1
|
Fang A, Ugai T, Gurjao C, Zhong R, Liu Z, Zhang X, Wang P, Nowak J, Wang M, Giannakis M, Ogino S, Zhang X, Giovannucci E. Alcohol and colorectal cancer risk, subclassified by mutational signatures of DNA mismatch repair deficiency. J Natl Cancer Inst 2024; 116:1255-1263. [PMID: 38574386 PMCID: PMC11308185 DOI: 10.1093/jnci/djae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND We examined whether the association between alcohol consumption and colorectal cancer (CRC) incidence was stronger for tumors with higher contributions of defective mismatch repair (dMMR)-related tumor mutational signatures. METHODS We used data from 227 916 men and women who participated in the Nurses' Health Study (1980-2016), the Nurses' Health Study II (1991-2017), and the Health Professionals Follow-Up Study (1986-2016). Dietary data were collected every 4 years through validated food frequency questionnaires. Relative contributions of 2 defective mismatch repair-related tumor mutational signatures with single-based substitutions (c-dMMRa/SBS15 and c-dMMRb/SBS26) were quantified using whole-exome sequencing data in a subset of incident CRC patients. Duplication-method Cox proportional hazards regression models were used to assess the association between alcohol consumption and the risk of CRC subtypes according to different contributions of the tumor mutational signatures. All statistical tests were 2-sided. RESULTS We documented 825 incident CRC patients with available tumor mutational signature data over 26 to 36 years of follow-up. The association between alcohol consumption and CRC incidence was stronger for tumors with higher contributions of c-dMMRb/SBS26 (Ptrend = .02 for heterogeneity) compared with tumors with lower contributions of this tumor mutational signature. Compared with nondrinkers, drinkers who imbibed 15 g/d or more of alcohol had a high risk of c-dMMRb/SBS26-high CRC (multivariable-adjusted hazard ratio = 2.43, 95% confidence interval = 1.55 to 3.82) but not c-dMMRb/SBS26-low CRC (multivariable-adjusted hazard ratio = 0.86, 95% confidence interval = 0.57 to 1.28) or c-dMMRb/SBS26-moderate CRC (multivariable-adjusted hazard ratio = 1.14, 95% confidence interval = 0.76 to 1.71). No significant differential associations were observed for c-dMMRa/SBS15 (Ptrend = .41 for heterogeneity). CONCLUSIONS High alcohol consumption was associated with an increased incidence of CRC containing higher contributions of c-dMMRb/SBS26, suggesting that alcohol consumption may be involved in colorectal carcinogenesis through the DNA mismatch repair pathway.
Collapse
Affiliation(s)
- Aiping Fang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tomotaka Ugai
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carino Gurjao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rong Zhong
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Peilu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Jonathan Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuji Ogino
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Chávez-Hidalgo LP, Martín-Fernández-de-Labastida S, M de Pancorbo M, Arroyo-Izaga M. Influence of methyl donor nutrients as epigenetic regulators in colorectal cancer: A systematic review of observational studies. World J Gastroenterol 2023; 29:1219-1234. [PMID: 36926668 PMCID: PMC10011952 DOI: 10.3748/wjg.v29.i7.1219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/26/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). However, whether the influence of methyl donor intake is modified by polymorphisms in such epigenetic regulators is still unclear.
AIM To improve the current understanding of the molecular basis of CRC.
METHODS A literature search in the Medline database, Reference Citation Analysis (https://www.referencecitationanalysis.com/), and manual reference screening were performed to identify observational studies published from inception to May 2022.
RESULTS A total of fourteen case-control studies and five cohort studies were identified. These studies included information on dietary methyl donors, dietary components that potentially modulate the bioavailability of methyl groups, genetic variants of methyl metabolizing enzymes, and/or markers of CpG island methylator phenotype and/or microsatellite instability, and their possible interactions on CRC risk.
CONCLUSION Several studies have suggested interactions between methylenetetrahydrofolate reductase polymorphisms, methyl donor nutrients (such as folate) and alcohol on CRC risk. Moreover, vitamin B6, niacin, and alcohol may affect CRC risk through not only genetic but also epigenetic regulation. Identification of specific mechanisms in these interactions associated with CRC may assist in developing targeted prevention strategies for individuals at the highest risk of developing CRC.
