1
|
Reynolds G, Gazzin A, Carli D, Massuras S, Cardaropoli S, Luca M, Defilippi B, Tartaglia M, Ferrero GB, Mussa A. Update on the Clinical and Molecular Characterization of Noonan Syndrome and Other RASopathies: A Retrospective Study and Systematic Review. Int J Mol Sci 2025; 26:3515. [PMID: 40332000 PMCID: PMC12027154 DOI: 10.3390/ijms26083515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
RASopathies are a diverse group of genetic conditions caused by hyperactivation of the RAS-MAPK signaling pathway, mainly inherited in an autosomal dominant manner. They present with variable features such as short stature, congenital heart defects, facial dysmorphisms, and neurodevelopmental delays. This study retrospectively analyzed 143 cases from 2003 to 2022, aiming to improve genotype-phenotype correlation knowledge for personalized care. Patients with genetically confirmed Noonan syndrome (NS) and related disorders were included, with molecular analysis performed via Sanger or parallel sequencing. Data from 906 previously reported cases were also reviewed. Among the 143 patients, most had NS (n = 116). PTPN11 mutations were most frequent (61%), followed by SOS1 (10.3%) and RAF1 (8.6%). Cardiac anomalies were observed in 71%, with pulmonary stenosis (PS) prevalent in NS (48.3%) and hypertrophic cardiomyopathy (HCM) in NSML (40%). PTPN11 variants were linked to PS and atrial septal defects, SOS1 to multiple cardiopathies, and RAF1 to HCM. Additional features included facial dysmorphisms (74.1%), short stature (62.0%), skeletal anomalies (43.1%), cryptorchidism (59.7%), and brain abnormalities (17.2%). JMML and other malignancies were seen in eight patients. This study emphasizes the importance of genotype-guided care, improved diagnosis of mild cases, and the underrecognized prevalence of neurological anomalies.
Collapse
Affiliation(s)
- Giuseppe Reynolds
- Department of Public Health and Pediatrics, Postgraduate School of Pediatrics, University of Torino, 10126 Turin, Italy;
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
| | - Andrea Gazzin
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (D.C.); (M.L.)
| | - Stefania Massuras
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
| | - Maria Luca
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (D.C.); (M.L.)
| | - Beatrice Defilippi
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | | | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| |
Collapse
|
2
|
Qu Y, Wang S, Xie H, Meng X, Cui B, Xiao Z. Melasma secondary to drugs: a real-world pharmacovigilance study of the FDA adverse event reporting system (FAERS). BMC Pharmacol Toxicol 2025; 26:73. [PMID: 40165336 PMCID: PMC11956175 DOI: 10.1186/s40360-025-00912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Melasma is a common hyperpigmentation disorder that causes significant distress to patients. In the real world, it is closely associated with various medications, making the timely identification and discontinuation of causative drugs an important aspect of clinical management. This study investigates the relationship between melasma and drug exposure based on data from the FDA Adverse Event Reporting System (FAERS) database. METHODS This study includes reports from the first quarter of 2004 to the second quarter of 2024, focusing on cases related to melasma. We employed four statistical methods to analyze the association between suspected drugs and adverse events related to melasma. RESULTS Within a specific timeframe, we extracted a total of 408 adverse reaction reports related to melasma. The result shows that a higher number of cases in female patients compared to male patients. The United States had the highest number of reported cases. We identified 22 drugs that were notably associated with melasma. Among these, the contraceptive "Ethinylestradiol and norethindrone" demonstrated the strongest signal of association. CONCLUSIONS Melasma is associated with exposure to various medications, with a notable proportion of cases coincided with contraceptive use. The mechanisms involved include hormonal disturbances and oxidative stress.
Collapse
Affiliation(s)
- Yaxin Qu
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Shuxin Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Hanzhang Xie
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao Meng
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Bingnan Cui
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China.
| | - Zhanshuo Xiao
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
3
|
Deng H, Zhang Q, Yi J, Yuan L. Unraveling ptosis: A comprehensive review of clinical manifestations, genetics, and treatment. Prog Retin Eye Res 2025; 105:101327. [PMID: 39725023 DOI: 10.1016/j.preteyeres.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Ptosis is defined as an abnormally low-lying upper eyelid margin on the primary gaze, generally resulting from a congenital or acquired abnormality of the nerves or muscles that control the eyelid. Ptosis can occur alone or concurrently as an ocular or systemic syndrome, and the prevalence of ptosis varies among different countries and populations. Isolated ptosis typically causes aesthetic problems in patients and can lead to functional ophthalmic problems in severe cases. In individuals with syndromic ptosis, ptosis can be a warning of serious medical problems. There are different approaches to classification, depending on the onset time or the etiology of ptosis, and the clinical characteristics of congenital and acquired ptosis also differ. Pedigree and genetic analysis have demonstrated that hereditary ptosis is clinically heterogeneous, with incomplete concordance and variable expressivity. A number of genetic loci and genes responsible for hereditary isolated and syndromic ptosis have been reported. Optimal surgical timing and proper method are truly critical for avoiding the risk of potentially severe outcomes from ptosis and minimizing surgical complications, which are challenging as the pathogenesis is still indistinct and the anatomy is complex. This review provides a comprehensive review of ptosis, by summarizing the clinical manifestations, classification, diagnosis, genetics, treatment, and prognosis, as well as the bound anatomy of upper eyelid.
Collapse
Affiliation(s)
- Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Research Center of Medical Experimental Technology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Disease Genome Research Center, Central South University, Changsha, 410013, China; Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Qianling Zhang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Junhui Yi
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Research Center of Medical Experimental Technology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Disease Genome Research Center, Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Moriya A, Inoue SI, Saitow F, Keitoku M, Suzuki N, Oike E, Urano E, Matsumoto E, Suzuki H, Aoki Y, Ohnishi H. Q241R mutation of Braf causes neurological abnormalities in a mouse model of cardio-facio-cutaneous syndrome, independent of developmental malformations. Hum Mol Genet 2025; 34:418-434. [PMID: 39774818 DOI: 10.1093/hmg/ddae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes. To this end, we generated Braf mutant mice expressing BRAFQ241R specifically in mature excitatory neurons (n-BrafQ241R/+). We found no growth retardation or cardiac malformations in n-BrafQ241R/+ mice, indicating normal development. Behavioral analysis revealed that n-BrafQ241R/+ mice exhibited reduced home cage activity and learning disability, which were similar to those of systemic BrafQ241R/+ mice. The active form of ERK was increased in the hippocampus of n-BrafQ241R/+ mice, whereas basal synaptic transmission and synaptic plasticity in hippocampal Schaffer collateral-CA1 synapses seems to be normal. Transcriptome analysis of the hippocampal tissue revealed significant changes in the expression of genes involved in regulation of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway, synaptic function and memory formation. These data suggest that the neuronal dysfunction observed in the systemic CFC mouse model is due to the disruption of homeostasis of the RAS/MAPK signaling pathway by the activated Braf mutant after maturation, rather than abnormal development of the brain. A similar mechanism may be possible in human CFC syndrome.
Collapse
Affiliation(s)
- Akira Moriya
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Shin-Ichi Inoue
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Fumihito Saitow
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Moe Keitoku
- School of Science and Technology, Gunma University, 1-5-1 Tenjin-chou, Kiryu, Gunma 376-8515, Japan
| | - Noato Suzuki
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Etsumi Oike
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Eriko Urano
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Eiko Matsumoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki-machi, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
5
|
Atsumi A, Tani T, Ishioka K, Nishikawa K, Okamoto Y, Takahashi S. A Case of Concomitant Lung Adenocarcinoma and Pleural Metastasis of Papillary Thyroid Carcinoma With BRAF V600E Mutation. Respirol Case Rep 2025; 13:e70119. [PMID: 39950095 PMCID: PMC11825174 DOI: 10.1002/rcr2.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
A 62-year-old woman with a history of papillary thyroid carcinoma presented to our hospital with fever and cough and was diagnosed with stage IV non-small cell lung carcinoma (NSCLC). One year after chemoimmunotherapy, a re-biopsy of the left pleural tumour lesion was performed. Histological analysis revealed papillary thyroid carcinoma. Another biopsy was performed on the primary tumour, and the histological analysis of the primary tumour lesion confirmed NSCLC. BRAF V600E mutations were detected in both left pleural metastatic lesions of papillary thyroid carcinoma and the primary tumour of NSCLC. Dabrafenib and trametinib reduced both tumour lesions. Here, we report a rare case of concomitant BRAF V600E-mutated NSCLC and pleural metastasis from papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Akinari Atsumi
- Division of Pulmonary MedicineSaiseikai Central HospitalTokyoJapan
| | - Tetsuo Tani
- Division of Pulmonary MedicineSaiseikai Central HospitalTokyoJapan
| | - Kota Ishioka
- Division of Pulmonary MedicineSaiseikai Central HospitalTokyoJapan
| | | | - Yasuhide Okamoto
- Department of OtorhinolaryngologySaiseikai Central HospitalTokyoJapan
| | - Saeko Takahashi
- Division of Pulmonary MedicineSaiseikai Central HospitalTokyoJapan
| |
Collapse
|
6
|
Parra O, Georgantzoglou N, Green D, Wilson JG, Linos K. Synchronous Pulmonary Langerhans Cell Histiocytosis and Multiple Cutaneous Reticulohistiocytomas With a Common BRAF- V600E/D Mutation Driver. Am J Dermatopathol 2025; 47:30-35. [PMID: 39498902 DOI: 10.1097/dad.0000000000002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
ABSTRACT Histiocytoses constitute a group of heterogeneous disorders characterized by involvement of variable organs by neoplastic macrophage or dendritic cells. They may affect both adults and children with a predilection to the skin, bone, lungs, lymph nodes, and CNS. The coexistence of different types of histiocytoses in the same patient is an extremely rare phenomenon. We describe a very rare case of co-occurring pulmonary Langerhans cell histiocytosis with multiple cutaneous reticulohistiocytomas with a common BRAF- V600E mutation as the driver genetic event in both the lung and skin lesions. The presence of a common BRAF- V600E mutation provides evidence of their clonal relation and contributes to our understanding in the pathogenesis of multiple, co-occurring histiocytic proliferations.
