1
|
Jafarian A, Assem MK, Kocagoncu E, Lanskey JH, Fye H, Williams R, Quinn AJ, Pitt J, Raymont V, Lowe S, Singh KD, Woolrich M, Nobre AC, Henson RN, Friston KJ, Rowe JB. Neurophysiological Progression in Alzheimer's Disease: Insights From Dynamic Causal Modelling of Longitudinal Magnetoencephalography. Hum Brain Mapp 2025; 46:e70234. [PMID: 40396657 DOI: 10.1002/hbm.70234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease, are characterised by selective neuronal vulnerability with regional, laminar, cellular and neurotransmitter specificity. The regional losses of neurons and their synapses are associated with neurophysiological changes and cognitive decline. Hypotheses related to these mechanisms can be tested and compared by dynamic causal modelling (DCM) of human neuroimaging data, including magnetoencephalography (MEG). In this paper, we use DCM of cross-spectral densities to model changes between baseline and follow-up data in cortical regions of the default mode network, to characterise longitudinal changes in cortical microcircuits and their connectivity underlying resting-state MEG. Twenty-nine people with amyloid-positive mild cognitive impairment and Alzheimer's disease early dementia were studied at baseline and after an average interval of 16 months. To study longitudinal changes induced by Alzheimer's disease, we evaluate three complementary sets of DCM: (i) with regional specificity, of the contributions of neurons to measurements to accommodate regional variability in disease burden; (ii) with dual parameterisation of excitatory neurotransmission, motivated by preclinical and clinical evidence of distinct effects of disease on AMPA versus NMDA type glutamate receptors; and (iii) with constraints to test specific clinical hypothesis about the effects of disease-progression. Bayesian model selection at the group level confirmed evidence for regional specificity of the effects of Alzheimer's disease, with evidence for selective changes in NMDA neurotransmission, and progressive changes in connectivity within and between Precuneus and medial prefrontal cortex. Moreover, alterations in effective connectivity vary in accordance with individual differences in cognitive decline during follow-up. These applications of DCM enrich the mechanistic understanding of the pathophysiology of human Alzheimer's disease and inform experimental medicine studies of novel therapies. More generally, longitudinal DCM provides a potential platform for natural history and interventional studies of neurodegenerative and neuropsychiatric diseases, with selective neuronal vulnerability.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Melek Karadag Assem
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Juliette H Lanskey
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Haddy Fye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Rebecca Williams
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology, University of Birmingham, Birmingham, UK
| | - Jemma Pitt
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Stephen Lowe
- Lilly Centre for Clinical Pharmacology, Singapore
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Anna C Nobre
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology and Centre for Neurocognition and Behaviour, Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - Richard N Henson
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
| | - Karl J Friston
- Queen Square, Institute of Neurology, University College London, London, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
2
|
Keifer J. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 2022; 100:979-991. [PMID: 35128708 DOI: 10.1002/jnr.25022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Research demonstrates that the neural mechanisms underlying synaptic plasticity and learning and memory involve mobilization of AMPA-type neurotransmitter receptors at glutamatergic synaptic contacts, and that these mechanisms are targeted during neurodegenerative disease. Strengthening neural transmission occurs with insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into synapses while weakening results from receptor withdrawal. A key player in the trafficking of AMPARs during plasticity and learning is the brain-derived neurotrophic factor (BDNF) signaling system. BDNF is a neurotrophic factor that supports neuronal growth and is required for learning and memory. Significantly, a primary feature of many neurodegenerative diseases is a reduction in BDNF protein as well as disrupted neuronal surface expression of synaptic AMPARs. The resulting weakening of synaptic contacts leads to synapse loss and neuronal degeneration that underlies the cognitive impairment and dementia observed in patients with progressive neurodegenerative disease such as Alzheimer's. In the face of these data, one therapeutic approach is to increase BDNF bioavailability in brain. While this has been met with significant challenges, the results of the research have been promising. In spite of this, there are currently no clinical trials to test many of these findings on patients. Here, research showing that BDNF drives AMPARs to synapses, AMPAR trafficking is essential for synaptic plasticity and learning, and that neurodegenerative disease results in a significant decline in BDNF will be reviewed. The aim is to draw attention to the need for increasing patient-directed clinical studies to test the possible benefits of increasing levels of neurotrophins, specifically BDNF, to treat brain disorders. Much is known about the cellular mechanisms that underlie learning and memory in brain. It can be concluded that signaling by neurotrophins like BDNF and AMPA-type glutamate receptor synaptic trafficking are fundamental to these processes. Data from animal models and patients reveal that these mechanisms are adversely targeted during neurodegenerative disease and results in memory loss and cognitive decline. A brief summary of our understanding of these mechanisms indicates that it is time to apply this knowledge base directly to development of therapeutic treatments that enhance neurotrophins for brain disorders in patient populations.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
3
|
Ethiraj J, Palpagama TH, Turner C, van der Werf B, Waldvogel HJ, Faull RLM, Kwakowsky A. The effect of age and sex on the expression of GABA signaling components in the human hippocampus and entorhinal cortex. Sci Rep 2021; 11:21470. [PMID: 34728681 PMCID: PMC8563768 DOI: 10.1038/s41598-021-00792-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. The GABA signaling system in the brain is comprised of GABA synthesizing enzymes, transporters, GABAA and GABAB receptors (GABAAR and GABABR). Alterations in the expression of these signaling components have been observed in several brain regions throughout aging and between sexes in various animal models. The hippocampus is the memory centre of the brain and is impaired in several age-related disorders. It is composed of two main regions: the Cornu Ammonis (CA1-4) and the Dentate Gyrus (DG), which are interconnected with the Entorhinal Cortex (ECx). The age- and sex-specific changes of GABA signaling components in these regions of the human brain have not been examined. This study is the first to determine the effect of age and sex on the expression of GABA signaling components-GABAAR α1,2,3,5, β1-3, γ2, GABABR R1 and R2 subunits and the GABA synthesizing enzymes GAD 65/67-in the ECx, and the CA1 and DG regions of the human hippocampus using Western blotting. No significant differences were found in GABAAR α1,2,3,5, β1-3, γ2, GABABR R1 and R2 subunit and GAD65/76 expression levels in the ECx, CA1 and DG regions between the younger and older age groups for both sexes. However, we observed a significant negative correlation between age and GABAAR α1subunit level in the CA1 region for females; significant negative correlation between age and GABAAR β1, β3 and γ2 subunit expression in the DG region for males. In females a significant positive correlation was found between age and GABAAR γ2 subunit expression in the ECx and GABABR R2 subunit expression in the CA1 region. The results indicate that age and sex do not affect the expression of GAD 65/67. In conclusion, our results show age- and sex-related GABAA/BR subunit alterations in the ECx and hippocampus that might significantly influence GABAergic neurotransmission and underlie disease susceptibility and progression.
