is characterized by a lack of sex-related differences in APP expression, making this model useful in deciphering the mechanisms of sex differences in AD pathogenesis. Sex-related dimorphisms observed in this model under conditions of equal APP expression between sexes suggest a higher sensitivity of females to the effects of APP and/or Aβ production.
Collapse
Affiliation(s)
- Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - DaMin Park
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Lauren Becker
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Jing Tian
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - Karen Bandeen-Roche
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 100 Newell Drive, Gainesville, FL 32610, USA.
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Busse S, Schwarting RKW. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats. Front Behav Neurosci 2016; 10:118. [PMID: 27375453 PMCID: PMC4896910 DOI: 10.3389/fnbeh.2016.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
The present study is part of a series of experiments, where we analyze why and how damage of the rat's dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning.
Collapse
Affiliation(s)
- Sebastian Busse
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg Marburg, Germany
| |
Collapse
|
28
|
Potier M, Georges F, Brayda-Bruno L, Ladépêche L, Lamothe V, Al Abed AS, Groc L, Marighetto A. Temporal Memory and Its Enhancement by Estradiol Requires Surface Dynamics of Hippocampal CA1 N-Methyl-D-Aspartate Receptors. Biol Psychiatry 2016; 79:735-745. [PMID: 26321020 DOI: 10.1016/j.biopsych.2015.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/03/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Identifying the underlying cellular mechanisms of episodic memory is an important challenge, since this memory, based on temporal and contextual associations among events, undergoes preferential degradation in aging and various neuropsychiatric disorders. Memory storage of temporal and contextual associations is known to rely on hippocampal N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity, which depends ex vivo on dynamic organization of surface NMDARs. Whether NMDAR surface trafficking sustains the formation of associative memory, however, remains unknown. METHODS We tested this hypothesis, using single nanoparticle imaging, electrophysiology, and behavioral approaches, in hippocampal networks challenged with a potent modulator of NMDAR-dependent synaptic plasticity and memory, 17β-estradiol (E2). RESULTS We demonstrate that E2 modulates NMDAR surface trafficking, a necessary condition for E2-induced potentiation at hippocampal cornu ammonis 1 synapses. Strikingly, cornu ammonis 1 NMDAR surface trafficking controls basal and E2-enhanced mnemonic retention of temporal, but not contextual, associations. CONCLUSIONS NMDAR surface trafficking and its modulation by the sex hormone E2 is a cellular mechanism critical for a major component of episodic memory, opening a new and noncanonical research avenue in the physiopathology of cognition.
Collapse
Affiliation(s)
- Mylène Potier
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862 l'Institut National de la Santé et de la Recherche Médicale, Bordeaux, France; Université de Bordeaux (MP, FG, LB-B, LL, VL, SAA, LG), Bordeaux, France
| | - François Georges
- Interdisciplinary Institute for NeuroSciences (FG, LL, LG, AM), Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5297, Bordeaux, France; Université de Bordeaux (MP, FG, LB-B, LL, VL, SAA, LG), Bordeaux, France
| | - Laurent Brayda-Bruno
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862 l'Institut National de la Santé et de la Recherche Médicale, Bordeaux, France; Université de Bordeaux (MP, FG, LB-B, LL, VL, SAA, LG), Bordeaux, France
| | - Laurent Ladépêche
- Interdisciplinary Institute for NeuroSciences (FG, LL, LG, AM), Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5297, Bordeaux, France; Université de Bordeaux (MP, FG, LB-B, LL, VL, SAA, LG), Bordeaux, France
| | - Valérie Lamothe
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862 l'Institut National de la Santé et de la Recherche Médicale, Bordeaux, France; Université de Bordeaux (MP, FG, LB-B, LL, VL, SAA, LG), Bordeaux, France
| | - Alice Shaam Al Abed
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862 l'Institut National de la Santé et de la Recherche Médicale, Bordeaux, France; Université de Bordeaux (MP, FG, LB-B, LL, VL, SAA, LG), Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for NeuroSciences (FG, LL, LG, AM), Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5297, Bordeaux, France; Université de Bordeaux (MP, FG, LB-B, LL, VL, SAA, LG), Bordeaux, France
| | - Aline Marighetto
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862 l'Institut National de la Santé et de la Recherche Médicale, Bordeaux, France; Interdisciplinary Institute for NeuroSciences (FG, LL, LG, AM), Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5297, Bordeaux, France.