Collapse
Affiliation(s)
- Ourania Parra
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Natalia Georgantzoglou
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Donald Green
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Jessica G Wilson
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH; and
| | - Konstantinos Linos
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
7
|
Cui Z, Wang Y, Luo F, Diao J, Yuan B. Mapping the current status and outlook of research on noonan syndrome over the last 26 years: a bibliometric and visual analysis. Front Genet 2024; 15:1488425. [PMID: 39726952 PMCID: PMC11669677 DOI: 10.3389/fgene.2024.1488425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Noonan syndrome (NS) is a rare group of autosomal genetic disorders. In recent years, with the exploration and development of molecular diagnostic techniques, more and more researchers have begun to pay attention to NS. However, there is still a lack of reports on the bibliometric analysis of NS worldwide. This study aims to assess the current research status and development trend of NS, to explore the research hotspots and emerging topics, and to point out the direction for future scientific research. Methods Web of Science Core Collection was selected as the search database for bibliometric analysis of NS-related publications from 1998 to 2023. Statistical and visual analysis of the number of publications, countries, institutions, authors, journals, keywords, and references were analyzed using Citespace, VOSviewer, Scimago Graphica, and BibliometrixR. Results A total of 2041 articles were included in this study. The United States had the highest number of publications, and Istituto Superiore di Sanità, Italy, was the institution with the highest number of publications. TARTAGLIA M was the scientist with the highest number of publications and citations. Among the journals, AMERICAN JOURNAL OF MEDICAL GENETICS PART A has the highest output, and Nature Genetics is the most frequently cited. The reference with the highest outburst intensity is Roberts AE, LANCET, 2013. the cluster diagram divides all the keywords into seven categories, with the most vigorous outburst being "of function mutations." Conclusion Research hotspots in the field of NS focus on the correspondence between NS genotype and phenotype and the precise diagnosis of NS. Future research efforts will explore more deeply from the perspective of long-term intervention strategies for NS. There is an urgent need to rely on significant research countries, institutions, journals, and authors to lead the construction of a more robust global collaborative network that will enhance research efficacy.
Collapse
Affiliation(s)
- Zhengjiu Cui
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wang
- Department of Pediatrics, Suqian Affiliated Hospital of Nanjing University of Chinese Medicine, Suqian, China
| | - Fei Luo
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juanjuan Diao
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Miyake N, Tsurusaki Y, Fukai R, Kushima I, Okamoto N, Ohashi K, Nakamura K, Hashimoto R, Hiraki Y, Son S, Kato M, Sakai Y, Osaka H, Deguchi K, Matsuishi T, Takeshita S, Fattal-Valevski A, Ekhilevitch N, Tohyama J, Yap P, Keng WT, Kobayashi H, Takubo K, Okada T, Saitoh S, Yasuda Y, Murai T, Nakamura K, Ohga S, Matsumoto A, Inoue K, Saikusa T, Hershkovitz T, Kobayashi Y, Morikawa M, Ito A, Hara T, Uno Y, Seiwa C, Ishizuka K, Shirahata E, Fujita A, Koshimizu E, Miyatake S, Takata A, Mizuguchi T, Ozaki N, Matsumoto N. Molecular diagnosis of 405 individuals with autism spectrum disorder. Eur J Hum Genet 2024; 32:1551-1558. [PMID: 36973392 PMCID: PMC11606949 DOI: 10.1038/s41431-023-01335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is caused by combined genetic and environmental factors. Genetic heritability in ASD is estimated as 60-90%, and genetic investigations have revealed many monogenic factors. We analyzed 405 patients with ASD using family-based exome sequencing to detect disease-causing single-nucleotide variants (SNVs), small insertions and deletions (indels), and copy number variations (CNVs) for molecular diagnoses. All candidate variants were validated by Sanger sequencing or quantitative polymerase chain reaction and were evaluated using the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for molecular diagnosis. We identified 55 disease-causing SNVs/indels in 53 affected individuals and 13 disease-causing CNVs in 13 affected individuals, achieving a molecular diagnosis in 66 of 405 affected individuals (16.3%). Among the 55 disease-causing SNVs/indels, 51 occurred de novo, 2 were compound heterozygous (in one patient), and 2 were X-linked hemizygous variants inherited from unaffected mothers. The molecular diagnosis rate in females was significantly higher than that in males. We analyzed affected sibling cases of 24 quads and 2 quintets, but only one pair of siblings shared an identical pathogenic variant. Notably, there was a higher molecular diagnostic rate in simplex cases than in multiplex families. Our simulation indicated that the diagnostic yield is increasing by 0.63% (range 0-2.5%) per year. Based on our simple simulation, diagnostic yield is improving over time. Thus, periodical reevaluation of ES data should be strongly encouraged in undiagnosed ASD patients.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, National Center for Global Health and Medicine, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yoshinori Tsurusaki
- Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Japan
| | - Ryoko Fukai
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kei Ohashi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Shuraku Son
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | | | - Toyojiro Matsuishi
- Departments of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics, St. Mary's Hospital, Kurume, Japan
| | - Saoko Takeshita
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Center & Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Patrick Yap
- Genetic Health Service New Zealand, Auckland, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Wee Teik Keng
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Ken Inoue
- Deguchi Pediatric Clinic, Omura, Japan
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomoko Saikusa
- Departments of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics, St. Mary's Hospital, Kurume, Japan
| | - Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Yu Kobayashi
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aiko Ito
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | | | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chizuru Seiwa
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emi Shirahata
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
9
|
Perrino MR, Das A, Scollon SR, Mitchell SG, Greer MLC, Yohe ME, Hansford JR, Kalish JM, Schultz KAP, MacFarland SP, Kohlmann WK, Lupo PJ, Maxwell KN, Pfister SM, Weksberg R, Michaeli O, Jongmans MCJ, Tomlinson GE, Brzezinski J, Tabori U, Ney GM, Gripp KW, Gross AM, Widemann BC, Stewart DR, Woodward ER, Kratz CP. Update on Pediatric Cancer Surveillance Recommendations for Patients with Neurofibromatosis Type 1, Noonan Syndrome, CBL Syndrome, Costello Syndrome, and Related RASopathies. Clin Cancer Res 2024; 30:4834-4843. [PMID: 39196581 PMCID: PMC11530332 DOI: 10.1158/1078-0432.ccr-24-1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Neurofibromatosis type 1 (NF1), Noonan syndrome, and related syndromes, grouped as RASopathies, result from dysregulation of the RAS-MAPK pathway and demonstrate varied multisystemic clinical phenotypes. Together, RASopathies are among the more prevalent genetic cancer predisposition syndromes and require nuanced clinical management. When compared with the general population, children with RASopathies are at significantly increased risk of benign and malignant neoplasms. In the past decade, clinical trials have shown that targeted therapies can improve outcomes for low-grade and benign neoplastic lesions but have their own challenges, highlighting the multidisciplinary care needed for such individuals, specifically those with NF1. This perspective, which originated from the 2023 American Association for Cancer Research Childhood Cancer Predisposition Workshop, serves to update pediatric oncologists, neurologists, geneticists, counselors, and other health care professionals on revised diagnostic criteria, review previously published surveillance guidelines, and harmonize updated surveillance recommendations for patients with NF1 or RASopathies.
Collapse
Affiliation(s)
- Melissa R. Perrino
- Department of Oncology, St Jude Children’s Research Hospital, Department of Oncology, Memphis, Tennessee, United States
| | - Anirban Das
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah G. Mitchell
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Marielle E. Yohe
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Jennifer M. Kalish
- Division of Genetics and Center for Childhood Cancer Research Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Kris Ann P. Schultz
- Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, Minnesota, United States
| | - Suzanne P. MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Wendy K. Kohlmann
- VA Medical Center, National TeleOncology Clinical Cancer Genetics Service, Durham NC; University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, United States
| | - Philip J. Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kara N. Maxwell
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Medicine Service, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pensylvannia, United States
| | - Stefan M. Pfister
- Hopp Childreńs Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Dept Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Orli Michaeli
- Division of Hematology/ Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gail E. Tomlinson
- University of Texas Health Science Center at San Antonio, Department of Pediatrics, Division of Hematology-Oncology and Greehey Children’s Cancer Research Institute, San Antonio, Texas, United States
| | - Jack Brzezinski
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Uri Tabori
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Gina M. Ney
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Karen W. Gripp
- Division of Medical Genetics, Nemours Children’s Hospital, Wilmington, Delaware, United States
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Emma R. Woodward
- University of Manchester and Manchester Centre for Genomic Medicine, Manchester, United Kingdom
| | - Christian P. Kratz
- Hannover Medical School, Pediatric Hematology and Oncology, Hannover, Germany
| |
Collapse
|
10
|
Kucharska A, Witkowska-Sędek E, Erazmus M, Artemniak-Wojtowicz D, Krajewska M, Pyrżak B. The Effects of Growth Hormone Treatment Beyond Growth Promotion in Patients with Genetic Syndromes: A Systematic Review of the Literature. Int J Mol Sci 2024; 25:10169. [PMID: 39337654 PMCID: PMC11432634 DOI: 10.3390/ijms251810169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant human growth hormone therapy (rhGH) has been widely accepted as the safe treatment for short stature in children with such genetic syndromes as Prader-Willi syndrome and Turner or Noonan syndrome. Some patients with short stature and rare genetic syndromes are treated with rhGH as growth hormone-deficient individuals or as children born small for their gestational age. After years of experience with this therapy in syndromic short stature, it has been proved that there are some aspects of long-term rhGH treatment beyond growth promotion, which can justify rhGH use in these individuals. This paper summarizes the data of a literature review of the effects of rhGH treatment beyond growth promotion in selected genetic syndromes. We chose three of the most common syndromes, Prader-Willi, Turner, and Noonan, in which rhGH treatment is indicated, and three rarer syndromes, Silver-Russel, Kabuki, and Duchenne muscular dystrophy, in which rhGH treatment is not widely indicated. Many studies have shown a significant impact of rhGH therapy on body composition, resting energy expenditure, insulin sensitivity, muscle tonus, motor function, and mental and behavioral development. Growth promotion is undoubtedly the primary benefit of rhGH therapy; nevertheless, especially with genetic syndromes, the additional effects should also be considered as important indications for this treatment.
