1
|
Jiang L, Wang S, Xia X, Zhang T, Wang X, Zeng F, Ma J, Fang X. Novel Diagnostic Biomarker BST2 Identified by Integrated Transcriptomics Promotes the Development of Endometriosis via the TNF-α/NF-κB Signaling Pathway. Biochem Genet 2025; 63:354-377. [PMID: 38441813 DOI: 10.1007/s10528-024-10666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/01/2024] [Indexed: 02/19/2025]
Abstract
Endometriosis (EMS) is a common gynecological condition with apparent heterogeneity, lack of diagnostic markers, and unclear pathogenesis. A series of bioinformatics methods were employed to explore EMS's pathological mechanisms and potential biomarkers by analyzing the combined datasets of EMS (GSE7305, GSE7307, GSE58198, E-MTAB-694), which included 34 normal, 127 eutopic, and 46 ectopic endometrium samples. Then, wet-laboratory experiments (including Western blot, qRT-PCR, and Immunohistochemistry, Immunofluorescence, CCK-8, EdU, Wound healing, Transwell, and Adhesion assays) were applied to examine the biomarkers' expression and function in primary endometrial stromal cells. Bioinformatic analysis indicated that the core pathogenesis of EMS was dysregulated immune-inflammation and tissue remolding processes. Among the upregulated DEGs, BST2 was screened as a potential diagnostic biomarker in EMS, which associated with the revised American Fertility Society (r-AFS) stage and immune-inflammation processes of EMS. Moreover, BST2's overexpression was affirmed in the RNA and protein levels in EMS tissues. In vitro experiments demonstrated that TNF-α promoted the expression of BST2 in ESCs. And BST2 knockdown inhibited migration, invasion, adhesion, and inflammation except for the proliferation of ESCs, probably via the TNF-α/NF-κB pathway. Through a combination of wet and dry studies, we concluded that the core pathogenesis of endometriosis was dysregulated immune-inflammation and tissue remolding, and BST2 might be a potential diagnostic and therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Li Jiang
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
- Department of Obstetrics and Gynecology, Central South University, The Second Xiangya Hospital, Changsha, 410000, People's Republic of China
| | - Sixue Wang
- Department of Obstetrics and Gynecology, Central South University, The Second Xiangya Hospital, Changsha, 410000, People's Republic of China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, Central South University, The Second Xiangya Hospital, Changsha, 410000, People's Republic of China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, Central South University, The Second Xiangya Hospital, Changsha, 410000, People's Republic of China
| | - Xi Wang
- Department of Obstetrics and Gynecology, Central South University, The Second Xiangya Hospital, Changsha, 410000, People's Republic of China
| | - Fei Zeng
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, Central South University, The Second Xiangya Hospital, Changsha, 410000, People's Republic of China.
| |
Collapse
|
2
|
Winn-Deen ES, Bortolin LT, Gusenleitner D, Biette KM, Copeland K, Gentry-Maharaj A, Apostolidou S, Couvillon AD, Salem DP, Banerjee S, Grosha J, Zabroski IO, Sedlak CR, Byrne DM, Hamzeh BF, King MS, Cuoco LT, Duff PA, Manning BJ, Hawkins TB, Mattoon D, Guettouche T, Skates SJ, Jamieson A, McAlpine JN, Huntsman D, Menon U. Improving Specificity for Ovarian Cancer Screening Using a Novel Extracellular Vesicle-Based Blood Test: Performance in a Training and Verification Cohort. J Mol Diagn 2024; 26:1129-1148. [PMID: 39326669 PMCID: PMC11600309 DOI: 10.1016/j.jmoldx.2024.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The low incidence of ovarian cancer (OC) dictates that any screening strategy needs to be both highly sensitive and highly specific. This study explored the utility of detecting multiple colocalized proteins or glycosylation epitopes on single tumor-associated extracellular vesicles from blood. The novel Mercy Halo Ovarian Cancer Test (OC Test) uses immunoaffinity capture of tumor-associated extracellular vesicles, followed by proximity-ligation real-time quantitative PCR to detect combinations of up to three biomarkers to maximize specificity, and measures multiple combinations to maximize sensitivity. A high-grade serous carcinoma (HGSC) case-control training set of EDTA plasma samples from 397 women was used to lock down the test design, the data interpretation algorithm, and the cutoff between cancer and noncancer. Performance was verified and compared with cancer antigen 125 in an independent blinded case-control set of serum samples from 390 women (132 controls, 66 HGSC, 83 non-HGSC OC, and 109 benign). In the verification study, the OC Test showed a specificity of 97.0% (128/132; 95% CI, 92.4%-99.6%), a HGSC sensitivity of 97.0% (64/66; 95% CI, 87.8%-99.2%), and an area under the curve of 0.97 (95% CI, 0.93-0.99) and detected 73.5% (61/83; 95% CI, 62.7%-82.6%) of the non-HGSC OC cases. This test exhibited fewer false positives in subjects with benign ovarian tumors, nonovarian cancers, and inflammatory conditions when compared with cancer antigen 125. The combined sensitivity and specificity of this new test suggests that it may have potential in OC screening.
Collapse
Affiliation(s)
| | | | | | | | | | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom; Department of Women's Cancer, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Sophia Apostolidou
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Steven J Skates
- MGH Biostatistics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amy Jamieson
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - Jessica N McAlpine
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - David Huntsman
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia and BC Cancer, Vancouver, British Columbia, Canada
| | - Usha Menon
- MRC Clinical Trials Unit, Institute for Clinical Trials and Methodology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Xu J, Hu M, Liu L, Xu X, Xu L, Song Y. A transcriptomic analysis of dental pulp stem cell senescence in vitro. Biomed Eng Online 2024; 23:102. [PMID: 39425139 PMCID: PMC11488381 DOI: 10.1186/s12938-024-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND/PURPOSE The use of human dental pulp stem cells (hDPSCs) as autologous stem cells for tissue repair and regenerative techniques is a significant area of global research. The objective of this study was to investigate the effects of long-term in vitro culture on the multidifferentiation potential of hDPSCs and the potential molecular mechanisms involved. MATERIALS AND METHODS The tissue block method was used to extract hDPSCs from orthodontic-minus-extraction patients, which were then expanded and cultured in vitro for 12 generations. Stem cells from passages three, six, nine, and twelve were selected. Flow cytometry was used to detect the expression of stem cell surface markers, and CCK-8 was used to assess cell proliferation. β-Galactosidase staining was employed to detect cellular senescence, Alizarin Red S staining to assess osteogenic potential, and Oil Red O staining to evaluate lipogenic capacity. RNA sequencing (RNA-seq) was conducted to identify differentially expressed genes in DPSCs and investigate their potential mechanisms. RESULTS With increasing passage numbers, pulp stem cells showed an increase in senescence and a decrease in proliferative capacity and osteogenic-lipogenic multidifferentiation potential. The expression of stem cell surface markers CD34 and CD45 was stable, whereas the expression of CD73, CD90, and CD105 decreased with increasing passages. According to the RNA-seq analysis, the differentially expressed genes CFH, WNT16, HSD17B2, IDI1, and COL5A3 may be associated with stem cell senescence. CONCLUSION Increased in vitro expansion induced cellular senescence in pulp stem cells, which resulted in a reduction in their proliferative capacity and osteogenic-lipogenic differentiation potential. The differential expression of genes such as CFH, WNT16, HSD17B2, IDI1, and COL5A3 may represent a potential mechanism for the induction of cellular senescence in pulp stem cells.
Collapse
Affiliation(s)
- Jidong Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mingchang Hu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Longfei Liu
- Qingdao Engineering Vocational College, Qingdao, 266000, China
| | - Xuecheng Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Linlin Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China.
| |
Collapse
|
4
|
Bell CF, Baylis RA, Lopez NG, Ma WF, Gao H, Wang F, Bamezai S, Fu C, Kojima Y, Adkar SS, Luo L, Miller CL, Leeper NJ. BST2 induces vascular smooth muscle cell plasticity and phenotype switching during cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612298. [PMID: 39314286 PMCID: PMC11418980 DOI: 10.1101/2024.09.10.612298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Smooth muscle cell (SMC) plasticity and phenotypic switching play prominent roles in the pathogenesis of multiple diseases, but their role in tumorigenesis is unknown. We investigated whether and how SMC diversity and plasticity plays a role in tumor angiogenesis and the tumor microenvironment. Methods and Results We use SMC-specific lineage-tracing mouse models and single cell RNA sequencing to observe the phenotypic diversity of SMCs participating in tumor vascularization. We find that a significant proportion of SMCs adopt a phenotype traditionally associated with macrophage-like cells. These cells are transcriptionally similar to 'resolution phase' M2b macrophages, which have been described to have a role in inflammation resolution. Computationally predicted by the ligand-receptor algorithm CellChat, signaling from BST2 on the surface of tumor cells to PIRA2 on SMCs promote this phenotypic transition; in vitro SMC assays demonstrate upregulation of macrophage transcriptional programs, and increased proliferation, migration, and phagocytic ability when exposed to BST2. Knockdown of BST2 in the tumor significantly decreases the transition towards a macrophage-like phenotype, and cells that do transition have a comparatively higher inflammatory signal typically associated with anti-tumor effect. Conclusion As BST2 is known to be a poor prognostic marker in multiple cancers where it is associated with an M2 macrophage-skewed TME, these studies suggest that phenotypically switched SMCs may have a previously unidentified role in this immunosuppressive milieu. Further translational work is needed to understand how this phenotypic switch could influence the response to anti-cancer agents and if targeted inhibition of SMC plasticity would be therapeutically beneficial.