Collapse
Affiliation(s)
- Lourdes Pilar Chávez-Hidalgo
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Silvia Martín-Fernández-de-Labastida
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Marian M de Pancorbo
- Department of Z. and Cellular Biology A., University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
- BIOMICs Research Group, MICROFLUIDICs and BIOMICs Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Marta Arroyo-Izaga
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
- BIOMICs Research Group, MICROFLUIDICs and BIOMICs Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| |
Collapse
|
3
|
Cassotta M, Cianciosi D, De Giuseppe R, Navarro-Hortal MD, Armas Diaz Y, Forbes-Hernández TY, Pifarre KT, Pascual Barrera AE, Grosso G, Xiao J, Battino M, Giampieri F. Possible role of nutrition in the prevention of inflammatory bowel disease-related colorectal cancer: A focus on human studies. Nutrition 2023; 110:111980. [PMID: 36965240 DOI: 10.1016/j.nut.2023.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Patients with inflammatory bowel disease (IBD) are at substantially high risk for colorectal cancer (CRC). IBD-associated CRC accounts for roughly 10% to 15% of the annual mortality in patients with IBD. IBD-related CRC also affects younger patients compared with sporadic CRC, with a 5-y survival rate of 50%. Regardless of medical therapies, the persistent inflammatory state characterizing IBD raises the risk for precancerous changes and CRC, with additional input from several elements, including genetic and environmental risk factors, IBD-associated comorbidities, intestinal barrier dysfunction, and gut microbiota modifications. It is well known that nutritional habits and dietary bioactive compounds can influence IBD-associated inflammation, microbiome abundance and composition, oxidative stress balance, and gut permeability. Additionally, in recent years, results from broad epidemiologic and experimental studies have associated certain foods or nutritional patterns with the risk for colorectal neoplasia. The present study aimed to review the possible role of nutrition in preventing IBD-related CRC, focusing specifically on human studies. It emerges that nutritional interventions based on healthy, nutrient-dense dietary patterns characterized by a high intake of fiber, vegetables, fruit, ω-3 polyunsaturated fatty acids, and a low amount of animal proteins, processed foods, and alcohol, combined with probiotic supplementation have the potential of reducing IBD-activity and preventing the risk of IBD-related CRC through different mechanisms, suggesting that targeted nutritional interventions may represent a novel promising approach for the prevention and management of IBD-associated CRC.
Collapse
Affiliation(s)
- Manuela Cassotta
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Maria Dolores Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Tamara Yuliett Forbes-Hernández
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú," Department of Physiology, Faculty of Pharmacy, University of Granada, Armilla, Granada, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Project Department, Universidade Internacional do Cuanza, Cuito, Bié, Angola
| | - Alina Eugenia Pascual Barrera
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Project Management, Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, Ourense, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain; Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
4
|
Chakraborty P, Ghatak S, Chenkual S, Pachuau L, Zohmingthanga J, Bawihtlung Z, Khenglawt L, Pautu JL, Maitra A, Chhakchhuak L, Kumar NS. Panel of significant risk factors predicts early stage gastric cancer and indication of poor prognostic association with pathogens and microsatellite stability. Genes Environ 2021; 43:3. [PMID: 33568233 PMCID: PMC7877109 DOI: 10.1186/s41021-021-00174-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There are very few studies covering the epidemiological risk factors associated with Epstein Barr Virus (EBV) and Microsatellite stability for Gastric Cancer (GC) cases. Early diagnosis of GC through epidemiological risk factors is very necessary for the clinical assessment of GC. The aim of this study was to find out the major risk factors to predict GC in early stage and the impact of pathogen infection and MSI on survival rate of patients. GC samples were screened for Helicobacter pylori, Epstein Barr Virus, and Mismatch repair (MMR) gene status (microsatellite stable or instable). Chi-square and logistic regression analysis of Odd ratio and 95% confidence interval (OR, 95% CI) were performed to find out the association between epidemiological factors and the risk of gastric cancer. The pathogen and MMR gene status were analysed to predict their effect on overall survival and the risk score and hazard ratio was calculated for prognostic assessment. RESULTS Excess body weight, consumption of extra salt, smoked food, alcohol, and smoking were the major risk factors for GC development. This study achieved a high area under the curve (AUC 0.94) for the probable GC patients in early-stage using the five-panel epidemiological risk factors. H. pylori infected cases were significant with smoked food, while EBV was found to be associated with tuibur intake and smoked food. In overall survival analysis EBV infected and microsatellite stable (HR: 1.32 and 1.34 respectively) GC cases were showing poor prognosis. CONCLUSION This study might provide new opportunities for personalized treatment options using this epidemiological factor risk score and clinicopathological factors assessment for early detection and prognosis in high-risk GC populations.