Collapse
Affiliation(s)
- Jayarjun Ethiraj
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani Hansika Palpagama
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand ,grid.414055.10000 0000 9027 2851Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Bert van der Werf
- grid.9654.e0000 0004 0372 3343Department of Epidemiology and Biostatistics, Faculty of Medical and Health Sciences, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- grid.9654.e0000 0004 0372 3343Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Brewer GJ, Herrera RA, Philipp S, Sosna J, Reyes-Ruiz JM, Glabe CG. Age-Related Intraneuronal Aggregation of Amyloid-β in Endosomes, Mitochondria, Autophagosomes, and Lysosomes. J Alzheimers Dis 2021; 73:229-246. [PMID: 31771065 PMCID: PMC7029321 DOI: 10.3233/jad-190835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work provides new insight into the age-related basis of Alzheimer’s disease (AD), the composition of intraneuronal amyloid (iAβ), and the mechanism of an age-related increase in iAβ in adult AD-model mouse neurons. A new end-specific antibody for Aβ45 and another for aggregated forms of Aβ provide new insight into the composition of iAβ and the mechanism of accumulation in old adult neurons from the 3xTg-AD model mouse. iAβ levels containing aggregates of Aβ45 increased 30-50-fold in neurons from young to old age and were further stimulated upon glutamate treatment. iAβ was 8 times more abundant in 3xTg-AD than non-transgenic neurons with imaged particle sizes following the same log-log distribution, suggesting a similar snow-ball mechanism of intracellular biogenesis. Pathologically misfolded and mislocalized Alz50 tau colocalized with iAβ and rapidly increased following a brief metabolic stress with glutamate. AβPP-CTF, Aβ45, and aggregated Aβ colocalized most strongly with mitochondria and endosomes and less with lysosomes and autophagosomes. Differences in iAβ by sex were minor. These results suggest that incomplete carboxyl-terminal trimming of long Aβs by gamma-secretase produced large intracellular deposits which limited completion of autophagy in aged neurons. Understanding the mechanism of age-related changes in iAβ processing may lead to application of countermeasures to prolong dementia-free health span.
Collapse
Affiliation(s)
- Gregory J Brewer
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Robert A Herrera
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Stephan Philipp
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | - Justyna Sosna
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | | | - Charles G Glabe
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Sohn H, Park M. Palmitoylation-mediated synaptic regulation of AMPA receptor trafficking and function. Arch Pharm Res 2019; 42:426-435. [PMID: 30838509 PMCID: PMC6505502 DOI: 10.1007/s12272-019-01134-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a major glutamate-gated ion channel in the brain and is important for synaptic transmission, synaptic plasticity, and learning. Palmitoylation, a post-translational modification, is a critical process regulating AMPAR trafficking, synaptic function and plasticity, and learning and memory in health and diseases. In this review, we discuss current knowledge on the palmitoylation-dependent regulation of AMPAR trafficking and functions. We focus on the palmitoylation of AMPARs and other synaptic proteins that directly or indirectly interact with AMPARs, including postsynaptic density 95, glutamate receptor-interacting protein/AMPAR-binding protein, A-kinase anchoring protein 79/150, and protein interacting with C kinase 1. Finally, we discuss what future studies should address in the field of palmitoylation-dependent AMPAR trafficking and function with regard to physiology and neurodegenerative diseases.
Collapse
Affiliation(s)
- Heesung Sohn
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Department of Life Sciences, School of Natural Science, Hanyang University, Seoul, 04763, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea. .,Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
6
|
Li BY, Chen SD. Potential Similarities in Temporal Lobe Epilepsy and Alzheimer’s Disease: From Clinic to Pathology. Am J Alzheimers Dis Other Demen 2015; 30:723-8. [PMID: 24906967 PMCID: PMC10852563 DOI: 10.1177/1533317514537547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is clinically characterized by insidious onset of memory and cognitive impairments, which are also presented in patients with temporal lobe epilepsy (TLE). Many studies have shown that seizures occur in some patients with AD, and AD is a risk factor for epilepsy, mainly complex partial and secondary generalized seizure. Here, we focus on the relationship between TLE and AD in clinical and pathological aspects, as they are having similar comorbidities and mechanisms. In this study, we first reviewed the clinical observations that showed concomitant AD and TLE. Then, we picked up common genetic and pathological changes in both the diseases from neurobiological researches. Although both the diseases have delicate differences in many aspects, their common characteristics intrigue more detailed research to be done by newer technology.
Collapse
Affiliation(s)
- Bin-Yin Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Gross M, Sheinin A, Nesher E, Tikhonov T, Baranes D, Pinhasov A, Michaelevski I. Early onset of cognitive impairment is associated with altered synaptic plasticity and enhanced hippocampal GluA1 expression in a mouse model of depression. Neurobiol Aging 2015; 36:1938-52. [PMID: 25796132 DOI: 10.1016/j.neurobiolaging.2015.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
Memory deficit is a common manifestation of age-related cognitive impairment, of which depression is a frequently occurring comorbidity. Previously, we developed a submissive (Sub) mouse line, validated as a model of depressive-like behavior. Using learning paradigms testing hippocampus-dependent spatial and nonspatial memory, we demonstrate here that Sub mice developed cognitive impairments at earlier age (3 months), compared with wild-type mice. Furthermore, acute hippocampal slices from Sub animals failed to display paired-pulse facilitation, whereas primed burst stimulation elicited significantly enhanced long-term potentiation in region CA1, relative to control mice. Changes in synaptic plasticity were accompanied by markedly reduced hippocampal messenger RNA expression of insulin-like growth factor and brain-derived neurotrophic factor. Finally, we identified markedly elevated protein levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the hippocampi of Sub mice, which was exacerbated with age. Taken together, the results point to a linkage between depressive-like behavior and the susceptibility to develop age-related cognitive impairment, potentially by hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated glutamatergic signaling.
Collapse
Affiliation(s)
- Moshe Gross
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Anton Sheinin
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Tatiana Tikhonov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Danny Baranes
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Izhak Michaelevski
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Han J, Wu P, Wang F, Chen J. S-palmitoylation regulates AMPA receptors trafficking and function: a novel insight into synaptic regulation and therapeutics. Acta Pharm Sin B 2015; 5:1-7. [PMID: 26579419 PMCID: PMC4629138 DOI: 10.1016/j.apsb.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023] Open
Abstract
Glutamate acting on AMPA-type ionotropic glutamate receptor (AMPAR) mediates the majority of fast excitatory synaptic transmission in the mammalian central nervous system. Dynamic regulation of AMPAR by post-translational modifications is one of the key elements that allow the nervous system to adapt to environment stimulations. S-palmitoylation, an important lipid modification by post-translational addition of a long-chain fatty acid to a cysteine residue, regulates AMPA receptor trafficking, which dynamically affects multiple fundamental brain functions, such as learning and memory. In vivo, S-palmitoylation is controlled by palmitoyl acyl transferases and palmitoyl thioesterases. In this review, we highlight advances in the mechanisms for dynamic AMPA receptors palmitoylation, and discuss how palmitoylation affects AMPA receptors function at synapses in recent years. Pharmacological regulation of S-palmitoylation may serve as a novel therapeutic strategy for neurobiological diseases.
Collapse
Key Words
- 17-ODYA, 17-octadecynoic acid
- ABE, acyl-biotinyl exchange
- ABP, AMPA receptor binding protein
- AD, Alzheimer׳s disease
- AKAP79/150, A-kinase anchoring protein 79/150
- AMPA receptors
- AMPAR, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
- APT1, acyl-protein thioesterase-1
- APT2, acyl-protein thioesterase-2
- CP-AMPARs, Ca2+-permeable AMPARs
- DHHC
- DHHC, aspartate-histidine-histidine-cysteine
- FMRP, fragile X mental retardation protein
- FXS, Fragile X syndrome
- GAP-43, growth associated protein-43
- GRIP, glutamate receptor interacting protein
- LTD, long-term depression
- LTP, long-term potentiation
- PATs, palmitoyl acyl transferases
- PDZ, postsynaptic density-95/discs large/zona occludens-1
- PICK1, protein interacting with C-kinase 1
- PKA, protein kinase A
- PKC, protein kinase C
- PPT1, palmitoyl-protein thioesterase-1
- PSD-95, postsynaptic density-95
- Palmitoylation
- Ras, rat sarcoma
- SNAP-23, soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor protein-23
- Trafficking
Collapse
|
9
|
Lysenko LV, Kim J, Henry C, Tyrtyshnaia A, Kohnz RA, Madamba F, Simon GM, Kleschevnikova NE, Nomura DK, Ezekowitz R.AB, Kleschevnikov AM. Monoacylglycerol lipase inhibitor JZL184 improves behavior and neural properties in Ts65Dn mice, a model of down syndrome. PLoS One 2014; 9:e114521. [PMID: 25474204 PMCID: PMC4256450 DOI: 10.1371/journal.pone.0114521] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022] Open
Abstract
Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aβ40 and Aβ42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS.