| |
Collapse
|
29
|
Novick AM, Mears M, Forster GL, Lei Y, Tejani-Butt SM, Watt MJ. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood. Behav Brain Res 2016; 304:51-9. [PMID: 26876136 PMCID: PMC4795455 DOI: 10.1016/j.bbr.2016.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Andrew M Novick
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA.
| | - Mackenzie Mears
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Yanlin Lei
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd St., Philadelphia, PA 19104, USA
| | - Shanaz M Tejani-Butt
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd St., Philadelphia, PA 19104, USA
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
30
|
Lux V, Atucha E, Kitsukawa T, Sauvage MM. Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval. eLife 2016; 5:e11862. [PMID: 26880561 PMCID: PMC4805540 DOI: 10.7554/elife.11862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/09/2016] [Indexed: 11/17/2022] Open
Abstract
Whether retrieval still depends on the hippocampus as memories age or relies then on cortical areas remains a major controversy. Despite evidence for a functional segregation between CA1, CA3 and parahippocampal areas, their specific role within this frame is unclear. Especially, the contribution of CA3 is questionable as very remote memories might be too degraded to be used for pattern completion. To identify the specific role of these areas, we imaged brain activity in mice during retrieval of recent, early remote and very remote fear memories by detecting the immediate-early gene Arc. Investigating correlates of the memory trace over an extended period allowed us to report that, in contrast to CA1, CA3 is no longer recruited in very remote retrieval. Conversely, we showed that parahippocampal areas are then maximally engaged. These results suggest a shift from a greater contribution of the trisynaptic loop to the temporoammonic pathway for retrieval. DOI:http://dx.doi.org/10.7554/eLife.11862.001 There are two schools of thought about what role the hippocampus – a region of the brain – plays in memory. Some neuroscientists think that it is involved in retrieving all memories. Others believe that its contribution is restricted to the retrieval of recent memories, while a neighboring part of the brain called the parahippocampal region takes over to retrieve older memories. The hippocampus contains two distinct areas called CA1 and CA3, which have recently been suggested to have, at least partially, separate roles. For example. previous studies have shown that CA3 plays an important role in processes that tend to be less efficient as time goes by. However, it remains unclear whether CA1 and CA3 contribute equally to the retrieval of recent and older memories. Lux et al. addressed this question by observing brain activity in mice as they retrieved recent and older memories. The experiments show that both areas of the hippocampus are involved in retrieving recent memories, but that only the CA1 area is involved in the retrieval of older memories. The parahippocampal region is much more active during the retrieval of older memories than recent ones. These findings clarify the role of the hippocampus in memory by showing that it is involved in the retrieval of both recent and older memories. The next steps will be to better understand how the CA1 and CA3 areas contribute to memory and to pin point the specific molecular mechanisms these regions rely on to do so. DOI:http://dx.doi.org/10.7554/eLife.11862.002
Collapse
Affiliation(s)
- Vanessa Lux
- Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Erika Atucha
- Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Functional Neuroplasticity Department, Otto von Guericke University, Magdeburg, Germany.,Functional Architecture of Memory Dpt, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Takashi Kitsukawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Magdalena M Sauvage
- Functional Architecture of Memory unit, Mercator Research Group, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Functional Neuroplasticity Department, Otto von Guericke University, Magdeburg, Germany.,Functional Architecture of Memory Dpt, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
31
|
Çalışkan G, Albrecht A, Hollnagel JO, Rösler A, Richter-Levin G, Heinemann U, Stork O. Long-term changes in the CA3 associative network of fear-conditioned mice. Stress 2015; 18:188-97. [PMID: 25556979 DOI: 10.3109/10253890.2015.1004628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The CA3 associative network plays a critical role in the generation of network activity patterns related to emotional state and fear memory. We investigated long-term changes in the corticosterone (CORT)-sensitive function of this network following fear conditioning and fear memory reactivation. In acute slice preparations from mice trained in either condition, the ratio of orthodromic population spike (PS) to antidromic PS was reduced compared to unconditioned animals, indicating a decrease in efficacy of neuronal coupling within the associative CA3 network. However, spontaneous sharp wave-ripples (SW-R), which are thought to arise from this network, remained