Collapse
|
5
|
Souto EP, Gong P, Landua JD, Srinivasan RR, Ganesan A, Dobrolecki LE, Purdy SC, Pan X, Zeosky M, Chung A, Yi SS, Ford HL, Lewis MT. The interferon/STAT1 signaling axis is a common feature of tumor-initiating cells in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557958. [PMID: 37745510 PMCID: PMC10515955 DOI: 10.1101/2023.09.15.557958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A tumor cell subpopulation of tumor-initiating cells (TIC), or "cancer stem cells", are associated with therapeutic resistance, as well as both local and distant recurrence. Enriched populations of TIC are identified by markers including aldehyde dehydrogenase (ALDH1) activity, the cell surface marker combination CD44 + /CD24 - , or fluorescent reporters for signaling pathways that regulate TIC function. We showed previously that S ignal T ransducer and A ctivator of T ranscription (STAT)-mediated transcription allows enrichment for TIC in claudin-low models of human triple-negative breast cancer using a STAT-responsive reporter. However, the molecular phenotypes of STAT TIC are not well understood, and there is no existing method to lineage-trace TIC as they undergo cell state changes. Using a new STAT-responsive lineage-tracing (LT) system in conjunction with our original reporter, we enriched for cells with enhanced mammosphere-forming potential in some, but not all, basal-like triple-negative breast cancer (TNBC) xenograft models (TNBC) indicating TIC-related and TIC-independent functions for STAT signaling. Single-cell RNA sequencing (scRNAseq) of reporter-tagged xenografts and clinical samples identified a common interferon (IFN)/STAT1-associated transcriptional state, previously linked to inflammation and macrophage differentiation, in TIC. Surprisingly, most of the genes we identified are not present in previously published TIC signatures derived using bulk RNA sequencing. Finally, we demonstrated that bone marrow stromal cell antigen 2 (BST2), is a cell surface marker of this state, and that it functionally regulates TIC frequency. These results suggest TIC may exploit the IFN/STAT1 signaling axis to promote their activity, and that targeting this pathway may help eliminate TIC. Significance TIC differentially express interferon response genes, which were not previously reported in bulk RNA sequencing-derived TIC signatures, highlighting the importance of coupling single-cell transcriptomics with enrichment to derive TIC signatures.
Collapse
|
6
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
7
|
Li Y, Chen W, Zhu X, Mei H, Steinhoff M, Buddenkotte J, Wang J, Zhang W, Li Z, Dai X, Shan C, Wang J, Meng J. Neuronal BST2: A Pruritic Mediator alongside Protease-Activated Receptor 2 in the IL-27-Driven Itch Pathway. J Invest Dermatol 2024; 144:1829-1842.e4. [PMID: 38360199 DOI: 10.1016/j.jid.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Chronic itch is a common and complex symptom often associated with skin diseases such as atopic dermatitis (AD). Although IL-27 is linked to AD, its role and clinical significance in itch remain undefined. We sought to investigate IL-27 function in itch using tissue-specific transgenic mice, various itch models, behavior scoring, RNA sequencing, and cytokine/kinase array. Our findings show that IL-27 receptors were overexpressed in human AD skin. Intradermal IL-27 injection failed to directly induce itch in mice but upregulated skin protease-activated receptor 2 (PAR2) transcripts, a key factor in itch and AD. IL-27 activated human keratinocytes, increasing PAR2 transcription and activity. Coinjection of SLIGRL (PAR2 agonist) and IL-27 in mice heightened PAR2-mediated itch. In addition, IL-27 boosted BST2 transcription in sensory neurons and keratinocytes. BST2 was upregulated in AD skin, and its injection in mice induced itch-like response. BST2 colocalized with sensory nerve branches in AD skin from both human and murine models. Sensory neurons released BST2, and mice with sensory neuron-specific BST2 knockout displayed reduced itch responses. Overall, this study provides evidence that skin IL-27/PAR2 and neuronal IL-27/BST2 axes are implicated in cutaneous inflammation and pruritus. The discovery of neuronal BST2 in pruritus shed light on BST2 in the itch cascade.
Collapse
Affiliation(s)
- Yanqing Li
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Xingyun Zhu
- School of Life Sciences, Henan University, Henan, China
| | - Huiyuan Mei
- School of Life Sciences, Henan University, Henan, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar; Israel Englander Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jinhai Wang
- School of Life Sciences, Henan University, Henan, China
| | - Wenhao Zhang
- School of Life Sciences, Henan University, Henan, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Dai
- School of Life Sciences, Henan University, Henan, China
| | - Chunxu Shan
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
8
|
Love NR, Williams C, Killingbeck EE, Merleev A, Saffari Doost M, Yu L, McPherson JD, Mori H, Borowsky AD, Maverakis E, Kiuru M. Melanoma progression and prognostic models drawn from single-cell, spatial maps of benign and malignant tumors. SCIENCE ADVANCES 2024; 10:eadm8206. [PMID: 38996022 PMCID: PMC11244543 DOI: 10.1126/sciadv.adm8206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratumoral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular proliferation, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI technology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.
Collapse
Affiliation(s)
- Nick R Love
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Claire Williams
- NanoString Technologies, a Bruker Company, Seattle, WA 98109, USA
| | | | - Alexander Merleev
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | | | - Lan Yu
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, CA 95816, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95816, USA
| |
Collapse
|
9
|
Sinha P, Thio CL, Balagopal A. Intracellular Host Restriction of Hepatitis B Virus Replication. Viruses 2024; 16:764. [PMID: 38793645 PMCID: PMC11125714 DOI: 10.3390/v16050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis B virus (HBV) infects hepatocytes and hijacks host cellular mechanisms for its replication. Host proteins can be frontline effectors of the cell's defense and restrict viral replication by impeding multiple steps during its intracellular lifecycle. This review summarizes many of the well-described restriction factors, their mechanisms of restriction, and counteractive measures of HBV, with a special focus on viral transcription. We discuss some of the limitations and knowledge gaps about the restriction factors, highlighting how these factors may be harnessed to facilitate therapeutic strategies against HBV.
Collapse
Affiliation(s)
| | | | - Ashwin Balagopal
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.S.); (C.L.T.)
| |
Collapse
|
10
|
Mondal A, Sarkar A, Das D, Sengupta A, Kabiraj A, Mondal P, Nag R, Mukherjee S, Das C. Epigenetic orchestration of the DNA damage response: Insights into the regulatory mechanisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:99-141. [PMID: 39179350 DOI: 10.1016/bs.ircmb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The DNA damage response (DDR) is a critical cellular mechanism that safeguards genome integrity and prevents the accumulation of harmful DNA lesions. Increasing evidence highlights the intersection between DDR signaling and epigenetic regulation, offering profound insights into various aspects of cellular function including oncogenesis. This comprehensive review explores the intricate relationship between the epigenetic modifications and DDR activation, with a specific focus on the impact of viral infections. Oncogenic viruses, such as human papillomavirus, hepatitis virus (HBV or HCV), and Epstein-Barr virus have been shown to activate the DDR. Consequently, these DNA damage events trigger a cascade of epigenetic alterations, including changes in DNA methylation patterns, histone modifications and the expression of noncoding RNAs. These epigenetic changes exert profound effects on chromatin structure, gene expression, and maintenance of genome stability. Importantly, elucidation of the viral-induced epigenetic alterations in the context of DDR holds significant implications for comprehending the complexity of cancer and provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Dipanwita Das
- Virus Unit [NICED-ICMR], ID and BG Hospital, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Rachayita Nag
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
11
|
Bian J, Yan J, Chen C, Yin L, Liu P, Zhou Q, Yu J, Liang Q, He Q. Development of an immune-related diagnostic predictive model for oral lichen planus. Medicine (Baltimore) 2024; 103:e37469. [PMID: 38489725 PMCID: PMC10939522 DOI: 10.1097/md.0000000000037469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Oral lichen planus (OLP) was a chronic inflammatory disease of unknown etiology with a 1.4% chance of progressing to malignancy. However, it has been suggested in several studies that immune system disorders played a dominant role in the onset and progression of OLP. Therefore, this experiment aimed to develop a diagnostic prediction model for OLP based on immunopathogenesis to achieve early diagnosis and treatment and prevent cancer. In this study, 2 publicly available OLP datasets from the gene expression omnibus database were filtered. In the experimental group (GSE52130), the level of immune cell infiltration was assessed using MCPcounter and ssGSEA algorithms. Subsequently, differential expression analysis and gene set enrichment analysis were performed between the OLP and control groups. The resulting differentially expressed genes were intersected with immunologically relevant genes provided on the immunology database and analysis portal database (ImmPort) website to obtain differentially expressed immunologically relevant genes (DEIRGs). Furthermore, the gene ontology and kyoto encyclopedia of genes and genomes analyses were carried out. Finally, protein-protein interaction network and least absolute shrinkage and selection operator regression analyses constructed a model for OLP. Receiver operating characteristic curves for the experimental and validation datasets (GSE38616) were plotted separately to validate the model's credibility. In addition, real-time quantitative PCR experiment was performed to verify the expression level of the diagnostic genes. Immune cell infiltration analysis revealed a more significant degree of inflammatory infiltration in the OLP group compared to the control group. In addition, the gene set enrichment analysis results were mainly associated with keratinization, antibacterial and immune responses, etc. A total of 774 differentially expressed genes was obtained according to the screening criteria, of which 65 were differentially expressed immunologically relevant genes. Ultimately, an immune-related diagnostic prediction model for OLP, which was composed of 5 hub genes (BST2, RNASEL, PI3, DEFB4A, CX3CL1), was identified. The verification results showed that the model has good diagnostic ability. There was a significant correlation between the 5 hub diagnostic biomarkers and immune infiltrating cells. The development of this model gave a novel insight into the early diagnosis of OLP.