Collapse
Affiliation(s)
- Payel Chakraborty
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Souvik Ghatak
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Saia Chenkual
- Department of Surgery, Civil Hospital Aizawl, Aizawl, Mizoram, 796001, India
| | - Lalawmpuii Pachuau
- Department of Pathology, Civil Hospital Aizawl, Aizawl, Mizoram, 796001, India
| | - John Zohmingthanga
- Department of Pathology, Civil Hospital Aizawl, Aizawl, Mizoram, 796001, India
| | - Zothankima Bawihtlung
- Department of Radiation Oncology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, 796017, India
| | - Lalfakzuala Khenglawt
- Department of Radiation Oncology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, 796017, India
| | - Jeremy L Pautu
- Department of Oncology, Mizoram State Cancer Institute, Zemabawk, Aizawl, Mizoram, 796017, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O. NSS, District Nadia, Kalyani, West Bengal, 741251, India
| | | | | |
Collapse
|
5
|
Neumeyer S, Hua X, Seibold P, Jansen L, Benner A, Burwinkel B, Halama N, Berndt SI, Phipps AI, Sakoda LC, Schoen RE, Slattery ML, Chan AT, Gala M, Joshi AD, Ogino S, Song M, Herpel E, Bläker H, Kloor M, Scherer D, Ulrich A, Ulrich CM, Win AK, Figueiredo JC, Hopper JL, Macrae F, Milne RL, Giles GG, Buchanan DD, Peters U, Hoffmeister M, Brenner H, Newcomb PA, Chang-Claude J. Genetic Variants in the Regulatory T cell-Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiol Biomarkers Prev 2020; 29:2719-2728. [PMID: 33008876 PMCID: PMC7976673 DOI: 10.1158/1055-9965.epi-20-0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High numbers of lymphocytes in tumor tissue, including T regulatory cells (Treg), have been associated with better colorectal cancer survival. Tregs, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and therefore variants in genes related to Treg differentiation and function could be associated with colorectal cancer prognosis. METHODS In a prospective German cohort of 3,593 colorectal cancer patients, we assessed the association of 771 single-nucleotide polymorphisms (SNP) in 58 Treg-related genes with overall and colorectal cancer-specific survival using Cox regression models. Effect modification by microsatellite instability (MSI) status was also investigated because tumors with MSI show greater lymphocytic infiltration and have been associated with better prognosis. Replication of significant results was attempted in 2,047 colorectal cancer patients of the International Survival Analysis in Colorectal Cancer Consortium (ISACC). RESULTS A significant association of the TGFBR3 SNP rs7524066 with more favorable colorectal cancer-specific survival [hazard ratio (HR) per minor allele: 0.83; 95% confidence interval (CI), 0.74-0.94; P value: 0.0033] was replicated in ISACC (HR: 0.82; 95% CI, 0.68-0.98; P value: 0.03). Suggestive evidence for association was found with two IL7 SNPs, rs16906568 and rs7845577. Thirteen SNPs with differential associations with overall survival according to MSI in the discovery analysis were not confirmed. CONCLUSIONS Common genetic variation in the Treg pathway implicating genes such as TGFBR3 and IL7 was shown to be associated with prognosis of colorectal cancer patients. IMPACT The implicated genes warrant further investigation.
Collapse
Affiliation(s)
- Sonja Neumeyer
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xinwei Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Epidemiology Department, University of Washington, Seattle, Washington
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Esther Herpel
- NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University of Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles California
| | - John L Hopper
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Finlay Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Polly A Newcomb