unaltered. Following CORT application, we observed an increase in orthodromic PS and a normalization to control levels of their ratio to antidromic PS, while SW-R increased in slices of fear conditioned and fear reactivated mice, but not in slices of unconditioned controls. Together with our previous observations of altered hippocampal gamma activity under these learning paradigms, these data suggest that fear conditioning and fear reactivation lastingly alters the CORT-sensitive configuration of different network activity patterns generated by the CA3 associational network. Observed changes in the mRNA expression of receptors for glutamate, GABA and cannabinoids in the stratum pyramidale of area CA3 may provide a molecular mechanism for these adaptive changes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/physiology
- Conditioning, Psychological/physiology
- Corticosterone/pharmacology
- Emotions
- Fear
- Hippocampus/drug effects
- Hippocampus/physiology
- Male
- Memory/physiology
- Mice
- Multiplex Polymerase Chain Reaction
- Nerve Tissue Proteins/genetics
- Neural Pathways/physiology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptors, AMPA/genetics
- Receptors, GABA-A/genetics
- Receptors, N-Methyl-D-Aspartate/genetics
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Pevzner A, Guzowski JF. Immediate-early gene transcriptional activation in hippocampus CA1 and CA3 does not accurately reflect rapid, pattern completion-based retrieval of context memory. ACTA ACUST UNITED AC 2014; 22:1-5. [PMID: 25512571 PMCID: PMC4274330 DOI: 10.1101/lm.035469.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
No studies to date have examined whether immediate-early gene (IEG) activation is driven by context memory recall. To address this question, we utilized the context preexposure facilitation effect (CPFE) paradigm. In CPFE, animals acquire contextual fear conditioning through hippocampus-dependent rapid retrieval of a previously formed contextual representation. Despite differences in behavior, we did not find any difference in CA1 or CA3 IEG activity associated with this rapid recall phase when comparing context preexposed and non-pre-exposed groups. These findings indicate that IEG activation in CA1 and CA3 is not an accurate readout of the neural activity associated with hippocampus-dependent rapid memory retrieval.
Collapse
Affiliation(s)
- Aleksandr Pevzner
- Center for the Neurobiology of Learning and Memory; Department of Neurobiology and Behavior; University of California, Irvine, California 92697-3800, USA
| | - John F Guzowski
- Center for the Neurobiology of Learning and Memory; Department of Neurobiology and Behavior; University of California, Irvine, California 92697-3800, USA
| |
Collapse
|
33
|
Remaud J, Ceccom J, Carponcy J, Dugué L, Menchon G, Pech S, Halley H, Francés B, Dahan L. Anisomycin injection in area CA3 of the hippocampus impairs both short-term and long-term memories of contextual fear. Learn Mem 2014; 21:311-5. [PMID: 25171422 PMCID: PMC4024620 DOI: 10.1101/lm.033969.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal area CA1 or CA3 immediately after contextual fear conditioning. As previously shown, injections in CA1 impaired long-term memory but spared short-term memory. Conversely, injections in CA3 impaired both long-term and short-term memories. We conclude that early steps of experience-induced plasticity occurring in CA3 and underlying short-term memory require protein synthesis.
Collapse
Affiliation(s)
- Jessica Remaud
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Johnatan Ceccom
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Julien Carponcy
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Laura Dugué
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Gregory Menchon
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Stéphane Pech
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Helene Halley
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Bernard Francés
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Lionel Dahan
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| |
Collapse
|
34
|
Abstract
Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.
Collapse
|
35
|
Carretero-Guillen A, Pacheco-Calderon R, Delgado-Garcia JM, Gruart A. Involvement of Hippocampal Inputs and Intrinsic Circuit in the Acquisition of Context and Cues During Classical Conditioning in Behaving Rabbits. Cereb Cortex 2013; 25:1278-89. [DOI: 10.1093/cercor/bht321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
36
|
Mapping memory function in the medial temporal lobe with the immediate-early gene Arc. Behav Brain Res 2013; 254:22-33. [DOI: 10.1016/j.bbr.2013.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 12/29/2022]
|
37
|
Germain J, Bruel-Jungerman E, Grannec G, Denis C, Lepousez G, Giros B, Francis F, Nosten-Bertrand M. Doublecortin knockout mice show normal hippocampal-dependent memory despite CA3 lamination defects. PLoS One 2013; 8:e74992. [PMID: 24073232 PMCID: PMC3779246 DOI: 10.1371/journal.pone.0074992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/12/2013] [Indexed: 11/23/2022] Open
Abstract
Mutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability.