Collapse
Affiliation(s)
- Jiamin Bian
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiayu Yan
- School of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Stomatology, Sichuan Integrated Traditional and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Chu Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Yin
- Department of Stomatology, Sichuan Integrated Traditional and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Panpan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianfeng Yu
- Department of Stomatology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liang
- Department of Stomatology, Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, Sichuan, China
| | - Qingmei He
- Department of Neurological, Chongqing Shi Yong Chuan Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
12
|
Tiberio L, Laffranchi M, Zucchi G, Salvi V, Schioppa T, Sozzani S, Del Prete A, Bosisio D. Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in cancer. Front Immunol 2024; 15:1360291. [PMID: 38504978 PMCID: PMC10948453 DOI: 10.3389/fimmu.2024.1360291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Yu H, Bian Q, Wang X, Wang X, Lai L, Wu Z, Zhao Z, Ban B. Bone marrow stromal cell antigen 2: Tumor biology, signaling pathway and therapeutic targeting (Review). Oncol Rep 2024; 51:45. [PMID: 38240088 PMCID: PMC10828922 DOI: 10.3892/or.2024.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) is a type II transmembrane protein that serves critical roles in antiretroviral defense in the innate immune response. In addition, it has been suggested that BST2 is highly expressed in various types of human cancer and high BST2 expression is related to different clinicopathological parameters in cancer. The molecular mechanism underlying BST2 as a potential tumor biomarker in human solid tumors has been reported on; however, to the best of our knowledge, there has been no review published on the molecular mechanism of BST2 in human solid tumors. The present review focuses on human BST2 expression, structure and functions; the molecular mechanisms of BST2 in breast cancer, hepatocellular carcinoma, gastrointestinal tumor and other solid tumors; the therapeutic potential of BST2; and the possibility of BST2 as a potential marker. BST2 is involved in cell membrane integrity and lipid raft formation, which can activate epidermal growth factor receptor signaling pathways, providing a potential mechanistic link between BST2 and tumorigenesis. Notably, BST2 may be considered a universal tumor biomarker and a potential therapeutical target.
Collapse
Affiliation(s)
- Honglian Yu
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xin Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xinzhe Wang
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Ban
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
14
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
15
|
Hilligan KL, Namasivayam S, Clancy CS, Baker PJ, Old SI, Peluf V, Amaral EP, Oland SD, O'Mard D, Laux J, Cohen M, Garza NL, Lafont BAP, Johnson RF, Feng CG, Jankovic D, Lamiable O, Mayer-Barber KD, Sher A. Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2. Nat Commun 2023; 14:8229. [PMID: 38086794 PMCID: PMC10716133 DOI: 10.1038/s41467-023-43447-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Type-1 and type-3 interferons (IFNs) are important for control of viral replication; however, less is known about the role of Type-2 IFN (IFNγ) in anti-viral immunity. We previously observed that lung infection with Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 in mice yet drives low levels of type-1 IFNs but robust IFNγ. Here we examine the role of ongoing IFNγ responses to pre-established bacterial infection on SARS-CoV-2 disease outcomes in two murine models. We report that IFNγ is required for iv BCG induced reduction in pulmonary viral loads, an outcome dependent on IFNγ receptor expression by non-hematopoietic cells. Importantly, we show that BCG infection prompts pulmonary epithelial cells to upregulate IFN-stimulated genes with reported anti-viral activity in an IFNγ-dependent manner, suggesting a possible mechanism for the observed protection. Finally, we confirm the anti-viral properties of IFNγ by demonstrating that the recombinant cytokine itself provides strong protection against SARS-CoV-2 challenge when administered intranasally. Together, our data show that a pre-established IFNγ response within the lung is protective against SARS-CoV-2 infection, suggesting that concurrent or recent infections that drive IFNγ may limit the pathogenesis of SARS-CoV-2 and supporting possible prophylactic uses of IFNγ in COVID-19 management.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Paul J Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Victoria Peluf
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danielle O'Mard
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julie Laux
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Melanie Cohen
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole L Garza
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernard A P Lafont
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reed F Johnson
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carl G Feng
- Immunology and Host Defense Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olivier Lamiable
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Cruz Amaya J, Walcheck B, Smith-Gagen J, Lombardi VC, Hudig D. Detection of Antibody-Dependent Cell-Mediated Cytotoxicity-Supporting Antibodies by NK-92-CD16A Cell Externalization of CD107a: Recognition of Antibody Afucosylation and Assay Optimization. Antibodies (Basel) 2023; 12:44. [PMID: 37489366 PMCID: PMC10366760 DOI: 10.3390/antib12030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) lymphocytes eliminates cells infected with viruses. Anti-viral ADCC requires three components: (1) antibody; (2) effector lymphocytes with the Fc-IgG receptor CD16A; and (3) viral proteins in infected cell membranes. Fc-afucosylated antibodies bind with greater affinity to CD16A than fucosylated antibodies; individuals' variation in afucosylation contributes to differences in ADCC. Current assays for afucosylated antibodies involve expensive methods. We report an improved bioassay for antibodies that supports ADCC, which encompasses afucosylation. This assay utilizes the externalization of CD107a by NK-92-CD16A cells after antibody recognition. We used anti-CD20 monoclonal antibodies, GA101 WT or glycoengineered (GE), 10% or ~50% afucosylated, and CD20-positive Raji target cells. CD107a increased detection 7-fold compared to flow cytometry to detect Raji-bound antibodies. WT and GE antibody effective concentrations (EC50s) for CD107a externalization differed by 20-fold, with afucosylated GA101-GE more detectable. The EC50s for CD107a externalization vs. 51Cr cell death were similar for NK-92-CD16A and blood NK cells. Notably, the % CD107a-positive cells were negatively correlated with dead Raji cells and were nearly undetectable at high NK:Raji ratios required for cytotoxicity. This bioassay is very sensitive and adaptable to assess anti-viral antibodies but unsuitable as a surrogate assay to monitor cell death after ADCC.
Collapse
Affiliation(s)
- Judith Cruz Amaya
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Bruce Walcheck
- Department of Veterinary and Biological Sciences, Center for Immunology and Masonic Cancer Center, University of Minnesota, 295J AS/VM Building, 1988 Fitch Avenue, Saint Paul, MN 55108, USA
| | - Julie Smith-Gagen
- School of Community Health Sciences, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Dorothy Hudig
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
17
|
Cheng J, Zhang G, Deng T, Liu Z, Zhang M, Zhang P, Adeshakin FO, Niu X, Yan D, Wan X, Yu G. CD317 maintains proteostasis and cell survival in response to proteasome inhibitors by targeting calnexin for RACK1-mediated autophagic degradation. Cell Death Dis 2023; 14:333. [PMID: 37210387 DOI: 10.1038/s41419-023-05858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Unbalanced protein homeostasis (proteostasis) networks are frequently linked to tumorigenesis, making cancer cells more susceptible to treatments that target proteostasis regulators. Proteasome inhibition is the first licensed proteostasis-targeting therapeutic strategy, and has been proven effective in hematological malignancy patients. However, drug resistance almost inevitably develops, pressing for a better understanding of the mechanisms that preserve proteostasis in tumor cells. Here we report that CD317, a tumor-targeting antigen with a unique topology, was upregulated in hematological malignancies and preserved proteostasis and cell viability in response to proteasome inhibitors (PIs). Knocking down CD317 lowered Ca2+ levels in the endoplasmic reticulum (ER), promoting PIs-induced proteostasis failure and cell death. Mechanistically, CD317 interacted with calnexin (CNX), an ER chaperone protein that limits calcium refilling via the Ca2+ pump SERCA, thereby subjecting CNX to RACK1-mediated autophagic degradation. As a result, CD317 decreased the level of CNX protein, coordinating Ca2+ uptake and thus favoring protein folding and quality control in the ER lumen. Our findings reveal a previously unrecognized role of CD317 in proteostasis control and imply that CD317 could be a promising target for resolving PIs resistance in the clinic.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Mengqi Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Funmilayo O Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Xiangyun Niu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Guang Yu
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
18
|
Finlay JB, Brann DH, Abi-Hachem R, Jang DW, Oliva AD, Ko T, Gupta R, Wellford SA, Moseman EA, Jang SS, Yan CH, Matusnami H, Tsukahara T, Datta SR, Goldstein BJ. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med 2022; 14:eadd0484. [PMID: 36542694 PMCID: PMC10317309 DOI: 10.1126/scitranslmed.add0484] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 causes profound changes in the sense of smell, including total smell loss. Although these alterations are often transient, many patients with COVID-19 exhibit olfactory dysfunction that lasts months to years. Although animal and human autopsy studies have suggested mechanisms driving acute anosmia, it remains unclear how SARS-CoV-2 causes persistent smell loss in a subset of patients. To address this question, we analyzed olfactory epithelial samples collected from 24 biopsies, including from nine patients with objectively quantified long-term smell loss after COVID-19. This biopsy-based approach revealed a diffuse infiltrate of T cells expressing interferon-γ and a shift in myeloid cell population composition, including enrichment of CD207+ dendritic cells and depletion of anti-inflammatory M2 macrophages. Despite the absence of detectable SARS-CoV-2 RNA or protein, gene expression in the barrier supporting cells of the olfactory epithelium, termed sustentacular cells, appeared to reflect a response to ongoing inflammatory signaling, which was accompanied by a reduction in the number of olfactory sensory neurons relative to olfactory epithelial sustentacular cells. These findings indicate that T cell-mediated inflammation persists in the olfactory epithelium long after SARS-CoV-2 has been eliminated from the tissue, suggesting a mechanism for long-term post-COVID-19 smell loss.