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Hidaka A, Harrison TA, Cao Y, Sakoda LC, Barfield R, Giannakis M, Song M, Phipps AI, Figueiredo JC, Zaidi SH, Toland AE, Amitay EL, Berndt SI, Borozan I, Chan AT, Gallinger S, Gunter MJ, Guinter MA, Harlid S, Hampel H, Jenkins MA, Lin Y, Moreno V, Newcomb PA, Nishihara R, Ogino S, Obón-Santacana M, Parfrey PS, Potter JD, Slattery ML, Steinfelder RS, Um CY, Wang X, Woods MO, Van Guelpen B, Thibodeau SN, Hoffmeister M, Sun W, Hsu L, Buchanan DD, Campbell PT, Peters U. Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Res 2020; 80:4578-4590. [PMID: 32816852 PMCID: PMC7572895 DOI: 10.1158/0008-5472.can-20-0168] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Protective associations of fruits, vegetables, and fiber intake with colorectal cancer risk have been shown in many, but not all epidemiologic studies. One possible reason for study heterogeneity is that dietary factors may have distinct effects by colorectal cancer molecular subtypes. Here, we investigate the association of fruit, vegetables, and fiber intake with four well-established colorectal cancer molecular subtypes separately and in combination. Nine observational studies including 9,592 cases with molecular subtypes for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and somatic mutations in BRAF and KRAS genes, and 7,869 controls were analyzed. Both case-only logistic regression analyses and polytomous logistic regression analyses (with one control set and multiple case groups) were used. Higher fruit intake was associated with a trend toward decreased risk of BRAF-mutated tumors [OR 4th vs. 1st quartile = 0.82 (95% confidence interval, 0.65-1.04)] but not BRAF-wildtype tumors [1.09 (0.97-1.22); P difference as shown in case-only analysis = 0.02]. This difference was observed in case-control studies and not in cohort studies. Compared with controls, higher fiber intake showed negative association with colorectal cancer risk for cases with microsatellite stable/MSI-low, CIMP-negative, BRAF-wildtype, and KRAS-wildtype tumors (P trend range from 0.03 to 3.4e-03), which is consistent with the traditional adenoma-colorectal cancer pathway. These negative associations were stronger compared with MSI-high, CIMP-positive, BRAF-mutated, or KRAS-mutated tumors, but the differences were not statistically significant. These inverse associations for fruit and fiber intake may explain, in part, inconsistent findings between fruit or fiber intake and colorectal cancer risk that have previously been reported. SIGNIFICANCE: These analyses by colorectal cancer molecular subtypes potentially explain the inconsistent findings between dietary fruit or fiber intake and overall colorectal cancer risk that have previously been reported.
Collapse
Affiliation(s)
- Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Richard Barfield
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mark A Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Heather Hampel
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Daniel D Buchanan
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Eijkelboom AH, Brouwer JGM, Vasen HFA, Bisseling TM, Koornstra JJ, Kampman E, van Duijnhoven FJB. Diet quality and colorectal tumor risk in persons with Lynch syndrome. Cancer Epidemiol 2020; 69:101809. [PMID: 32947154 DOI: 10.1016/j.canep.2020.101809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Persons with Lynch syndrome (LS) have an increased risk of developing colorectal tumors (CRTs). Adherence to diet quality indices associated with colorectal cancer (CRC) risk in the general population has not been studied before in LS. METHODS Dietary habits of 490 participants with LS from a prospective cohort study was collected using a food frequency questionnaire. The Dutch Healthy Diet index 2015 (DHD15-index) and Dietary Approaches to Stop Hypertension (DASH) were used to score food-based diet quality. Diet quality scores were divided into tertiles where a higher tertile reflects a higher diet quality. Multivariable Cox proportional hazard regression models were used to estimate the association between the DHD15-index, DASH score and CRT risk. RESULTS During a median follow-up time of 53.4 months, 210 participants (42.9%) developed CRTs. The DHD-index and DASH score were not associated with CRT risk; hazard ratios for highest vs. lowest tertile were 1.00 (95% Confidence Interval (CI): 0.67-1.48) and 1.11 (95% CI: 0.74-1.69), respectively. No linear trends across the DHD-index and DASH score tertiles were observed (P-trend = 0.97 and 0.83 respectively). CONCLUSION In contrast to observations in the general population, no evidence for an association between the food-based DHD15-index or DASH score and CRT risk was observed in persons with LS. Further studies are needed investigating the association between diet quality and mechanisms leading to the development of LS-associated tumors.
Collapse
Affiliation(s)
- Anouk H Eijkelboom
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
| | - Jesca G M Brouwer
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
| | - Hans F A Vasen
- The Netherlands Foundation for the Detection of Hereditary Tumors, Leiden, the Netherlands.