Collapse
Affiliation(s)
- Anna Kucharska
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.E.); (D.A.-W.); (M.K.); (B.P.)
| | - Ewelina Witkowska-Sędek
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.E.); (D.A.-W.); (M.K.); (B.P.)
| | | | | | | | | |
Collapse
|
11
|
Arrabito M, Li Volsi N, La Rosa M, Samperi P, Pulvirenti G, Cannata E, Russo G, Di Cataldo A, Lo Nigro L. Transient Myeloproliferative Disorder (TMD), Acute Lymphoblastic Leukemia (ALL), and Juvenile Myelomonocytic Leukemia (JMML) in a Child with Noonan Syndrome: Sequential Occurrence, Single Center Experience, and Review of the Literature. Genes (Basel) 2024; 15:1191. [PMID: 39336782 PMCID: PMC11431238 DOI: 10.3390/genes15091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Noonan syndrome (NS) is an autosomal dominant disorder that varies in severity and can involve multiple organ systems. In approximately 50% of cases, it is caused by missense mutations in the PTPN11 gene (12q24.13). NS is associated with a higher risk of cancer occurrence, specifically hematological disorders. Here, we report a case of a child who was diagnosed at birth with a transient myeloproliferative disorder (TMD). After two years, the child developed hyperdiploid B-cell precursor acute lymphoblastic leukemia (BCP-ALL), receiving a two-year course of treatment. During her continuous complete remission (CCR), a heterozygous germline mutation in the PTPN11 gene [c.218 C>T (p.Thr73lle)] was identified. At the age of ten, the child presented with massive splenomegaly, hyperleukocytosis, and thrombocytopenia, resulting in the diagnosis of juvenile myelomonocytic leukemia (JMML). After an initial response to antimetabolite therapy (6-mercaptopurine), she underwent haploidentical hematopoietic stem cell transplantation (HSCT) and is currently in complete remission. The goal of this review is to gain insight into the various hematological diseases associated with NS, starting from our unique case.
Collapse
Affiliation(s)
- Marta Arrabito
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Nicolò Li Volsi
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- School of Medical Genetics, University of Catania, 95100 Catania, Italy
| | - Manuela La Rosa
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Piera Samperi
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
| | | | - Emanuela Cannata
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Giovanna Russo
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
- School of Pediatrics, University of Catania, 95100 Catania, Italy;
| | - Andrea Di Cataldo
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
- School of Pediatrics, University of Catania, 95100 Catania, Italy;
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| |
Collapse
|
12
|
Ngo VA. Insight into molecular basis and dynamics of full-length CRaf kinase in cellular signaling mechanisms. Biophys J 2024; 123:2623-2637. [PMID: 38946141 PMCID: PMC11365224 DOI: 10.1016/j.bpj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
Raf kinases play key roles in signal transduction in cells for regulating proliferation, differentiation, and survival. Despite decades of research into functions and dynamics of Raf kinases with respect to other cytosolic proteins, understanding Raf kinases is limited by the lack of their full-length structures at the atomic resolution. Here, we present the first model of the full-length CRaf kinase obtained from artificial intelligence/machine learning algorithms with a converging ensemble of structures simulated by large-scale temperature replica exchange simulations. Our model is validated by comparing simulated structures with the latest cryo-EM structure detailing close contacts among three key domains and regions of the CRaf. Our simulations identify potentially new epitopes of intramolecule interactions within the CRaf and reveal a dynamical nature of CRaf kinases, in which the three domains can move back and forth relative to each other for regulatory dynamics. The dynamic conformations are then used in a docking algorithm to shed insight into the paradoxical effect caused by vemurafenib in comparison with a paradox breaker PLX7904. We propose a model of Raf-heterodimer/KRas-dimer as a signalosome based on the dynamics of the full-length CRaf.
Collapse
Affiliation(s)
- Van A Ngo
- Advanced Computing for Life Sciences and Engineering, Science Engagement Section, Computing and Computational Sciences, National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
13
|
Gazzin A, Fornari F, Niceta M, Leoni C, Dentici ML, Carli D, Villar AM, Calcagni G, Banaudi E, Massuras S, Cardaropoli S, Airulo E, Daniele P, Monda E, Limongelli G, Riggi C, Zampino G, Digilio MC, De Luca A, Tartaglia M, Ferrero GB, Mussa A. Defining the variant-phenotype correlation in patients affected by Noonan syndrome with the RAF1:c.770C>T p.(Ser257Leu) variant. Eur J Hum Genet 2024; 32:964-971. [PMID: 38824260 PMCID: PMC11291835 DOI: 10.1038/s41431-024-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the major contributor to morbidity and mortality in Noonan syndrome (NS). Gain-of-function variants in RAF1 are associated with high prevalence of HCM. Among these, NM_002880.4:c.770C > T, NP_002871.1:p.(Ser257Leu) accounts for approximately half of cases and has been reported as associated with a particularly severe outcome. Nevertheless, comprehensive studies on cases harboring this variant are missing. To precisely define the phenotype associated to the RAF1:c.770C > T, variant, an observational retrospective analysis on patients carrying the c.770C > T variant was conducted merging 17 unpublished patients and literature-derived ones. Data regarding prenatal findings, clinical features and cardiac phenotypes were collected to provide an exhaustive description of the associated phenotype. Clinical information was collected in 107 patients. Among them, 92% had HCM, mostly diagnosed within the first year of life. Thirty percent of patients were preterm and 47% of the newborns was admitted in a neonatal intensive care unit, mainly due to respiratory complications of HCM and/or pulmonary arterial hypertension. Mortality rate was 13%, mainly secondary to HCM-related complications (62%) at the average age of 7.5 months. Short stature had a prevalence of 91%, while seizures and ID of 6% and 12%, respectively. Two cases out of 75 (3%) developed neoplasms. In conclusion, patients with the RAF1:c.770C > T pathogenic variant show a particularly severe phenotype characterized by rapidly progressive neonatal HCM and high mortality rate suggesting the necessity of careful monitoring and early intervention to prevent or slow down the progression of HCM.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
- Clinical Pediatric Genetics Unit, Regina Margherita Children's Hospital, Turin, Italy
| | - Federico Fornari
- Postgraduate School of Pediatrics, University of Turin, Turin, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, 00146, Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Maria Villar
- Cardiology Department, Regina Margherita Children's Hospital, Turin, Italy
| | - Giulio Calcagni
- Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Banaudi
- Cardiology Department, Regina Margherita Children's Hospital, Turin, Italy
| | - Stefania Massuras
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Elena Airulo
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paola Daniele
- Medical Genetics Unit, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Chiara Riggi
- Cardiology Department, Regina Margherita Children's Hospital, Turin, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Alessandro De Luca
- Medical Genetics Unit, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, 00146, Rome, Italy
| | | | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
- Clinical Pediatric Genetics Unit, Regina Margherita Children's Hospital, Turin, Italy.
| |
Collapse
|
14
|
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Dentici ML, Niceta M, Lepri FR, Mancini C, Priolo M, Bonnard AA, Cappelletti C, Leoni C, Ciolfi A, Pizzi S, Cordeddu V, Rossi C, Ferilli M, Mucciolo M, Colona VL, Fauth C, Bellini M, Biasucci G, Sinibaldi L, Briuglia S, Gazzin A, Carli D, Memo L, Trevisson E, Schiavariello C, Luca M, Novelli A, Michot C, Sweertvaegher A, Germanaud D, Scarano E, De Luca A, Zampino G, Zenker M, Mussa A, Dallapiccola B, Cavé H, Digilio MC, Tartaglia M. Loss-of-function variants in ERF are associated with a Noonan syndrome-like phenotype with or without craniosynostosis. Eur J Hum Genet 2024; 32:954-963. [PMID: 38824261 PMCID: PMC11291927 DOI: 10.1038/s41431-024-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a "RASopathy" resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.
Collapse
Affiliation(s)
- Maria Lisa Dentici
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Manuela Priolo
- Medical and Molecular Genetics, Ospedale Cardarelli, 80131, Naples, Italy
| | - Adeline Alice Bonnard
- Service de de Génétique Moléculaire Hôpital Robert Debré, GHU AP-HP Nord - Université Paris Cité, INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Cité, Paris-Cité, 75019, Paris, France
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Biomedicine and Prevention, Università di Roma "Tor Vergata", 00133, Rome, Italy
| | - Chiara Leoni
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Cesare Rossi
- Medical Genetics, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Mafalda Mucciolo
- Translational Cytogenomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Vito Luigi Colona
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Christine Fauth
- Institute for Human Genetics, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Melissa Bellini
- Pediatrics and Neonatology, Gugliemo da Saliceto Hospital, 29121, Piacenza, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology, Gugliemo da Saliceto Hospital, 29121, Piacenza, Italy
| | - Lorenzo Sinibaldi
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Silvana Briuglia
- Genetics and Pharmacogenetics, Ospedale Universitario "Gaetano Martino", 98125, Messina, Italy
| | - Andrea Gazzin
- Pediatric Clinical Genetics, Ospedale Pediatrico "Regina Margherita", 10126, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Luigi Memo
- Medical Genetics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34127, Trieste, Italy
| | - Eva Trevisson
- Department of Women's and Children's Health, Università di Padova, 35128, Padova, Italy
| | - Concetta Schiavariello
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Maria Luca
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Antonio Novelli
- Translational Cytogenomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Caroline Michot
- Center for Skeletal Dysplasia, Necker-Enfants Malades Hospital, Paris Cité University, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
| | - Anne Sweertvaegher
- Service de Pédiatrie, Centre hospitalier de Saint-Quentin, 02321, Saint-Quentin, France
| | - David Germanaud
- Département de Génétique, CEA Paris-Saclay, NeuroSpin, Gif-sur-Yvette, France
- Service de Génétique Clinique, AP-HP, Hôpital Robert-Debré, 75019, Paris, France
| | - Emanuela Scarano
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni, Rotondo, Italy
| | - Giuseppe Zampino
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Alessandro Mussa
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Helene Cavé
- Service de de Génétique Moléculaire Hôpital Robert Debré, GHU AP-HP Nord - Université Paris Cité, INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Cité, Paris-Cité, 75019, Paris, France
| | - Maria Cristina Digilio
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
16
|
Rauen KA, Tidyman WE. RASopathies - what they reveal about RAS/MAPK signaling in skeletal muscle development. Dis Model Mech 2024; 17:dmm050609. [PMID: 38847227 PMCID: PMC11179721 DOI: 10.1242/dmm.050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis. We also discuss the complex interactions of this pathway with other intracellular signaling pathways in the regulation of skeletal muscle development and growth, and the opportunities that RASopathy animal models provide for exploring the use of pathway inhibitors, typically used for cancer treatment, to correct the unique skeletal myopathy caused by the dysregulation of this pathway.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA, 95817, USA
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| | - William E Tidyman
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
17
|
Huang Y, Sun H, Chen Q, Shen J, Han J, Shan S, Wang S. Computer-based facial recognition as an assisting diagnostic tool to identify children with Noonan syndrome. BMC Pediatr 2024; 24:361. [PMID: 38783283 PMCID: PMC11118109 DOI: 10.1186/s12887-024-04827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Noonan syndrome (NS) is a rare genetic disease, and patients who suffer from it exhibit a facial morphology that is characterized by a high forehead, hypertelorism, ptosis, inner epicanthal folds, down-slanting palpebral fissures, a highly arched palate, a round nasal tip, and posteriorly rotated ears. Facial analysis technology has recently been applied to identify many genetic syndromes (GSs). However, few studies have investigated the identification of NS based on the facial features of the subjects. OBJECTIVES This study develops advanced models to enhance the accuracy of diagnosis of NS. METHODS A total of 1,892 people were enrolled in this study, including 233 patients with NS, 863 patients with other GSs, and 796 healthy children. We took one to 10 frontal photos of each subject to build a dataset, and then applied the multi-task convolutional neural network (MTCNN) for data pre-processing to generate standardized outputs with five crucial facial landmarks. The ImageNet dataset was used to pre-train the network so that it could capture generalizable features and minimize data wastage. We subsequently constructed seven models for facial identification based on the VGG16, VGG19, VGG16-BN, VGG19-BN, ResNet50, MobileNet-V2, and squeeze-and-excitation network (SENet) architectures. The identification performance of seven models was evaluated and compared with that of six physicians. RESULTS All models exhibited a high accuracy, precision, and specificity in recognizing NS patients. The VGG19-BN model delivered the best overall performance, with an accuracy of 93.76%, precision of 91.40%, specificity of 98.73%, and F1 score of 78.34%. The VGG16-BN model achieved the highest AUC value of 0.9787, while all models based on VGG architectures were superior to the others on the whole. The highest scores of six physicians in terms of accuracy, precision, specificity, and the F1 score were 74.00%, 75.00%, 88.33%, and 61.76%, respectively. The performance of each model of facial recognition was superior to that of the best physician on all metrics. CONCLUSION Models of computer-assisted facial recognition can improve the rate of diagnosis of NS. The models based on VGG19-BN and VGG16-BN can play an important role in diagnosing NS in clinical practice.