Collapse
Affiliation(s)
- Larisa V. Lysenko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jeesun Kim
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Cassandra Henry
- Abide Therapeutics, Inc., San Diego, CA, United States of America
| | - Anna Tyrtyshnaia
- School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok, Russian Federation
| | - Rebecca A. Kohnz
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Francisco Madamba
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Gabriel M. Simon
- Abide Therapeutics, Inc., San Diego, CA, United States of America
| | - Natalia E. Kleschevnikova
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Daniel K. Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | | | - Alexander M. Kleschevnikov
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Alldred MJ, Lee SH, Petkova E, Ginsberg SD. Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD). Brain Struct Funct 2014; 220:2983-96. [PMID: 25031177 DOI: 10.1007/s00429-014-0839-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/02/2014] [Indexed: 11/29/2022]
Abstract
Down syndrome (DS) is caused by the triplication of human chromosome 21 (HSA21) and is the most common genetic cause of intellectual disability, with individuals having deficits in cognitive function including hippocampal learning and memory and neurodegeneration of cholinergic basal forebrain neurons, a pathological hallmark of Alzheimer's disease (AD). To date, the molecular underpinnings driving this pathology have not been elucidated. The Ts65Dn mouse is a segmental trisomy model of DS and like DS/AD pathology, displays age-related cognitive dysfunction and basal forebrain cholinergic neuron (BFCN) degeneration. To determine molecular and cellular changes important for elucidating mechanisms of neurodegeneration in DS/AD pathology, expression profiling studies were performed. Molecular fingerprinting of homogeneous populations of Cornu Ammonis 1 (CA1) pyramidal neurons was performed via laser capture microdissection followed by Terminal Continuation RNA amplification combined with custom-designed microarray analysis and subsequent validation of individual transcripts by qPCR and protein analysis via immunoblotting. Significant alterations were observed within CA1 pyramidal neurons of aged Ts65Dn mice compared to normal disomic (2N) littermates, notably in excitatory and inhibitory neurotransmission receptor families and neurotrophins, including brain-derived neurotrophic factor as well as several cognate neurotrophin receptors. Examining gene and protein expression levels after the onset of BFCN degeneration elucidated transcriptional and translational changes in neurons within a vulnerable circuit that may cause the AD-like pathology seen in DS as these individuals age, and provide rational targets for therapeutic interventions.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | | | | | | |
Collapse
|
11
|
Alldred MJ, Duff KE, Ginsberg SD. Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. Neurobiol Dis 2012; 45:751-62. [PMID: 22079237 PMCID: PMC3259262 DOI: 10.1016/j.nbd.2011.10.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022] Open
Abstract
The hTau mouse model of tauopathy was utilized to assess gene expression changes in vulnerable hippocampal CA1 neurons. CA1 pyramidal neurons were microaspirated via laser capture microdissection followed by RNA amplification in combination with custom-designed microarray analysis and qPCR validation in hTau mice and nontransgenic (ntg) littermates aged 11-14months. Statistical analysis revealed ~8% of all the genes on the array platform were dysregulated, with notable downregulation of several synaptic-related markers including synaptophysin (Syp), synaptojanin, and synaptobrevin, among others. Downregulation was also observed for select glutamate receptors (GluRs), Psd-95, TrkB, and several protein phosphatase subunits. In contrast, upregulation of tau isoforms and a calpain subunit were found. Microarray assessment of synaptic-related markers in a separate cohort of hTau mice at 7-8months of age indicated only a few alterations compared to the 11-14month cohort, suggesting progressive synaptic dysfunction occurs as tau accumulates in CA1 pyramidal neurons. An assessment of SYP and PSD-95 expression was performed in the hippocampal CA1 sector of hTau and ntg mice via confocal laser scanning microscopy along with hippocampal immunoblot analysis for protein-based validation of selected microarray observations. Results indicate significant decreases in SYP-immunoreactive and PSD-95-immunoreactive puncta as well as downregulation of SYP-immunoreactive and PSD-95-immunoreactive band intensity in hTau mice compared to age-matched ntg littermates. In summary, the high prevalence of downregulation of synaptic-related genes indicates that the moderately aged hTau mouse may be a model of tau-induced synaptodegeneration, and has profound effects on how we perceive progressive tau pathology affecting synaptic transmission in AD.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Department of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Karen E. Duff
- Taub Institute and Department of Pathology, Columbia University Medical Center, New York, NY
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Department of Psychiatry, New York University Langone Medical Center, New York, NY
- Department of Physiology, Neuroscience, New York University Langone Medical Center, New York, NY
| |
Collapse
|
12
|
Ginsberg SD, Alldred MJ, Che S. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease. Neurobiol Dis 2011; 45:99-107. [PMID: 21821124 DOI: 10.1016/j.nbd.2011.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/07/2011] [Accepted: 07/20/2011] [Indexed: 11/28/2022] Open
Abstract
To evaluate molecular signatures of an individual cell type in comparison to the associated region relevant towards understanding the pathogenesis of Alzheimer's disease (AD), CA1 pyramidal neurons and the surrounding hippocampal formation were microaspirated via laser capture microdissection (LCM) from neuropathologically confirmed AD and age-matched control (CTR) subjects as well as from wild type mouse brain using single population RNA amplification methodology coupled with custom-designed microarray analysis with real-time quantitative polymerase-chain reaction (qPCR) validation. CA1 pyramidal neurons predominantly displayed downregulation of classes of transcripts related to synaptic transmission in AD versus CTR. Regional hippocampal dissections displayed downregulation of several overlapping genes found in the CA1 neuronal population related to neuronal expression, as well as upregulation of select transcripts indicative of admixed cell types including glial-associated markers and immediate-early and cell death genes. Gene level distributions observed in CA1 neurons and regional hippocampal dissections in wild type mice paralleled expression mosaics seen in postmortem human tissue. Microarray analysis was validated in qPCR studies using human postmortem brain tissue and CA1 sector and regional hippocampal dissections obtained from a mouse model of AD/Down syndrome (Ts65Dn mice) and normal disomic (2N) littermates. Classes of transcripts that have a greater percentage of the overall hybridization signal intensity within single neurons tended to be genes related to neuronal communication. The converse was also found, as classes of transcripts such as glial-associated markers were under represented in CA1 pyramidal neuron expression profiles relative to regional hippocampal dissections. These observations highlight a dilution effect that is likely to occur in conventional regional microarray and qPCR studies. Thus, single population studies of specific neurons and intrinsic circuits will likely yield informative gene expression profile data that may be subthreshold and/or underrepresented in regional studies with an admixture of cell types.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
13
|
Armstrong D. Age- and disease-related neuroplasticity of chemically identified neuronal circuits: a tribute to Professor Erminio Costa. Pharmacol Res 2011; 64:336-8. [PMID: 21704164 DOI: 10.1016/j.phrs.2011.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/15/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
Abstract
The following review highlights a small portion of the research ongoing in my laboratory at the Fidia Georgetown Institute of Neuroscience (FGIN) during the years 1989-1994. Specifically, this work focused on the selective vulnerability of neurons in Alzheimer's disease. At the time, it was known that α-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) receptors were composed of one or more subunits (GluR1-4). Furthermore, the presence of the GluR2 subunit was known to substantially reduce Ca2+ through AMPA receptors in response to ligand binding. This finding led us to hypothesize that the presence or absence of the GluR2 subunit in the AMPA receptor may have a profound influence on the ability of the cell to gate extracellular Ca2+ and maintain intracellular calcium homeostasis. Furthermore, in Alzheimer's disease we hypothesized that cells at risk for developing AD neuropathology will express certain combinations of glutamate receptor subunits that form channels with increased permeability to Ca2+. In turn, these cells may become more vulnerable to the pathologic consequences of increased intracellular Ca2+ and destabilized intracellular Ca2+ homeostasis. To test this hypothesis we employed anatomical techniques and examined post mortem materials from patients with AD. The results of these studies are summarized in this review. Notably, this review also highlights the valuable collaborations established during my five years at FGIN and pays tribute to the intellectually rich and supportive environment provided by Dr. Costa and colleagues.