| | - Tanya M Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | - Jan J Koornstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
| | | |
Collapse
|
8
|
Amitay EL, Carr PR, Jansen L, Roth W, Alwers E, Herpel E, Kloor M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Smoking, alcohol consumption and colorectal cancer risk by molecular pathological subtypes and pathways. Br J Cancer 2020; 122:1604-1610. [PMID: 32225169 PMCID: PMC7250912 DOI: 10.1038/s41416-020-0803-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background Smoking and alcohol increase risk for colorectal malignancies. However, colorectal cancer (CRC) is a heterogenic disease and associations with the molecular pathological pathways are unclear. Methods This population-based case–control study includes 2444 cases with first-diagnosis CRC and 2475 controls. Tumour tissue was analysed for MSI (microsatellite instability), CIMP (CpG island methylator phenotype), BRAF (B-Raf proto-oncogene serine/threonine kinase gene) and KRAS (Kirsten rat sarcoma viral oncogene homologue gene) mutations. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated for associations between alcohol and smoking and CRC molecular subtypes and pathways. Results Current smoking showed higher ORs for MSI-high (OR = 2.79, 95% CI: 1.86–4.18) compared to MSS (OR = 1.41, 1.14–1.75, p-heterogeneity (p-het) = 0.001), BRAF-mutated (mut) (OR = 2.40, 1.41–4.07) compared to BRAF-wild type (wt) (OR = 1.52, 1.24–1.88, p-het = 0.074), KRAS-wt (OR = 1.70, 1.36–2.13) compared to KRAS-mut (OR = 1.26, 0.95–1.68, p-het = 0.039) and CIMP-high (OR = 2.01, 1.40–2.88) compared to CIMP-low/negative CRC (OR = 1.50, 1.22–1.85, p-het=0.101). Current smoking seemed more strongly associated with sessile serrated pathway (CIMP-high + BRAF-mut; OR = 2.39, 1.27–4.52) than with traditional pathway CRC (MSS + CIMP-low/negative + BRAF-wt; OR = 1.50, 1.16–1.94) and no association was observed with alternate pathway CRC (MSS + CIMP-low/negative + KRAS-wt; OR = 1.08, 0.77–1.43). No heterogeneity was observed in alcohol consumption association by molecular subtypes. Conclusions In this large case–control study, smoking was more strongly associated with MSI-high and KRAS-wt CRC and with cases showing features of the sessile serrated pathway. Association patterns were less clear for alcohol consumption.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University hospital Leipzig, Leipzig, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Carr PR, Alwers E, Bienert S, Weberpals J, Kloor M, Brenner H, Hoffmeister M. Lifestyle factors and risk of sporadic colorectal cancer by microsatellite instability status: a systematic review and meta-analyses. Ann Oncol 2019; 29:825-834. [PMID: 29438474 DOI: 10.1093/annonc/mdy059] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction The association of lifestyle factors with molecular pathological subtypes of colorectal cancer (CRC), such as microsatellite instability (MSI), could provide further knowledge about the colorectal carcinogenic process. The aim of this review was to evaluate possible associations between lifestyle factors and risk of sporadic CRC by MSI status. Methods PubMed and Web of Science were searched for studies investigating the association between alcohol, body mass index, dietary fiber, hormone replacement therapy (HRT), non-steroidal anti-inflammatory drugs, physical activity, red meat, smoking, or statin use, with MSI-high (MSI-H) and microsatellite stable (MSS) CRC. Meta-analyses were carried out to calculate summary relative risks (sRR). Results Overall, 31 studies reporting on the association between lifestyle factors and CRC according to MSI status were included in this review. Ever smoking was associated with MSI-H (sRR = 1.62; 95% CI: 1.40-1.88) and MSS/MSI-low CRC (sRR = 1.10; 95% CI: 1.01-1.20), but the association was significantly stronger for MSI-H CRC. The use of HRT was associated with a 20% decrease (sRR = 0.80; 95% CI: 0.73-0.89) in the risk of MSS CRC, but was not associated with MSI-H CRC. An increase in body mass index per 5 kg/m2 was equally associated with MSS and MSI-H CRC (sRR = 1.22, in both cases), but was statistically significant for MSS CRC only (95% CI: 1.11-1.34 and 0.94-1.58, respectively). Limited evidence for associations between other lifestyle factors and CRC by MSI status exists. Conclusions Lifestyle factors, such as HRT and smoking are differentially associated with the risk of MSI-H and MSS CRC. Further research on associations of lifestyle factors and CRC subtypes is necessary to provide a better understanding of the CRC disease pathway.