Collapse
Affiliation(s)
- Johanne Germain
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
- Université Paris Descartes, Paris, France
| | - Elodie Bruel-Jungerman
- UPMC, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Gael Grannec
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
| | - Cécile Denis
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
| | | | - Bruno Giros
- INSERM UMRS 952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC, Paris, France
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada
| | - Fiona Francis
- UPMC, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | | |
Collapse
|
38
|
Beer Z, Chwiesko C, Kitsukawa T, Sauvage MM. Spatial and stimulus-type tuning in the LEC, MEC, POR, PrC, CA1, and CA3 during spontaneous item recognition memory. Hippocampus 2013; 23:1425-38. [DOI: 10.1002/hipo.22195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Zachery Beer
- Functional Architecture of Memory Unit; Mercator Research Group, Faculty of Medicine, Ruhr University Bochum; 44801 Bochum Germany
| | - Caroline Chwiesko
- Functional Architecture of Memory Unit; Mercator Research Group, Faculty of Medicine, Ruhr University Bochum; 44801 Bochum Germany
| | - Takashi Kitsukawa
- Graduate School of Frontier Biosciences; Osaka University; Osaka Japan
| | - Magdalena M. Sauvage
- Functional Architecture of Memory Unit; Mercator Research Group, Faculty of Medicine, Ruhr University Bochum; 44801 Bochum Germany
| |
Collapse
|
39
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
40
|
Lee I, Park SB. Perirhinal cortical inactivation impairs object-in-place memory and disrupts task-dependent firing in hippocampal CA1, but not in CA3. Front Neural Circuits 2013; 7:134. [PMID: 23966912 PMCID: PMC3743073 DOI: 10.3389/fncir.2013.00134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/26/2013] [Indexed: 11/13/2022] Open
Abstract
Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER). However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context), which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS) severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side). MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm [object-in-place (O-P) strategy] and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side [response-in-place (R-P) strategy]. We found that the similarity in firing patterns for O-P trials was significantly reduced with MUS compared to control conditions (CTs). Importantly, this was largely because MUS injections affected the O-P firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.
Collapse
Affiliation(s)
- Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University Seoul, South Korea
| | | |
Collapse
|
41
|
LaClair KD, Manaye KF, Lee DL, Allard JS, Savonenko AV, Troncoso JC, Wong PC. Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 2013; 8:18. [PMID: 23764200 PMCID: PMC3693923 DOI: 10.1186/1750-1326-8-18] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022] Open
Abstract
Background Though the precise cause(s) of Alzheimer’s disease (AD) remain unknown, there is strong evidence that decreased clearance of β-amyloid (Aβ) from the brain can contribute to the disease. Therapeutic strategies to promote natural Aβ clearance mechanisms, such as the protein apolipoprotein-E (APOE), hold promise for the treatment of AD. The amount of APOE in the brain is regulated by nuclear receptors including retinoid X receptors (RXRs). Drugs that activate RXRs, including bexarotene, can increase APOE and ABCA1 production, and have been shown to decrease the Aβ burden and improve cognition in mouse models of Aβ amyloidosis. Although recent bexarotene studies failed to replicate the rapid clearance of Aβ from brains, behavioral and cognitive effects of this compound remain controversial. Findings In efforts to clarify these behavioral findings, mutant APP/PS1 mice were acutely dosed with bexarotene. While ABCA1 was upregulated in mutant APP/PS1 mice treated with bexarotene, this drug failed to attenuate Aβ plaques or cognitive deficits in these mice. Conclusions We recommend rigorous preclinical study to evaluate the mechanism and utility of such a compound for AD therapy.