Collapse
Affiliation(s)
- David Armstrong
- National Institute of Mental Health, National Institutes of Health, Neuroscience Building, Room 6138, 6001 Executive Blvd, MSC 9606, Bethesda, MD 20892-9605, United States.
| |
Collapse
|
14
|
Courtney E, Kornfeld S, Janitz K, Janitz M. Transcriptome profiling in neurodegenerative disease. J Neurosci Methods 2010; 193:189-202. [PMID: 20800617 DOI: 10.1016/j.jneumeth.2010.08.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/29/2010] [Accepted: 08/20/2010] [Indexed: 02/02/2023]
Abstract
Changes in gene expression and splicing patterns (that occur prior to the onset and during the progression of complex diseases) have become a major focus of neurodegenerative disease research. These signature patterns of gene expression provide clues about the mechanisms involved in the molecular pathogenesis of neurodegenerative disease and may facilitate the discovery of novel therapeutic drugs. With the development of array technologies and the very recent RNA-seq technique, our understanding of the pathogenesis of neurodegenerative disease is expanding exponentially. Here, we review the technologies involved in gene expression and splicing analysis and the related literature on three common neurodegenerative diseases: Alzheimer's disease, Parkinson's disease and Huntington's disease.
Collapse
Affiliation(s)
- Eliza Courtney
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
15
|
Abstract
In the last few years it has become clear that AMPA-type glutamate neurotransmitter receptors are rapidly transported into and out of synapses to strengthen or weaken their function. The remarkable dynamics of AMPA receptor (AMPAR) synaptic localization provides a compelling mechanism for understanding the cellular basis of learning and memory, as well as disease states involving cognitive dysfunction. Here, we summarize the evidence for AMPAR trafficking as a mechanism underlying a variety of learned responses derived from both behavioral and cellular studies. Evidence is also reviewed supporting synaptic dysfunction related to impaired AMPAR trafficking as a mechanism underlying learning and memory deficits in Alzheimer's disease. We conclude that emerging data support the concept of multistage AMPAR trafficking during learning and that a broad approach to include examination of all of the AMPAR subunits will provide a more complete view of the mechanisms underlying multiple forms of learning.
Collapse
Affiliation(s)
- J Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD 57069, USA.
| | | |
Collapse
|
16
|
Zhao WQ, Santini F, Breese R, Ross D, Zhang XD, Stone DJ, Ferrer M, Townsend M, Wolfe AL, Seager MA, Kinney GG, Shughrue PJ, Ray WJ. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem 2009; 285:7619-32. [PMID: 20032460 DOI: 10.1074/jbc.m109.057182] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic degeneration, including impairment of synaptic plasticity and loss of synapses, is an important feature of Alzheimer disease pathogenesis. Increasing evidence suggests that these degenerative synaptic changes are associated with an accumulation of soluble oligomeric assemblies of amyloid beta (Abeta) known as ADDLs. In primary hippocampal cultures ADDLs bind to a subpopulation of neurons. However the molecular basis of this cell type-selective interaction is not understood. Here, using siRNA screening technology, we identified alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits and calcineurin as candidate genes potentially involved in ADDL-neuron interactions. Immunocolocalization experiments confirmed that ADDL binding occurs in dendritic spines that express surface AMPA receptors, particularly the calcium-impermeable type II AMPA receptor subunit (GluR2). Pharmacological removal of the surface AMPA receptors or inhibition of AMPA receptors with antagonists reduces ADDL binding. Furthermore, using co-immunoprecipitation and photoreactive amino acid cross-linking, we found that ADDLs interact preferentially with GluR2-containing complexes. We demonstrate that calcineurin mediates an endocytotic process that is responsible for the rapid internalization of bound ADDLs along with surface AMPA receptor subunits, which then both colocalize with cpg2, a molecule localized specifically at the postsynaptic endocytic zone of excitatory synapses that plays an important role in activity-dependent glutamate receptor endocytosis. Both AMPA receptor and calcineurin inhibitors prevent oligomer-induced surface AMPAR and spine loss. These results support a model of disease pathogenesis in which Abeta oligomers interact selectively with neurotransmission pathways at excitatory synapses, resulting in synaptic loss via facilitated endocytosis. Validation of this model in human disease would identify therapeutic targets for Alzheimer disease.
Collapse
Affiliation(s)
- Wei-Qin Zhao
- Department of Neurology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
18
|
Abstract
As part of the hippocampus, the dentate gyrus is considered to play a crucial role in associative memory. The reviewed data suggest that the dentate gyrus withstands the formation of plaques, tangles and neuronal death until late stages of Alzheimer's disease (AD). However, changes related to a disconnecting process, and more subtle intrinsic alterations, may contribute to disturbances in memory and learning observed in early stages of AD.
Collapse
Affiliation(s)
- Thomas G Ohm
- Institute of Integrative Neuroanatomy, Department of Clinical Cell and Neurobiology, Charité CCM, 10098 Berlin, Germany.
| |
Collapse
|
19
|
Carter TL, Rissman RA, Mishizen-Eberz AJ, Wolfe BB, Hamilton RL, Gandy S, Armstrong DM. Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer's disease patients according to Braak stage. Exp Neurol 2004; 187:299-309. [PMID: 15144856 DOI: 10.1016/j.expneurol.2003.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 12/30/2003] [Indexed: 01/30/2023]
Abstract
The Alzheimer's disease (AD) brain, characterized pathologically by the presence of senile plaques and neurofibrillary tangles, contains regions that are differentially prone toward development of AD pathology. Within these "vulnerable" regions, specific cell populations appear to be selectively affected; the pyramidal cells of the hippocampal subiculum subfield constitute such a vulnerable region. This study investigated whether the AMPA receptor subunit content (GluR1, GluR2, GluR2/3) within "vulnerable" vs. "resistant" sectors of the hippocampus is quantitatively altered with increasing AD neuropathology, as determined by Braak staging. We hypothesize that the glutamate-mediated vulnerability is highly influenced by the repertoire of glutamate receptors expressed on hippocampal neurons. Our results indicate that AMPA receptor subunit proteins are relatively spared across all Braak stages in resistant subfields (CA2/CA3/Dentate Gyrus). However, within vulnerable sectors, i.e., subiculum, GluR2, and GluR2/3 protein levels decreased 63.77% and 60.60%, respectively, in association with Braak stages I-II and stages III-IV, respectively. In Braak stages V-VI, GluR2 and GluR2/3 protein levels were similar to those of Braak stages I-II. In contrast to GluR2 and GluR2/3, GluR1 protein levels were unchanged within vulnerable sectors throughout all stages of the disease. In interpreting these data, it may be relevant to consider that the GluR2 subunit impedes the flow of Ca(+2) through the AMPA receptor ion channel. Thus, we hypothesize that in resistant sectors, the presence of the GluR2 subunit may provide a neuroprotective role by limiting the flow of extracellular Ca(+2), whereas in vulnerable regions, the reduction of GluR2 may contribute to the vulnerability via a mechanism involving an increase in intracellular Ca(+2) and destabilization of intracellular Ca(+2) homeostasis.