Collapse
Affiliation(s)
- Yulu Huang
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, China
| | - Haomiao Sun
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, No. 6 South Science Academy Road, Haidian District, Beijing, China
- University of Chinese Academy of Sciences, No. 80 Zhongguancun Road East, Haidian District, Beijing, China
| | - Qinchang Chen
- Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, China
| | - Junjun Shen
- Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, China
| | - Jin Han
- Prenatal diagnosis center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Tianhe District, Guangzhou, China
| | - Shiguang Shan
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, No. 6 South Science Academy Road, Haidian District, Beijing, China.
- University of Chinese Academy of Sciences, No. 80 Zhongguancun Road East, Haidian District, Beijing, China.
| | - Shushui Wang
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, China.
- Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, China.
| |
Collapse
|
18
|
Spencer-Smith R. The RAF cysteine-rich domain: Structure, function, and role in disease. Adv Cancer Res 2024; 164:69-91. [PMID: 39306370 DOI: 10.1016/bs.acr.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
RAF kinases, consisting of ARAF, BRAF and CRAF, are direct effectors of RAS GTPases and critical for signal transduction through the RAS-MAPK pathway. Driver mutations in BRAF are commonplace in human cancer, while germline mutations in BRAF and CRAF cause RASopathy development syndromes. However, there remains a lack of effective drugs that target RAF function, which is partially due to the complexity of the RAF activation cycle. Therefore, greater understanding of RAF regulation is required to identify new approaches that target its function in disease. A key piece of this puzzle is the RAF zinc finger, often referred to as the cysteine-rich domain (CRD). The CRD is a lipid and protein binding domain which plays complex and opposing roles in the RAF activation cycle. Firstly, it supports the RAS-RAF interaction during RAF activation by binding to phosphatidylserine (PS) in the plasma membrane and by making direct RAS contacts. Conversely, under quiescent conditions the CRD also plays a critical role in maintaining RAF in a closed, autoinhibited state. However, the interplay between these activities and their relative importance for RAF activation were not well understood. Recent structural and biochemical studies have contributed greatly to our understanding of these roles and identified functional differences between BRAF CRD and that of CRAF. This chapter provides an in-depth review of the CRDs roles in RAF regulation and how they may inform novel approaches to target RAF function.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina.
| |
Collapse
|
19
|
Church J. The Natural History of Hereditary Colorectal Cancer Syndromes: From Phenotype to Genotype? Where Do We Stand and What Does the Future Hold? Clin Colon Rectal Surg 2024; 37:127-132. [PMID: 38606050 PMCID: PMC11006442 DOI: 10.1055/s-0043-1770380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Applying the concept of a "natural history" to hereditary colorectal cancer is an interesting exercise because the way the syndromes are approached has changed so drastically. However, the exercise is instructive as it forces us to think in depth about where we are, where we have been, and, most helpfully, about where we may be going. In this article the diagnosis, along with endoscopic and surgical management of hereditary colorectal cancer are discussed in the context of their history and the changes in genomics and technology that have occurred over the last one hundred years.
Collapse
Affiliation(s)
- James Church
- Division of Colorectal Surgery, Department of Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
20
|
Krysov VA, Wilson RH, Ten NS, Youlton N, De Jong HN, Sutton S, Huang Y, Reuter CM, Grove ME, Wheeler MT, Ashley EA, Parikh VN. Regional Variation in Cardiovascular Genes Enables a Tractable Genome Editing Strategy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004370. [PMID: 38506054 PMCID: PMC11020015 DOI: 10.1161/circgen.123.004370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND To realize the potential of genome engineering therapeutics, tractable strategies must be identified that balance personalized therapy with the need for off-the-shelf availability. We hypothesized that regional clustering of pathogenic variants can inform the design of rational prime editing therapeutics to treat the majority of genetic cardiovascular diseases with a limited number of reagents. METHODS We collated 2435 high-confidence pathogenic/likely pathogenic (P/LP) variants in 82 cardiovascular disease genes from ClinVar. We assessed the regional density of these variants by defining a regional clustering index. We then combined a highly active base editor with prime editing to demonstrate the feasibility of a P/LP hotspot-directed genome engineering therapeutic strategy in vitro. RESULTS P/LP variants in cardiovascular disease genes display higher regional density than rare variants found in the general population. P/LP missense variants displayed higher average regional density than P/LP truncating variants. Following hypermutagenesis at a pathogenic hotspot, mean prime editing efficiency across introduced variants was 57±27%. CONCLUSIONS Designing therapeutics that target pathogenic hotspots will not only address known missense P/LP variants but also novel P/LP variants identified in these hotspots as well. Moreover, the clustering of P/LP missense rather than truncating variants in these hotspots suggests that prime editing technology is particularly valuable for dominant negative disease. Although prime editing technology in relation to cardiac health continues to improve, this study presents an approach to targeting the most impactful regions of the genome for inherited cardiovascular disease.
Collapse
Affiliation(s)
- Vikki A. Krysov
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
- University of California, Davis School of Medicine, Sacramento, CA (V.A.K.)
| | - Rachel H. Wilson
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
| | - Nicholas S. Ten
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
| | - Nathan Youlton
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
| | - Hannah N. De Jong
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA (H.N.D.J., E.A.A.)
- Maze Therapeutics, Inc., San Francisco, CA (H.N.D.J.)
| | - Shirley Sutton
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
| | - Yong Huang
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
| | - Chloe M. Reuter
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
- Color Health, Burlingame, CA (C.M.R., M.E.G.)
| | | | - Matthew T. Wheeler
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
- Stanford Center for Inherited Cardiovascular Disease, Stanford Medicine, CA (M.T.W., E.A.A., V.N.P.)
| | - Euan A. Ashley
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA (H.N.D.J., E.A.A.)
- Stanford Center for Inherited Cardiovascular Disease, Stanford Medicine, CA (M.T.W., E.A.A., V.N.P.)
| | - Victoria N. Parikh
- Division of Cardiovascular Medicine (V.A.K., R.H.W., N.S.T., N.Y., H.N.D.J., S.S., Y.H., C.M.R., M.T.W., E.A.A., V.N.P.)
- Stanford Center for Inherited Cardiovascular Disease, Stanford Medicine, CA (M.T.W., E.A.A., V.N.P.)
