1
|
Yu Y, Wei C, Yue M, Zhang C, Wang Y, Wang Z. From benign neurofibromas to malignant peripheral nerve sheath tumors (MPNST): a gaming among multiple factors. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01054-9. [PMID: 40172801 DOI: 10.1007/s13402-025-01054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Almost all patients of Neurofibromatosis Type I (NF1) develop benign peripheral nerve tumors called neurofibromas, which are derived from neural crest Schwann cell lineage progenitors with biallelic NF1 gene mutations. More than 90% of NF1 patients develop dermal neurofibromas (DN), and 25-50% develop plexiform neurofibromas (PN). In 8-13% of individuals with NF1, PN can transform into malignant peripheral nerve sheath tumors (MPNSTs), a type of nerve soft tissue sarcoma that is the main cause of mortality of NF1 patients. In addition to arising from benign neurofibromas (50%), MPNSTs can also occur spontaneously (~40%) or following radiation therapy (~10%). Treatment for MPNST is limited to complete resection with negative margins. Still, the high recurrence of MPNST is a major concern. However, full resection of the pre-malignant lesions can largely reduce the recurrence and mortality of patients. So, early diagnosis and distinguishing malignancy from benign and premalignant lesions are particularly important. During the progression from benign neurofibromas to malignancy, a variety of changes including tumor morphology, genetic mutations, expression of multiple signaling pathways-related proteins and genome instability gradually occur. In this review, we detail these changes with the goals of identifying the histological and/or molecular signs of malignancy initiation, and an optimal therapeutic intervention window, to inhibit tumor progression and reduce the rate of mortality.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Chengjiang Wei
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Minghui Yue
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng Zhang
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yixiao Wang
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhichao Wang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Seres R, Hameed H, McCabe MG, Russell D, Lee ATJ. The Multimodality Management of Malignant Peripheral Nerve Sheath Tumours. Cancers (Basel) 2024; 16:3266. [PMID: 39409887 PMCID: PMC11475700 DOI: 10.3390/cancers16193266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are aggressive sarcomas that have nerve sheath differentiation and can present at any anatomical site. They can arise from precursor neurofibroma in the context of neurofibromatosis type 1 (NF1) or as de novo and sporadic tumours in the absence of an underlying genetic predisposition. The primary therapeutic approach is most often radical surgery, with non-surgical modalities playing an important role, especially in locally advanced or metastatic cases. The aim of multimodality approaches is to optimize both local and systemic control while keeping to a minimum acute and late treatment morbidity. Advances in the understanding of the underlying biology of MPNSTs in both sporadic and NF-1-related contexts are essential for the management and implementation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Remus Seres
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Hassan Hameed
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Martin G. McCabe
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - David Russell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Radiology, Lancashire Teaching Hospitals NHS Trust, Chorley PR7 1PP, UK
| | - Alexander T. J. Lee
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- NHS England Highly Specialised Service for Complex Neurofibromatosis Type 1: Manchester, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
3
|
Nikrad JA, Galvin RT, Sheehy MM, Novacek EL, Jacobsen KL, Corbière SMAS, Beckmann PJ, Jubenville TA, Yamamoto M, Largaespada DA. Conditionally replicative adenovirus as a therapy for malignant peripheral nerve sheath tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200783. [PMID: 38595983 PMCID: PMC10959710 DOI: 10.1016/j.omton.2024.200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Oncolytic adenoviruses (Ads) stand out as a promising strategy for the targeted infection and lysis of tumor cells, with well-established clinical utility across various malignancies. This study delves into the therapeutic potential of oncolytic Ads in the context of neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNSTs). Specifically, we evaluate conditionally replicative adenoviruses (CRAds) driven by the cyclooxygenase 2 (COX2) promoter, as selective agents against MPNSTs, demonstrating their preferential targeting of MPNST cells compared with non-malignant Schwann cell control. COX2-driven CRAds, particularly those with modified fiber-knobs exhibit superior binding affinity toward MPNST cells and demonstrate efficient and preferential replication and lysis of MPNST cells, with minimal impact on non-malignant control cells. In vivo experiments involving intratumoral CRAd injections in immunocompromised mice with human MPNST xenografts significantly extend survival and reduce tumor growth rate compared with controls. Moreover, in immunocompetent mouse models with MPNST-like allografts, CRAd injections induce a robust infiltration of CD8+ T cells into the tumor microenvironment (TME), indicating the potential to promote a pro-inflammatory response. These findings underscore oncolytic Ads as promising, selective, and minimally toxic agents for MPNST therapy, warranting further exploration.
Collapse
Affiliation(s)
- Julia A Nikrad
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Robert T Galvin
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Mackenzie M Sheehy
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Ethan L Novacek
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Kari L Jacobsen
- Department of Surgery, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Stanislas M A S Corbière
- Institute for Research in Immunology and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Marcelle-Coutu Pavilion, Montréal, QC H3T1J4, Canada
| | - Pauline J Beckmann
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Department of Pediatrics, Medical School, University of Minnesota, 420 Delaware Street SE, Mayo Mail Code 484, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Fares J, Wan Y, Mair R, Price SJ. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun 2024; 6:fcae108. [PMID: 38646145 PMCID: PMC11032202 DOI: 10.1093/braincomms/fcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.
Collapse
Affiliation(s)
- Jawad Fares
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yizhou Wan
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard Mair
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
5
|
Ramamoorthy S, Lebrecht D, Schanze D, Schanze I, Wieland I, Andrieux G, Metzger P, Hess M, Albert MH, Borkhardt A, Bresters D, Buechner J, Catala A, De Haas V, Dworzak M, Erlacher M, Hasle H, Jahnukainen K, Locatelli F, Masetti R, Stary J, Turkiewicz D, Vinci L, Wlodarski MW, Yoshimi A, Boerries M, Niemeyer CM, Zenker M, Flotho C. Biallelic inactivation of the NF1 tumour suppressor gene in juvenile myelomonocytic leukaemia: Genetic evidence of driver function and implications for diagnostic workup. Br J Haematol 2024; 204:595-605. [PMID: 37945316 DOI: 10.1111/bjh.19190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.
Collapse
Affiliation(s)
- Senthilkumar Ramamoorthy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Lebrecht
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Denny Schanze
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Ina Schanze
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Ilse Wieland
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael H Albert
- Department of Pediatric Hematology and Oncology, Dr. v. Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Immunology, University of Dusseldorf, Dusseldorf, Germany
| | - Dorine Bresters
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Albert Catala
- Department of Hematology and Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Valerie De Haas
- Diagnostic Laboratory/DCOG Laboratory, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Michael Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Kirsi Jahnukainen
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jan Stary
- Department of Pediatric Hematology/ Oncology, Charles University and Univ Hospital Motol, Prague, Czech Republic
| | - Dominik Turkiewicz
- Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - Luca Vinci
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcin W Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Martin Zenker
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Ogasawara N, Yamashita S, Yamasaki K, Kawano T, Kawano T, Muta J, Matsumoto F, Watanabe T, Ohta H, Yokogami K, Fukushima T, Sato Y, Takeshima H. Spontaneous malignant transformation of trigeminal schwannoma: consideration of responsible gene alterations for tumorigenesis-a case report. Brain Tumor Pathol 2023; 40:222-229. [PMID: 37515639 DOI: 10.1007/s10014-023-00466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) arising from the trigeminal nerves are extremely rare (only 45 cases, including the present case, have been published) and have been reported to develop de novo from the peripheral nerve sheath and are not transformed from a schwannoma or neurofibroma. Here, we report a case of MPNSTs of the trigeminal nerve caused by the malignant transformation of a trigeminal schwannoma, with a particular focus on genetic considerations. After undergoing a near-total resection of a histologically typical benign schwannoma, the patient presented with regrowth of the tumor 10 years after the primary excision. Histopathologic and immunochemical examinations confirmed the recurrent tumor to be an MPNST. Comprehensive genomic analyses (FoundationOne panel-based gene assay) showed that only the recurrent MPNST sample, not the initial diagnosis of schwannoma, harbored genetic mutations, including NF1-p.R2637* and TP53-p.Y234H, candidate gene mutations associated with malignant transformation. Moreover, the results of reverse transcription polymerase chain reaction showed that the fusion of SH3PXD2A and HTRA1, which has been reported as one of the responsible genetic aberrations of schwannoma, was detected in the recurrent tumor. Taken together, we could illustrate the accumulation process of gene abnormalities for developing MPNSTs from normal cells via schwannomas.
Collapse
Affiliation(s)
- Natsuki Ogasawara
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Shinji Yamashita
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koji Yamasaki
- Department of Neurosurgery, Miyazaki Prefectural Nichinan Hospital, Miyazaki, Japan
| | - Tomoki Kawano
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Tomohiro Kawano
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Junichiro Muta
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Fumitaka Matsumoto
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takashi Watanabe
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hajime Ohta
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kiyotaka Yokogami
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, Division of Pathology, University of Miyazaki Hospital, Miyazaki, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
7
|
Voigt E, Quelle DE. FOXM1, MEK, and CDK4/6: New Targets for Malignant Peripheral Nerve Sheath Tumor Therapy. Int J Mol Sci 2023; 24:13596. [PMID: 37686402 PMCID: PMC10487994 DOI: 10.3390/ijms241713596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are deadly sarcomas, which desperately need effective therapies. Half of all MPNSTs arise in patients with neurofibromatosis type I (NF1), a common inherited disease. NF1 patients can develop benign lesions called plexiform neurofibromas (PNFs), often in adolescence, and over time, some PNFs, but not all, will transform into MPNSTs. A deeper understanding of the molecular and genetic alterations driving PNF-MPNST transformation will guide development of more targeted and effective treatments for these patients. This review focuses on an oncogenic transcription factor, FOXM1, which is a powerful oncogene in other cancers but little studied in MPNSTs. Elevated expression of FOXM1 was seen in patient MPNSTs and correlated with poor survival, but otherwise, its role in the disease is unknown. We discuss what is known about FOXM1 in MPNSTs relative to other cancers and how FOXM1 may be regulated by and/or regulate the most commonly altered players in MPNSTs, particularly in the MEK and CDK4/6 kinase pathways. We conclude by considering FOXM1, MEK, and CDK4/6 as new, clinically relevant targets for MPNST therapy.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
9
|
Tong S, Devine WP, Shieh JT. Tumor and Constitutional Sequencing for Neurofibromatosis Type 1. JCO Precis Oncol 2022; 6:e2100540. [PMID: 35584348 PMCID: PMC9200388 DOI: 10.1200/po.21.00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
NF1 variants in tumors are important to recognize, as multiple mechanisms may give rise to biallelic variants. Both deletions and copy-neutral loss of heterozygosity (LOH) are potential mechanisms of NF1 loss, distinct from point mutations, and additional genes altered may drive different tumor types. This study investigates whether tumors from individuals with neurofibromatosis type 1 (NF1) demonstrate additional gene variants and detects NF1 second hits using paired germline and somatic sequencing. In addition, rare tumor types in NF1 may also be characterized by tumor sequencing. NF1 second hits are primarily copy-neutral LOH and offer opportunity for variant interpretation
Collapse
Affiliation(s)
- Schuyler Tong
- Division of Hematology/Oncology, Pediatrics, Benioff Children's Hospital Oakland, University of California San Francisco, San Francisco, CA
| | - W Patrick Devine
- Department of Pathology, University of California San Francisco, San Francisco, CA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA
| | - Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
11
|
Lutz S, Van Dyke K, Feraru MA, Albert FW. Multiple epistatic DNA variants in a single gene affect gene expression in trans. Genetics 2022; 220:iyab208. [PMID: 34791209 PMCID: PMC8733636 DOI: 10.1093/genetics/iyab208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
DNA variants that alter gene expression in trans are important sources of phenotypic variation. Nevertheless, the identity of trans-acting variants remains poorly understood. Single causal variants in several genes have been reported to affect the expression of numerous distant genes in trans. Whether these simple molecular architectures are representative of trans-acting variation is unknown. Here, we studied the large RAS signaling regulator gene IRA2, which contains variants with extensive trans-acting effects on gene expression in the yeast Saccharomyces cerevisiae. We used systematic CRISPR-based genome engineering and a sensitive phenotyping strategy to dissect causal variants to the nucleotide level. In contrast to the simple molecular architectures known so far, IRA2 contained at least seven causal nonsynonymous variants. The effects of these variants were modulated by nonadditive, epistatic interactions. Two variants at the 5'-end affected gene expression and growth only when combined with a third variant that also had no effect in isolation. Our findings indicate that the molecular basis of trans-acting genetic variation may be considerably more complex than previously appreciated.