Collapse
Affiliation(s)
- Troy L Carter
- Laboratory of Neuronal Vulnerability and Aging, The Lankenau Institute for Medical Research, Jefferson Health System, Wynewood, PA 19096, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Mishizen-Eberz AJ, Rissman RA, Carter TL, Ikonomovic MD, Wolfe BB, Armstrong DM. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer's disease pathology. Neurobiol Dis 2004; 15:80-92. [PMID: 14751773 DOI: 10.1016/j.nbd.2003.09.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by loss of specific cell populations within selective subregions of the hippocampus. Excitotoxicity, mediated via ionotropic glutamate receptors, may play a crucial role in this selective neuronal vulnerability. We investigated whether alterations in NMDA receptor subunits occurred during AD progression. Employing biochemical and in situ hybridization techniques in subjects with a broad range of AD pathology, protein levels, and mRNA expression of NR1/2A/2B subunits were assayed. With increasing AD neuropathology, protein levels and mRNA expression for NR1/2B subunits were significantly reduced, while the NR2A subunit mRNA expression and protein levels were unchanged. Cellular analysis of neuronal mRNA expression revealed a significant increase in the NR2A subunit in subjects with moderate neurofibrillary tangle neuropathology. This investigation supports the hypothesis that alterations occur in the expression of specific NMDA receptor subunits with increasing AD pathologic severity, which is hypothesized to contribute to the vulnerability of these neurons.
Collapse
Affiliation(s)
- Amanda J Mishizen-Eberz
- Laboratory of Neuronal Vulnerability and Aging, The Lankenau Institute for Medical Research, Jefferson Health System, Wynnewood, PA, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Armstrong DM, Sheffield R, Mishizen-Eberz AJ, Carter TL, Rissman RA, Mizukami K, Ikonomovic MD. Plasticity of glutamate and GABAA receptors in the hippocampus of patients with Alzheimer's disease. Cell Mol Neurobiol 2003; 23:491-505. [PMID: 14514010 PMCID: PMC11530205 DOI: 10.1023/a:1025063811290] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM In Alzheimer's disease (AD) it is well known that specific regions of the brain are particularly vulnerable to the pathologic insults of the disease. In particular, the hippocampus is affected very early in the disease and by end stage AD is ravaged by neurofibrillary tangles and senile plaques (i.e., the pathologic hallmarks of AD). Throughout the past several years our laboratory has sought to determine the molecular mechanisms underlying the selective vulnerability of neurons in AD. METHODS To this end, we employed immunohistochemical, biochemical, and in situ hybrization methods to examine glutamate and gamma-aminobutyric acid (GABAA) receptor subtypes in the hippocampus of patients displaying the full spectrum of AD pathology. RESULTS Despite the fact that the hippocampus is characterized by a marked loss of neurons in the late stages of the disease, our data demonstrate a rather remarkable preservation among some glutamate and GABAA receptor subtypes. CONCLUSIONS Collectively, our data support the view that the relatively constant levels of selected receptor subtypes represent a compensatory up-regulation of these receptors subunits in surviving neurons. The demonstration that glutamate and GABA receptor subunits are comparably unaffected implies that even in the terminal stages of the discase the brain is "attempting" to maintain a balance in excitatory and inhibitory tone. Our data also support the concept that receptor subunits are differentially affected in AD with some subunits displaying no change while others display alterations in protein and mRNA levels within selected regions of the hippocampus. Although many of these changes are modest, they do suggest that the subunit composition of these receptors may be altered and hence affect the pharmacokinetic and physiological properties of the receptor. The latter findings stress the importance of understanding the subunit composition of individual glutamate/GABA receptors in the diseased brain prior to the development of drugs targeted towards those receptors.
Collapse
Affiliation(s)
- David M Armstrong
- Laboratory of Neuronal Vulnerability and Aging, The Lankenau Institute for Medical Research, Jefferson Health System, Wynnewood, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Andrés N, Malpesa Y, Rodríguez MJ, Mahy N. Low sensitivity of retina to AMPA-induced calcification. J Neurosci Res 2003; 72:543-8. [PMID: 12704816 DOI: 10.1002/jnr.10601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate is involved in most CNS neurodegenerative diseases. In particular, retinal diseases such as retinal ischemia, retinitis pigmentosa, and diabetic retinopathy are associated with an excessive synaptic concentration of this neurotransmitter. To gain more insight into retinal excitotoxicity, we carried out a dose-response study in adult rats using alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), a glutamate analogue. AMPA intraocular injections (between 0.27 and 10.8 nmol) caused no morphologic modification, but a 10.8 + 21 nmol double injection in a 10-day interval produced a lesion characterized by discrete neuronal loss, astroglial and microglial reactions, and calcium precipitation. Abundant calcium deposits similar to those present in rat and human brain excitotoxicity or hypoxia-ischemia neurodegeneration were detected by alizarin red staining within the retinal surface and the optic nerve. Glial reactivity, associated normally with astrocytes in the nerve fiber, was assessed in Müller cells. GABA immunoreactivity was detected not only in neuronal elements but also in Müller cells. In contrast to the high vulnerability of the brain to excitotoxin microinjection, AMPA-induced retinal neurodegeneration may provide a useful model of low central nervous system sensitivity to excitotoxicity.
Collapse
Affiliation(s)
- Noemí Andrés
- Unitat de Bioquímica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
23
|
Quartu M, Serra MP, Ambu R, Lai ML, Del Fiacco M. AMPA-type glutamate receptor subunits 2/3 in the human trigeminal sensory ganglion and subnucleus caudalis from prenatal ages to adulthood. Mech Ageing Dev 2002; 123:463-71. [PMID: 11796131 DOI: 10.1016/s0047-6374(01)00358-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using immunohistochemistry, the occurrence and distribution of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) glutamate receptor subunits GluR2/3 is shown in the human trigeminal ganglion and subnucleus caudalis from 20 weeks of gestation to adulthood. In the trigeminal ganglion a subpopulation of GluR2/3-like immunoreactive (LI) primary sensory neurons occurred at all examined ages, amounting to about 20% of all ganglion cells in the earliest pre-term newborn and in the adult, to about 30% at 24 and 32 weeks of gestation, and peaking to about 40% in the neonate. At all ages examined, GluR2/3-LI neurons were heterogeneous in size, although in the adult most of the labeled perikarya were large-sized, with a mean cell diameter above 35 microm. In the trigeminal subnucleus caudalis, positive elements could be first detected at 30 weeks of gestation and persisted at all other examined ages. At pre- and perinatal ages, the immunoreactivity was restricted to neuronal perikarya in the superficial layers and in the marginal zone of the nucleus. In the adult tissue, the subnucleus caudalis harbored a loose meshwork of varicose thread- and dot-like elements in the superficial layers and numerous immunoreactive neurons, distributed in lamina I, substantia gelatinosa, and in the superficial zone of the magnocellular region.