Collapse
Affiliation(s)
- Katherine D LaClair
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee I, Lee CH. Contextual behavior and neural circuits. Front Neural Circuits 2013; 7:84. [PMID: 23675321 PMCID: PMC3650478 DOI: 10.3389/fncir.2013.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/14/2013] [Indexed: 11/13/2022] Open
Abstract
Animals including humans engage in goal-directed behavior flexibly in response to items and their background, which is called contextual behavior in this review. Although the concept of context has long been studied, there are differences among researchers in defining and experimenting with the concept. The current review aims to provide a categorical framework within which not only the neural mechanisms of contextual information processing but also the contextual behavior can be studied in more concrete ways. For this purpose, we categorize contextual behavior into three subcategories as follows by considering the types of interactions among context, item, and response: contextual response selection, contextual item selection, and contextual item–response selection. Contextual response selection refers to the animal emitting different types of responses to the same item depending on the context in the background. Contextual item selection occurs when there are multiple items that need to be chosen in a contextual manner. Finally, when multiple items and multiple contexts are involved, contextual item–response selection takes place whereby the animal either chooses an item or inhibits such a response depending on item–context paired association. The literature suggests that the rhinal cortical regions and the hippocampal formation play key roles in mnemonically categorizing and recognizing contextual representations and the associated items. In addition, it appears that the fronto-striatal cortical loops in connection with the contextual information-processing areas critically control the flexible deployment of adaptive action sets and motor responses for maximizing goals. We suggest that contextual information processing should be investigated in experimental settings where contextual stimuli and resulting behaviors are clearly defined and measurable, considering the dynamic top-down and bottom-up interactions among the neural systems for contextual behavior.
Collapse
Affiliation(s)
- Inah Lee
- Behavioral Neurophysiology Laboratory, Department of Brain and Cognitive Sciences, Seoul National University Seoul, South Korea
| | | |
Collapse
|
43
|
Neuron-specific expression of tomosyn1 in the mouse hippocampal dentate gyrus impairs spatial learning and memory. Neuromolecular Med 2013; 15:351-63. [PMID: 23519441 DOI: 10.1007/s12017-013-8223-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/16/2013] [Indexed: 01/20/2023]
Abstract
Tomosyn, a syntaxin-binding protein, is known to inhibit vesicle priming and synaptic transmission via interference with the formation of SNARE complexes. Using a lentiviral vector, we specifically overexpressed tomosyn1 in hippocampal dentate gyrus neurons in adult mice. Mice were then subjected to spatial learning and memory tasks and electrophysiological measurements from hippocampal slices. Tomosyn1-overexpression significantly impaired hippocampus-dependent spatial memory while tested in the Morris water maze. Further, tomosyn1-overexpressing mice utilize swimming strategies of lesser cognitive ability in the Morris water maze compared with control mice. Electrophysiological measurements at mossy fiber-CA3 synapses revealed impaired paired-pulse facilitation in the mossy fiber of tomosyn1-overexpressing mice. This study provides evidence for novel roles for tomosyn1 in hippocampus-dependent spatial learning and memory, potentially via decreased synaptic transmission in mossy fiber-CA3 synapses. Moreover, it provides new insight regarding the role of the hippocampal dentate gyrus and mossy fiber-CA3 synapses in swimming strategy preference, and in learning and memory.
Collapse
|
44
|
Gaisler-Salomon I, Wang Y, Chuhma N, Zhang H, Golumbic YN, Mihali A, Arancio O, Sibille E, Rayport S. Synaptic underpinnings of altered hippocampal function in glutaminase-deficient mice during maturation. Hippocampus 2012; 22:1027-39. [PMID: 22431402 DOI: 10.1002/hipo.22014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Glutaminase-deficient mice (GLS1 hets), with reduced glutamate recycling, have a focal reduction in hippocampal activity, mainly in CA1, and manifest behavioral and neurochemical phenotypes suggestive of schizophrenia resilience. To address the basis for the hippocampal hypoactivity, we examined synaptic plastic mechanisms and glutamate receptor expression. Although baseline synaptic strength was unaffected in Schaffer collateral inputs to CA1, we found that long-term potentiation was attenuated. In wild-type (WT) mice, GLS1 gene expression was highest in the hippocampus and cortex, where it was reduced by about 50% in GLS1 hets. In other brain regions with lower WT GLS1 gene expression, there were no genotypic reductions. In adult GLS1 hets, NMDA receptor NR1 subunit gene expression was reduced, but not AMPA receptor GluR1 subunit gene expression. In contrast, juvenile GLS1 hets showed no reductions in NR1 gene expression. In concert with this, adult GLS1 hets showed a deficit in hippocampal-dependent contextual fear conditioning, whereas juvenile GLS1 hets did not. These alterations in glutamatergic synaptic function may partly explain the hippocampal hypoactivity seen in the GLS1 hets. The maturity-onset reduction in NR1 gene expression and in contextual learning supports the premise that glutaminase inhibition in adulthood should prove therapeutic in schizophrenia.