Collapse
Affiliation(s)
- Sheila Lutz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Krisna Van Dyke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew A Feraru
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Puglisi F, Soma R, Podda M, Vetrella S, Rabusin M, Tropia S, Meli M, Russo G, Sorrentino S, Erminio G, Pulvirenti A, Ruggieri M, Di Cataldo A. Neuroblastic tumors and neurofibromatosis type 1: A retrospective multicenter study in Italy and systematic review of the literature. Front Pediatr 2022; 10:950911. [PMID: 36405824 PMCID: PMC9673013 DOI: 10.3389/fped.2022.950911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neuroblastic tumors (NBTs) are the most common extra-cranial solid tumors of childhood. Neurofibromatosis type 1 (NF1) is the most common neurocutaneous disorder with a predisposition to tumors. The co-occurrence of NBTs in the setting of NF1 has been occasionally reported, suggesting a non-casual association and likely configuring a spectrum of neural crest-derived disorders. AIM OF THE STUDY To explore the occurrence of NBTs within NF1 and to report on its natural history, therapeutic strategies, and outcomes in an Italian cohort of children with NF1 and in the literature. SUBJECTS AND METHODS Study (a): a retrospective analysis of questionnaire-based data [years 1979-2017] derived from the databases of the Italian Registry for Neuroblastoma (RINB) of the Italian Society of Pediatric Onco-Haematology (AIEOP); and Study (b): a systematic review search on NF1/NB co-occurrence. RESULTS Study (a) identified eight children with NBTs, 0.2% of patients registered in the RINB, fulfilling the diagnostic criteria for NF1. The primary site of NBTs was abdominal in six patients. The NBTs were neuroblastoma (NB) in five patients, ganglioneuroblastoma (GNB) in one, patient, and ganglioneuroma (GN) in two. Metastatic diffusion occurred in three out of eight children. MYCN gene testing, performed in the tumors of five patients, resulted not-amplified. The major features of NF1 included the following: NF1 family history in four patients, café-au-lait spots in all, freckling in six, Lisch nodules in three, and neurofibromas in three. With regard to the outcome, four children survived three of these for the progression of NB and one for a second tumor. Study (b) identified 12 patients with NF1/NB from the years 1966-2017, and the median age at diagnosis was 27 months (range = 0-168 months). The primary site of NB was thoracic. The prevalent histotype was NB in nine patients, GNB in two, and GN in one. Eight/nine NBs were metastatic. The MYCN gene was amplified in the only studied case. The NF1 features included NF1 family history in seven patients; the major NF1 features were café-au-lait spots in nine patients, freckling in one, Lisch nodules in none, and neurofibromas in six. The outcome was good for only two children, while eight children died of neuroblastoma, at a median age of 49.5 months (range = 2.4-174 months), with a median survival time of 21.75 months after diagnosis. CONCLUSIONS To our knowledge, this represents the first systematic study on the occurrence of NBTs in NF1. This confirms that NBs are rare per se in the setting of NF1 (0.2% of all NBs) and even if compared to the overall frequency of malignancies in NF1 (i.e., 14.7%). The male:female ratio in study (a) (0.6) was different from what was recorded in study (b) (1.5) and in line with the overall increased frequency of malignancies in females with NF1. The median ages at diagnosis of NB in either study (a) or (b) were concordant with what occurred in the NB population. In study (a) versus study (b), the frequency of metastatic diffusion was lower, likely indicating less awareness on work-ups for malignancies in old NF1 series in the literature. The outcome was much better in study (a) than in study (b), indicating that multidisciplinary treatment for NB is highly recommended.
Collapse
Affiliation(s)
- Federica Puglisi
- Unit of Neonatology and Neonatal Intensive Care Unit, AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Rachele Soma
- Unit of Pediatric Onco-Haematology, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Marta Podda
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Simona Vetrella
- Pediatric Oncology Unit, Santobono-Pausilipon Hospitals, Naples, Italy
| | - Marco Rabusin
- Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Serena Tropia
- Pediatric Hematology and Oncology Unit, ARNAS "Civico, Di Cristina and Benfratelli" Hospitals, Palermo, Italy
| | - Mariaclaudia Meli
- Unit of Pediatric Onco-Haematology, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Giovanna Russo
- Unit of Pediatric Onco-Haematology, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | - Giovanni Erminio
- Epidemiology Scientific Directorate, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Andrea Di Cataldo
- Unit of Pediatric Onco-Haematology, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Blattner-Johnson M, Jones DTW, Pfaff E. Precision medicine in pediatric solid cancers. Semin Cancer Biol 2021; 84:214-227. [PMID: 34116162 DOI: 10.1016/j.semcancer.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Despite huge advances in the diagnosis and treatment of pediatric cancers over the past several decades, it remains one of the leading causes of death during childhood in developed countries. The development of new targeted treatments for these diseases has been hampered by two major factors. First, the extremely heterogeneous nature of the types of tumors encountered in this age group, and their fundamental differences from common adult carcinomas, has made it hard to truly get a handle on the complexities of the underlying biology driving tumor growth. Second, a reluctance of the pharmaceutical industry to develop products or trials for this population due to the relatively small size of the 'market', and a too-easy mechanism of obtaining waivers for pediatric development of adult oncology drugs based on disease type rather than mechanism of action, led to significant difficulties in getting access to new drugs. Thankfully, the field has now started to change, both scientifically and from a regulatory perspective, in order to address some of these challenges. In this review, we will examine some of the recent insights into molecular features which make pediatric tumors so unique and how these might represent therapeutic targets; highlight ongoing international initiatives for providing comprehensive, personalized genomic profiling of childhood tumors in a clinically-relevant timeframe, and look briefly at where the field of pediatric precision oncology may be heading in future.
Collapse
Affiliation(s)
- Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Wang J, Pollard K, Calizo A, Pratilas CA. Activation of Receptor Tyrosine Kinases Mediates Acquired Resistance to MEK Inhibition in Malignant Peripheral Nerve Sheath Tumors. Cancer Res 2020; 81:747-762. [PMID: 33203698 DOI: 10.1158/0008-5472.can-20-1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/08/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Malignant peripheral nerve sheath tumors often arise in patients with neurofibromatosis type 1 and are among the most treatment-refractory types of sarcoma. Overall survival in patients with relapsed disease remains poor, and thus novel therapeutic approaches are needed. NF1 is essential for negative regulation of RAS activity and is altered in about 90% of malignant peripheral nerve sheath tumors (MPNST). A complex interplay of upstream signaling and parallel RAS-driven pathways characterizes NF1-driven tumorigenesis, and inhibiting more than one RAS effector pathway is therefore necessary. To devise potential combination therapeutic strategies, we identified actionable alterations in signaling that underlie adaptive and acquired resistance to MEK inhibitor (MEKi). Using a series of proteomic, biochemical, and genetic approaches in an in vitro model of MEKi resistance provided a rationale for combination therapies. HGF/MET signaling was elevated in the MEKi-resistant model. HGF overexpression conferred resistance to MEKi in parental cells. Depletion of HGF or MET restored sensitivity of MEKi-resistant cells to MEKi. Finally, a combination of MEK and MET inhibition demonstrated activity in models of MPNST and may therefore be effective in patients with MPNST harboring genetic alterations in NF1. SIGNIFICANCE: This study demonstrates that MEKi plus MET inhibitor may delay or prevent a novel mechanism of acquired MEKi resistance, with clinical implications for MPNST patients harboring NF1 alterations.
Collapse
Affiliation(s)
- Jiawan Wang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ana Calizo
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine A Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
15
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
16
|
Lou H, Zhai C, Gong L, Pan H, Pan H, Zhang Y, Yang M, Hu Z. NF1 germline mutation in a Chinese family with colon cancer. J Int Med Res 2020; 48:300060519896435. [PMID: 32814491 PMCID: PMC7444156 DOI: 10.1177/0300060519896435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Recent advances in genomic medicine have identified novel gene mutations that contribute to an increased risk of CRC. Here, we describe a diagnosis of colon cancer in a 63-year-old woman and also in her brother. Next-generation sequencing showed that both patients harbored a germline mutation in NF1. The female patient also carried co-mutations in KRAS and NRAS. Furthermore, the NF1 germline mutation was identified in a healthy offspring of the brother. The female patient received three cycles of bevacizumab plus capecitabine/oxaliplatin therapy and achieved stable disease of the primary lesion in the colon and partial response of metastasis in the right abdominal cavity. This study highlights the association of NF1 germline mutations with colon cancer.