Collapse
Affiliation(s)
- Marina Quartu
- Dipartimento di Citomorfologia, Università di Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy.
| | | | | | | | | |
Collapse
|
24
|
Ginsberg SD, Hemby SE, Lee VMY, Eberwine JH, Trojanowski JQ. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200007)48:1<77::aid-ana12>3.0.co;2-a] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Ikonomovic MD, Nocera R, Mizukami K, Armstrong DM. Age-related loss of the AMPA receptor subunits GluR2/3 in the human nucleus basalis of Meynert. Exp Neurol 2000; 166:363-75. [PMID: 11085901 DOI: 10.1006/exnr.2000.7544] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Magnocellular cholinergic neurons in the basal forebrain have long been recognized as vulnerable to the pathology of Alzheimer's disease. Despite numerous anatomical, pharmacological, behavioral, and physiological investigations of these neurons the cellular mechanism that underlines their selective vulnerability remains unclear. As part of an ongoing investigation into the molecular mechanism(s) underlying neuronal vulnerability in Alzheimer's disease and normal aging, we employed immunocytochemical techniques and examined the cellular localization of the alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) glutamate receptor subunits GluR1 and GluR2/3 in the basal forebrain of eight nondemented elderly human subjects (66-102 years). For each case we observed GluR1-positive magnocellular cells darkly labeled within all main divisions of the basal forebrain (Ch1-Ch4). Double-labeling immunohistochemical techniques confirmed that the overwhelming majority (94%) of these neurons were also positive for the p75NGFr antibody, thus substantiating the cholinergic nature of these neurons. In contrast, GluR2/3 immunolabeling upon magnocellular neurons was relatively faint or nonexistent. The latter observations were most apparent in cases of advanced age and in the posterior part of the nucleus basalis of Meynert (NBM) (i.e., Ch4). In contrast, in adjacent structures (e.g., globus pallidus), a number of robustly labeled GluR2/3-positive cells were observed. In addition to the eight elderly subjects, we examined GluR1 and GluR2/3 immunostaining in the NBM of five younger cases, 5, 33, 36, 47, and 48 years of age. Although practical considerations limited our observations to the Ch4 region, we observed both GluR1 and GluR2/3 labeling upon NBM neurons in this latter region. On average, the distribution of labeled cells and intensity of immunoreaction were comparable between GluR1 and GluR2/3. The presence of GluR2/3- and GluR1-labeled neurons in the Ch4 region of younger cases but primarily GluR1 in cases of advanced age suggests an age-related decrease in GluR2/3. Functionally, the loss of GluR2 from the AMPA receptor complex results in ion channels highly permeable to Ca(2+). These alterations in cation permeability of the AMPA receptor together with the occurrence of a number of other intrinsic and extrinsic events (i.e., decrease Ca(2+)-binding protein) likely contribute to the vulnerability of these neurons in aging and in AD.
Collapse
Affiliation(s)
- M D Ikonomovic
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, 19096, USA
| | | | | | | |
Collapse
|
26
|
Ikonomovic MD, Mizukami K, Warde D, Sheffield R, Hamilton R, Wenthold RJ, Armstrong DM. Distribution of glutamate receptor subunit NMDAR1 in the hippocampus of normal elderly and patients with Alzheimer's disease. Exp Neurol 1999; 160:194-204. [PMID: 10630204 DOI: 10.1006/exnr.1999.7196] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunocytochemical techniques were employed to study the distribution and cytological features of NMDAR1-immunoreactive elements in the human hippocampal formation. Subjects with Alzheimer's disease (AD), presenting with a wide range of neuropathology and classified into six Braak stage (I-VI), and nondemented age-matched controls were examined. In control cases, the most intense NMDAR1 immunoreactivity was observed within the soma and dendrites of granule cells in the dentate gyrus and pyramidal neurons in Ammon's horn. Whereas small variations in the pattern of immunoreactivity were noted in control cases, AD subjects were characterized with intersubject variability which in most instances correlated with neuropathologic severity. For example, AD cases, particularly those with mild/modest pathology (Braak I-III), were indistinguishable from controls in the overall pattern of immunolabeling. In contrast, in those more severe AD cases (Braak IV-VI) the intensity of immunolabeling within the CA fields was greater than observed in controls and those with mild AD pathology. In addition, in pathologically severe cases numerous NMDAR1-positive pyramidal neurons were characterized by unique morphologic features including long and often tortuous apical dendrites. These latter findings were most prevalent in the CA1 region and subiculum. In contrast to the marked increase in immunolabeling in the CA fields, in the dentate gyrus we observed a reduction in NMDAR1 labeling particularly within the outer molecular layer (i.e., termination zone of the perforant pathway). This latter region was also the site of a number of NMDAR1-labeled plaques. Notably, the overall pattern of NMDAR1 immunoreactivity is distinct from that observed with antibodies against AMPA receptor subunits and suggests a differential role of various inotropic glutamate receptors in hippocampal plasticity in AD.
Collapse
Affiliation(s)
- M D Ikonomovic
- Neurosciences Research Center, Allegheny University of the Health Sciences, Pittsburgh, Pennsylvania 15212, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Wakabayashi K, Narisawa-Saito M, Iwakura Y, Arai T, Ikeda K, Takahashi H, Nawa H. Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer's disease. Neurobiol Aging 1999; 20:287-95. [PMID: 10588576 DOI: 10.1016/s0197-4580(99)00035-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamate receptors play crucial roles in cognition and memory. We have quantitated the protein levels of alpha-amino-isoxazolepropionic acid (AMPA)-type (GluR1) and N-methyl-D-aspartate-type (NMDAR1) glutamate receptors in postmortem brain tissues of patients with Alzheimer's disease and age-matched controls using western blotting. The bolts carrying fully denatured proteins were probed with antibodies specific to their carboxyl terminus of these receptors. In Alzheimer's disease, GluR1 levels were significantly decreased in the entorhinal cortex and dentate gyrus, but not in the motor cortex. In contrast, levels of NMDAR1 were not altered in the dentate gyrus, suggesting that GluR1 expression was specifically diminished in this structure that is known to be preserved histologically in patients. However, the results of immunocytochemical examination confirmed a previous controversial report: GluR1-immunoreactive structures were labeled rather intensely in the molecular layer of the dentate gyrus of Alzheimer's patients. Interestingly, levels of a postsynaptic density protein named SAP97, which recognizes and potentially masks the epitope region of GluR1, was positively correlated with those of GluR1 protein in the control group, but not in the patient group. Thus, the enhanced GluR1-like staining in Alzheimer's disease might be ascribed to the hampered interaction between SAP97 and GluR1 leading to epitope unmasking of GluR1 on tissue sections. These findings indicate that abnormal expressions of the AMPA receptor and its interacting PSD molecule are associated with Alzheimer's disease and implicated in pathophysiology of this disease.
Collapse
Affiliation(s)
- K Wakabayashi
- Brain Disease Research Center, Brain Research Institute, Niigata University, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Mikkonen M, Soininen H, Tapiola T, Alafuzoff I, Miettinen R. Hippocampal plasticity in Alzheimer's disease: changes in highly polysialylated NCAM immunoreactivity in the hippocampal formation. Eur J Neurosci 1999; 11:1754-64. [PMID: 10215928 DOI: 10.1046/j.1460-9568.1999.00593.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The highly polysialylated neural cell adhesion molecule (PSA-NCAM) is one of the most promising molecules that contributes to plasticity in the central nervous system. We evaluated PSA-NCAM immunoreactivity in the hippocampal formation of Alzheimer's disease (AD) patients. We found significant increases over control levels in the optical density ratios of PSA-NCAM immunoreactivity in the outer molecular layer/granule cell layer (ODoml/grl) and in the inner molecular layer/granule cell layer (ODiml/grl) in the dentate gyrus of AD patients. The optical density of the granule cell layer in the dentate gyrus did not differ significantly between AD patients and control subjects. However, the number of PSA-NCAM-immunopositive infragranule cells was higher in the AD group compared with control subjects. The major finding in the CA1, subiculum and entorhinal cortex of AD patients was the disorganization of PSA-NCAM-immunoreactive fibres. These results indicate that neuronal remodelling occurs, especially in the dentate gyrus of patients with AD.