Collapse
Affiliation(s)
- P R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Bienert
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Weberpals
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - H Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Keum N, Liu L, Hamada T, Qian ZR, Nowak JA, Cao Y, da Silva A, Kosumi K, Song M, Nevo D, Wang M, Chan AT, Meyerhardt JA, Fuchs CS, Wu K, Ogino S, Nishihara R, Zhang X. Calcium intake and colon cancer risk subtypes by tumor molecular characteristics. Cancer Causes Control 2019; 30:637-649. [PMID: 30963391 DOI: 10.1007/s10552-019-01165-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND A preventive potential of high calcium intake against colorectal cancer has been indicated for distal colon cancer, which is inversely associated with high-level CpG island methylator phenotype (CIMP), high-level microsatellite instability (MSI), and BRAF and PIK3CA mutations. In addition, BRAF mutation is strongly inversely correlated with KRAS mutation. We hypothesized that the association between calcium intake and colon cancer risk might vary by these molecular features. METHODS We prospectively followed 88,506 women from the Nurses' Health Study and 47,733 men from the Health Professionals Follow-up Study for up to 30 years. Duplication-method Cox proportional cause-specific hazards regression was used to estimate multivariable hazard ratios (HRs), and 95% confidence intervals (95% CIs) for the associations between calcium intake and the risk of colon cancer subtypes. By Bonferroni correction, the α-level was adjusted to 0.01. RESULTS Based on 853 colon cancer cases, the inverse association between dietary calcium intake and colon cancer risk differed by CIMP status (pheterogeneity = 0.01). Per each 300 mg/day increase in intake, multivariable HRs were 0.84 (95% CI 0.76-0.94) for CIMP-negative/low and 1.12 (95% CI 0.93-1.34) for CIMP-high. Similar differential associations were suggested for MSI subtypes (pheterogeneity = 0.02), with the corresponding HR being 0.86 (95% CI 0.77-0.95) for non-MSI-high and 1.10 (95% CI 0.92-1.32) for MSI-high. No differential associations were observed by BRAF, KRAS, or PIK3CA mutations. CONCLUSION The inverse association between dietary calcium intake and colon cancer risk may be specific to CIMP-negative/low and possibly non-MSI-high subtypes.
Collapse
Affiliation(s)
- NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA. .,Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea.
| | - Li Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Nevo
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Shuji Ogino
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reiko Nishihara
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Building 2, 3rd Floor, 665 Huntington Avenue, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Crockett SD, Barry EL, Mott LA, Ahnen DJ, Robertson DJ, Anderson JC, Wallace K, Burke CA, Bresalier RS, Figueiredo JC, Snover DC, Baron JA. Calcium and vitamin D supplementation and increased risk of serrated polyps: results from a randomised clinical trial. Gut 2019; 68:475-486. [PMID: 29496722 PMCID: PMC6286251 DOI: 10.1136/gutjnl-2017-315242] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Serrated lesions such as sessile serrated adenomas or polyps (SSA/Ps) are important colorectal cancer precursors, but aetiological factors for these lesions are largely unknown. We aimed to determine the effects of calcium and vitamin D supplementation on the incidence of serrated polyps (SPs) in general and hyperplastic polyps and SSA/Ps specifically. DESIGN Participants with one or more adenoma at baseline were randomised to receive 1200 mg/day of elemental calcium, 1000 IU/day of vitamin D3, both or neither agent. Treatment continued for 3 or 5 years, when risk of polyps was determined from surveillance colonoscopy (treatment phase). Outcomes after treatment ceased were also assessed (observational phase). Adjusted risk ratios (aRRs) of SPs were determined via multivariable generalised linear models. RESULTS SPs were diagnosed in 565 of 2058 (27.5%) participants during the treatment phase and 329/1108 (29.7%) during the observational phase. In total, 211 SSA/Ps were identified during follow-up. In the treatment phase, there was no effect of either calcium or vitamin D on incidence of SSA/Ps. However, during the later observational phase, we observed elevated risks of SSA/Ps associated with calcium alone and calcium+vitamin D treatment (aRR (95% CI): 2.65 (1.43 to 4.91) and 3.81 (1.25 to 11.64), respectively). CONCLUSION In a large multicentre chemoprevention study, we found evidence that calcium and vitamin D supplementation increased the risk of SSA/Ps. This appeared to be a late effect: 6-10 years after supplementation began. These possible risks must be weighed against the benefits of calcium and vitamin D supplementation. : Trial registration NUMBER: NCT00153816; Results.