Collapse
Affiliation(s)
- John B. Finlay
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - David H. Brann
- Harvard Medical School Department of Neurobiology, Boston, MA 02115
| | - Ralph Abi-Hachem
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - Allison D. Oliva
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | - Tiffany Ko
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
| | | | - E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710
| | - Sophie S. Jang
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, San Diego, CA 92037
| | - Carol H. Yan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, San Diego, CA 92037
| | - Hiroaki Matusnami
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC 27710
| | | | | | - Bradley J. Goldstein
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
19
|
King CR, Mehle A. Retasking of canonical antiviral factors into proviral effectors. Curr Opin Virol 2022; 56:101271. [PMID: 36242894 PMCID: PMC10090225 DOI: 10.1016/j.coviro.2022.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Under constant barrage by viruses, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically antiviral proteins and retasking them for proviral purposes.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
20
|
Zhao Y, Zhao K, Wang S, Du J. Multi-functional BST2/tetherin against HIV-1, other viruses and LINE-1. Front Cell Infect Microbiol 2022; 12:979091. [PMID: 36176574 PMCID: PMC9513188 DOI: 10.3389/fcimb.2022.979091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2), also known as CD317, HM1.24, or tetherin, is a type II transmembrane glycoprotein. Its expression is induced by IFN-I, and it initiates host immune responses by directly trapping enveloped HIV-1 particles onto the cell surface. This antagonistic mechanism toward the virus is attributable to the unique structure of BST2. In addition to its antiviral activity, BST2 restricts retrotransposon LINE-1 through a distinct mechanism. As counteractive measures, different viruses use a variety of proteins to neutralize the function or even stability of BST2. Interestingly, BST2 seems to have both a positive and a negative influence on immunomodulation and virus propagation. Here, we review the relationship between the structural and functional bases of BST2 in anti-HIV-1 and suppressing retrotransposon LINE-1 activation and focus on its dual features in immunomodulation and regulating virus propagation.
Collapse
Affiliation(s)
- Yifei Zhao
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Shaohua Wang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Juan Du,
| |
Collapse
|
21
|
Liu X, Chen Q, Ji X, Yu W, Wang T, Han J, Li S, Liu J, Zeng F, Zhao Y, Zhang Y, Luo Q, Wang S, Wang F. Astragaloside IV promotes pharmacological effect of Descurainia sophia seeds on isoproterenol-induced cardiomyopathy in rats by synergistically modulating the myosin motor. Front Pharmacol 2022; 13:939483. [PMID: 36034815 PMCID: PMC9403516 DOI: 10.3389/fphar.2022.939483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Descurainia sophia seeds (DS), Astragalus mongholicus (AM), and their formulas are widely used to treat heart failure caused by various cardiac diseases in traditional Chinese medicine practice. However, the molecular mechanism of action of DS and AM has not been completely understood. Herein, we first used mass spectrometry coupled to UPLC to characterize the chemical components of DS and AM decoctions, then applied MS-based quantitative proteomic analysis to profile protein expression in the heart of rats with isoproterenol-induced cardiomyopathy (ISO-iCM) before and after treated with DS alone or combined with AM, astragaloside IV (AS4), calycosin-7-glucoside (C7G), and Astragalus polysaccharides (APS) from AM. We demonstrated for the first time that DS decoction alone could reverse the most of differentially expressed proteins in the heart of the rats with ISO-iCM, including the commonly recognized biomarkers natriuretic peptides (NPPA) of cardiomyopathy and sarcomeric myosin light chain 4 (MYL4), relieving ISO-iCM in rats, but AM did not pronouncedly improve the pharmacological efficiency of DS. Significantly, we revealed that AS4 remarkably promoted the pharmacological potency of DS by complementarily reversing myosin motor MYH6/7, and further downregulating NPPA and MYL4. In contrast, APS reduced the efficiency of DS due to upregulating NPPA and MYL4. These findings not only provide novel insights to better understanding in the combination principle of traditional Chinese medicine but also highlight the power of mass spectrometric proteomics strategy combined with conventional pathological approaches for the traditional medicine research.
Collapse
|
22
|
Immunomodulatory Responses of Subcapsular Sinus Floor Lymphatic Endothelial Cells in Tumor-Draining Lymph Nodes. Cancers (Basel) 2022; 14:cancers14153602. [PMID: 35892863 PMCID: PMC9330828 DOI: 10.3390/cancers14153602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor-draining lymph nodes (LNs), composed of lymphocytes, antigen-presenting cells, and stromal cells, are highly relevant for tumor immunity and the efficacy of immunotherapies. Lymphatic endothelial cells (LECs) represent an important stromal cell type within LNs, and several distinct subsets of LECs that interact with various immune cells and regulate immune responses have been identified. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize LECs from LNs draining B16F10 melanomas compared to non-tumor-draining LNs. Several upregulated genes with immune-regulatory potential, especially in LECs lining the subcapsular sinus floor (fLECs), were identified and validated. Interestingly, some of these genes, namely, podoplanin, CD200, and BST2, affected the adhesion of macrophages to LN LECs in vitro. Congruently, lymphatic-specific podoplanin deletion led to a decrease in medullary sinus macrophages in tumor-draining LNs in vivo. In summary, our data show that tumor-derived factors induce transcriptional changes in LECs of the draining LNs, especially the fLECs, and that these changes may affect tumor immunity. We also identified a new function of podoplanin, which is expressed on all LECs, in mediating macrophage adhesion to LECs and their correct localization in LN sinuses.
Collapse
|
23
|
Yang Y, Sun Q, Guo J, Liu Z, Wang J, Yao Y, Yu P, Cao J, Zhang Y, Song X. Identification of a lncRNA AC011511.5- Mediated Competitive Endogenous RNA Network Involved in the Pathogenesis of Allergic Rhinitis. Front Genet 2022; 13:811679. [PMID: 35711945 PMCID: PMC9194448 DOI: 10.3389/fgene.2022.811679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
LncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks are thought to be involved in regulating the development of various inflammatory diseases. Up to now, the mechanism of such a network in allergic rhinitis (AR) remains unclear. In the study, we investigated the differential expression of lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) by performing a microarray analysis of peripheral blood obtained from AR patients and healthy control subjects. StarBase 2.0 was used to predict miRNAs that might interact with various DElncRNAs and DEmRNAs. We constructed a ceRNA network based on potential lncRNA-miRNA-mRNA interactions. The Cluster Profiler R package was used to perform a functional enrichment analysis of the hub-ceRNA, and Molecular Complex Detection (MCODE) was used for further identification of the hub-ceRNA network. The expression levels of genes contained in the hub-ceRNA network were validated by RT-PCR. In total, 247 DEmRNAs and 18 DelncRNAs were aberrantly expressed in the PBMCs of AR patients. A ceRNA network consisting of 3 lncRNAs, 45 miRNAs, and 75 mRNAs was constructed. A GO analysis showed that negative regulation of immune response, response to interferon-beta, and response to interferon-alpha were important terms. A KEGG pathway analysis showed that 75 mRNAs were significantly enriched in "NOD-like receptor signaling pathway" and "tryptophan metabolism". Ultimately, a hub-ceRNA network was constructed based on 1 lncRNA (AC011511.5), 5 miRNAs (hsa-miR-576-5p, hsa-miR-520c-5p, hsa-miR-519b-5p, hsa-miR-519c-5p, and hsa-miR-518d-5p), and 2 mRNAs (ZFP36L1 and SNX27). Following further verification, we found that overexpression of lncRNA AC011511.5 or inhibitor of miR-576-5p upregulated SNX27 expression. The expression of SNX27 in the lncRNA AC011511.5 overexpression & miR-576-5p inhibitor group was not different from that in the miR-576-5p inhibitor group or lncRNA AC011511.5 overexpression group, indicating that overexpression of lncRNA AC011511.5 could not further upregulate the expression of SNX27 in miR-576-5p inhibitor Jurkat cells. This network may provide new insights to search for biomarkers that can be used for the diagnosis and clinical treatment of AR.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiayu Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
24
|
Jinyu L, Shuying W, Panchan Z, Dan C, Chao C, Xingyu Y, Weiwei C. Bone marrow stromal cell antigen 2(BST2) suppresses the migration and invasion of trophoblasts in preeclampsia by downregulating matrix metallopeptidase 2(MMP2). Bioengineered 2022; 13:13174-13187. [PMID: 35635087 PMCID: PMC9276030 DOI: 10.1080/21655979.2022.2074712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia is a grievous pregnancy-related complication with an incidence of approximately 5∼7% in pregnant women. Placental abnormalities and decreased placental perfusion associated with impaired trophoblast invasion are early pathological findings of preeclampsia. BST2 is a multifunctional transmembrane protein that plays critical roles in physiological and pathological processes, but its impacts and mechanisms of action in preeclampsia are inadequately understood. The aim of this manuscript was to investigate the functional impacts of BST2 and MMP2 on the biological behavior of trophoblast cells in preeclampsia. The expression of these proteins and their genes was analyzed by qRT-PCR, western blotting and immunohistochemistry. The results showed that the expression of BST2 and MMP2 was significantly downregulated in preeclampsia. The migration and invasion capacities of HTR-8/SVneo and JAR cells with overexpression or knockdown of BST2 were detected by wound healing assay and Transwell assays. It was found that BST2 overexpression could up-regulate MMP2 expression, and enhance the migration and invasion capacity of HTR-8/SVneo and JAR cells. BST2 knockdown could reverse these effects. MMP2 knockdown could downregulate the invasion capacity of HTR-8/SVneo cells, and MMP2 overexpression reversed these effects. Pearson correlation analysis demonstrated that the expression of MMP2 and BST2 were positively correlated. These results indicate that the downregulation of BST2 lowers MMP2 expression and restraint trophoblast functions, which probably explain its role in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Liu Jinyu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Shuying