Collapse
Affiliation(s)
- M Mikkonen
- Department of Neuroscience and Neurology, University Hospital and University of Kuopio, Finland
| | | | | | | | | |
Collapse
|
29
|
Abstract
The hippocampal formation (HF) has been a centerpiece of neuropathologic investigations of schizophrenia. Numerous MRI studies have demonstrated a slight bilateral reduction in HF volume. Reports of reduced N-acetyl aspartate measured with in vivo proton spectroscopy suggest that neuronal pathology exists. However, morphometric data from postmortem studies have not revealed a clear change in HF size, and recent studies of neuronal number and of cytoarchitecture have been largely negative. Evidence of glial proliferation is consistently absent. The most reproducible positive anatomic finding in postmortem HF has been reduced size of neuronal cell bodies. Studies of gene transcription have provided replicable evidence of decreased expression of mRNAs for synaptophysin, GAP-43, cholecystokinin, and non-NMDA glutamate receptor subunits (GLU R 1 and 2), particularly in CA 3-4. These data about the cellular and molecular biology of the HF in schizophrenia are different from that found in a number of conditions associated with hippocampal damage, including excitotoxicity, epilepsy, alcoholism, Alzheimer's disease, steroid neurotoxicity, and normal aging. Notwithstanding the real possibility that the data are epiphenomena of chronic illness, the findings may implicate a unique cellular defect in schizophrenia--a genetic variation affecting the plasticity of HF circuitry and connectivity. Directions for further research are proposed.
Collapse
Affiliation(s)
- D R Weinberger
- Clinical Brain Disorders Branch Intramural Research Program, National Institute Of Mental Health, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
30
|
Glutamate Receptors and Excitotoxic Mechanisms in Alzheimer’s Disease. Cereb Cortex 1999. [DOI: 10.1007/978-1-4615-4885-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
31
|
Kobayashi Y, Amaral DG. Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Mizukami K, Ikonomovic MD, Grayson DR, Sheffield R, Armstrong DM. Immunohistochemical study of GABAA receptor alpha1 subunit in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Brain Res 1998; 799:148-55. [PMID: 9666109 DOI: 10.1016/s0006-8993(98)00437-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunocytochemical techniques were employed to examine the distribution of the gamma-aminobutyric acid (GABA)A receptor alpha1 subunit within the hippocampus of 19 elderly subjects with Alzheimer-related neuropathologic changes. In mild cases (i.e., Braak stages I and II), the most intense neuropil immunolabeling was observed in the molecular layer of the dentate gyrus, the stratum pyramidale of the CA1 subregion and subiculum, while the weakest labeling was observed in the CA3 subfield. In CA4 region, the proximal dendrites and cell bodies of mossy cells were intensely alpha1 positive. Throughout the hippocampus, we observed a number of alpha1 labeled interneurons. These cells consisted of both large and small multipolar cells as well as small bipolar neurons. In moderate cases (i.e., Braak stages III and IV), the pattern and intensity of alpha1 immunolabeling appeared indistinguishable from mild cases. In severe cases (i.e., Braak stages V and VI), we observed a marked decrease in neuropil immunolabeling within the CA2, CA1 subregions and prosubiculum, while the labeling of the molecular layer of the dentate gyrus, subiculum proper and presubiculum was indistinguishable from mild and moderate cases. These data together with our previous immunocytochemical study in which we demonstrated a marked preservation of the GABAA receptor subunit beta2/3 suggest that responses of selected GABAA receptor subunits to AD pathology are variable with the alpha1 subunit displaying a high degree of vulnerability.
Collapse
Affiliation(s)
- K Mizukami
- Neuroscience Research Center, MCP Hahnemann School of Medicine, Allegheny-Campus, 320 East North Avenue, Pittsburgh, PA 15212, USA
| | | | | | | | | |
Collapse
|
33
|
Mizukami K, Grayson DR, Ikonomovic MD, Sheffield R, Armstrong DM. GABAA receptor beta 2 and beta 3 subunits mRNA in the hippocampal formation of aged human brain with Alzheimer-related neuropathology. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:268-72. [PMID: 9602147 DOI: 10.1016/s0169-328x(97)00347-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our work on the role of glutamate in Alzheimer's disease (AD)-related neuronal vulnerability and death provided significant insight into the potential contribution of the gamma-aminobutyric acid (GABA) neurotransmitter system as it participates in countering the neurotoxic effects of excessive glutamate receptor stimulation. Our previous studies demonstrate that beta2/3 GABAA receptor subunit immunoreactivity is relatively well preserved in hippocampi with AD pathology. To further elucidate the molecular basis for this observation, we employed in situ hybridization histochemistry to examine the levels of beta2 and beta3 receptor subunit mRNAs in the hippocampus of 19 elderly subjects presenting with a broad range of pathologic severity (i.e., Braak stage I-VI). Semi-quantitative analysis with film autoradiograms revealed that beta2 mRNA signal was highest in the granule cell layer, CA2 and CA1 subfields, while beta3 mRNA hybridization was highest in the granule cell layer, followed by CA2>/=CA3>/=CA1 regions. No significant difference in beta2 mRNA expression was detected among the pathologically mild, moderate or severe groups. In contrast, levels of beta3 mRNA in the pathologically severe group was significantly decreased compared to the mild group within all subregions examined except CA4. Our data suggest that alterations in the expression of GABAA receptor subunits in the AD hippocampus differ between specific receptor subunits with the amount of beta2 mRNA being relatively well-preserved, while beta3 mRNA levels were decreased.
Collapse
Affiliation(s)
- K Mizukami
- Neuroscience Research Center, MCP-Hahnemann School of Medicine, Allegheny-Campus, 320 East North Avenue, Pittsburgh, PA 15212, USA
| | | | | | | | | |
Collapse
|
34
|
Jasek MC, Griffith WH. Pharmacological characterization of ionotropic excitatory amino acid receptors in young and aged rat basal forebrain. Neuroscience 1997; 82:1179-94. [PMID: 9466439 DOI: 10.1016/s0306-4522(97)00337-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ionotropic glutamate receptors were characterized in acutely dissociated medial septum/nucleus of diagonal band neurons from one- to four-month- and 24-26-month-old male Fischer 344 rats. Whole-cell patch-clamp recordings were used to study glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, kainate and N-methyl-D-aspartate-induced currents. Pharmacological properties of these ionotropic receptors were studied across different age groups by comparing concentration response curves and EC50 for agonist-induced currents, as well as dissociation constants (Kb) for competitive receptor antagonists. Our results suggest that non-N-methyl-D-aspartate receptors on medial septum/nucleus of diagonal band neurons were predominantly of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type and display biophysical and pharmacological properties similar to other central neurons. However, peak alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-induced currents were enhanced in aged (35.0+/-4.4 pA/pF) compared to young cells (16.2+/-1.7 pA/pF, P<0.005), and the EC50 shifted to the right (4.4+/-0.6 in young compared to 8.8+/-1.3 microM in aged, P<0.05). The Kb for 6,7-dinitroquinoxaline-2,3-dione inhibition of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-induced currents likewise shifted to the right (0.16+/-0.02 in young and 0.29+/-0.04 microM in aged, P<0.05) suggesting an age-related decrease in affinity for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. N-Methyl-D-aspartate-induced currents were generated in standard physiological solutions with the addition of 1 microM glycine and the removal of Mg2+. The N-methyl-D-aspartate responses were predictably modulated by magnesium and glycine, and were antagonized by the competitive antagonist 2-amino-5-phosphonovaleric acid. No age-related change in N-methyl-D-aspartate maximum, EC50, magnesium sensitivity, glycine sensitivity or Kb for 2-amino-5-phosphonovaleric acid was observed. Overall, our results suggest that ionotropic glutamate receptors in the medial septum/nucleus of diagonal band have a similar pharmacological profile compared to glutamate receptors in other brain regions. More importantly, these data suggest that while medial septum/nucleus of diagonal band cells maintain N-methyl-D-aspartate receptors during ageing, a significant increase in current density and decrease in receptor affinity for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors, during this same time period, may provide a mechanism for age-related changes in neuronal plasticity and excitotoxicity in the basal forebrain.