| |
Collapse
|
21
|
Han JY, Park J. Paternally Inherited Noonan Syndrome Caused by a PTPN11 Variant May Exhibit Mild Symptoms: A Case Report and Literature Review. Genes (Basel) 2024; 15:445. [PMID: 38674380 PMCID: PMC11050143 DOI: 10.3390/genes15040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Noonan syndrome (NS)/Noonan syndrome with multiple lentigines (NSML) is commonly characterized by distinct facial features, a short stature, cardiac problems, and a developmental delay of variable degrees. However, as many as 50% of individuals diagnosed with NS/NSML have a mildly affected parent or relative due to variable expressivity and possibly incomplete penetrance of the disorder, and those who are recognized to have NS only after a diagnosis are established in a more obviously affected index case. METHODS In order to collect intergenerational data reported from previous studies, electronic journal databases containing information on the molecular genetics of PTPN11 were searched from 2000 to 2022. RESULTS We present a case of a proband with a PTPN11 variant (c.1492C > T/p.Arg498Trp) inherited from an asymptomatic father, displaying only mild intellectual disability without classical symptoms of NS. Among our cases and the reported NS cases caused by the PTPN11 p.Arg498Trp variant, cardiac abnormalities (6/11), facial dysmorphism (7/11), skin pigmentation (4/11), growth problems (4/11), and sensorineural hearing loss (2/11) have been observed. NS/NSML patients with the PTPN11 p.Arg498Trp variant tend to exhibit relatively lower frequencies of skin pigmentation, facial dysmorphism and cardiac abnormalities and mild symptoms compared to those carrying any other mutated PTPN11. CONCLUSIONS Paternally inherited NS/NSML caused by a PTPN11 p.Arg498Trp variant, including our cases, may exhibit relatively lower frequencies of abnormal features and mild symptoms. This could be ascribed to potential gene-gene interactions, gene-environment interactions, the gender and phenotype of the transmitting parent, or ethnic differences that influence the clinical phenotype.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
22
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Shoji Y, Hata A, Maeyama T, Wada T, Hasegawa Y, Nishi E, Ida S, Etani Y, Niihori T, Aoki Y, Okamoto N, Kawai M. Genetic backgrounds and genotype-phenotype relationships in anthropometric parameters of 116 Japanese individuals with Noonan syndrome. Clin Pediatr Endocrinol 2024; 33:50-58. [PMID: 38572385 PMCID: PMC10985011 DOI: 10.1297/cpe.2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
Noonan syndrome (NS) is caused by pathogenic variants in genes encoding components of the RAS/MAPK pathway and presents with a number of symptoms, including characteristic facial features, congenital heart diseases, and short stature. Advances in genetic analyses have contributed to the identification of pathogenic genes in NS as well as genotype-phenotype relationships; however, updated evidence for the detection rate of pathogenic genes with the inclusion of newly identified genes is lacking in Japan. Accordingly, we examined the genetic background of 116 individuals clinically diagnosed with NS and the frequency of short stature. We also investigated genotype-phenotype relationships in the context of body mass index (BMI). Genetic testing revealed the responsible variants in 100 individuals (86%), where PTPN11 variants were the most prevalent (43%) and followed by SOS1 (12%) and RIT1 (9%). The frequency of short stature was the lowest in subjects possessing RIT1 variants. No genotype-phenotype relationships in BMI were observed among the genotypes. In conclusion, this study provides evidence for the detection rate of pathogenic genes and genotype-phenotype relationships in Japanese patients with NS, which will be of clinical importance for accelerating our understanding of the genetic backgrounds of Japanese patients with NS.
Collapse
Affiliation(s)
- Yasuko Shoji
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Epidemiology and Health Policy, University of Toyama, Toyama, Japan
| | - Ayaha Hata
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Takatoshi Maeyama
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tamaki Wada
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuiko Hasegawa
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Eriko Nishi
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Shinobu Ida
- Department of Clinical Laboratory, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuri Etani
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Miyagi, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Miyagi, Japan
| | - Nobuhiko Okamoto
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Masanobu Kawai
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
24
|
Kuonqui K, Campbell AC, Sarker A, Roberts A, Pollack BL, Park HJ, Shin J, Brown S, Mehrara BJ, Kataru RP. Dysregulation of Lymphatic Endothelial VEGFR3 Signaling in Disease. Cells 2023; 13:68. [PMID: 38201272 PMCID: PMC10778007 DOI: 10.3390/cells13010068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation, migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways. Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3 signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states, including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome, (4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the development of novel strategies to treat these chronic and often debilitating illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
25
|
Yi JS, Perla S, Bennett AM. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Cardiovasc Drugs Ther 2023; 37:1193-1204. [PMID: 35156148 PMCID: PMC11726350 DOI: 10.1007/s10557-022-07324-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
26
|
Chen PY, Huang BJ, Harris M, Boone C, Wang W, Carias H, Mesiona B, Mavrici D, Kohler AC, Bollag G, Zhang C, Zhang Y, Shannon K. Structural and functional analyses of a germline KRAS T50I mutation provide insights into Raf activation. JCI Insight 2023; 8:e168445. [PMID: 37681415 PMCID: PMC10544224 DOI: 10.1172/jci.insight.168445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations. These studies support a key role for the asymmetric lateral assembly of K-Ras in a plasma membrane-distal orientation that promotes the formation of active Ras:Raf complexes in a membrane-proximal conformation. Disease-causing mutations such as T50I are a valuable starting point for illuminating normal Ras function, elucidating mechanisms of disease, and identifying potential therapeutic opportunities for Rasopathy disorders and cancer.
Collapse
Affiliation(s)
- Pan-Yu Chen
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Max Harris
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Weijie Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Heidi Carias
- Plexxikon Inc., South San Francisco, California, USA
| | - Brian Mesiona
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Gideon Bollag
- Plexxikon Inc., South San Francisco, California, USA
| | - Chao Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Ying Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Kevin Shannon
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
27
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
28
|
Ciacchini B, Di Nardo G, Marin M, Borali E, Caraccia M, Mogni R, Cairello F, Rabbone I, Ferrero GB, Pini Prato A, Felici E. Case report: Gastroenterological management in a case of cardio-facio-cutaneous syndrome. Front Pediatr 2023; 11:1160147. [PMID: 37138575 PMCID: PMC10149741 DOI: 10.3389/fped.2023.1160147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND cardio-facio-cutaneous syndrome is a rare genetic disorder affecting less than 900 people in the world. It is mainly characterized by craniofacial, dermatologic and cardiac defects, but also gastroenterological symptoms may be present, ranging from feeding difficulties to gastroesophageal reflux and constipation.In this report we describe a case of this syndrome characterized by severe feeding and growth difficulties, with a particular focus on the management of gastroenterological complications. CASE PRESENTATION the patient was a caucasian male affected by Cardio-Facio-Cutaneous syndrome who presented feeding difficulties already a few hours after birth. These symptoms worsened in the following months and lead to a complete growth arrest and malnutrition. He was first treated with a nasogastric tube placement. Subsequently, a laparoscopic Nissen fundoplication and a laparoscopic Stamm gastrostomy were performed. The child was fed with nocturnal enteral nutrition and diurnal oral and enteral nutrition. Eventually the patient resumed feeding validly and regained adequate growth. CONCLUSION this paper aims to bring to light a complex rare syndrome that infrequently comes to the attention of the pediatricians and whose diagnosis is not always straightforward. We also highlight the possible complications under a gastroenterologic point of view. Our contribution can be helpful to the pediatrician in the first diagnostic suspect of this syndrome. In particular, it is worth highlighting that -in an infant with Noonan-like features- symptoms like suction or swallowing problems, vomiting and feeding difficulties should orient towards the diagnosis of a Cardio-facio-cutaneous syndrome. It is also important to stress that its related gastroenterological issues may lead to severe growth failure and therefore the role of the gastroenterologist is key to manage supplemental feeding and to establish whether a nasogastric or gastrostomic tube placement is necessary.
Collapse
Affiliation(s)
- B. Ciacchini
- Division of Pediatrics, Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | - G. Di Nardo
- NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - M. Marin
- Pediatric and Pediatric Emergency Unit, “U. Bosio” Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - E. Borali
- Pediatric and Pediatric Emergency Unit, “U. Bosio” Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - M. Caraccia
- Pediatric Surgery, “U. Bosio” Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - R. Mogni
- Pediatric and Pediatric Emergency Unit, “U. Bosio” Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - F. Cairello
- Pediatric and Pediatric Emergency Unit, “U. Bosio” Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - I. Rabbone
- Division of Pediatrics, Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | - G. B Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - A. Pini Prato
- Pediatric Surgery, “U. Bosio” Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - E. Felici
- Pediatric and Pediatric Emergency Unit, “U. Bosio” Center for Digestive Diseases, The Children Hospital, AO SS Antonio e Biagio e C. Arrigo, Alessandria, Italy
| |
Collapse
|
29
|
Sodero G, Cipolla C, Pane LC, Sessa L, Malavolta E, Arzilli F, Leoni C, Zampino G, Rigante D. Efficacy and safety of growth hormone therapy in children with Noonan syndrome. Growth Horm IGF Res 2023; 69-70:101532. [PMID: 37084633 DOI: 10.1016/j.ghir.2023.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
Patients with Noonan syndrome typically have a target height <2 standard deviations compared to the general population, and half of the affected adults remain permanently below the 3rd centile for height, though their short stature might result from a multifactorial etiology, not-yet fully understood. The secretion of growth hormone (GH) following the classic GH stimulation tests is often normal, with baseline insulin-like growth factor-1 (IGF-1) levels at the lower normal limits, but patients with Noonan syndrome have also a possible moderate response to GH therapy, leading to a final increased height and substantial improvement in growth rate. Aim of this review was to evaluate both safety and efficacy of GH therapy in children and adolescents with Noonan syndrome, also evaluating as a secondary aim the possible correlations between the underlying genetic mutations and GH responses.
Collapse
Affiliation(s)
- Giorgio Sodero
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Clelia Cipolla
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Celeste Pane
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Linda Sessa
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena Malavolta
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Arzilli
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Leoni
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
30
|
Dalili S, Hoseini Nouri SA, Bayat R, Koohmanaee S, Tabrizi M, Zarkesh M, Tarang A, Mahdieh N. Neurofibromatosis-Noonan syndrome and growth deficiency in an Iranian girl due to a pathogenic variant in NF1 gene. Hum Genomics 2023; 17:12. [PMID: 36803953 PMCID: PMC9940353 DOI: 10.1186/s40246-023-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Mutations in NF1 gene could cause allelic disorders with clinical spectrum of Neurofibromatosis type 1 to Noonan syndrome. Here, a 7-year-old Iranian girl is described with Neurofibromatosis-Noonan syndrome due to a pathogenic variant in NF1 gene. METHODS Clinical evaluations were performed along with genetic testing using whole exome sequencing (WES). The variant analysis including pathogenicity prediction was also done using bioinformatics tools. RESULTS The chief compliant of the patient was short stature and lack of proper weight gain. Other symptoms were developmental delay, learning disability, inadequate speech skill, broad forehead, hypertelorism, and epicanthal folds, low set ears and webbed neck. A small deletion, c.4375-4377delGAA, was found in NF1 gene using WES. This variant was classified as pathogenic according to ACMG. CONCLUSIONS NF1 variants may show variable phenotypes among the patients; identifying such variants is helpful in therapeutic management of the disease. WES is considered as an appropriate test to diagnose Neurofibromatosis-Noonan syndrome.