Collapse
Affiliation(s)
- Haizhou Lou
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chongya Zhai
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liu Gong
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Pan
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | - Zimin Hu
- Department of Respiratory Disease, Cixi Sixth Hospital, Ningbo, China
- Zimin Hu, Department of Respiratory Disease, Cixi Sixth Hospital, 100 Youth Palace South Road, Ningbo 315300, China.
| |
Collapse
|
17
|
Li J, Liu L, Zhang Q, Huang Y, Zhang Y, Gan X, Liu S, Yue Z, Wei Y. A novel TJP1-ROS1 fusion in malignant peripheral nerve sheath tumor responding to crizotinib: A case report. Medicine (Baltimore) 2020; 99:e20725. [PMID: 32590748 PMCID: PMC7328986 DOI: 10.1097/md.0000000000020725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Malignant peripheral nerve sheath tumor (MPNST) is a rare sarcoma. Owing to the lack of specific histological criteria, immunohistochemical, and molecular diagnostic markers, several differential diagnoses must be considered. Advances in molecular testing can provide significant insights for management of rare tumor. PATIENT CONCERNS The patient was a 50-year-old man with a history of lumpectomy on the right back 30 years ago. He felt a stabbing pain at the right iliac fossa and went to the local hospital. DIAGNOSIS By immunohistochemistry, the tumor cells stained positively for S-100 (focal +), CD34 (strong +++) and Ki-67 (20%), and negatively for smooth muscle actin, pan-cytokeratin, neurofilament, pan-cytokeratin-L, GFAP, CD31, STAT6, ERG, myogenin, and MyoD1. Combined with the histopathology and immunohistochemistry results, our initial diagnosis was solitary fibrous tumor (SFT) or MPNST. The tissue biopsy was sent for next-generation sequencing. neurofibromatosis type 1 Q1395Hfs*22 somatic mutation, neurofibromatosis type 1 D483Tfs*15 germline mutation, and amplifications of BTK, MDM2, ATF1, BMPR1A, EBHA2, GNA13, PTPN11, RAD52, RPTOR, and SOX9, as well as TJP1-ROS1 fusion, CDKN2A-IL1RAPL2 fusion and CDKN2A/UBAP1 rearrangement were identified. Given that NAB2-STAT6 fusion, a specific biomarker of SFT, was not identified in our patient's tumor, the SFT was excluded by through genetic testing results. Therefore, our finally diagnosis was a MPNST by 2 or more pathologists. INTERVENTIONS AND OUTCOMES Subsequently, the patient received crizotinib therapy for 2 months and showed stable disease. However, after crizotinib continued treatment for 4 months, the patient's disease progressed. Soon after, the patient stopped crizotinib treatment and died in home. LESSONS To our knowledge, this is the first report of the TJP1-ROS1 fusion, which expands the list of gene fusions and highlights new targets for targeted therapy. Also, our case underlines the value of multi-gene panel next-generation sequencing for diagnosis of MPNST.
Collapse
Affiliation(s)
| | - Lingxiang Liu
- Department of Medical Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing
| | | | | | | | | | | | | | | |
Collapse
|
18
|
From Genes to -Omics: The Evolving Molecular Landscape of Malignant Peripheral Nerve Sheath Tumor. Genes (Basel) 2020; 11:genes11060691. [PMID: 32599735 PMCID: PMC7349243 DOI: 10.3390/genes11060691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare, aggressive soft tissue sarcomas that occur with significantly increased incidence in people with the neuro-genetic syndrome neurofibromatosis type I (NF1). These complex karyotype sarcomas are often difficult to resect completely due to the involvement of neurovascular bundles, and are relatively chemotherapy- and radiation-insensitive. The lifetime risk of developing MPNST in the NF1 population has led to great efforts to characterize the genetic changes that drive the development of these tumors and identify mutations that may be used for diagnostic or therapeutic purposes. Advancements in genetic sequencing and genomic technologies have greatly enhanced researchers’ abilities to broadly and deeply investigate aberrations in human MPNST genomes. Here, we review genetic sequencing efforts in human MPNST samples over the past three decades. Particularly for NF1-associated MPNST, these overall sequencing efforts have converged on a set of four common genetic changes that occur in most MPNST, including mutations in neurofibromin 1 (NF1), CDKN2A, TP53, and members of the polycomb repressor complex 2 (PRC2). However, broader genomic studies have also identified recurrent but less prevalent genetic variants in human MPNST that also contribute to the molecular landscape of MPNST and may inform further research. Future studies to further define the molecular landscape of human MPNST should focus on collaborative efforts across multiple institutions in order to maximize information gathered from large numbers of well-annotated MPNST patient samples, both in the NF1 and the sporadic MPNST populations.
Collapse
|
19
|
Hu F, Yu Y, Chen JS, Hu H, Scheet P, Huff CD. Integrated case-control and somatic-germline interaction analyses of soft-tissue sarcoma. J Med Genet 2020; 58:145-153. [PMID: 32447321 DOI: 10.1136/jmedgenet-2019-106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 11/04/2022]
Abstract
PURPOSE The contribution of rare genetic variation in the development of soft-tissue sarcoma (STS) remains underexplored. To address this gap, we conducted a whole-exome case-control and somatic-germline interaction study to identify and characterise STS susceptible genes. METHODS The study involved 219 STS cases from The Cancer Genome Atlas and 3507 controls. All cases and controls were matched genetically onEuropean ancestry based on the 1000 Genomes project. Cross-platform technological stratification was performed with XPAT and gene-based association tests with VAAST 2. RESULTS NF1 exhibited the strongest genome-wide signal across the six subtypes, with p=1×10-5. We also observed nominally significant association signals for three additional genes of interest, TP53 (p=0.0025), RB1 (p=0.0281), and MSH2 (p=0.0085). BAG1, which has not previously been implicated in STS, exhibited the strongest genome-wide signal after NF1, with p=6×10-5. The association signals for NF1 and MSH2 were driven primarily by truncating variants, with ORs of 39 (95% CI: 7.1 to 220) for NF1 and 33 (95% CI: 2.4 to 460) for MSH2. In contrast, the association signals for RB1 and BAG1 were driven primarily by predicted damaging missense variants, with estimated ORs of 12 (95% CI: 2.4 to 59) for RB1 and 20 (95% CI: 1.4 to 300) for BAG1. CONCLUSIONS Our results confirm that pathogenic variants in NF1, RB1 and TP53 confer large increases in the risk of developing multiple STS subtypes, provide support for the role of MSH2 in STS susceptibility and identify BAG1 as a novel candidate STS risk gene.
Collapse
Affiliation(s)
- Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China.,Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiun-Sheng Chen
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Hu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Biotteau M, Déjean S, Lelong S, Iannuzzi S, Faure-Marie N, Castelnau P, Rivier F, Lauwers-Cancès V, Baudou E, Chaix Y. Sporadic and Familial Variants in NF1: An Explanation of the Wide Variability in Neurocognitive Phenotype? Front Neurol 2020; 11:368. [PMID: 32431664 PMCID: PMC7214842 DOI: 10.3389/fneur.2020.00368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Cognitive impairment is the most common neurological manifestation in NF1 and occurs in 30–70% of NF1 cases. The onset and severity of each specific cognitive deficit varies greatly from child to child, with no apparent external causes. The wide variability of phenotype is the most complex aspect in terms of management and care. Despite multiple research, the mechanism underlying the high heterogeneity in NF1 has not yet been elucidated. While many studies have focused on the effects of specific and precise genetic mutations on the NF1 phenotype, little has been done on the impact of NF1 transmission (sporadic vs. familial cases). We used a complete neuropsychological evaluation designed to assess five large cognitive areas: general cognitive functions (WISC-IV and EVIP); reading skills (“L'Alouette,” ODEDYS-2 and Lobrot French reading tests); phonological process (ODEDYS-2 test); visual perceptual skills (JLO, Thurstone and Corsi block tests) and attention (CPT-II), as well as psychosocial adjustments (CBCL) to explore the impact of NF1 transmission on cognitive disease manifestation in 96 children affected by NF1 [55 sporadic cases (29♀, 26♂); 41 familial cases (24♀, 17♂)]. Results: Familial and Sporadic form of NF1 only differ in IQ expression. The families' socioeconomic status (SES) impacts IQ performance but not differently between sporadic and familial variants. However, SES is lower in familial variants than in the sporadic variant of NF1. No other cognitive differences emerge between sporadic and familial NF1. Conclusions: Inheritance in NF1 failed to explain the phenotype variability in its entirety. IQ differences between groups seems in part linked to the environment where the child grows up. Children with NF1, and especially those that have early diagnoses (most often in inherited cases), must obtain careful monitoring from their early childhood, at home to strengthen investment in education and in school to early detect emerging academic problems and to quickly place them into care. Trial Registration: IDRCB, IDRCB2008-A01444-51. Registered 19 January 2009.
Collapse
Affiliation(s)
- Maëlle Biotteau
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219 Université de Toulouse, CNRS UPS, Toulouse, France
| | - Sandrine Lelong
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France
| | - Stéphanie Iannuzzi
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France
| | | | - Pierre Castelnau
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France.,Department of Medicine, University of Tours Francois Rabelais, Tours, France.,Pediatric Neurology, Clocheville Children's Hospital, Tours University Hospital, Tours, France
| | - François Rivier
- Department of Pediatric Neurology and Reference Center for Language Disabilities, CHU Montpellier, PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Eloïse Baudou
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France
| | - Yves Chaix
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France
| |
Collapse
|
21
|
Lobbous M, Bernstock JD, Coffee E, Friedman GK, Metrock LK, Chagoya G, Elsayed G, Nakano I, Hackney JR, Korf BR, Nabors LB. An Update on Neurofibromatosis Type 1-Associated Gliomas. Cancers (Basel) 2020; 12:E114. [PMID: 31906320 PMCID: PMC7017116 DOI: 10.3390/cancers12010114] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome that affects children and adults. Individuals with NF1 are at high risk for central nervous system neoplasms including gliomas. The purpose of this review is to discuss the spectrum of intracranial gliomas arising in individuals with NF1 with a focus on recent preclinical and clinical data. In this review, possible mechanisms of gliomagenesis are discussed, including the contribution of different signaling pathways and tumor microenvironment. Furthermore, we discuss the recent notable advances in the developing therapeutic landscape for NF1-associated gliomas including clinical trials and collaborative efforts.
Collapse
Affiliation(s)
- Mina Lobbous
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Elizabeth Coffee
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| | - Gregory K. Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.K.F.); (L.K.M.)
| | - Laura K. Metrock
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.K.F.); (L.K.M.)