Collapse
Affiliation(s)
- Seth D. Crockett
- Division of Gastroenterology and Hepatology, University of
North Carolina School of Medicine, Chapel Hill, NC
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at
Dartmouth, Lebanon, NH
| | - Leila A. Mott
- Department of Epidemiology, Geisel School of Medicine at
Dartmouth, Lebanon, NH
| | - Dennis J. Ahnen
- Division of Gastroenterology, University of Colorado School
of Medicine, Aurora CO
| | - Douglas J. Robertson
- Division of Gastroenterology and Hepatology, VA Medical
Center, White River Junction, VT & Geisel School of Medicine at Dartmouth,
Hanover, NH
| | - Joseph C. Anderson
- Division of Gastroenterology and Hepatology, VA Medical
Center, White River Junction, VT & Geisel School of Medicine at Dartmouth,
Hanover, NH
| | - Kristen Wallace
- Department of Public Health Sciences, Medical University of
South Carolina, Charleston, SC
| | - Carol A. Burke
- Department of Gastroenterology, Cleveland Clinic School of
Medicine, Cleveland, OH
| | - Robert S. Bresalier
- Department of Gastroenterology, University of Texas MD
Anderson Cancer Center, Houston, TX
| | - Jane C. Figueiredo
- Department of Preventive Medicine, Keck School of Medicine,
University of Southern California, Los Angeles, CA
| | - Dale C. Snover
- Department of Pathology, Fairview Southdale Hospital,
Edina, MN
| | - John A. Baron
- Division of Gastroenterology and Hepatology, University of
North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
12
|
Jayasekara H, English DR, Haydon A, Hodge AM, Lynch BM, Rosty C, Williamson EJ, Clendenning M, Southey MC, Jenkins MA, Room R, Hopper JL, Milne RL, Buchanan DD, Giles GG, MacInnis RJ. Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype. Int J Cancer 2018; 142:238-250. [PMID: 28921583 DOI: 10.1002/ijc.31049] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/13/2017] [Accepted: 09/01/2017] [Indexed: 01/11/2023]
Abstract
The influence of lifestyle factors on survival following a diagnosis of colorectal cancer (CRC) is not well established. We examined associations between lifestyle factors measured before diagnosis and CRC survival. The Melbourne Collaborative Cohort Study collected data on alcohol intake, cigarette smoking and physical activity, and body measurements at baseline (1990-1994) and wave 2 (2003-2007). We included participants diagnosed to 31 August 2015 with incident stages I-III CRC within 10-years post exposure assessment. Information on tumor characteristics and vital status was obtained. Tumor DNA was tested for microsatellite instability (MSI) and somatic mutations in oncogenes BRAF (V600E) and KRAS. We estimated hazard ratios (HRs) for associations between lifestyle factors and overall and CRC-specific mortality using Cox regression. Of 724 eligible CRC cases, 339 died (170 from CRC) during follow-up (average 9.0 years). Exercise (non-occupational/leisure-time) was associated with higher CRC-specific survival for stage II (HR = 0.25, 95% CI: 0.10-0.60) but not stages I/III disease (p for interaction = 0.01), and possibly for colon and KRAS wild-type tumors. Waist circumference was inversely associated with CRC-specific survival (HR = 1.25 per 10 cm increment, 95% CI: 1.08-1.44), independent of stage, anatomic site and tumor molecular status. Cigarette smoking was associated with lower overall survival, with suggestive evidence of worse survival for BRAF mutated CRC, but not with CRC-specific survival. Alcohol intake was not associated with survival. Survival did not differ by MSI status. We have identified pre-diagnostic predictors of survival following CRC that may have clinical and public health relevance.
Collapse
Affiliation(s)
- Harindra Jayasekara
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Vic, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Vic, Australia
- Centre for Alcohol Policy Research, La Trobe University, 215 Franklin Street, Melbourne, Vic, Australia
| | - Dallas R English
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Vic, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
| | - Andrew Haydon
- Department of Medical Oncology, Alfred Hospital, 55 Commercial Road, Melbourne, Vic, Australia
| | - Allison M Hodge
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Vic, Australia
| | - Brigid M Lynch
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Vic, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
- Physical Activity Laboratory, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Vic, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Vic, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Williamson
- Farr Institute of Health Informatics Research, London, United Kingdom
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Vic, Australia
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Vic, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
| | - Robin Room
- Centre for Alcohol Policy Research, La Trobe University, 215 Franklin Street, Melbourne, Vic, Australia
- Centre for Health Equity, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
- Centre for Social Research on Alcohol and Drugs, Stockholm University, Stockholm, SE, Sweden
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Vic, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Vic, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Vic, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
| | - Robert J MacInnis
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Vic, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Vic, Australia
| |
Collapse
|
13
|
Lifestyle, Diet, and Colorectal Cancer Risk According to (Epi)genetic Instability: Current Evidence and Future Directions of Molecular Pathological Epidemiology. CURRENT COLORECTAL CANCER REPORTS 2017; 13:455-469. [PMID: 29249914 PMCID: PMC5725509 DOI: 10.1007/s11888-017-0395-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review In this review, we describe molecular pathological epidemiology (MPE) studies from around the world that have studied diet and/or lifestyle factors in relation to molecular markers of (epi)genetic pathways in colorectal cancer (CRC), and explore future perspectives in this realm of research. The main focus of this review is diet and lifestyle factors for which there is evidence for an association with CRC as identified by the World Cancer Research Fund reports. In addition, we review promising hypotheses, that warrant consideration in future studies. Recent Findings Associations between molecular characteristics of CRC have been published in relation to smoking, alcohol consumption; body mass index (BMI); waist:hip ratio; adult attained height; physical activity; early life energy restriction; dietary acrylamide, fiber, fat, methyl donors, omega 3 fatty acids; meat, including total protein, processed meat, and heme iron; and fruit and vegetable intake. Summary MPE studies help identify where associations between diet, lifestyle, and CRC risk may otherwise be masked and also shed light on how timing of exposure can influence etiology. Sample size is often an issue, but this may be addressed in the future by pooling data.