Collapse
Affiliation(s)
- Setila Dalili
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Reza Bayat
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahin Koohmanaee
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Manijeh Tabrizi
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Marjaneh Zarkesh
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Tarang
- Agriculture Biotechnology Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Onesimo R, Giorgio V, Viscogliosi G, Sforza E, Kuczynska E, Margiotta G, Iademarco M, Proli F, Rigante D, Zampino G, Leoni C. Management of nutritional and gastrointestinal issues in RASopathies: A narrative review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:478-493. [PMID: 36515923 DOI: 10.1002/ajmg.c.32019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Noonan, Costello, and cardio-facio-cutaneous syndrome are neurodevelopmental disorders belonging to the RASopathies, a group of syndromes caused by alterations in the RAS/MAPK pathway. They are characterized by similar clinical features, among which feeding difficulties, growth delay, and gastro-intestinal disorders are frequent, causing pain and discomfort in patients. Hereby, we describe the main nutritional and gastrointestinal issues reported in individuals with RASopathies, specifically in Noonan syndrome, Noonan syndrome-related disorders, Costello, and cardio-facio-cutaneous syndromes. Fifty percent of children with Noonan syndrome may experience feeding difficulties that usually have a spontaneous resolution by the second year of life, especially associated to genes different than PTPN11 and SOS1. More severe manifestations often require artificial enteral nutrition in infancy are observed in Costello syndrome, mostly associated to c.34G>A substitution in the HRAS gene. In cardio-facio-cutaneous syndrome feeding issues are usually present (90-100% of cases), especially in individuals carrying variants in BRAF, MAP2K1, and MAP2K2 genes, and artificial enteral intervention, even after scholar age, may be required. Moreover, disorders associated with gastrointestinal dysmotility as gastro-esophageal reflux and constipation are commonly reported in all the above-mentioned syndromes. Given the impact on growth and on the quality of life of these patients, early evaluation and prompt personalized management plans are fundamental.
Collapse
Affiliation(s)
- Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Giorgio
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Germana Viscogliosi
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Elisabetta Sforza
- DIpartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eliza Kuczynska
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Gaia Margiotta
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mariella Iademarco
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesco Proli
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- DIpartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- DIpartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
32
|
Tartaglia M, Aoki Y, Gelb BD. The molecular genetics of RASopathies: An update on novel disease genes and new disorders. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:425-439. [PMID: 36394128 PMCID: PMC10100036 DOI: 10.1002/ajmg.c.32012] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Enhanced signaling through RAS and the mitogen-associated protein kinase (MAPK) cascade underlies the RASopathies, a family of clinically related disorders affecting development and growth. In RASopathies, increased RAS-MAPK signaling can result from the upregulated activity of various RAS GTPases, enhanced function of proteins positively controlling RAS function or favoring the efficient transmission of RAS signaling to downstream transducers, functional upregulation of RAS effectors belonging to the MAPK cascade, or inefficient signaling switch-off operated by feedback mechanisms acting at different levels. The massive effort in RASopathy gene discovery performed in the last 20 years has identified more than 20 genes implicated in these disorders. It has also facilitated the characterization of several molecular activating mechanisms that had remained unappreciated due to their minor impact in oncogenesis. Here, we provide an overview on the discoveries collected during the last 5 years that have delivered unexpected insights (e.g., Noonan syndrome as a recessive disease) and allowed to profile new RASopathies, novel disease genes and new molecular circuits contributing to the control of RAS-MAPK signaling.
Collapse
Affiliation(s)
- Marco Tartaglia
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - Yoko Aoki
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Bruce D. Gelb
- Mindich Child Health and Development InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pediatrics and GeneticsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
33
|
Spencer-Smith R, Terrell EM, Insinna C, Agamasu C, Wagner ME, Ritt DA, Stauffer J, Stephen AG, Morrison DK. RASopathy mutations provide functional insight into the BRAF cysteine-rich domain and reveal the importance of autoinhibition in BRAF regulation. Mol Cell 2022; 82:4262-4276.e5. [PMID: 36347258 PMCID: PMC9677513 DOI: 10.1016/j.molcel.2022.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Christine Insinna
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Constance Agamasu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Morgan E Wagner
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Jim Stauffer
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA.
| |
Collapse
|
34
|
Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dautaj A, Medori MC, Bertelli M. Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways. Int J Mol Sci 2022; 23:ijms23137414. [PMID: 35806420 PMCID: PMC9267137 DOI: 10.3390/ijms23137414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- Correspondence: ; Tel.: +39-0365-62-061
| | - Stefano Paolacci
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | | | | | - Sandro Michelini
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, 00047 Marino, Italy;
| | - Serena Michelini
- Unit of Physical Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Ricci
- Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Marina Cestari
- Study Centre Pianeta Linfedema, 05100 Terni, Italy;
- Lymphology Sector of the Rehabilitation Service, USLUmbria2, 05100 Terni, Italy
| | - Astrit Dautaj
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Maria Chiara Medori
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- MAGI Group, 25010 San Felice del Benaco, Italy;
- MAGI Euregio, 39100 Bolzano, Italy
| |
Collapse
|
35
|
Wasilewska K, Gambin T, Rydzanicz M, Szczałuba K, Płoski R. Postzygotic mutations and where to find them - Recent advances and future implications in the field of non-neoplastic somatic mosaicism. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108426. [PMID: 35690331 DOI: 10.1016/j.mrrev.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
Collapse
Affiliation(s)
- Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland.
| |
Collapse
|
36
|
Porcelli L, Di Fonte R, Pierri CL, Fucci L, Saponaro C, Armenio A, Serratì S, Strippoli S, Fasano R, Volpicella M, Daprile R, Tommasi S, Ressa CM, Guida M, Azzariti A. BRAF V600E;K601Q metastatic melanoma patient-derived organoids and docking analysis to predict the response to targeted therapy. Pharmacol Res 2022; 182:106323. [PMID: 35752358 DOI: 10.1016/j.phrs.2022.106323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The V600E mutation in BRAF is associated with increased phosphorylation of Erk1/2 and high sensitivity to BRAFi/MEKi combination in metastatic melanoma. In very few patients, a tandem mutation in BRAF, V600 and K601, causes a different response to BRAFi/MEKi combination. BRAFV600E;K601Q patient-derived organoids (PDOs) were generated to investigate targeted therapy efficacy and docking analysis was used to assess BRAFV600E;K601Q interactions with Vemurafenib. PDOs were not sensitive to Vemurafenib and Cobimetinib given alone and sensitive to their combination, although not as responsive as BRAFV600E PDOs. The docking analysis justified such a result showing that the tandem mutation in BRAF reduced the affinity for Vemurafenib. Tumor analysis showed that BRAFV600E;K601Q displayed both increased phosphorylation of Erk1/2 at cytoplasmic level and activation of Notch resistance signaling. This prompted us to inhibit Notch signaling with Nirogacestat, achieving a greater antitumor response and providing PDOs-based evaluation of treatment efficacy in such rare metastatic melanoma.
Collapse
Affiliation(s)
- Letizia Porcelli
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Roberta Di Fonte
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Ciro L Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| | - Livia Fucci
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Concetta Saponaro
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Andrea Armenio
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Simona Serratì
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Sabino Strippoli
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Rossella Fasano
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| | - Rossana Daprile
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Stefania Tommasi
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Cosmo M Ressa
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Michele Guida
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy
| | - Amalia Azzariti
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy.
| |
Collapse
|
37
|
Sun L, Xie YM, Wang SS, Zhang ZW. Cardiovascular Abnormalities and Gene Mutations in Children With Noonan Syndrome. Front Genet 2022; 13:915129. [PMID: 35770001 PMCID: PMC9234298 DOI: 10.3389/fgene.2022.915129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Common cardiac abnormalities in Noonan syndrome (NS) include congenital heart diseases (CHD), pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). Molecular diagnoses are enabling earlier and more precise diagnosis of patients who have a subtle or atypical presentation. The aims of this study were to investigate genotype-phenotype associations with respect to Noonan syndrome (NS)-associated cardiac abnormalities and catheter or surgery-based interventions conditions. Methods: From January 2019 to December 2021, 22 children with a confirmed molecular diagnosis of NS combined with cardiovascular abnormalities were consecutively enrolled into the current study. A comprehensive review was carried out of echocardiography and electrocardiogram results, second-generation whole-exome sequencing results and catheter or surgery-based interventions conditions. Results: The main manifestations of electrocardiogram abnormalities were QTc prolongation, abnormal Q wave in the precordial lead and limb lead, right ventricular hypertrophy and left or right deviation of the electrical axis. The most commonly detected abnormality was pulmonary valve dysplasia with stenosis, seen in 15 (68.2%) patients, followed by atrial septal defect in 11 (50%) patients. Seven genes (RAF1, RIT1, SOS1, PTPN11, BRAF, SOS2, and LZTR1) were found to contain disease-associated variants. The most commonly observed genetic mutations were PTPN11 (27%) and RAF1 (27%). Each genotype was associated with specific phenotypic findings. RIT1, SOS1, PTPN11, and SOS2 had common echocardiography features characterized by pulmonary valve stenosis, while RAF1 was characterized by HCM. Interestingly, patients with BRAF mutations were not only characterized by HCM, but also by pulmonary valve stenosis. In the cohort there was only one patient carrying a LZTR1 mutation characterized by left ventricle globose dilation. Ten cases underwent catheter or surgery-based interventions. All the operations had immediate results and high success rates. However, some of the cases had adverse outcomes during extended follow-up. Based on the genotype-phenotype associations observed during follow-up, BRAF and RAF1 genotypes seem to be poor prognostic factors, and multiple interventions may be required for NS patients with severe pulmonary stenosis or myectomy for HCM. Conclusions: The identification of causal genes in NS patients has enabled the evaluation of genotype-cardiac phenotype relationships and prognosis of the disease. This may be beneficial for the development of therapeutic approaches.
Collapse
|
38
|
Lin D, Du H, Zhao S, Liu B, Song H, Wang G, Zhang W, Liang H, Liu P, Liu C, Han W, Li Z, Yang Y, Chen S, Zhao L, Li X, Wu Z, Qiu G, Wu Z, Zhang TJ, Wu N, Wang S, Liu J, Liu S, Zuo Y, Liu G, Yu C, Liu L, Shao J, Zhao S, Yan Z, Zhao H, Niu Y, Li X, Wang H, Ma C, Chen Z, Liu B, Cheng X, Lin J, Du H, Li Y, Song S, Tian W, Xie Z, Zhao Z, Zhao L, Zhao Z, Zheng Z, Huang Y, Sun N, Wu N. Phenotype expansion of variants affecting p38 MAPK signaling in hypospadias patients. Orphanet J Rare Dis 2022; 17:209. [PMID: 35606856 PMCID: PMC9128137 DOI: 10.1186/s13023-022-02334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypospadias is a congenital anomaly of the male urogenital system. Genetics factors play an important role in its pathogenesis. To search for potential causal genes/variants for hypospadias, we performed exome sequencing in a pedigree with three patients across two generations and a cohort of 49 sporadic patients with hypospadias. Results A novel BRAF variant (NM_004333.6: c.362C > A) was found to co-segregate with the hypospadias phenotype in the disease pedigree. In cells overexpressing the BRAF mutant, the phosphorylation level of p38 MAPK was significantly increased as compared with the cells overexpressing the wild-type BRAF or RASopathy-related BRAF mutant. This variant further led to a reduced transcription level of the SRY gene, which is essential for the normal development of the male reproductive system. In the cohort of sporadic patients, we identified two additional variants in p38 MAPK signaling-related genes (TRIM67 and DAB2IP) potentially associated with hypospadias. Conclusion Our study expands the phenotypic spectrum of variants affecting p38 MAPK signaling toward the involvement of hypospadias.