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Panchan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Dan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xingyu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Cheng Weiwei
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
26
|
Bone marrow stromal antigen 2 (BST-2) genetic variants influence expression levels and disease outcome in HIV-1 chronically infected patients. Retrovirology 2022; 19:3. [PMID: 35081977 PMCID: PMC8793201 DOI: 10.1186/s12977-022-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Background Bone marrow stromal antigen 2 (BST-2) also known as Tetherin (CD317/HM1.24), is a host restriction factor that blocks the release of HIV-1 virions from infected cells. Previous studies reported that BST-2 genetic variants or single nucleotide polymorphims (SNPs) have a preventative role during HIV-1 infection. However, the influence of BST-2 SNPs on expression levels remains unknown. In this study, we investigated the influence of BST-2 SNPs on expression levels and disease outcome in HIV-1 subtype C chronically infected antiretroviral therapy naïve individuals. Results We quantified BST-2 mRNA levels in peripheral blood mononuclear cells (PBMCs), determined BST-2 protein expression on the surface of CD4+ T cells using flow cytometry and genotyped two intronic single nucleotide polymorphisms (SNPs) rs919267 and rs919266 together with one SNP rs9576 located in the 3’ untranslated region (UTR) of bst-2 gene using TaqMan assays from HIV-1 uninfected and infected participants. Subsequently, we determined the ability of plasma antibody levels to mediate antibody-dependent cellular phagocytosis (ADCP) using gp120 consensus C and p24 subtype B/C protein. Fc receptor-mediated NK cell degranulation was evaluated as a surrogate for ADCC activity using plasma from HIV-1 positive participants. BST-2 mRNA expression levels in PBMCs and protein levels on CD4+ T cells were lower in HIV-1 infected compared to uninfected participants (p = 0.075 and p < 0.001, respectively). rs919267CT (p = 0.042) and rs919267TT (p = 0.045) were associated with lower BST-2 mRNA expression levels compared to rs919267CC in HIV-1 uninfected participants. In HIV-1 infected participants, rs919267CT associated with lower CD4 counts, (p = 0.003), gp120-IgG1 (p = 0.040), gp120-IgG3 (p = 0.016) levels but higher viral loads (p = 0.001) while rs919267TT was associated with lower BST-2 mRNA levels (p = 0.046), CD4 counts (p = 0.001), gp120-IgG1 levels (p = 0.033) but higher plasma viral loads (p = 0.007). Conversely, rs9576CA was associated with higher BST-2 mRNA expression levels (p = 0.027), CD4 counts (p = 0.079), gp120-IgG1 (p = 0.009), gp120-IgG3 (p = 0.039) levels but with lower viral loads (p = 0.037). Conclusion Our findings show that bst-2 SNPs mediate BST-2 expression and disease outcome, correlate with gp120-IgG1, gp120-IgG3 levels but not p24-IgG levels, ADCC and ADCP activity. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12977-022-00588-2.
Collapse
|
27
|
Viral Interactions with Adaptor-Protein Complexes: A Ubiquitous Trait among Viral Species. Int J Mol Sci 2021; 22:ijms22105274. [PMID: 34067854 PMCID: PMC8156722 DOI: 10.3390/ijms22105274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets with many viruses possessing AP-interacting motifs. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The ubiquity of this phenomenon is evidenced by the fact that there are representatives for AP interference in all major viral families, covered in this review. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies.
Collapse
|
28
|
Singh R, Ramsuran V, Naranbhai V, Yende-Zuma N, Garrett N, Mlisana K, Dong KL, Walker BD, Abdool Karim SS, Carrington M, Ndung'u T. Epigenetic Regulation of BST-2 Expression Levels and the Effect on HIV-1 Pathogenesis. Front Immunol 2021; 12:669241. [PMID: 34025670 PMCID: PMC8131512 DOI: 10.3389/fimmu.2021.669241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
HIV-1 must overcome host antiviral restriction factors for efficient replication. We hypothesized that elevated levels of bone marrow stromal cell antigen 2 (BST-2), a potent host restriction factor that interferes with HIV-1 particle release in some human cells and is antagonized by the viral protein Vpu, may associate with viral control. Using cryopreserved samples, from HIV-1 seronegative and seropositive Black women, we measured in vitro expression levels of BST-2 mRNA using a real-time PCR assay and protein levels were validated by Western blotting. The expression level of BST-2 showed an association with viral control within two independent cohorts of Black HIV infected females (r=-0.53, p=0.015, [n =21]; and r=-0.62, p=0.0006, [n=28]). DNA methylation was identified as a mechanism regulating BST-2 levels, where increased BST-2 methylation results in lower expression levels and associates with worse HIV disease outcome. We further demonstrate the ability to regulate BST-2 levels using a DNA hypomethylation drug. Our results suggest BST-2 as a factor for potential therapeutic intervention against HIV and other diseases known to involve BST-2.
Collapse
Affiliation(s)
- Ravesh Singh
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Vivek Naranbhai
- The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Koleka Mlisana
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Krista L Dong
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Mary Carrington
- The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
29
|
Liu W, Li Y, Feng S, Guan Y, Cao Y. MicroRNA-760 inhibits cell viability and migration through down-regulating BST2 in gastric cancer. J Biochem 2021; 168:159-170. [PMID: 32167539 DOI: 10.1093/jb/mvaa031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common types of carcinoma with a threat to global health. MicroRNA-760 (miR-760) was significantly down-regulated in the primary tumour of patients with advanced gastric cancer. However, the role of miR-760 in gastric cancer is still unclear. Herein, miR-760 was down-regulated in gastric cancer tissues. Moreover, miR-760 overexpression and knockdown were conducted in gastric cancer cells (MGC-803 and SGC-7901) in vitro. The in vitro functional assays proved that miR-760 overexpression reduced cell viability, cell cycle, migration and invasion, promoted apoptosis and suppressed MMP activity in MGC-803 cells. Conversely, miR-760 knockdown led to the opposite in SGC-7901 cells. Notably, bone marrow stromal antigen 2 (BST2) was verified as a target gene of miR-760. MiR-760 mimics down-regulated BST2 level in gastric cancer tissues and in MGC-803 cells, whereas miR-760 inhibitor up-regulated its level in SGC-7901 cells. MiR-760-regulated cell properties through reduction of BST2. In addition, miR-760 inhibited tumourigenesis in a nude mouse xenograft model in vivo. In conclusion, our results demonstrated that miR-760 exhibited a suppressive role in gastric cancer via inhibiting BST2, indicating that miR-760/BST2 axis may provide promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Weiyu Liu
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang 110016, People's Republic of China
| | - Yan Li
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang 110016, People's Republic of China
| | - Shuting Feng
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang 110016, People's Republic of China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yong Cao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
30
|
Frese N, Schmerer P, Wortmann M, Schürmann M, König M, Westphal M, Weber F, Sudhoff H, Gölzhäuser A. Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:172-179. [PMID: 33614383 PMCID: PMC7871036 DOI: 10.3762/bjnano.12.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Helium ion microscopy (HIM) offers the opportunity to obtain direct views of biological samples such as cellular structures, virus particles, and microbial interactions. Imaging with the HIM combines sub-nanometer resolution, large depth of field, and high surface sensitivity. Due to its charge compensation capability, the HIM can image insulating biological samples without additional conductive coatings. Here, we present an exploratory HIM study of SARS-CoV-2 infected Vero E6 cells, in which several areas of interaction between cells and virus particles, as well as among virus particles, were imaged. The HIM pictures show the three-dimensional appearance of SARS-CoV-2 and the surface of Vero E6 cells at a multiplicity of infection of approximately 1 with great morphological detail. The absence of a conductive coating allows for a distinction between virus particles bound to the cell membrane and virus particles lying on top of the membrane. After prolonged imaging, it was found that ion-induced deposition of hydrocarbons from the vacuum renders the sample sufficiently conductive to allow for imaging even without charge compensation. The presented images demonstrate the potential of the HIM in bioimaging, especially for the imaging of interactions between viruses and their host organisms.