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (G.C.); (G.E.); (I.N.)
| | - James R. Hackney
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Louis B. Nabors
- Division of Neuro Oncology, Department of Neurology, University of Alabama at Birmingham, 510 20th Street South, Faculty Office Tower Suite 1020 Birmingham, Birmingham, AL 35294, USA; (E.C.)
| |
Collapse
|
22
|
D’Angelo F, Ceccarelli M, Tala, Garofano L, Zhang J, Frattini V, Caruso FP, Lewis G, Alfaro KD, Bauchet L, Berzero G, Cachia D, Cangiano M, Capelle L, de Groot J, DiMeco F, Ducray F, Farah W, Finocchiaro G, Goutagny S, Kamiya-Matsuoka C, Lavarino C, Loiseau H, Lorgis V, Marras CE, McCutcheon I, Nam DH, Ronchi S, Saletti V, Seizeur R, Slopis J, Suñol M, Vandenbos F, Varlet P, Vidaud D, Watts C, Tabar V, Reuss DE, Kim SK, Meyronet D, Mokhtari K, Salvador H, Bhat KP, Eoli M, Sanson M, Lasorella A, lavarone A. The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat Med 2019; 25:176-187. [PMID: 30531922 PMCID: PMC6857804 DOI: 10.1038/s41591-018-0263-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is one of the prevalent tumors. Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to high-grade neoplasms occurring during the entire lifespan of patients. The pattern of genetic and epigenetic alterations of glioma that develops in NF1 patients and the similarities with sporadic glioma remain unknown. Here, we present the molecular landscape of low- and high-grade gliomas in patients affected by NF1 (NF1-glioma). We found that the predisposing germline mutation of the NF1 gene was frequently converted to homozygosity and the somatic mutational load of NF1-glioma was influenced by age and grade. High-grade tumors harbored genetic alterations of TP53 and CDKN2A, frequent mutations of ATRX associated with Alternative Lengthening of Telomere, and were enriched in genetic alterations of transcription/chromatin regulation and PI3 kinase pathways. Low-grade tumors exhibited fewer mutations that were over-represented in genes of the MAP kinase pathway. Approximately 50% of low-grade NF1-gliomas displayed an immune signature, T lymphocyte infiltrates, and increased neo-antigen load. DNA methylation assigned NF1-glioma to LGm6, a poorly defined Isocitrate Dehydrogenase 1 wild-type subgroup enriched with ATRX mutations. Thus, the profiling of NF1-glioma defined a distinct landscape that recapitulates a subset of sporadic tumors.
Collapse
Affiliation(s)
- Fulvio D’Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.,BIOGEM Istituto di Ricerche Genetiche ‘G. Salvatore’, Ariano Irpino, Italy.,These authors contributed equally: F. D’Angelo, M. Ceccarelli
| | - Michele Ceccarelli
- BIOGEM Istituto di Ricerche Genetiche ‘G. Salvatore’, Ariano Irpino, Italy.,Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy.,These authors contributed equally: F. D’Angelo, M. Ceccarelli
| | - Tala
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.,BIOGEM Istituto di Ricerche Genetiche ‘G. Salvatore’, Ariano Irpino, Italy
| | - Jing Zhang
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Véronique Frattini
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Francesca P. Caruso
- BIOGEM Istituto di Ricerche Genetiche ‘G. Salvatore’, Ariano Irpino, Italy.,Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy
| | - Genevieve Lewis
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Kristin D. Alfaro
- The University of Texas M.D. Anderson Cancer Center John Mendelsohn Faculty Center (FC7.3025) – Neuro-Oncology – Unit 0431, Houston, TX, USA
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Giulia Berzero
- Sorbonne Universités UPMC Université Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, APHP, Paris, France
| | - David Cachia
- Department of Neuro-Oncology, Medical University of South Carolina, Charleston, SC, USA.,Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mario Cangiano
- BIOGEM Istituto di Ricerche Genetiche ‘G. Salvatore’, Ariano Irpino, Italy
| | - Laurent Capelle
- AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neurochirurgie, Paris, France
| | - John de Groot
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francesco DiMeco
- Department of Neurological Surgery, Carlo Besta Neurological Institute, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Hunterian Brain Tumor Research Laboratory CRB2 2M41, Baltimore, MD, USA
| | - François Ducray
- Service de Neuro-Oncologie, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Walid Farah
- Department of Neurosurgery, CHU, Dijon, France
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Stéphane Goutagny
- Service de Neurochirurgie, Hôpital Beaujon, Assistance PubliqueHôpitaux de Paris, Clichy, France
| | | | - Cinzia Lavarino
- Developmental Tumor Laboratory, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Hugues Loiseau
- Department of Neurosurgery, Bordeaux University Hospital. Labex TRAIL (ANR-10-LABX-57). EA 7435 – IMOTION Bordeaux University, Bordeaux, France
| | - Véronique Lorgis
- Department of Medical Oncology, Centre GF Leclerc, Dijon, France
| | - Carlo E. Marras
- Pediatric Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Ian McCutcheon
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Susanna Ronchi
- Sorbonne Universités UPMC Université Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, APHP, Paris, France
| | - Veronica Saletti
- Developmental Neurology Unit, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Romuald Seizeur
- Service de Neurochirurgie, Hôpital de la Cavale Blanche, CHRU de Brest, Université de Brest, Brest, France
| | - John Slopis
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Fanny Vandenbos
- Central Laboratory of Pathology, Pasteur I University Hospital, Nice, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France.,IMA-Brain, Inserm U894, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Dominique Vidaud
- EA7331, Université Paris Descartes, France; Service de Génétique et Biologie Moléculaires, Hôpital Cochin, AP-HP, Paris, France
| | - Colin Watts
- Institute of Cancer and Genomic Sciences University of Birmingham Edgbaston, Birmingham, United Kingdom
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David E. Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - David Meyronet
- Centre de Pathologie Et Neuropathologie Est Hospices Civils de Lyon, Lyon, France
| | - Karima Mokhtari
- Sorbonne Universités UPMC Université Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, APHP, Paris, France
| | - Hector Salvador
- Pediatric Oncology Unit, Hospital Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Krishna P. Bhat
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Marc Sanson
- Sorbonne Universités UPMC Université Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, APHP, Paris, France
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA. .,Department of Pediatrics, Columbia University Medical Center, New York, NY, USA. .,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| | - Antonio lavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, USA.,These authors jointly supervised this work: A. Lasorella, A. Iavarone.,Correspondence and requests for materials should be addressed to A.L. or A.I. ;
| |
Collapse
|
23
|
Frayling IM, Mautner VF, van Minkelen R, Kallionpaa RA, Aktaş S, Baralle D, Ben-Shachar S, Callaway A, Cox H, Eccles DM, Ferkal S, LaDuca H, Lázaro C, Rogers MT, Stuenkel AJ, Summerour P, Varan A, Yap YS, Zehou O, Peltonen J, Evans DG, Wolkenstein P, Upadhyaya M. Breast cancer risk in neurofibromatosis type 1 is a function of the type of NF1 gene mutation: a new genotype-phenotype correlation. J Med Genet 2018; 56:209-219. [DOI: 10.1136/jmedgenet-2018-105599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 01/19/2023]
Abstract
BackgroundNeurofibromatosis type 1 (NF1) predisposes to breast cancer (BC), but no genotype-phenotype correlations have been described.MethodsConstitutional NF1 mutations in 78 patients with NF1 with BC (NF1-BC) were compared with the NF1 Leiden Open Variation Database (n=3432).ResultsNo cases were observed with whole or partial gene deletions (HR 0.10; 95% CI 0.006 to 1.63; p=0.014, Fisher’s exact test). There were no gross relationships with mutation position. Forty-five (64.3%; HR 6.4–83) of the 70 different mutations were more frequent than expected (p<0.05), while 52 (74.3%; HR 5.3–83) were significant when adjusted for multiple comparisons (adjusted p≤0.125; Benjamini-Hochberg). Higher proportions of both nonsense and missense mutations were also observed (adjusted p=0.254; Benjamini-Hochberg). Ten of the 11 missense cases with known age of BC occurred at <50 years (p=0.041). Eighteen cases had BRCA1/2 testing, revealing one BRCA2 mutation.DiscussionThese data strongly support the hypothesis that certain constitutional mutation types, and indeed certain specific variants in NF1 confer different risks of BC. The lack of large deletions and excess of nonsenses and missenses is consistent with gain of function mutations conferring risk of BC, and also that neurofibromin may function as a dimer. The observation that somatic NF1 amplification can occur independently of ERBB2 amplification in sporadic BC supports this concept. A prospective clinical-molecular study of NF1-BC needs to be established to confirm and build on these findings, but regardless of NF1 mutation status patients with NF1-BC warrant testing of other BC-predisposing genes.
Collapse
|
24
|
|
25
|
Pan Y, Yuan C, Cheng C, Zhang Y, Ma Y, Zheng D, Zheng S, Li Y, Jin Y, Sun Y, Chen H. Frequency and clinical significance of NF1 mutation in lung adenocarcinomas from East Asian patients. Int J Cancer 2018; 144:290-296. [PMID: 30230541 DOI: 10.1002/ijc.31871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023]
Abstract
NF1 is a tumor suppressor gene that negatively regulates Ras signaling. NF1 deficiency plays an important role in carcinogenesis. To investigate the frequency and clinical significance of NF1 mutation, we examined mutation status of NF1, TP53, LKB1 and RB1 in 704 surgically resected lung adenocarcinomas from East Asian patients using semiconductor-based Ion Torrent sequencing platform. Common driver events, including mutations in EGFR, KRAS, HER2, BRAF, MET, and fusions affecting ALK, RET and ROS1, were also concurrently detected. The correlation between NF1 mutations and clinicomolecular features of patients was further evaluated. Among 704 patients, 42 NF1 mutations were found in 33 patients (33/704, 4.7%), including 14 patients harboring EGFR/NF1 comutations (14/33, 42.4%). Comparing with EGFR-mutant patients, patients harboring NF1 mutations were closely associated with solid component subtype (p = 0.028). Comparing with KRAS mutations, NF1 mutations were found more common in female and never smokers (p = 0.003 and p = 0.004, respectively). Kaplan-Meier survival analysis revealed that patients harboring NF1 mutation had similar disease-free survival (DFS) and overall survival (OS) with patients with KRAS mutation. Although frequently overlapped with EGFR mutation, patients harboring NF1 mutation had significantly shorter DFS (p = 0.019) and OS (p = 0.004) than patients with EGFR mutation. During follow-up, one female patient with EGFR exon 19 deletion and NF1 Q1815X comutation showed poor response to EGFR TKIs (Gefitinib and Osimertinib) after disease relapse. In conclusion, NF1 mutations define a unique molecular and clinicopathologic subtype of lung adenocarcinoma. Examination of NF1 mutation may contribute to molecular subtyping and therapeutic intervention of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yunjian Pan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongze Yuan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Cheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiliang Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Ma
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Difan Zheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanbo Zheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yan Jin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Recent Advances in the Diagnosis and Pathogenesis of Neurofibromatosis Type 1 (NF1)-associated Peripheral Nervous System Neoplasms. Adv Anat Pathol 2018; 25:353-368. [PMID: 29762158 DOI: 10.1097/pap.0000000000000197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diagnosis of a neurofibroma or a malignant peripheral nerve sheath tumor (MPNST) often raises the question of whether the patient has the genetic disorder neurofibromatosis type 1 (NF1) as well as how this will impact the patient's outcome, what their risk is for developing additional neoplasms and whether treatment options differ for NF1-associated and sporadic peripheral nerve sheath tumors. Establishing a diagnosis of NF1 is challenging as this disorder has numerous neoplastic and non-neoplastic manifestations which are variably present in individual patients. Further, other genetic diseases affecting the Ras signaling cascade (RASopathies) mimic many of the clinical features of NF1. Here, we review the clinical manifestations of NF1 and compare and contrast them with those of the RASopathies. We also consider current approaches to genetic testing for germline NF1 mutations. We then focus on NF1-associated neurofibromas, considering first the complicated clinical behavior and pathology of these neoplasms and then discussing our current understanding of the genomic abnormalities that drive their pathogenesis, including the mutations encountered in atypical neurofibromas. As several neurofibroma subtypes are capable of undergoing malignant transformation to become MPNSTs, we compare and contrast patient outcomes in sporadic, NF1-associated and radiation-induced MPNSTs, and review the challenging pathology of these lesions. The mutations involved in neurofibroma-MPNST progression, including the recent identification of mutations affecting epigenetic regulators, are then considered. Finally, we explore how our current understanding of neurofibroma and MPNST pathogenesis is informing the design of new therapies for these neoplasms.