Collapse
|
39
|
Neurologic and neurodevelopmental complications in cardiofaciocutaneous syndrome are associated with genotype: A multinational cohort study. Genet Med 2022; 24:1556-1566. [PMID: 35524774 DOI: 10.1016/j.gim.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Dysregulation of RAS or its major effector pathway is the molecular mechanism of RASopathies, a group of multisystemic congenital disorders. Neurologic complications are especially challenging in the management of the rare RASopathy cardiofaciocutaneous (CFC) syndrome. This study evaluated clinical neurologic and neurodevelopmental features and their associations with CFC syndrome gene variants. METHODS A multinational cohort of 138 individuals with CFC syndrome (BRAF = 90, MAP2K1 = 36, MAP2K2 = 10, KRAS = 2) was recruited. Neurologic presentation was captured via clinician review of medical records and caregiver-completed electronic surveys. Validated measures of seizure severity, adaptive function, and gross motor function were obtained. RESULTS The overall frequency of intellectual disability and seizures was 82% and 55%, respectively. The frequency and severity of seizures was higher among individuals with BRAF or MAP2K1 variants than in those with MAP2K2 variants. A disproportionate incidence of severe, treatment-resistant seizures was observed in patients with variants in the catalytic protein kinase domain of BRAF and at the common p.Y130 site of MAP2K1. Neurodevelopmental outcomes were associated with genotype as well as seizure severity. CONCLUSION Molecular genetic testing can aid in prediction of epilepsy and neurodevelopmental phenotypes in CFC syndrome. Study results identified potential CFC syndrome-associated variants in the development of relevant animal models for neurologic, neurocognitive, and motor function impairment.
Collapse
|
40
|
Zenner K, Jensen DM, Dmyterko V, Shivaram GM, Myers CT, Paschal CR, Rudzinski ER, Pham MHM, Cheng VC, Manning SC, Bly RA, Ganti S, Perkins JA, Bennett JT. Somatic activating BRAF variants cause isolated lymphatic malformations. HGG ADVANCES 2022; 3:100101. [PMID: 35373151 PMCID: PMC8972000 DOI: 10.1016/j.xhgg.2022.100101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Somatic activating variants in PIK3CA, the gene that encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), have been previously detected in ∼80% of lymphatic malformations (LMs).1 , 2 We report the presence of somatic activating variants in BRAF in individuals with LMs that do not possess pathogenic PIK3CA variants. The BRAF substitution p.Val600Glu (c.1799T>A), one of the most common driver mutations in cancer, was detected in multiple individuals with LMs. Histology revealed abnormal lymphatic channels with immunopositivity for BRAFV600E in endothelial cells that was otherwise indistinguishable from PIK3CA-positive LM. The finding that BRAF variants contribute to low-flow LMs increases the complexity of prior models associating low-flow vascular malformations (LM and venous malformations) with mutations in the PI3K-AKT-MTOR and high-flow vascular malformations (arteriovenous malformations) with mutations in the RAS-mitogen-activated protein kinase (MAPK) pathway.3 In addition, this work highlights the importance of genetic diagnosis prior to initiating medical therapy as more studies examine therapeutics for individuals with vascular malformations.
Collapse
Affiliation(s)
- Kaitlyn Zenner
- Seattle Children’s Hospital, Division of Pediatric Otolaryngology, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Vascular Anomalies Program, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Dana M. Jensen
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Victoria Dmyterko
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Giridhar M. Shivaram
- Department of Radiology, Division of Interventional Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Candace T. Myers
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Cate R. Paschal
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Erin R. Rudzinski
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Minh-Hang M. Pham
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - V. Chi Cheng
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Scott C. Manning
- Seattle Children’s Hospital, Division of Pediatric Otolaryngology, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - Randall A. Bly
- Seattle Children’s Hospital, Division of Pediatric Otolaryngology, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Vascular Anomalies Program, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Sheila Ganti
- Seattle Children’s Hospital, Division of Pediatric Otolaryngology, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Vascular Anomalies Program, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jonathan A. Perkins
- Seattle Children’s Hospital, Division of Pediatric Otolaryngology, Department of Otolaryngology/Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Vascular Anomalies Program, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - James T. Bennett
- Vascular Anomalies Program, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Seattle Children’s Hospital, Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Simanshu DK, Morrison DK. A Structure is Worth a Thousand Words: New Insights for RAS and RAF Regulation. Cancer Discov 2022; 12:899-912. [PMID: 35046094 PMCID: PMC8983508 DOI: 10.1158/2159-8290.cd-21-1494] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The RAS GTPases are frequently mutated in human cancer, with KRAS being the predominant tumor driver. For many years, it has been known that the structure and function of RAS are integrally linked, as structural changes induced by GTP binding or mutational events determine the ability of RAS to interact with regulators and effectors. Recently, a wealth of information has emerged from structures of specific KRAS mutants and from structures of multiprotein complexes containing RAS and/or RAF, an essential effector of RAS. These structures provide key insights regarding RAS and RAF regulation as well as promising new strategies for therapeutic intervention. SIGNIFICANCE The RAS GTPases are major drivers of tumorigenesis, and for RAS proteins to exert their full oncogenic potential, they must interact with the RAF kinases to initiate ERK cascade signaling. Although binding to RAS is typically a prerequisite for RAF to become an activated kinase, determining the molecular mechanisms by which this interaction results in RAF activation has been a challenging task. A major advance in understanding this process and RAF regulation has come from recent structural studies of various RAS and RAF multiprotein signaling complexes, revealing new avenues for drug discovery.
Collapse
Affiliation(s)
- Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
42
|
Butler MG, Miller BS, Romano A, Ross J, Abuzzahab MJ, Backeljauw P, Bamba V, Bhangoo A, Mauras N, Geffner M. Genetic conditions of short stature: A review of three classic examples. Front Endocrinol (Lausanne) 2022; 13:1011960. [PMID: 36339399 PMCID: PMC9634554 DOI: 10.3389/fendo.2022.1011960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan, Turner, and Prader-Willi syndromes are classical genetic disorders that are marked by short stature. Each disorder has been recognized for several decades and is backed by extensive published literature describing its features, genetic origins, and optimal treatment strategies. These disorders are accompanied by a multitude of comorbidities, including cardiovascular issues, endocrinopathies, and infertility. Diagnostic delays, syndrome-associated comorbidities, and inefficient communication among the members of a patient's health care team can affect a patient's well-being from birth through adulthood. Insufficient information is available to help patients and their multidisciplinary team of providers transition from pediatric to adult health care systems. The aim of this review is to summarize the clinical features and genetics associated with each syndrome, describe best practices for diagnosis and treatment, and emphasize the importance of multidisciplinary teams and appropriate care plans for the pediatric to adult health care transition.
Collapse
Affiliation(s)
- Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Merlin G. Butler,
| | - Bradley S. Miller
- Pediatric Endocrinology, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN, United States
| | - Alicia Romano
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Judith Ross
- Department of Pediatrics, Nemours Children’s Health, Wilmington, DE, United States
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Philippe Backeljauw
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Vaneeta Bamba
- Division of Endocrinology, Children’s Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amrit Bhangoo
- Pediatric Endocrinology, Children's Health of Orange County (CHOC) Children’s Hospital, Orange, CA, United States
| | - Nelly Mauras
- Division of Endocrinology, Nemours Children’s Health, Jacksonville, FL, United States
| | - Mitchell Geffner
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
43
|
Goto K, Yoshikawa S, Kiyohara Y, Kukita Y, Miura K, Oishi T. Co-existence of BRAF V600E-mutated malignant melanoma and BRAF V600E-mutated Langerhans cell histiocytosis: A case report. J Cutan Pathol 2021; 49:393-398. [PMID: 34792818 DOI: 10.1111/cup.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a neoplastic condition of Langerhans cells, and can be associated with other neoplasms, especially BRAF-mutant hematological tumors and papillary thyroid carcinoma. Here we present the first case of co-existing LCH and low cumulative sun damage (low-CSD) melanoma, both of which had a BRAF V600E mutation. A 49-year-old man had a 45 × 43 × 15 mm semi-pedunculated, pigmented tumor in his back but had no other systemic symptoms. Histopathology revealed a 2-mm-sized incidental focus of LCH within a large lesion of low-CSD melanoma. Diffuse immunoexpression of CD1a, langerin/CD207, S100 protein, and BRAF (VE1) was observed in the focus of LCH. Sanger sequencing with microdissection confirmed BRAF V600E mutation in the component of LCH. Interestingly, the advanced melanoma also harbored the same BRAF V600E mutation, although the significance of this tumor combination is still unknown.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan.,Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan.,Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan.,Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan.,Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan.,Department of Diagnostic Pathology, Osaka National Hospital, Osaka, Japan.,Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Shusuke Yoshikawa
- Department of Dermatology, Shizuoka Cancer Center Hospital, Sunto, Japan
| | - Yoshio Kiyohara
- Department of Dermatology, Shizuoka Cancer Center Hospital, Sunto, Japan
| | - Yoji Kukita
- Laboratory of Genomic Pathology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Keiko Miura
- Department of Surgical Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuma Oishi
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
| |
Collapse
|
44
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|
45
|
Battaglia DI, Gambardella ML, Veltri S, Contaldo I, Chillemi G, Veredice C, Quintiliani M, Leoni C, Onesimo R, Verdolotti T, Radio FC, Martinelli D, Trivisano M, Specchio N, Dravet C, Tartaglia M, Zampino G. Epilepsy and BRAF Mutations: Phenotypes, Natural History and Genotype-Phenotype Correlations. Genes (Basel) 2021; 12:1316. [PMID: 34573299 PMCID: PMC8470450 DOI: 10.3390/genes12091316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Cardiofaciocutaneous syndrome (CFCS) is a rare developmental disorder caused by upregulated signaling through the RAS-mitogen-activated protein kinase (MAPK) pathway, mostly resulting from de novo activating BRAF mutations. Children with CFCS are prone to epilepsy, which is a major life-threatening complication. The aim of our study was to define the natural history of epilepsy in this syndrome and exploring genotype-phenotype correlations. METHODS We performed an observational study, including 34 patients with molecularly confirmed diagnosis (11 males, mean age: 15.8 years). The mean follow-up period was 9.2 years. For all patients, we performed neurological examination, cognitive assessment when possible, neuroimaging, electrophysiological assessment and systematic assessment of epilepsy features. Correlation analyses were performed, taking into account gender, age of seizure onset, EEG features, degree of cognitive deficits, type of mutation, presence of non-epileptic paroxysmal events and neuroimaging features. RESULTS Epilepsy was documented in 64% of cases, a higher prevalence compared to previous reports. Patients were classified into three groups based on their electroclinical features, long-term outcome and response to therapy. A genotype-phenotype correlation linking the presence/severity of epilepsy to the nature of the structural/functional consequences of mutations was observed, providing a stratification based on genotype to improve the clinical management of these patients.