Collapse
Affiliation(s)
- Natalie Frese
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Patrick Schmerer
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Martin Wortmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
| | - Matthias Schürmann
- University Clinic for Otolaryngology, Head and Neck Surgery, Medical Faculty OWL at Bielefeld University, Germany
| | - Matthias König
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Friedemann Weber
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Holger Sudhoff
- University Clinic for Otolaryngology, Head and Neck Surgery, Medical Faculty OWL at Bielefeld University, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
31
|
Cheng J, Liu Z, Deng T, Lu Z, Liu M, Lu X, Adeshakin FO, Yan D, Zhang G, Wan X. CD317 mediates immunocytolysis resistance by RICH2/cytoskeleton-dependent membrane protection. Mol Immunol 2020; 129:94-102. [PMID: 33223223 DOI: 10.1016/j.molimm.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Immune evasion is a common hallmark of cancers. Immunotherapies that aim at restoring or increasing the immune response against cancers have revolutionized outcomes for patients, but the mechanisms of resistance remain poorly defined. Here, we report that CD317, a surface molecule with a unique topology that is double anchored into the membrane, protects tumor cells from immunocytolysis. CD317 knockdown in tumor cells renders more severe death in response to NK or chimeric antigen receptor-modified NK cells challenge. Such effects of CD317 silencing might be the results of increasing sensitivity of tumor cells to immune killing rather than strengthening immune response, since neither effector-target cell contact nor the activation of effector cells was affected, and the enhanced cytolysis was also not counteracted by the addition of recombinant CD317 proteins. Mechanistically, CD317 might endow tumor cells with more flexibility to modulate cytoskeleton through its association with RICH2, thereby protects membrane integrity against perforin and consequently promotes survival in response to immunocytolysis. These results reveal a new mechanism of immunocytolysis resistance and suggest CD317 as an attractive target which can be exploited for improving the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Jian Cheng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Zhen Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Maoxuan Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Xiaoxu Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Funmilayo Oladunni Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China; Shenzhen BinDeBioTech Co., Ltd., Floor 5, Building 6, Tongfuyu Industrial City, Xili, Nanshan, Shenzhen, 518055, PR China.
| |
Collapse
|
32
|
Waheed AA, Swiderski M, Khan A, Gitzen A, Majadly A, Freed EO. The viral protein U (Vpu)-interacting host protein ATP6V0C down-regulates cell-surface expression of tetherin and thereby contributes to HIV-1 release. J Biol Chem 2020; 295:7327-7340. [PMID: 32291285 PMCID: PMC7247306 DOI: 10.1074/jbc.ra120.013280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Host proteins with antiviral activity have evolved as first-line defenses to suppress viral replication. The HIV-1 accessory protein viral protein U (Vpu) enhances release of the virus from host cells by down-regulating the cell-surface expression of the host restriction factor tetherin. However, the exact mechanism of Vpu-mediated suppression of antiviral host responses is unclear. To further understand the role of host proteins in Vpu's function, here we carried out yeast two-hybrid screening and identified the V0 subunit C of vacuolar ATPase (ATP6V0C) as a Vpu-binding protein. To examine the role of ATP6V0C in Vpu-mediated tetherin degradation and HIV-1 release, we knocked down ATP6V0C expression in HeLa cells and observed that ATP6V0C depletion impairs Vpu-mediated tetherin degradation, resulting in defective HIV-1 release. We also observed that ATP6V0C overexpression stabilizes tetherin expression. This stabilization effect was specific to ATP6V0C, as overexpression of another subunit of the vacuolar ATPase, ATP6V0C″, had no effect on tetherin expression. ATP6V0C overexpression did not stabilize CD4, another target of Vpu-mediated degradation. Immunofluorescence localization experiments revealed that the ATP6V0C-stabilized tetherin is sequestered in a CD63- and lysosome-associated membrane protein 1 (LAMP1)-positive intracellular compartment. These results indicate that the Vpu-interacting protein ATP6V0C plays a role in down-regulating cell-surface expression of tetherin and thereby contributes to HIV-1 assembly and release.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702.
| | - Maya Swiderski
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ali Khan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ariana Gitzen
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Ahlam Majadly
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
33
|
Kulkarni R, Jiang S, Birrane G, Prasad A. Lymphocyte-specific protein 1 (LSP1) regulates bone marrow stromal cell antigen 2 (BST-2)-mediated intracellular trafficking of HIV-1 in dendritic cells. FEBS Lett 2020; 594:1947-1959. [PMID: 32279313 DOI: 10.1002/1873-3468.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) subverts intracellular trafficking pathways to avoid its degradation and elimination, thereby enhancing its survival and spread. The molecular mechanisms involved in intracellular transport of HIV-1 are not yet fully defined. We demonstrate that the actin-binding protein lymphocyte-specific protein 1 (LSP1) interacts with the interferon-inducible protein bone marrow stromal antigen 2 (BST-2) in dendritic cells (DCs) to facilitate both endocytosis of surface-bound HIV-1 and the formation of early endosomes. Analysis of the molecular interaction between LSP1 and BST-2 reveals that the N terminus of LSP1 interacts with BST-2. Overall, we identify a novel mechanism of intracellular trafficking of HIV-1 in DCs centering on the LSP1/BST-2 complex. We also show that the HIV-1 accessory protein Vpu subverts this pathway by inducing proteasomal degradation of LSP1, augmenting cell-cell transmission of HIV-1.
Collapse
Affiliation(s)
- Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Nehls J, Businger R, Hoffmann M, Brinkmann C, Fehrenbacher B, Schaller M, Maurer B, Schönfeld C, Kramer D, Hailfinger S, Pöhlmann S, Schindler M. Release of Immunomodulatory Ebola Virus Glycoprotein-Containing Microvesicles Is Suppressed by Tetherin in a Species-Specific Manner. Cell Rep 2020; 26:1841-1853.e6. [PMID: 30759394 DOI: 10.1016/j.celrep.2019.01.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 11/07/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
The Ebola virus glycoprotein (EBOV-GP) forms GP-containing microvesicles, so-called virosomes, which are secreted from GP-expressing cells. However, determinants of GP-virosome release and their functionality are poorly understood. We characterized GP-mediated virosome formation and delineated the role of the antiviral factor tetherin (BST2, CD317) in this process. Residues in the EBOV-GP receptor-binding domain (RBD) promote GP-virosome secretion, while tetherin suppresses GP-virosomes by interactions involving the GP-transmembrane domain. Tetherin from multiple species interfered with GP-virosome release, and tetherin from the natural fruit bat reservoir showed the highest inhibitory activity. Moreover, analyses of GP from various ebolavirus strains, including the EBOV responsible for the West African epidemic, revealed the most efficient GP-virosome formation by highly pathogenic ebolaviruses. Finally, EBOV-GP-virosomes were immunomodulatory and acted as decoys for EBOV-neutralizing antibodies. Our results indicate that GP-virosome formation might be a determinant of EBOV immune evasion and pathogenicity, which is suppressed by tetherin.
Collapse
Affiliation(s)
- Julia Nehls
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ramona Businger
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | | | - Birgit Fehrenbacher
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Brigitte Maurer
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Schönfeld
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Daniela Kramer
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
35
|
Rapamycin Re-Directs Lysosome Network, Stimulates ER-Remodeling, Involving Membrane CD317 and Affecting Exocytosis, in Campylobacter Jejuni-Lysate-Infected U937 Cells. Int J Mol Sci 2020; 21:ijms21062207. [PMID: 32210050 PMCID: PMC7139683 DOI: 10.3390/ijms21062207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
The Gram-negative Campylobacter jejuni is a major cause of foodborne gastroenteritis in humans worldwide. The cytotoxic effects of Campylobacter have been mainly ascribed to the actions of the cytolethal distending toxin (CDT): it is mandatory to put in evidence risk factors for sequela development, such as reactive arthritis (ReA) and Guillain–Barré syndrome (GBS). Several researches are directed to managing symptom severity and the possible onset of sequelae. We found for the first time that rapamycin (RM) is able to largely inhibit the action of C. jejuni lysate CDT in U937 cells, and to partially avoid the activation of specific sub-lethal effects. In fact, we observed that the ability of this drug to redirect lysosomal compartment, stimulate ER-remodeling (highlighted by ER–lysosome and ER–mitochondria contacts), protect mitochondria network, and downregulate CD317/tetherin, is an important component of membrane microdomains. In particular, lysosomes are involved in the process of the reduction of intoxication, until the final step of lysosome exocytosis. Our results indicate that rapamycin confers protection against C. jejuni bacterial lysate insults to myeloid cells.
Collapse
|
36
|
Development and Characterization of the Shortest Anti-Adhesion Peptide Analogue of B49Mod1. Molecules 2020; 25:molecules25051188. [PMID: 32155736 PMCID: PMC7179399 DOI: 10.3390/molecules25051188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibition of cancer cell adhesion is an effective approach to killing adherent cancer cells. B49 and its analog B49Mod1 peptides, derived from the extracellular domain (ECD) of bone marrow stromal antigen 2 (BST-2), display anti-adhesion activity on breast cancer cells. However, the minimal sequence required for this anti-adhesion activity is unknown. Here, we further characterized the anti-adhesion activity of B49Mod1. We show that the anti-adhesion activity of B49Mod1 may require cysteine-linked disulfide bond and that the peptide is susceptible to proteolytic deactivation. Using structure-activity relationship studies, we identified an 18-Mer sequence (B18) as the minimal peptide sequence mediating the anti-adhesion activity of B49Mod1. Atomistic molecular dynamic (MD) simulations reveal that B18 forms a stable complex with the ECD of BST-2 in aqueous solution. MD simulations further reveal that B18 may cause membrane defects that facilitates peptide translocation across the bilayer. Placement of four B18 chains as a transmembrane bundle results in water channel formation, indicating that B18 may impair membrane integrity and form pores. We hereby identify B18 as the minimal peptide sequence required for the anti-adhesion activity of B49Mod1 and provide atomistic insight into the interaction of B18 with BST-2 and the cell membrane.