Collapse
|
27
|
Huang L, Wu X, Ding Y, Qi L, Li W, Huang G, Dai M, Zhang B. Recurrent multiple neurofibromatosis type 1 of the right lower limb. DER ORTHOPADE 2018. [PMID: 29520415 DOI: 10.1007/s00132-017-3518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurofibromatosis type 1 is an autosomal dominant inherited disease, which is characterized by the presence of multiple neurofibromas. We encountered a case in which a sporadic dispersed neurofibroma recurred locally on numerous occasions extending over 16 years. The patient developed multiple masses with a focus of neurofibroma on the right lower limb, which were excised. The patient was initially diagnosed with inflammatory changes via computed tomography and magnetic resonance imaging; however, subsequently, pathological and immunohistochemical examinations revealed an intraneural neurofibroma. The patient underwent a comprehensive and complete local resection several times. After a continuous postoperative follow-up strategy, the patient recovered well. This report describes a case of primary manifestations of multiple and recurrent neurofibromas. We aim to emphasize the possibility of a unique, recurrent, non-healing neurofibroma and review the diagnostic techniques utilized to reach a definitive diagnosis. Early and complete surgical resection is an effective method to treat and prevent this type of neurofibroma.
Collapse
Affiliation(s)
- Leitao Huang
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Xia Wu
- Department of College of pharmacy, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yi Ding
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Lai Qi
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Wei Li
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Gendong Huang
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang University, 330006, Nanchang, Jiangxi, China.
| | - Bin Zhang
- Department of Orthopedics, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang University, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|
28
|
Jour G, Andeen NK, al-Rohil R, Aung PP, Mehrotra M, Duose D, Hoch B, Argenyi Z, Luthra R, Wistuba II, Prieto VG. Novel enriched pathways in superficial malignant peripheral nerve sheath tumours and spindle/desmoplastic melanomas. J Pathol 2017; 244:97-106. [DOI: 10.1002/path.4996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- George Jour
- Department of Pathology and Laboratory Medicine; MD Anderson Cancer Center at Cooper, One Cooper Plaza; Camden NJ USA
| | - Nicole K Andeen
- Department of Pathology; University of Washington School of Medicine, 1959 NE Pacific Street; Seattle WA USA
| | - Rami al-Rohil
- Department of Pathology, Microbiology and Immunology; Vanderbilt University Medical Center; Nashville TN USA
| | - Phyu P Aung
- Department of Pathology; Section of Dermatopathology, the University of Texas - MD Anderson Cancer Center; Houston TX USA
| | - Meenakshi Mehrotra
- Department of Translational Molecular Pathology; The University of Texas - MD Anderson Cancer Center; Houston TX USA
| | - Dzifa Duose
- Department of Translational Molecular Pathology; The University of Texas - MD Anderson Cancer Center; Houston TX USA
| | - Benjamin Hoch
- Department of Pathology; University of Washington School of Medicine, 1959 NE Pacific Street; Seattle WA USA
| | - Zolt Argenyi
- Department of Pathology; University of Washington School of Medicine, 1959 NE Pacific Street; Seattle WA USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology; The University of Texas - MD Anderson Cancer Center; Houston TX USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology; The University of Texas - MD Anderson Cancer Center; Houston TX USA
| | - Victor G Prieto
- Department of Pathology; Section of Dermatopathology, the University of Texas - MD Anderson Cancer Center; Houston TX USA
- Department of Translational Molecular Pathology; The University of Texas - MD Anderson Cancer Center; Houston TX USA
| |
Collapse
|
29
|
Huang L, Ding Y, Qi L, Wu X, Li W, Huang G, Dai M, Zhang B. Repeated Multiple Neurofibromatosis Type 1 in the Right Lower Limb: A Case Report. World J Oncol 2017; 8:58-61. [PMID: 29147436 PMCID: PMC5649998 DOI: 10.14740/wjon1011w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 11/26/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant genetic disease characterized by the presence of multiple neurofibromas. We encountered a unique case of NF1 that manifested as a recurrent soft tissue neurofibroma in the right lower limb that developed over a period of 16 years. The patient presented with a painless mass that was initially diagnosed as inflammatory changes via computed tomography and magnetic resonance imaging. However, the condition was subsequently diagnosed as an intraneural neurofibroma via pathological and immunohistochemical examination, which showed a focal to patchy lymphocytic chronic inflammatory infiltrate and several non-encapsulated masses with clear boundaries that were easily distinguishable from the adjacent neurofibroma. The mass relapsed three times over 3 years since it was discovered, for which the patient underwent comprehensive and complete local resection several times. Postoperative continuous follow-up confirmed that the patient recovered well. Early and complete surgical resection is an effective method for treating and preventing recurrent neurofibromas. However, because of the importance of pathologic examination in the diagnosis of such cases, this uncommon entity might be underreported in patients with NF1.
Collapse
Affiliation(s)
- Leitao Huang
- Department of Orthopedics, Artificial Joints Engineering and Technology, Research Center of Jiangxi Province, Nanchang, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,These authors contributed equally to this work
| | - Yi Ding
- Department of Orthopedics, Artificial Joints Engineering and Technology, Research Center of Jiangxi Province, Nanchang, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,These authors contributed equally to this work
| | - Lai Qi
- Department of Orthopedics, Artificial Joints Engineering and Technology, Research Center of Jiangxi Province, Nanchang, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xia Wu
- Department of College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Wei Li
- Department of Orthopedics, Artificial Joints Engineering and Technology, Research Center of Jiangxi Province, Nanchang, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gendong Huang
- Department of Orthopedics, Artificial Joints Engineering and Technology, Research Center of Jiangxi Province, Nanchang, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Dai
- Department of Orthopedics, Artificial Joints Engineering and Technology, Research Center of Jiangxi Province, Nanchang, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bing Zhang
- Department of Orthopedics, Artificial Joints Engineering and Technology, Research Center of Jiangxi Province, Nanchang, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Kolberg M, Bruun J, Murumägi A, Mpindi JP, Bergsland CH, Høland M, Eilertsen IA, Danielsen SA, Kallioniemi O, Lothe RA. Drug sensitivity and resistance testing identifies PLK1 inhibitors and gemcitabine as potent drugs for malignant peripheral nerve sheath tumors. Mol Oncol 2017; 11:1156-1171. [PMID: 28556483 PMCID: PMC5579334 DOI: 10.1002/1878-0261.12086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with malignant peripheral nerve sheath tumor (MPNST), a rare soft tissue cancer associated with loss of the tumor suppressor neurofibromin (NF1), have poor prognosis and typically respond poorly to adjuvant therapy. We evaluated the effect of 299 clinical and investigational compounds on seven MPNST cell lines, two primary cultures of human Schwann cells, and five normal bone marrow aspirates, to identify potent drugs for MPNST treatment with few side effects. Top hits included Polo-like kinase 1 (PLK1) inhibitors (volasertib and BI2536) and the fluoronucleoside gemcitabine, which were validated in orthogonal assays measuring viability, cytotoxicity, and apoptosis. DNA copy number, gene expression, and protein expression were determined for the cell lines to assess pharmacogenomic relationships. MPNST cells were more sensitive to BI2536 and gemcitabine compared to a reference set of 94 cancer cell lines. PLK1, RRM1, and RRM2 mRNA levels were increased in MPNST compared to benign neurofibroma tissue, and the protein level of PLK1 was increased in the MPNST cell lines compared to normal Schwann cells, indicating an increased dependence on these drug targets in malignant cells. Furthermore, we observed an association between increased mRNA expression of PLK1, RRM1, and RRM2 in patient samples and worse disease outcome, suggesting a selective benefit from inhibition of these genes in the most aggressive tumors.