Collapse
Affiliation(s)
- Domenica I. Battaglia
- Child Neurology and Psychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (M.L.G.); (S.V.); (I.C.); (C.V.); (C.D.)
- Dipartimento Scienze della Vita, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.Q.); (G.Z.)
| | - Maria Luigia Gambardella
- Child Neurology and Psychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (M.L.G.); (S.V.); (I.C.); (C.V.); (C.D.)
| | - Stefania Veltri
- Child Neurology and Psychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (M.L.G.); (S.V.); (I.C.); (C.V.); (C.D.)
| | - Ilaria Contaldo
- Child Neurology and Psychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (M.L.G.); (S.V.); (I.C.); (C.V.); (C.D.)
| | - Giovanni Chillemi
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Centro Nazionale delle Ricerche, 70126 Bari, Italy
| | - Chiara Veredice
- Child Neurology and Psychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (M.L.G.); (S.V.); (I.C.); (C.V.); (C.D.)
| | - Michela Quintiliani
- Dipartimento Scienze della Vita, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.Q.); (G.Z.)
| | - Chiara Leoni
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (C.L.); (R.O.)
| | - Roberta Onesimo
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (C.L.); (R.O.)
| | - Tommaso Verdolotti
- Department of Radiology Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy;
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (M.T.)
| | - Diego Martinelli
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy;
| | - Marina Trivisano
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Charlotte Dravet
- Child Neurology and Psychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (M.L.G.); (S.V.); (I.C.); (C.V.); (C.D.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (F.C.R.); (M.T.)
| | - Giuseppe Zampino
- Dipartimento Scienze della Vita, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.Q.); (G.Z.)
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (C.L.); (R.O.)
| |
Collapse
|
46
|
Longo JF, Carroll SL. The RASopathies: Biology, genetics and therapeutic options. Adv Cancer Res 2021; 153:305-341. [PMID: 35101235 DOI: 10.1016/bs.acr.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The RASopathies are a group of genetic diseases in which the Ras/MAPK signaling pathway is inappropriately activated as a result of mutations in genes encoding proteins within this pathway. As their causative mutations have been identified, this group of diseases has expanded to include neurofibromatosis type 1 (NF1), Legius syndrome, Noonan syndrome, CBL syndrome, Noonan syndrome-like disorder with loose anagen hair, Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, gingival fibromatosis and capillary malformation-arteriovenous malformation syndrome. Many of these genetic disorders share clinical features in common such as abnormal facies, short stature, varying degrees of cognitive impairment, cardiovascular abnormalities, skeletal abnormalities and a predisposition to develop benign and malignant neoplasms. Others are more dissimilar, even though their mutations are in the same gene that is mutated in a different RASopathy. Here, we describe the clinical features of each RASopathy and contrast them with the other RASopathies. We discuss the genetics of these disorders, including the causative mutations for each RASopathy, the impact that these mutations have on the function of an individual protein and how this dysregulates the Ras/MAPK signaling pathway. As several of these individual disorders are genetically heterogeneous, we also consider the different genes that can be mutated to produce disease with the same phenotype. We also discuss how our growing understanding of dysregulated Ras/MAPK signaling had led to the development of new therapeutic agents and what work will be critically important in the future to improve the lives of patients with RASopathies.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
47
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Cookis T, Mattos C. Crystal Structure Reveals the Full Ras-Raf Interface and Advances Mechanistic Understanding of Raf Activation. Biomolecules 2021; 11:996. [PMID: 34356620 PMCID: PMC8301913 DOI: 10.3390/biom11070996] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/17/2023] Open
Abstract
Ras and Raf-kinase interact through the Ras-binding (RBD) and cysteine-rich domains (CRD) of Raf to signal through the mitogen-activated protein kinase pathway, yet the molecular mechanism leading to Raf activation has remained elusive. We present the 2.8 Å crystal structure of the HRas-CRaf-RBD_CRD complex showing the Ras-Raf interface as a continuous surface on Ras, as seen in the KRas-CRaf-RBD_CRD structure. In molecular dynamics simulations of a Ras dimer model formed through the α4-α5 interface, the CRD is dynamic and located between the two Ras protomers, poised for direct or allosteric modulation of functionally relevant regions of Ras and Raf. We propose a molecular model in which Ras binding is involved in the release of Raf autoinhibition while the Ras-Raf complex dimerizes to promote a platform for signal amplification, with Raf-CRD centrally located to impact regulation and function.
Collapse
Affiliation(s)
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
49
|
Montero-Bullón JF, González-Velasco Ó, Isidoro-García M, Lacal J. Integrated in silico MS-based phosphoproteomics and network enrichment analysis of RASopathy proteins. Orphanet J Rare Dis 2021; 16:303. [PMID: 34229750 PMCID: PMC8258961 DOI: 10.1186/s13023-021-01934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background RASopathies are a group of syndromes showing clinical overlap caused by mutations in genes affecting the RAS-MAPK pathway. Consequent disruption on cellular signaling leads and is driven by phosphoproteome remodeling. However, we still lack a comprehensive picture of the different key players and altered downstream effectors. Methods An in silico interactome of RASopathy proteins was generated using pathway enrichment analysis/STRING tool, including identification of main hub proteins. We also integrated phosphoproteomic and immunoblotting studies using previous published information on RASopathy proteins and their neighbors in the context of RASopathy syndromes. Data from Phosphosite database (www.phosphosite.org) was collected in order to obtain the potential phosphosites subjected to regulation in the 27 causative RASopathy proteins. We compiled a dataset of dysregulated phosphosites in RASopathies, searched for commonalities between syndromes in harmonized data, and analyzed the role of phosphorylation in the syndromes by the identification of key players between the causative RASopathy proteins and the associated interactome. Results In this study, we provide a curated data set of 27 causative RASopathy genes, identify up to 511 protein–protein associations using pathway enrichment analysis/STRING tool, and identify 12 nodes as main hub proteins. We found that a large group of proteins contain tyrosine residues and their biological processes include but are not limited to the nervous system. Harmonizing published RASopathy phosphoproteomic and immunoblotting studies we identified a total of 147 phosphosites with increased phosphorylation, whereas 47 have reduced phosphorylation. The PKB signaling pathway is the most represented among the dysregulated phosphoproteins within the RASopathy proteins and their neighbors, followed by phosphoproteins implicated in the regulation of cell proliferation and the MAPK pathway. Conclusions This work illustrates the complex network underlying the RASopathies and the potential of phosphoproteomics for dissecting the molecular mechanisms in these syndromes. A combined study of associated genes, their interactome and phosphorylation events in RASopathies, elucidates key players and mechanisms to direct future research, diagnosis and therapeutic windows. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01934-x.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullón
- Metabolic Engineering Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain
| | - Óscar González-Velasco
- Bioinformatics and Functional Genomics Group, IBMCC Cancer Research Center, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.,Network for Cooperative Research in Health-RETICS ARADyAL, 37007, Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, 37007, Salamanca, Spain.,Department of Medicine, University of Salamanca, 37007, Salamanca, Spain
| | - Jesus Lacal
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain. .,Molecular Genetics of Human Diseases Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
50
|
Cao L, Zhang R, Yong L, Chen S, Zhang H, Chen W, Xu Q, Ge H, Mao Y, Zhen Q, Yu Y, Hu X, Sun L. Novel missense mutation of SASH1 in a Chinese family with dyschromatosis universalis hereditaria. BMC Med Genomics 2021; 14:168. [PMID: 34174894 PMCID: PMC8236144 DOI: 10.1186/s12920-021-01014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dyschromatosis universalis hereditaria (DUH) is a pigmentary dermatosis characterized by generalized mottled macules with hypopigmention and hyperpigmention. ABCB6 and SASH1 are recently reported pathogenic genes related to DUH, and the aim of this study was to identify the causative mutations in a Chinese family with DUH. METHODS Sanger sequencing was performed to investigate the clinical manifestation and molecular genetic basis of these familial cases of DUH, bioinformatics tools and multiple sequence alignment were used to analyse the pathogenicity of mutations. RESULTS A novel missense mutation, c.1529G>A, in the SASH1 gene was identified, and this mutation was not found in the National Center for Biotechnology Information Database of Short Genetic Variation, Online Mendelian Inheritance in Man, ClinVar, or 1000 Genomes Project databases. All in silico predictors suggested that the observed substitution mutation was deleterious. Furthermore, multiple sequence alignment of SASH1 revealed that the p.S510N mutation was highly conserved during evolution. In addition, we reviewed the previously reported DUH-related gene mutations in SASH1 and ABCB6. CONCLUSION Although the affected family members had identical mutations, differences in the clinical manifestations of these family members were observed, which reveals the complexity of the phenotype-influencing factors in DUH. Our findings reveal the mutation responsible for DUH in this family and broaden the mutational spectrum of the SASH1 gene.
Collapse
Affiliation(s)
- Lu Cao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Ruixue Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Liang Yong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Shirui Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Hui Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qiongqiong Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qi Zhen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yafen Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xia Hu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Dermatology, Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Liangdan Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Dermatology, Anhui Medical University, Hefei, China.
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, China.
| |
Collapse
|