Collapse
|
37
|
El Samaloty NM, Shabayek MI, Ghait RS, El-Maraghy SA, Rizk SM, El-Sawalhi MM. Assessment of lncRNA GAS5, lncRNA HEIH, lncRNA BISPR and its mRNA BST2 as serum innovative non-invasive biomarkers: Recent insights into Egyptian patients with hepatitis C virus type 4. World J Gastroenterol 2020; 26:168-183. [PMID: 31988583 PMCID: PMC6962433 DOI: 10.3748/wjg.v26.i2.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection and its consequent complications are undeniably a public health burden worldwide, particularly in Egypt. Emerging evidence suggests that many lncRNAs have relevant roles in viral infections and antiviral responses.
AIM To investigate the expression profiles of circulating lncRNAGAS5, lncRNAHEIH, lncRNABISPR and mRNABST2 in naïve, treated and relapsed HCV Egyptian patients, to elucidate relation to HCV infection and their efficacy as innovative biomarkers for the diagnosis and prognosis of HCV GT4.
METHODS One hundred and thirty HCV-infected Egyptian patients and 20 healthy controls were included in this study. Serum lncRNAs and mRNABST2 were measured using quantitative real-time polymerase chain reaction (qRT-PCR).
RESULTS Our results indicated that serum lncRNAGAS5 and LncRNABISPR were upregulated, whereas mRNA BST2 and LncRNA HEIH were downregulated in naïve patients. In contrast, HCV patients treated with sofosbuvir and simeprevir; with sofosbuvir and daclatasvir; or with sofosbuvir, daclatasvir and ribavirin exhibited lower levels of lncRNAGAS5 and lncRNABISPR with higher mRNABST2 compared to naïve patients. Notably, patients relapsed from sofosbuvir and simeprevir showed higher levels of these lncRNAs with lower mRNABST2 compared to treated patients. LncRNAGAS5 and lncRNABISPR were positively correlated with viral load and ALT at P < 0.001, whereas mRNABST2 was negatively correlated with viral load at P < 0.001 and ALT at P < 0.05. Interestingly, a significant positive correlation between lncRNA HEIH and AFP was observed at P < 0.001.
CONCLUSION Differential expression of these RNAs suggests their involvement in HCV pathogenesis or antiviral response and highlights their promising roles in diagnosis and prognosis of HCV.
Collapse
Affiliation(s)
- Nourhan M El Samaloty
- Biochemistry Section, Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo 11795, Egypt
| | - Marwa I Shabayek
- Biochemistry Section, Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo 11795, Egypt
| | - Ramy S Ghait
- Internal Medicine, Gastroenterology and Hepatology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Shohda A El-Maraghy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherine M Rizk
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Maha M El-Sawalhi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
38
|
Tiwari R, de la Torre JC, McGavern DB, Nayak D. Beyond Tethering the Viral Particles: Immunomodulatory Functions of Tetherin ( BST-2). DNA Cell Biol 2019; 38:1170-1177. [PMID: 31502877 DOI: 10.1089/dna.2019.4777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host response to viral infection is a highly regulated process involving engagement of various host factors, cytokines, chemokines, and stimulatory signals that pave the way for an antiviral immune response. The response is manifested in terms of viral sequestration, phagocytosis, and inhibition of genome replication, and, finally, if required, lymphocyte-mediated clearance of virally infected cells. During this process, cross-talk between viral and host factors can shape disease outcomes and immunopathology. Bone marrow stromal antigen 2 (BST-2), also know as tetherin, is induced by type I interferon produced in response to viral infections, as well as in certain cancers. BST-2 has been shown to be a host restriction factor of virus multiplication through its ability to physically tether budding virions and restrict viral spread. However, BST-2 has other roles in the host antiviral response. This review focuses on the diverse functions of BST-2 and its downstream signaling pathways in regulating host immune responses.
Collapse
Affiliation(s)
- Ritudhwaj Tiwari
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Juan C de la Torre
- Department of Immunology and Microbial Science IMM-6, The Scripps Research Institute, La Jolla, California
| | - Dorian B McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
39
|
Bego MG, Miguet N, Laliberté A, Aschman N, Gerard F, Merakos AA, Weissenhorn W, Cohen ÉA. Activation of the ILT7 receptor and plasmacytoid dendritic cell responses are governed by structurally-distinct BST2 determinants. J Biol Chem 2019; 294:10503-10518. [PMID: 31118237 DOI: 10.1074/jbc.ra119.008481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Type I interferons (IFN-I) are key innate immune effectors predominantly produced by activated plasmacytoid dendritic cells (pDCs). By modulating immune responses at their foundation, IFNs can widely reshape immunity to control infectious diseases and malignancies. Nevertheless, their biological activities can also be detrimental to surrounding healthy cells, as prolonged IFN-I signaling is associated with excessive inflammation and immune dysfunction. The interaction of the human pDC receptor immunoglobulin-like transcript 7 (ILT7) with its IFN-I-regulated ligand, bone marrow stromal cell antigen 2 (BST2) plays a key role in controlling the IFN-I amounts produced by pDCs in response to Toll-like receptor (TLR) activation. However, the structural determinants and molecular features of BST2 that govern ILT7 engagement and activation are largely undefined. Using two functional assays to measure BST2-stimulated ILT7 activation as well as biophysical studies, here we identified two structurally-distinct regions of the BST2 ectodomain that play divergent roles during ILT7 activation. We found that although the coiled-coil region contains a newly defined ILT7-binding surface, the N-terminal region appears to suppress ILT7 activation. We further show that a stable BST2 homodimer binds to ILT7, but post-binding events associated with the unique BST2 coiled-coil plasticity are required to trigger receptor signaling. Hence, BST2 with an unstable or a rigid coiled-coil fails to activate ILT7, whereas substitutions in its N-terminal region enhance activation. Importantly, the biological relevance of these newly defined domains of BST2 is underscored by the identification of substitutions having opposing potentials to activate ILT7 in pathological malignant conditions.
Collapse
Affiliation(s)
- Mariana G Bego
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nolwenn Miguet
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Alexandre Laliberté
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nicolas Aschman
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Francine Gerard
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Angelique A Merakos
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Winfried Weissenhorn
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Éric A Cohen
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada, .,the Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
40
|
Zhang Y, Ozono S, Yao W, Tobiume M, Yamaoka S, Kishigami S, Fujita H, Tokunaga K. CRISPR-mediated activation of endogenous BST-2/tetherin expression inhibits wild-type HIV-1 production. Sci Rep 2019; 9:3134. [PMID: 30816279 PMCID: PMC6395588 DOI: 10.1038/s41598-019-40003-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
The CRISPR technology not only can knock out target genes by using the RNA-guided Cas9 nuclease but also can activate their expression when a nuclease-deficient Cas9 (dCas9) is employed. Using the latter function, we here show the effect of the CRISPR-mediated pinpoint activation of endogenous expression of BST-2 (also known as tetherin), a virus restriction factor with a broad antiviral spectrum. Single-guide RNA (sgRNA) sequences targeting the BST-2 promoter were selected by promoter assays. Potential sgRNAs and dCas9 fused to the VP64 transactivation domain, along with an accessory transcriptional activator complex, were introduced into cells by lentiviral transduction. Increased expression of BST-2 mRNA in transduced cells was confirmed by real-time RT-PCR. Cells in which BST-2 expression was highly enhanced showed the effective inhibition of HIV-1 production and replication even in the presence of the viral antagonist Vpu against BST-2. These findings confirm that the physiological stoichiometry between host restriction factors and viral antagonists may determine the outcome of the battle with viruses.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Seiya Ozono
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Weitong Yao
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
41
|
Sharma A, Lal SK. Is tetherin a true antiviral: The influenza a virus controversy. Rev Med Virol 2019; 29:e2036. [DOI: 10.1002/rmv.2036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Anshika Sharma
- School of ScienceMonash University, Sunway Campus Bandar Sunway Malaysia
| | - Sunil K. Lal
- School of ScienceMonash University, Sunway Campus Bandar Sunway Malaysia
| |
Collapse
|
42
|
CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep 2019; 9:197. [PMID: 30655550 PMCID: PMC6336801 DOI: 10.1038/s41598-018-36560-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Chromobox 6 (CBX6) is a subunit of Polycomb Repressive Complex 1 (PRC1) that mediates epigenetic gene repression and acts as an oncogene or tumor suppressor in a cancer type-dependent manner. The specific function of CBX6 in breast cancer is currently undefined. In this study, a comprehensive analysis of The Cancer Genome Atlas (TCGA) dataset led to the identification of CBX6 as a consistently downregulated gene in breast cancer. We provided evidence showing enhancer of zeste homolog 2 (EZH2) negatively regulated CBX6 expression in a Polycomb Repressive Complex 2 (PRC2)-dependent manner. Exogenous overexpression of CBX6 inhibited cell proliferation and colony formation, and induced cell cycle arrest along with suppression of migration and invasion of breast cancer cells in vitro. Microarray analyses revealed that CBX6 governs a complex gene expression program. Moreover, CBX6 induced significant downregulation of bone marrow stromal cell antigen-2 (BST2), a potential therapeutic target, via interactions with its promoter region. Our collective findings support a tumor suppressor role of CBX6 in breast cancer.