Collapse
Affiliation(s)
- Matthias Kolberg
- Department of Molecular OncologyInstitute for Cancer Researchthe Norwegian Radium HospitalOslo University HospitalNorway
- Centre for Cancer BiomedicineUniversity of OsloNorway
| | - Jarle Bruun
- Department of Molecular OncologyInstitute for Cancer Researchthe Norwegian Radium HospitalOslo University HospitalNorway
- Centre for Cancer BiomedicineUniversity of OsloNorway
| | - Astrid Murumägi
- Institute for Molecular Medicine FinlandFIMMUniversity of HelsinkiFinland
| | - John P. Mpindi
- Institute for Molecular Medicine FinlandFIMMUniversity of HelsinkiFinland
| | - Christian H. Bergsland
- Department of Molecular OncologyInstitute for Cancer Researchthe Norwegian Radium HospitalOslo University HospitalNorway
- Centre for Cancer BiomedicineUniversity of OsloNorway
| | - Maren Høland
- Department of Molecular OncologyInstitute for Cancer Researchthe Norwegian Radium HospitalOslo University HospitalNorway
- Centre for Cancer BiomedicineUniversity of OsloNorway
| | - Ina A. Eilertsen
- Department of Molecular OncologyInstitute for Cancer Researchthe Norwegian Radium HospitalOslo University HospitalNorway
- Centre for Cancer BiomedicineUniversity of OsloNorway
| | - Stine A. Danielsen
- Department of Molecular OncologyInstitute for Cancer Researchthe Norwegian Radium HospitalOslo University HospitalNorway
- Centre for Cancer BiomedicineUniversity of OsloNorway
| | - Olli Kallioniemi
- Institute for Molecular Medicine FinlandFIMMUniversity of HelsinkiFinland
- Science for Life LaboratorySolnaSweden
- Department of Oncology and PathologyKarolinska InstitutetSolnaSweden
| | - Ragnhild A. Lothe
- Department of Molecular OncologyInstitute for Cancer Researchthe Norwegian Radium HospitalOslo University HospitalNorway
- Centre for Cancer BiomedicineUniversity of OsloNorway
| |
Collapse
|
31
|
Abstract
Background Neurofibromatosis type 1 (NF1: Online Mendelian Inheritance in Man (OMIM) #162200) is an autosomal dominantly inherited tumour predisposition syndrome. Heritable constitutional mutations in the NF1 gene result in dysregulation of the RAS/MAPK pathway and are causative of NF1. The major known function of the NF1 gene product neurofibromin is to downregulate RAS. NF1 exhibits variable clinical expression and is characterized by benign cutaneous lesions including neurofibromas and café-au-lait macules, as well as a predisposition to various types of malignancy, such as breast cancer and leukaemia. However, acquired somatic mutations in NF1 are also found in a wide variety of malignant neoplasms that are not associated with NF1. Main body Capitalizing upon the availability of next-generation sequencing data from cancer genomes and exomes, we review current knowledge of somatic NF1 mutations in a wide variety of tumours occurring at a number of different sites: breast, colorectum, urothelium, lung, ovary, skin, brain and neuroendocrine tissues, as well as leukaemias, in an attempt to understand their broader role and significance, and with a view ultimately to exploiting this in a diagnostic and therapeutic context. Conclusion As neurofibromin activity is a key to regulating the RAS/MAPK pathway, NF1 mutations are important in the acquisition of drug resistance, to BRAF, EGFR inhibitors, tamoxifen and retinoic acid in melanoma, lung and breast cancers and neuroblastoma. Other curiosities are observed, such as a high rate of somatic NF1 mutation in cutaneous melanoma, lung cancer, ovarian carcinoma and glioblastoma which are not usually associated with neurofibromatosis type 1. Somatic NF1 mutations may be critical drivers in multiple cancers. The mutational landscape of somatic NF1 mutations should provide novel insights into our understanding of the pathophysiology of cancer. The identification of high frequency of somatic NF1 mutations in sporadic tumours indicates that neurofibromin is likely to play a critical role in development, far beyond that evident in the tumour predisposition syndrome NF1.
Collapse
|
32
|
Jones RE, Grimstead JW, Sedani A, Baird D, Upadhyaya M. Telomere erosion in NF1 tumorigenesis. Oncotarget 2017; 8:40132-40139. [PMID: 28454108 PMCID: PMC5522233 DOI: 10.18632/oncotarget.16981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
Neurofibromatosis type 1 (NF1; MIM# 162200) is a familial cancer syndrome that affects 1 in 3,500 individuals worldwide and is inherited in an autosomal dominant fashion. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) represent a significant cause of morbidity and mortality in NF1 and currently there is no treatment or definite prognostic biomarkers for these tumors. Telomere shortening has been documented in numerous tumor types. Short dysfunctional telomeres are capable of fusion and it is considered that the ensuing genomic instability may facilitate clonal evolution and the progression to malignancy. To evaluate the potential role of telomere dysfunction in NF1-associated tumors, we undertook a comparative analysis of telomere length in samples derived from 10 cutaneous and 10 diffused plexiform neurofibromas, and 19 MPNSTs. Telomere length was determined using high-resolution Single Telomere Length Analysis (STELA). The mean Xp/Yp telomere length detected in MPNSTs, at 3.282 kb, was significantly shorter than that observed in both plexiform neurofibromas (5.793 kb; [p = 0.0006]) and cutaneous neurofibromas (6.141 kb; [p = 0.0007]). The telomere length distributions of MPNSTs were within the length-ranges in which telomere fusion is detected and that confer a poor prognosis in other tumor types. These data indicate that telomere length may play a role in driving genomic instability and clonal progression in NF1-associated MPNSTs.
Collapse
Affiliation(s)
- Rhiannon E. Jones
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Julia W. Grimstead
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Ashni Sedani
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan Baird
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
33
|
The NF1 gene in tumor syndromes and melanoma. J Transl Med 2017; 97:146-157. [PMID: 28067895 PMCID: PMC5413358 DOI: 10.1038/labinvest.2016.142] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Activation of the RAS/MAPK pathway is critical in melanoma. Melanoma can be grouped into four molecular subtypes based on their main genetic driver: BRAF-mutant, NRAS-mutant, NF1-mutant, and triple wild-type tumors. The NF1 protein, neurofibromin 1, negatively regulates RAS proteins through GTPase activity. Germline mutations in NF1 cause neurofibromatosis type I, a common genetic tumor syndrome caused by dysregulation of the RAS/MAPK pathway, ie, RASopathy. Melanomas with NF1 mutations typically occur on chronically sun-exposed skin or in older individuals, show a high mutation burden, and are wild-type for BRAF and NRAS. Additionally, NF1 mutations characterize certain clinicopathologic melanoma subtypes, specifically desmoplastic melanoma. This review discusses the current knowledge of the NF1 gene and neurofibromin 1 in neurofibromatosis type I and in melanoma.
Collapse
|
34
|
|
35
|
Helfferich J, Nijmeijer R, Brouwer OF, Boon M, Fock A, Hoving EW, Meijer L, den Dunnen WFA, de Bont ESJM. Neurofibromatosis type 1 associated low grade gliomas: A comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol 2016; 104:30-41. [PMID: 27263935 DOI: 10.1016/j.critrevonc.2016.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder, associated with a variable clinical phenotype including café-au-lait spots, intertriginous freckling, Lisch nodules, neurofibromas, optic pathway gliomas and distinctive bony lesions. NF1 is caused by a mutation in the NF1 gene, which codes for neurofibromin, a large protein involved in the MAPK- and the mTOR-pathway through RAS-RAF signalling. NF1 is a known tumour predisposition syndrome, associated with different tumours of the nervous system including low grade gliomas (LGGs) in the paediatric population. The focus of this review is on grade I pilocytic astrocytomas (PAs), the most commonly observed histologic subtype of low grade gliomas in NF1. Clinically, these PAs have a better prognosis and show different localisation patterns than their sporadic counterparts, which are most commonly associated with a KIAA1549:BRAF fusion. In this review, possible mechanisms of tumourigenesis in LGGs with and without NF1 will be discussed, including the contribution of different signalling pathways and tumour microenvironment. Furthermore we will discuss how increased understanding of tumourigenesis may lead to new potential targets for treatment.
Collapse
Affiliation(s)
- Jelte Helfferich
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Ronald Nijmeijer
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oebele F Brouwer
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Maartje Boon
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Annemarie Fock
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Eelco W Hoving
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisethe Meijer
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eveline S J M de Bont
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Antoszczyk S, Rabkin SD. Prospect and progress of oncolytic viruses for treating peripheral nerve sheath tumors. Expert Opin Orphan Drugs 2015; 4:129-138. [PMID: 27867771 PMCID: PMC5111812 DOI: 10.1517/21678707.2016.1128322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peripheral nerve sheath tumors (PNSTs) are an assorted group of neoplasms originating from neuroectoderm and growing in peripheral nerves. Malignant transformation leads to a poor prognosis and is often lethal. Current treatment of PNSTs is predominantly surgical, which is often incomplete or accompanied by significant loss of function, in conjunction with radiotherapy and/or chemotherapy, for which the benefits are inconclusive. Oncolytic viruses (OVs) efficiently kill tumor cells while remaining safe for normal tissues, and are a novel antitumor therapy for patients with PNSTs. AREAS COVERED Because of the low efficacy of current treatments, new therapies for PNSTs are needed. Pre-clinically, OVs have demonstrated efficacy in treating PNSTs and perineural tumor invasion, as well as safety. We will discuss the various PNSTs and their preclinical models, and the OVs being tested for their treatment, including oncolytic herpes simplex virus (HSV), adenovirus (Ad), and measles virus (MV). OVs can be 'armed' to express therapeutic transgenes or combined with other therapeutics to enhance their activity. EXPERT OPINION Preclinical testing of OVs in PNST models has demonstrated their therapeutic potential and provided support for clinical translation. Clinical studies with other solid tumors have provided evidence that OVs are safe in patients and efficacious. The recent successful completion of a phase III clinical trial of oncolytic HSV paves the way for oncolytic virotherapy to enter clinical practice.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital
- Department of Neurosurgery, Harvard Medical School, Boston MA
| | - Samuel D. Rabkin
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital
- Department of Neurosurgery, Harvard Medical School, Boston MA
| |
Collapse
|
37
|
Abstract
Desmoplastic melanoma (DM) is a rare variant of melanoma with distinct clinical, histopathologic, and immunohistochemical features. Clinically, DM differs from conventional melanoma by a higher propensity for local recurrence and less frequent metastatic spread to regional lymph nodes. In its pure form, DM has a distinct appearance displaying a low density of fusiform melanocytes in a collagen-rich matrix. Whereas a number of mutations have been identified in primary melanoma, including BRAF, NRAS, GNAQ, GNA11, and KIT, and the occurrence of these mutations has been found to correlate to some extent with the histopathologic features, anatomic site, and/or mode of sun exposure, no distinct set of mutations has so far been reported for DM. To study the potential association of neurofibromin (NF1) mutations with DM, we examined 15 desmoplastic and 20 non-DMs by next-generation sequencing. Mutations of the NF1 gene were found in 14 of 15 (93%) DMs and 4 of 20 (20%) non-DMs. The high frequency of NF1 mutations in DMs suggests an important role for NF1 in the biology of this type of melanoma.