Collapse
|
45
|
Abstract
Recent studies focusing on the memory for temporal order have reported that CA1 plays a critical role in the memory for the sequences of events, in addition to its well-described role in spatial navigation. In contrast, CA3 was found to principally contribute to the memory for the association of items with spatial or contextual information in tasks focusing on spatial memory. Other studies have shown that NMDA signaling in the hippocampus is critical to memory performance in studies that have investigated spatial and temporal order memory independently. However, the role of NMDA signaling separately in CA1 and CA3 in memory that combines both spatial and temporal processing demands (episodic memory) has not been examined. Here we investigated the effect of the deletion of the NR1 subunit of the NMDA receptor in CA1 or CA3 on the spatial and the temporal aspects of episodic memory, using a behavioral task that allows for these two aspects of memory to be evaluated distinctly within the same task. Under these conditions, NMDA signaling in CA1 specifically contributes to the spatial aspect of memory function and is not required to support the memory for temporal order of events.
Collapse
|
46
|
Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, Talpos J, Tricklebank M. NMDA receptors, cognition and schizophrenia – Testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 2012; 62:1401-12. [DOI: 10.1016/j.neuropharm.2011.03.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
|
47
|
Pevzner A, Miyashita T, Schiffman AJ, Guzowski JF. Temporal dynamics of Arc gene induction in hippocampus: relationship to context memory formation. Neurobiol Learn Mem 2012; 97:313-20. [PMID: 22390855 DOI: 10.1016/j.nlm.2012.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 11/26/2022]
Abstract
Past studies have proposed a role for the hippocampus in the rapid encoding of context memories. Despite this, there is little data regarding the molecular processes underlying the stable formation of a context representation that occurs in the time window established through such behavioral studies. One task that is useful for investigating the rapid encoding of context is contextual fear conditioning (CFC). Behavioral studies demonstrate that animals require approximately 30 s of exploration prior to a footshock to form a contextual representation supporting CFC. Thus, any potential molecular process required for the stabilization of the cellular representation for context must be activated within this narrow and behaviorally defined time window. Detection of the immediate-early gene Arc presents an ideal method to assess the activation of specific neuronal ensembles, given past studies showing the context specific expression of Arc in CA3 and CA1 subfields and the role of Arc in hippocampal long-term synaptic plasticity. Therefore, we examined the temporal dynamics of Arc induction within the hippocampus after brief context exposure to determine whether experience-dependent Arc expression could be involved in the rapid encoding of incidental context memories. We found that the duration of context exposure differentially activated Arc expression in hippocampal subfields, with CA3 showing rapid engagement within as little as 3 s of exposure. By contrast, Arc induction in CA1 required 30 s of context exposure to reach maximal levels. A parallel behavioral experiment revealed that 30 s, but not 3 s, exposure to a context resulted in strong conditioned freezing 24 h later, consistent with past studies from other laboratories. The current study is the first to examine the rapid temporal dynamics of Arc induction in hippocampus in a well-defined context memory paradigm. These studies demonstrate within 30 s of context exposure Arc is fully activated in CA3 and CA1, suggesting that the engagement of plastic processes requiring Arc function (such as long-term potentiation) occurs within the same temporal domain as that required for behavioral conditioning.