Collapse
Affiliation(s)
- M C Jasek
- Department of Medical Pharmacology and Toxicology, Texas A & M University Health Science Center, College Station 77843, USA
| | | |
Collapse
|
35
|
Mizukami K, Ikonomovic MD, Mishizen A, Sheffield R, Grayson DR, Armstrong DM, Mishizin A. Alterations of GABA(A)beta2/3 immunoreactivity in the dentate gyrus after perforant pathway lesion. Neuroreport 1997; 8:3379-83. [PMID: 9351676 DOI: 10.1097/00001756-199710200-00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunocytochemical techniques were employed to examine the changes in the GABA receptor subunits beta2/3 within the dentate gyrus of the rat brain 1, 3, 7, 14, 30 and 90 days after a unilateral perforant pathway lesion. Three days post-lesion we observed a decrease in beta2/3 immunolabeling in the inner molecular layer of the dentate gyrus followed by a comparable decrease in the outer molecular layer 7 days post-lesion. These decreases were transient; 30 and 90 days post-lesion, beta2/3 immunolabeling appeared similar to controls in the inner portion of the molecular layer, while in the outer region the labeling was increased. In this latter region we also observed a dense band of AChE fibers. Following survival times of 3 days we observed a diffuse staining of the neuropil in the hilar region, and a dense amorphous accumulation of peroxidase reaction product in the polymorphic region. These responses were transient and by 14 days the hilar/polymorphic region appeared indistinguishable from controls. These data suggest a unique pattern of immunoabeling in the molecular and polymorphic region in response to perforant pathway lesion. A putative explanation for this response is discussed.
Collapse
Affiliation(s)
- K Mizukami
- Neuroscience Research Center, MPC Hahnemann School of Medicine, Allegheny-Campus, Pittsburgh, PA 15212, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mizukami K, Ikonomovic MD, Grayson DR, Rubin RT, Warde D, Sheffield R, Hamilton RL, Davies P, Armstrong DM. Immunohistochemical study of GABA(A) receptor beta2/3 subunits in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Exp Neurol 1997; 147:333-45. [PMID: 9344558 DOI: 10.1006/exnr.1997.6591] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In AD, it is hypothesized that one factor contributing to the vulnerability of neurons is a delicate balance of excitatory and inhibitory inputs. To examine this hypothesis we have initiated a number of studies examining the role of the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the neurodegeneration of AD. As an initial investigation into the GABAergic system in AD, we employed immunocytochemical techniques and examined the distribution and density of the GABAA receptor subunits beta2/3 within the hippocampus of 13 subjects with a clinical diagnosis of AD and 6 nondemented elderly subjects. Collectively, these 19 subjects presented with a broad range of pathologic severity (i.e., Braak stages I-VI). Density measurements of nine hippocampal regions demonstrated highest levels of beta2/3 immunolabeling in the inner molecular layer of the dentate gyrus > CA1 > CA2, while the lowest levels were found in the granular layer of the dentate gyrus < or = CA4 < CA3 field. Despite these regional variations no significant difference in the mean density of beta2/3 immunolabeling was observed when comparing the pathologically mild (stages I and II), moderate (stages III and IV), and severe (stages V and VI) groups. These data suggest that in the hippocampus receptor subunits associated with GABAergic neurotransmission are relatively maintained even until the terminal stages of the disease.
Collapse
Affiliation(s)
- K Mizukami
- Neurosciences Research Center, Allegheny-Singer Research Institute, MCP and Hahnemann School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mizukami K, Mishizen A, Ikonomovic MD, Sheffield R, Armstrong DM, Mishizin A. Alterations of AMPA-selected glutamate subtype immunoreactivity in the dentate gyrus after perforant pathway lesion. Brain Res 1997; 768:354-60. [PMID: 9369338 DOI: 10.1016/s0006-8993(97)00797-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunocytochemical techniques were employed to examine the changes in immunolabeling of the alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) receptor subunits GluR1 and GluR2/3 within the dentate gyrus 1, 3, 7, 14, 30, and 90 days after a unilateral perforant pathway lesion in the rat brain. Completeness of the lesion was confirmed following examination of Nissl-stained tissue sections at all times post-lesion and acetylcholinesterase (AChE)-stained sections 14, 30 and 90 days post-lesion, the latter providing evidence of compensatory sprouting of cholinergic fibers in the outer molecular layer of the dentate gyrus. Compared to the non-lesioned hippocampus there was no difference in the staining pattern of AMPA receptor subunits in the dentate gyrus of the deafferented hippocampus 1, 3, 7 and 14 days following lesioning of the perforant pathway. In contrast, 30 and 90 days post-lesion, GluR1 immunolabeling was increased in the outer molecular layer of the dentate gyrus (i.e., deafferented zone) ipsilateral to lesion. Likewise, GluR2/3 immunolabeling was increased within the same region although the intensity of the response was less than that which was observed for GluR1. These data suggest that the loss of the perforant pathway fibers results in a compensatory increase in GluR1 and to a lesser extent GluR2/3 immunolabeling of the outer molecular layer at 30 and 90 days post-lesion and further suggest that AMPA receptor subunits play a role in perforant pathway signal transduction.
Collapse
Affiliation(s)
- K Mizukami
- Neuroscience Research Center, MCP Hahnemann School of Medicine, Allegheny-Campus, Pittsburgh, PA 15212, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ikonomovic MD, Armstrong DM. Distribution of AMPA receptor subunits in the nucleus basalis of Meynert in aged humans: implications for selective neuronal degeneration. Brain Res 1996; 716:229-32. [PMID: 8738245 DOI: 10.1016/0006-8993(96)00067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunocytochemical techniques using polyclonal antibodies directed against GluR1 and GluR2/3 subunits of the AMPA-selective receptor complex were used to examine the distribution of these receptor subunits within the nucleus basalis of Meynert (NBM) of non-demented elderly humans. Both somata and processes of magnocellular neurons within the NBM were intensely immunoreactive to GluR1 antibodies. In contrast, within the same region GluR2/3 immunolabeling was largely absent, although GluR2/3-positive neurons were abundantly distributed within adjacent brain regions (i.e., amygdala, entorhinal cortex and hippocampus). These data suggest that NBM neurons may be unique compared to those of other brain regions, in their response to glutamatergic excitation as mediated via non-NMDA receptors and be particularly vulnerable to glutamate excitotoxicity via a mechanism involving the destabilization of intracellular calcium.
Collapse
|