Collapse
|
38
|
Tardío JC, Machado I, Navarro L, Idrovo F, Sanz-Ortega J, Pellín A, Llombart-Bosch A. Ewing-like sarcoma with CIC-DUX4 gene fusion in a patient with neurofibromatosis type 1. A hitherto unreported association. Pathol Res Pract 2015; 211:877-882. [DOI: 10.1016/j.prp.2015.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/18/2015] [Accepted: 08/14/2015] [Indexed: 01/28/2023]
|
39
|
Abstract
Peripheral nerve sheath tumors are common neoplasms in daily practice. Diagnosis and classification of most conventional peripheral nerve sheath tumors are relatively straightforward for the experienced observer; but on occasion, they are diagnostically challenging (especially with locally aggressive and malignant tumors). This article aims to provide an update of the data (clinical, histological, immunohistochemistry and genomic) of benign, intermediate and malignant peripheral nerve sheath tumors, thanks to the latest WHO "Classification of Tumors of Soft Tissue and Bone", published in 2013, which includes a new chapter on "Nerve Sheath Tumors". Advances in molecular biology have provided new insights into the nature of the various peripheral nerve sheath tumors, and have begun to suggest novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Sophie Le Guellec
- Département de pathologie, institut universitaire du cancer Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex 9, France.
| |
Collapse
|
40
|
Shurell E, Tran LM, Nakashima J, Smith KB, Tam BM, Li Y, Dry SM, Federman N, Tap WD, Wu H, Eilber FC. Gender dimorphism and age of onset in malignant peripheral nerve sheath tumor preclinical models and human patients. BMC Cancer 2014; 14:827. [PMID: 25398666 PMCID: PMC4237782 DOI: 10.1186/1471-2407-14-827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Background Gender-based differences in disease onset in murine models of malignant peripheral nerve sheath tumor (MPNST) and in patients with Neurofibromatosis type-1-(NF-1)-associated or spontaneous MPNST has not been well studied. Methods Forty-three mGFAP-Cre+;Ptenloxp/+;LSL-K-rasG12D/+ mice were observed for tumor development and evaluated for gender disparity in age of MPNST onset. Patient data from the prospectively collected UCLA sarcoma database (1974–2011, n = 113 MPNST patients) and 39 published studies on MPNST patients (n = 916) were analyzed for age of onset differences between sexes and between NF-1 and spontaneous MPNST patients. Results Our murine model showed gender-based differences in MPNST onset, with males developing MPNST significantly earlier than females (142 vs. 162 days, p = 0.015). In the UCLA patient population, males also developed MPNST earlier than females (median age 35 vs. 39.5 years, p = 0.048). Patients with NF-1-associated MPNST had significantly earlier age of onset compared to spontaneous MPNST (median age 33 vs. 39 years, p = 0.007). However, expanded analysis of 916 published MPNST cases revealed no significant age difference in MPNST onset between males and females. Similar to the UCLA dataset, patients with NF-1 developed MPNST at a significantly younger age than spontaneous MPNST patients (p < 0.0001, median age 28 vs. 41 years) and this disparity was maintained across North American, European, and Asian populations. Conclusions Although our preclinical model and single-institution patient cohort show gender dimorphism in MPNST onset, no significant gender disparity was detected in the larger MPNST patient meta-dataset. NF-1 patients develop MPNST 13 years earlier than patients with spontaneous MPNST, with little geographical variance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-827) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Wu
- Department of Surgery, University of California - Los Angeles, Division of Surgical Oncology, 10833 Le Conte Ave, Room 54-140 CHS, 90095-1782 Los Angeles, California.
| | | |
Collapse
|
41
|
Park GH, Lee SJ, Yim H, Han JH, Kim HJ, Sohn YB, Ko JM, Jeong SY. TAGLN expression is upregulated in NF1-associated malignant peripheral nerve sheath tumors by hypomethylation in its promoter and subpromoter regions. Oncol Rep 2014; 32:1347-54. [PMID: 25109740 PMCID: PMC4148385 DOI: 10.3892/or.2014.3379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/21/2014] [Indexed: 12/23/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) caused by NF1 gene mutation is a commonly inherited autosomal dominant disorder. Malignant peripheral nerve sheath tumors (MPNSTs), a type of aggressive sarcoma, are a major cause of mortality in NF1 patients. The malignant transformation of benign plexiform neurofibromas (PNs) to MPNSTs is a marked peculiarity in NF1 patients, yet the pathogenesis remains poorly understood. We found that an actin-associated protein transgelin (SM22) was highly expressed in NF1-deficient MPNST tissues compared to NF1-deficient PN tissues using immunohistological staining and primary cultured MPNST cells in western blot analysis. We further found that this transgelin upregulation was caused by increased transcriptional expression of the TAGLN gene encoding transgelin. Comparison of DNA methylation values in the promoter and subpromoter regions of the TAGLN gene in three types of NF1-deficient primary-cultured cells, derived from an NF1 patient's normal phenotype, a benign PN and MPNST tissues, revealed that the TAGLN gene was hypomethylated in the MPNST cells. Next, to determine the functional role of transgelin in MPNST pathogenesis, we manipulated the TAGLN gene expression and investigated the alteration of the RAS-mitogen-activated protein kinase (MAPK) signaling pathway in the normal-phenotypic and malignant tumor cells. The downregulation of TAGLN expression in NF1-deficient MPNST tumor cells through the treatment of the small interfering RNA resulted in a decrease in the RAS activation (GTP-RAS) and the downstream ERK1/2 activation (phosphorylated ERK1/2), while the overexpression of TAGLN in normal-phenotypic NF1-deficient cells caused an increase in RAS and ERK1/2 activation. These results indicate that upregulation of transgelin caused by hypomethylation of the TAGLN gene is closely involved in tumor progression in NF1.
Collapse
Affiliation(s)
- Gun-Hoo Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Su-Jin Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyunee Yim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyon J Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young-Bae Sohn
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
42
|
Antoszczyk S, Spyra M, Mautner VF, Kurtz A, Stemmer-Rachamimov AO, Martuza RL, Rabkin SD. Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol 2014; 16:1057-66. [PMID: 24470552 PMCID: PMC4096170 DOI: 10.1093/neuonc/not317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive and often lethal sarcoma that frequently develops in patients with neurofibromatosis type 1 (NF1). We developed new preclinical MPNST models and tested the efficacy of oncolytic herpes simplex viruses (oHSVs), a promising cancer therapeutic that selectively replicates in and kills cancer cells. METHODS Mouse NF1(-) MPNST cell lines and human NF1(-) MPNST stemlike cells (MSLCs) were implanted into the sciatic nerves of immunocompetent and athymic mice, respectively. Tumor growth was followed by external measurement and sciatic nerve deficit using a hind-limb scoring system. Oncolytic HSV G47Δ as well as "armed" G47Δ expressing platelet factor 4 (PF4) or interleukin (IL)-12 were injected intratumorally into established sciatic nerve tumors. RESULTS Mouse MPNST cell lines formed tumors with varying growth kinetics. A single intratumoral injection of G47Δ in sciatic nerve tumors derived from human S462 MSLCs in athymic mice or mouse M2 (37-3-18-4) cells in immunocompetent mice significantly inhibited tumor growth and prolonged survival. Local IL-12 expression significantly improved the efficacy of G47Δ in syngeneic mice, while PF4 expression prolonged survival. Injection of G47Δ directly into the sciatic nerve of athymic mice resulted in only mild symptoms that did not differ from phosphate buffered saline control. CONCLUSIONS Two new orthotopic MPNST models are described, including in syngeneic mice, expanding the options for preclinical testing. Oncolytic HSV G47Δ exhibited robust efficacy in both immunodeficient and immunocompetent MPNST models while maintaining safety. Interleukin-12 expression improved efficacy. These studies support the clinical translation of G47Δ for patients with MPNST.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Melanie Spyra
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Victor Felix Mautner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Andreas Kurtz
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Anat O Stemmer-Rachamimov
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| |
Collapse
|
43
|
Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations? Eur J Hum Genet 2014; 23:596-601. [PMID: 25074460 DOI: 10.1038/ejhg.2014.145] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/30/2014] [Accepted: 06/25/2014] [Indexed: 01/04/2023] Open
Abstract
Molecular diagnosis of neurofibromatosis type 1 (NF1) is challenging owing to the large size of the tumour suppressor gene NF1, and the lack of mutation hotspots. A somatic alteration of the wild-type NF1 allele is observed in NF1-associated tumours. Genetic heterogeneity in NF1 was confirmed in patients with SPRED1 mutations. Here, we present a targeted next-generation sequencing (NGS) of NF1 and SPRED1 using a multiplex PCR approach (230 amplicons of ∼150 bp) on a PGM sequencer. The chip capacity allowed mixing 48 bar-coded samples in a 4-day workflow. We validated the NGS approach by retrospectively testing 30 NF1-mutated samples, and then prospectively analysed 279 patients in routine diagnosis. On average, 98.5% of all targeted bases were covered by at least 20X and 96% by at least 100X. An NF1 or SPRED1 alteration was found in 246/279 (88%) and 10/279 (4%) patients, respectively. Genotyping throughput was increased over 10 times, as compared with Sanger, with ∼90[euro ] for consumables per sample. Interestingly, our targeted NGS approach also provided quantitative information based on sequencing depth allowing identification of multiexons deletion or duplication. We then addressed the NF1 somatic mutation detection sensitivity in mosaic NF1 patients and tumours.
Collapse
|
44
|
Danielsen SA, Lind GE, Kolberg M, Høland M, Bjerkehagen B, Sundby Hall K, van den Berg E, Mertens F, Smeland S, Picci P, Lothe RA. Methylated RASSF1A in malignant peripheral nerve sheath tumors identifies neurofibromatosis type 1 patients with inferior prognosis. Neuro Oncol 2014; 17:63-9. [PMID: 25038505 PMCID: PMC4416132 DOI: 10.1093/neuonc/nou140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Malignant peripheral nerve sheath tumor (MPNST) is a rare and highly aggressive disease with no evidence of effect from adjuvant therapy. It is further associated with the hereditary syndrome neurofibromatosis type 1 (NF1). Silencing of the tumor suppressor gene RASSF1A through DNA promoter hypermethylation is known to be involved in cancer development, but its impact in MPNSTs remains unsettled. Methods The RASSF1A promoter was analyzed by methylation-specific PCR in 113 specimens, including 44 NF1-associated MPNSTs, 47 sporadic MPNSTs, 21 benign neurofibromas, and 1 nonneoplastic nerve sheath control. Results RASSF1A methylation was found only in the malignant samples (60%) and identified a subgroup among patients with NF1-associated MPNST with a poor prognosis. These patients had a mean 5-year disease-specific survival of 27.3 months (95% CI: 17.2–37.4) versus 47.4 months (95% CI: 37.5–57.2) for NF1 patients with unmethylated promoters, P = 0.014. In multivariate Cox regression analysis, methylated RASSF1A remained an adverse prognostic factor independent of clinical risk factors, P = .013 (hazard ratio: 5.2; 95% CI: 1.4–19.4). Conclusion A considerable number of MPNST samples display hypermethylation of the RASSF1A gene promoter, and for these tumors, this is the first molecular marker that if validated can characterize a subgroup of patients with inferior prognosis, restricted to individuals with NF1.