Collapse
|
43
|
Yi E, Oh J, Kang HR, Song MJ, Park SH. BST2 inhibits infection of influenza A virus by promoting apoptosis of infected cells. Biochem Biophys Res Commun 2018; 509:414-420. [PMID: 30594400 DOI: 10.1016/j.bbrc.2018.12.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
BST2 is an antiviral factor that inhibits the release of enveloped virus at the plasma membrane via an unusual topology in which its N-terminal is in the cytosol while its C-terminal is anchored by glycophosphatidylinositol (GPI). BST2-deficient cells showed substantially higher release of virions than wild type cells. Influenza-infected BST2-deficient cells showed greatly reduced cytopathic effect (CPE) than wild type cells despite their generally robust virus production. This finding prompted us to determine whether BST2 was involved in the apoptotic process of virus-infected host cells. Our results revealed that BST2 might be involved in IRE1α-mediated ER stress pathway by increasing spliced form XBP-1. Consequently, levels of cytochrome C, caspase-3, caspase-9, and PARP as representative molecules of apoptosis were significantly increased in wild type cells than those in BST2-deficient cells. These results suggest that BST2 might participate in innate host defense by augmenting ER-stress-induced apoptotic signaling to inhibit the replication and spread of virus.
Collapse
Affiliation(s)
- Eunbi Yi
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; ImmunoMax Co., Ltd, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Jinsoo Oh
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hye-Ri Kang
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Moon Jung Song
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Se-Ho Park
- College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
44
|
BST-2 promotes survival in circulation and pulmonary metastatic seeding of breast cancer cells. Sci Rep 2018; 8:17608. [PMID: 30514852 PMCID: PMC6279795 DOI: 10.1038/s41598-018-35710-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022] Open
Abstract
Bone marrow stromal antigen 2 (BST-2) mediates various facets of cancer progression and metastasis. Here, we show that BST-2 is linked to poor survival in invasive breast cancer patients as its expression positively correlates with disease severity. However, the mechanisms that drive the pro‐metastatic functions of BST-2 are not fully understood. Correlation of BST-2 expression and tumor aggressiveness was analyzed in human tissue samples. Migration, invasion, and competitive experimental metastasis assays were used to measure the cellular responses after silencing BST-2 expression. Using a mouse model of breast cancer, we show that BST-2 promotes metastasis independent of the primary tumor. Additional experiments show that suppression of BST-2 renders non-adherent cancer cells non-viable by sensitizing cells to anoikis. Embedment of cancer cells in basement membrane matrix reveals that silencing BTS-2 expression inhibits invadopodia formation, extracellular matrix degradation, and subsequent cell invasion. Competitive experimental pulmonary metastasis shows that silencing BST-2 reduces the numbers of viable circulating tumor cells (CTCs) and decreases the efficiency of lung colonization. Our data define a previously unknown function for BST-2 in the i) formation of invadopodia, ii) degradation of extracellular matrix, and iii) protection of CTCs from hemodynamic stress. We believe that physical (tractional forces) and biochemical (ECM type/composition) cues may control BST-2’s role in cell survival and invadopodia formation. Collectively, our findings highlight BST-2 as a key factor that allows cancer cells to invade, survive in circulation, and at the metastatic site.
Collapse
|
45
|
Berry KN, Kober DL, Su A, Brett TJ. Limiting Respiratory Viral Infection by Targeting Antiviral and Immunological Functions of BST-2/Tetherin: Knowledge and Gaps. Bioessays 2018; 40:e1800086. [PMID: 30113067 PMCID: PMC6371793 DOI: 10.1002/bies.201800086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Recent findings regarding the cellular biology and immunology of BST-2 (also known as tetherin) indicate that its function could be exploited as a universal replication inhibitor of enveloped respiratory viruses (e.g., influenza, respiratory syncytial virus, etc.). BST-2 inhibits viral replication by preventing virus budding from the plasma membrane and by inducing an antiviral state in cells adjacent to infection via unique inflammatory signaling mechanisms. This review presents the first comprehensive summary of what is currently known about BST-2 anti-viral function against respiratory viruses, how these viruses construct countermeasures to antagonize BST-2, and how BST-2 function might be targeted to develop therapies to treat respiratory virus infections. The authors address the current gaps in knowledge, including the need for mechanistic understanding of BST-2 antagonism by respiratory viruses, that should be bridged to achieve that goal.
Collapse
Affiliation(s)
- Kayla N. Berry
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Immunology ProgramWashington University School of MedicineSt. Louis 63110Missouri
- Medical Scientist Training ProgramWashington University School of MedicineSt. Louis 63110Missouri
| | - Daniel L. Kober
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Microbiology ProgramWashington University School of MedicineSt. Louis 63110Missouri
| | - Alvin Su
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
| | - Tom J. Brett
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Department of Medicine, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. Louis 63110Missouri
| |
Collapse
|
46
|
Liu W, Cao Y, Guan Y, Zheng C. BST2 promotes cell proliferation, migration and induces NF-κB activation in gastric cancer. Biotechnol Lett 2018; 40:1015-1027. [PMID: 29774441 DOI: 10.1007/s10529-018-2562-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients. RESULTS BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling. CONCLUSION BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Weiyu Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang, 110013, People's Republic of China
| | - Yong Cao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China.
| |
Collapse
|
47
|
Lee BNR, Chang HK, Son YS, Lee D, Kwon SM, Kim PH, Cho JY. IFN-γ enhances the wound healing effect of late EPCs (LEPCs) via BST2-mediated adhesion to endothelial cells. FEBS Lett 2018; 592:1705-1715. [PMID: 29710419 DOI: 10.1002/1873-3468.13078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/01/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Circulating late endothelial progenitor cells (LEPCs) home to injured vessels, initiating blood vessel regeneration. This process requires the initial adhesion of LEPCs to endothelial cells within the wounded site. In this study, treating LEPCs with IFN-γ enhanced wound healing through BST2-mediated adhesion to endothelial cells. We found that IFN-γ significantly upregulated BST2 expression in both LEPCs and ECs and increased tube formation in LEPCs. Upregulated BST2 increased LEPC adhesion to ECs through a tight homophilic interaction of its extracellular domain. Finally, when the IFN-γ-treated LEPCs were injected into the wounded mouse tail vein, superior therapeutic effects of wound closure were observed. This study provides a useful application to enhance the adhesion of LEPCs for vessel regeneration and wound closure.
Collapse
Affiliation(s)
- Bom Nae Rin Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hyun-Kyung Chang
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeon Sung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dabin Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
48
|
Abstract
Bone marrow stromal antigen 2 (BST-2) also known as Tetherin has been implicated in the growth and progression of many cancers. BST-2 employs its pro-tumor effects through the formation of BST-2:BST-2 dimers which ultimately promotes cell to cell and cell to matrix adhesion, cell motility, survival, and growth. The aim of this study was to evaluate the effect of a novel BST-2-based peptide-B49 on adhesion and growth of breast cancer cells. Homotypic/heterotypic adhesion, three-dimensional spheroid formation, and anchorage-independent growth were used to assess the effect of B49 on cell adhesion and growth. Additionally, we provide evidence of the anti-tumor effect of B49 in a preclinical mouse model of breast cancer. Results show that breast cancer cell adhesion to other cancer cells or components of the tumor microenvironment were inhibited by B49. Most well-known evaluation indexes of cancer cell growth, including spheroid formation, anchorage-independent, and primary tumor growth were significantly inhibited by B49. These data affirm that i) BST-2 plays a key role in mediating breast cancer cell adhesion and growth, and ii) B49 and its analog B49Mod1 significantly inhibits BST-2-mediated cancer cell adhesion and growth. Therefore, B49 and its analogs offer a promising anti-adhesion and therapeutic lead for BST-2-dependent cancers.
Collapse
|
49
|
Abstract
Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.
Collapse
Affiliation(s)
- Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Madhu Rai
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| |
Collapse
|
50
|
Waheed AA, Gitzen A, Swiderski M, Freed EO. High-Mannose But Not Complex-Type Glycosylation of Tetherin Is Required for Restriction of HIV-1 Release. Viruses 2018; 10:v10010026. [PMID: 29303997 PMCID: PMC5795439 DOI: 10.3390/v10010026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 11/16/2022] Open
Abstract
Tetherin is an interferon-inducible antiviral protein that inhibits the release of a broad spectrum of enveloped viruses by retaining virions at the surface of infected cells. While the role of specific tetherin domains in antiviral activity is clearly established, the role of glycosylation in tetherin function is not clear. In this study, we carried out a detailed investigation of this question by using tetherin variants in which one or both sites of N-linked glycosylation were mutated (N65A, N92A, and N65,92A), and chemical inhibitors that prevent glycosylation at specific stages of oligosaccharide were added or modified. The single N-linked glycosylation mutants, N65A and N92A, efficiently inhibited the release of Vpu-defective human immunodeficiency virus type 1 (HIV-1). In contrast, the non-glycosylated double mutant, N65,92A, lost its ability to block HIV-1 release. The inability of the N65,92A mutant to inhibit HIV-1 release is associated with a lack of cell-surface expression. A role for glycosylation in cell-surface tetherin expression is supported by tunicamycin treatment, which inhibits the first step of N-linked glycosylation and impairs both cell-surface expression and antiviral activity. Inhibition of complex-type glycosylation with kifunensine, an inhibitor of the oligosaccharide processing enzyme mannosidase 1, had no effect on either the cell-surface expression or antiviral activity of tetherin. These results demonstrate that high-mannose modification of a single asparagine residue is necessary and sufficient, while complex-type glycosylation is dispensable, for cell-surface tetherin expression and antiviral activity.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| | - Ariana Gitzen
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| | - Maya Swiderski
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| |
Collapse
|