Collapse
Affiliation(s)
- Aleksandr Pevzner
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | | | | | | |
Collapse
|
48
|
Acheson DT, Gresack JE, Risbrough VB. Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder. Neuropharmacology 2012; 62:674-85. [PMID: 21596050 PMCID: PMC3175276 DOI: 10.1016/j.neuropharm.2011.04.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/24/2011] [Accepted: 04/23/2011] [Indexed: 01/13/2023]
Abstract
Hippocampal volume reductions and functional impairments are reliable findings in posttraumatic stress disorder (PTSD) imaging studies. However, it is not clear if and how hippocampal dysfunction contributes to the etiology and maintenance of PTSD. Individuals with PTSD are often described as showing fear responses to trauma reminders outside of contexts in which these cues would reasonably predict danger. Animal studies suggest that the hippocampus is required to form and recall associations between contextual stimuli and aversive events. For example, the hippocampus is critical for encoding memories in which a complex configuration of multiple cues is associated with the aversive event. Conversely, the hippocampus is not required for associations with discrete cues. In animal studies, if configural memory is disrupted, learning strategies using discrete cue associations predominate. These data suggest poor hippocampal function could bias the organism toward forming multiple simple cue associations during trauma, thus increasing the chances of fear responses in multiple environments (or contexts) in which these cues may be present. Here we will examine clinical and preclinical literature to support a theory of hippocampal dysfunction as a primary contributory factor to the etiology of PTSD, and discuss future research required to test these hypotheses. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Dean T. Acheson
- Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs VISN22
- Department of Psychiatry, University of California, San Diego
| | - Jodi E. Gresack
- Department of Psychiatry, University of California, San Diego
| | - Victoria B. Risbrough
- Department of Psychiatry, University of California, San Diego
- Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA
| |
Collapse
|
49
|
Genoux D, Bezerra P, Montgomery JM. Intra-spaced stimulation and protein phosphatase 1 dictate the direction of synaptic plasticity. Eur J Neurosci 2011; 33:1761-70. [PMID: 21501252 DOI: 10.1111/j.1460-9568.2011.07669.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in the strength of synapses in the hippocampus that occur with long-term potentiation (LTP) or long-term depression (LTD) are thought to underlie the cellular basis of learning and memory. Memory formation is known to be regulated by spacing intervals between training episodes. Using paired whole-cell recordings to record from synapses connecting two CA3 pyramidal neurons, we now show that stimulation frequency and spacing between LTP and LTD induction protocols alter the expression of synaptic plasticity. These effects were found to be dependent on protein phosphatase 1 (PP1), an essential protein serine/threonine phosphatase involved in synaptic plasticity, learning and memory. We also show for the first time that PP1 not only regulates the expression of synaptic plasticity, but also has the ability to depress synaptic transmission at basal activity levels. Moreover, PP1 can sort two consecutive messages received by the postsynaptic neuron and control the direction of change in synaptic strength. This study highlights new roles of PP1 in regulating timing-dependent constraints on the expression of synaptic plasticity that may correlate with memory processes, and together PP1 and the spacing of stimulation protocols provide mechanisms to regulate the expression of synaptic plasticity at CNS synapses.
Collapse
Affiliation(s)
- David Genoux
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
50
|
Murawski NJ, Stanton ME. Variants of contextual fear conditioning are differentially impaired in the juvenile rat by binge ethanol exposure on postnatal days 4-9. Behav Brain Res 2010; 212:133-42. [PMID: 20385174 PMCID: PMC3918449 DOI: 10.1016/j.bbr.2010.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/01/2010] [Accepted: 04/03/2010] [Indexed: 11/17/2022]
Abstract
Neonatal ethanol exposure in the rat is known to partially damage the hippocampus, but such exposure causes only modest or inconsistent deficits on hippocampus-dependent behavioral tasks. This may reflect variable sensitivity of these tasks or residual function following partial hippocampal injury. The context preexposure facilitation effect (CPFE) is a variant of context conditioning in which context exposure and immediate shock occur on successive occasions. During testing, preexposed rats freeze more than non-preexposed controls. The CPFE is more sensitive to anterograde hippocampal injury than standard contextual fear conditioning (e.g., Rudy JW, O'Reilly RC. Conjunctive representations, the hippocampus, and contextual fear conditioning. Cogn Affect Behav Neurosci 2001;1:66-82). We report that rats exposed to a high binge dose of ethanol (5.25g/kg/day) over postnatal days [PD] 4-9 failed to demonstrate the CPFE when preexposed to the conditioning context on PD31, relative to sham-intubated and undisturbed controls (Experiment 1). Neonatal alcohol disrupted conditioned freezing to a much lesser extent relative to controls when context preexposure was followed by a standard context conditioning trial rather than immediate shock (Experiment 2). Fear conditioning to a discrete auditory cue (tone) was unaffected by neonatal alcohol exposure ruling out possible performance effects (Experiment 3). These findings suggest that the CPFE is an especially sensitive task for detecting hippocampal injury produced by neonatal alcohol. Mixed results with other tasks may reflect residual hippocampal function and/or the use of alternate neurobehavioral systems or "strategies" following alcohol-induced brain damage.
Collapse
|