Collapse
Affiliation(s)
- Stine A Danielsen
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Guro E Lind
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Matthias Kolberg
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Maren Høland
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Bodil Bjerkehagen
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Kirsten Sundby Hall
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Eva van den Berg
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Fredrik Mertens
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Sigbjørn Smeland
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Piero Picci
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway (S.A.D., G.E.L., M.K., M.H., R.A.L.); Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (M.H., S.S.); Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway (S.A.D., G.E.L., R.A.L.); Department of Pathology (B.B), Division of Diagnostics and Intervention and Department of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway (K.S.H., S.S.); Department of Medical Genetics, University Hospital of Groningen, The Netherlands (E.v.d.B.); Department of Clinical Genetics, Skåne University Hospital, Lund, Sweden (F.M.); Laboratory of Oncologic Research of the Istituto Ortopedico Rizzoli, Bologna, Italy (P.P.)
| |
Collapse
|
45
|
Trp53 haploinsufficiency modifies EGFR-driven peripheral nerve sheath tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2082-98. [PMID: 24832557 DOI: 10.1016/j.ajpath.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are genetically diverse, aggressive sarcomas that occur sporadically or in association with neurofibromatosis type 1 syndrome. Reduced TP53 gene expression and amplification/overexpression of the epidermal growth factor receptor (EGFR) gene occur in MPNST formation. We focused on determining the cooperativity between reduced TP53 expression and EGFR overexpression for Schwann cell transformation in vitro (immortalized human Schwann cells) and MPNST formation in vivo (transgenic mice). Human gene copy number alteration data, microarray expression data, and TMA analysis indicate that TP53 haploinsufficiency and increased EGFR expression co-occur in human MPNST samples. Concurrent modulation of EGFR and TP53 expression in HSC1λ cells significantly increased proliferation and anchorage-independent growth in vitro. Transgenic mice heterozygous for a Trp53-null allele and overexpressing EGFR in Schwann cells had a significant increase in neurofibroma and grade 3 PNST (MPNST) formation compared with single transgenic controls. Histological analysis of tumors identified a significant increase in pAkt expression in grade 3 PNSTs compared with neurofibromas. Array comparative genome hybridization analysis of grade 3 PNSTs identified recurrent focal regions of chromosomal gains with significant enrichment in genes involved in extracellular signal-regulated kinase 5 signaling. Collectively, altered p53 expression cooperates with overexpression of EGFR in Schwann cells to enhance in vitro oncogenic properties and tumorigenesis and progression in vivo.
Collapse
|
46
|
Neuregulin-1 overexpression and Trp53 haploinsufficiency cooperatively promote de novo malignant peripheral nerve sheath tumor pathogenesis. Acta Neuropathol 2014; 127:573-91. [PMID: 24232507 DOI: 10.1007/s00401-013-1209-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are Schwann cell-derived malignancies that arise from plexiform neurofibromas in patients with mutation of the neurofibromin 1 (NF1) gene. We have shown that the growth factor neuregulin-1 (NRG1) also contributes to human neurofibroma and MPNST pathogenesis and that outbred C57BL/6J × SJL/J transgenic mice overexpressing NRG1 in Schwann cells (P0-GGFβ3 mice) recapitulate the process of neurofibroma-MPNST progression. However, it is unclear whether NRG1 acts predominantly within NF1-regulated signaling cascades or instead activates other essential cascades that cooperate with NF1 loss to promote tumorigenesis. We now report that tumorigenesis is suppressed in inbred P0-GGFβ3 mice on a C57BL/6J background. To determine whether NRG1 overexpression interacts with reduced Nf1 or Trp53 gene dosage to "unmask" tumorigenesis in these animals, we followed cohorts of inbred P0-GGFβ3;Nf1+/−, P0-GGFβ3;Trp53+/− and control (P0-GGFβ3, Nf1+/− and Trp53+/−) mice for 1 year. We found no reduction in survival or tumors in control and P0-GGFβ3;Nf1+/− mice. In contrast, P0-GGFβ3;Trp53+/− mice died on average at 226 days, with MPNSTs present in 95 % of these mice. MPNSTs in inbred P0-GGFβ3;Trp53+/− mice arose de novo from micro-MPNSTs that uniformly develop intraganglionically. These micro-MPNSTs are of lower grade (WHO grade II-III) than the major MPNSTs (WHO grade III-IV); array comparative genomic hybridization showed that lower grade MPNSTs also had fewer genomic abnormalities. Thus, P0-GGFβ3;Trp53+/− mice represent a novel model of low- to high-grade MPNST progression. We further conclude that NRG1 promotes peripheral nervous system neoplasia predominantly via its effects on the signaling cascades affected by Nf1 loss.
Collapse
|
47
|
Reuss DE, Habel A, Hagenlocher C, Mucha J, Ackermann U, Tessmer C, Meyer J, Capper D, Moldenhauer G, Mautner V, Frappart PO, Schittenhelm J, Hartmann C, Hagel C, Katenkamp K, Petersen I, Mechtersheimer G, von Deimling A. Neurofibromin specific antibody differentiates malignant peripheral nerve sheath tumors (MPNST) from other spindle cell neoplasms. Acta Neuropathol 2014; 127:565-72. [PMID: 24464231 DOI: 10.1007/s00401-014-1246-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) derive from the Schwann cell or perineurial cell lineage and occur either sporadically or in association with the tumor syndrome neurofibromatosis type 1 (NF1). MPNST often pose a diagnostic challenge due to their frequent lack of pathognomonic morphological or immunohistochemical features. Mutations in the NF1 tumor suppressor gene are found in all NF1-associated and many sporadic MPNST. The presence of NF1 mutation may have the potential to differentiate MPNST from several morphologically similar neoplasms; however, mutation detection is hampered by the size of the gene and the lack of mutational hot spots. Here we describe a newly developed monoclonal antibody binding to the C-terminus of neurofibromin (clone NFC) which was selected for optimal performance in routinely processed formalin-fixed and paraffin-embedded tissue. NFC immunohistochemistry revealed loss of neurofibromin in 22/25 (88 %) of NF1-associated and 26/61 (43 %) of sporadic MPNST. There was a strong association of neurofibromin loss with deletions affecting the NF1 gene (P < 0.01). In a series of 256 soft tissue tumors of different histotypes NFC staining showed loss of neurofibromin in 2/8 myxofibrosarcomas, 2/12 (16 %) pleomorphic liposarcomas, 1/16 (6 %) leiomyosarcomas, and 4/28 (14 %) unclassified undifferentiated pleomorphic sarcomas. However, loss of neurofibromin was not observed in 22 synovial sarcomas, 27 schwannomas, 23 solitary fibrous tumors, 14 low-grade fibromyxoid sarcomas, 50 dedifferentiated liposarcomas, 27 myxoid liposarcomas, 13 angiosarcomas, 9 extraskeletal myxoid chondrosarcomas, and 7 epitheloid sarcomas. Immunohistochemistry using antibody NFC may substantially facilitate sarcoma research and diagnostics.
Collapse
|
48
|
Coffin CM, Davis JL, Borinstein SC. Syndrome-associated soft tissue tumours. Histopathology 2013; 64:68-87. [DOI: 10.1111/his.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheryl M Coffin
- Department of Pathology, Microbiology, and Immunology; Vanderbilt University School of Medicine; Nashville TN USA
| | - Jessica L Davis
- Department of Anatomic Pathology; Laboratory Medicine; University of California at San Francisco; San Francisco CA USA
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
49
|
Ishida M, Okabe H. Cutaneous squamous cell carcinoma in a patient with neurofibromatosis type 1: A case report. Oncol Lett 2013; 6:878-880. [PMID: 24137429 PMCID: PMC3796415 DOI: 10.3892/ol.2013.1490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant inherited disease that is characterized by the presence of multiple neurofibromas, café-au-lait spots and iris hamartomas. It is well established that the incidence of tumors in patients with NF1 is high compared with the normal population and that the majority of the tumors are non-epithelial neoplasms, including neurofibromas, malignant peripheral nerve sheath tumors, gliomas and leukemia. Studies have suggested that patients with NF1 also have a significantly higher risk of certain types of carcinomas. However, the occurrence of cutaneous squamous cell carcinoma (SCC) in a patient with NF1 is extremely rare. The present study describes the second documented case of a cutaneous SCC adjacent to a neurofibroma of the forehead with histopathological analyses in a patient with NF1. An 80-year-old female with NF1 presented with a rapidly growing skin tumor of the forehead. Histopathological study of the resected forehead tumor demonstrated that there were two tumorous lesions. One was an invasive SCC and the other was a neurofibroma. The lesions were adjacent, but no continuity was present. NF1 is caused by inactivating mutations in the NF1 gene and loss of heterozygosity of this gene has been reported in neurofibromas, malignant peripheral nerve sheath tumors, gliomas and pheochromocytomas in patients with NF1. However, the genetic mechanism of carcinoma development in patients with NF1 is not well understood. Studies have suggested the role of the NF1 and/or the BRCA gene in the occurrence of breast cancer. Additional studies are required to elucidate these mechanisms.
Collapse
Affiliation(s)
- Mitsuaki Ishida
- Department of Clinical Laboratory Medicine and Division of Diagnostic Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | |
Collapse
|
50
|
Reuss DE, Mucha J, Hagenlocher C, Ehemann V, Kluwe L, Mautner V, von Deimling A. Sensitivity of malignant peripheral nerve sheath tumor cells to TRAIL is augmented by loss of NF1 through modulation of MYC/MAD and is potentiated by curcumin through induction of ROS. PLoS One 2013; 8:e57152. [PMID: 23437333 PMCID: PMC3578816 DOI: 10.1371/journal.pone.0057152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 01/21/2013] [Indexed: 01/11/2023] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare aggressive form of sarcoma often associated with the tumor syndrome neurofibromatosis type 1 (NF1). We investigated the effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on NF1 associated MPNST and determinants of TRAIL sensitivity. MPNST cell lines with complete neurofibromin deficiency were sensitive to apoptotic cell death induced by TRAIL whereas MPNST cells with retained neurofibromin expression or normal human Schwann cells were resistant. Increased sensitivity to TRAIL was associated with overexpression of death receptors, especially DR5. Re-expression of the GAP related domain of neurofibromin (NF1-GRD) suppressed DR5 expression and decreased sensitivity to TRAIL. We show that death receptor expression and TRAIL sensitivity critically depend on c-MYC and that c-MYC amounts are increased by MEK/ERK and PI3K/AKT signalling pathways which are suppressed by neurofibromin. Furthermore PI3K/AKT signalling strongly suppresses the MYC-antagonist MAD1 which significantly contributes to TRAIL sensitivity. Re-expression of the NF1-GRD decreased c-MYC and increased MAD1 amounts suggesting that neurofibromin influences TRAIL sensitivity at least in part by modulating the MYC/MAX/MAD network. The phytochemical curcumin further increased the sensitivity of neurofibromin deficient MPNST cells to TRAIL. This was presumably mediated by ROS, as it correlated with increased ROS production, was blocked by N-acetylcysteine and mimicked by exogenous ROS.
Collapse
Affiliation(s)
- David E. Reuss
- CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Jana Mucha
- CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Volker Ehemann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Lan Kluwe
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Victor Mautner
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas von Deimling
- CCU Neuropathology German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|