Collapse
|
14
|
Slattery ML, Lee FY, Pellatt AJ, Mullany LE, Stevens JR, Samowitz WS, Wolff RK, Herrick JS. Infrequently expressed miRNAs in colorectal cancer tissue and tumor molecular phenotype. Mod Pathol 2017; 30:1152-1169. [PMID: 28548123 PMCID: PMC5537006 DOI: 10.1038/modpathol.2017.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022]
Abstract
We have previously shown that commonly expressed miRNAs influenced tumor molecular phenotype in colorectal cancer. We hypothesize that infrequently expressed miRNAs, when showing higher levels of expression, help to define tumor molecular phenotype. In this study, we examine 304 miRNAs expressed in at least 30 individuals, but in <50% of the population and with a mean level of expression above 1.0 relative florescent unit. We examine associations in 1893 individuals who have the tumor molecular phenotype data as well as miRNA expression levels for both carcinoma and normal colorectal tissue. We compare miRNAs uniquely associated with tumor molecular phenotype to the RNAseq data to identify genes associated with these miRNAs. This information is used to further identify unique pathways associated with tumor molecular phenotypes of TP53-mutated, KRAS-mutated, CpG island methylator phenotype and microsatellite instability tumors. Thirty-seven miRNAs were uniquely associated with TP53-mutated tumors; 30 of these miRNAs had higher level of expression in TP53-mutated tumors, while seven had lower levels of expression. Of the 34 miRNAs associated with CpG island methylator phenotype-high tumors, 16 were more likely to have a CpG island methylator phenotype-high tumor and 19 were less likely to be CpG island methylator phenotype-high. For microsatellite instability, 13 of the 22 infrequently expressed miRNAs were significantly less likely to be expressed in microsatellite unstable tumors. KRAS-mutated tumors were not associated with any miRNAs after adjustment for multiple comparisons. Of the dysregulated miRNAs, 17 were more likely to be TP53-mutated tumors while simultaneously being less likely to be CpG island methylator phenotype-high and/or microsatellite instability tumors. Genes regulated by these miRNAs were involved in numerous functions and pathways that influence cancer risk and progression. In summary, some infrequently expressed miRNAs, when expressed at higher levels, appear to have significant biological meaning in terms of tumor molecular phenotype and gene expression profiles.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, UT, USA,Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT 84108, USA. E-mail:
| | | | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
15
|
Associations of red and processed meat intake with major molecular pathological features of colorectal cancer. Eur J Epidemiol 2017. [PMID: 28646407 DOI: 10.1007/s10654-017-0275-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Red and processed meat is an established risk factor for colorectal cancer (CRC). However, exact mechanisms to explain the associations remain unclear. Few studies have investigated the association with CRC by molecular tumor features, which could provide relevant information on associated molecular pathways. In this population-based case-control study from Germany (DACHS), 2449 cases and 2479 controls provided information on risk factors of CRC and completed a food frequency questionnaire. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI) for the associations between meat intake and risk of CRC by molecular pathologic features and specific subtypes. Red and processed meat intake was associated with increased risk of colorectal (>1 time/day vs ≤1 time/week OR 1.66, 95% CI 1.34-2.07), colon and rectal cancer. Among the single molecular tumor features investigated, the results were similar for associations of red and processed meat with CRC risk by microsatellite instability, CpG island methylator phenotype, BRAF, oestrogen receptor-β and p53 status. Red and processed meat intake was associated less strongly with risk of KRAS-mutated CRC (OR >1 time/day vs ≤1 time/week: 1.49, 95% CI 1.09-2.03) than with risk of KRAS-wildtype CRC (OR 1.82, 95% CI 1.42-2.34; p heterogeneity 0.04). These results support an association between red and processed meat and CRC risk similar for subsites of CRC and most of the investigated major molecular pathological features. Potential differences were observed in more specific subtype analyses. Further large studies are needed to confirm these results and to help further elucidate potential underlying mechanisms.
Collapse
|
16
|
Jayasekara H, MacInnis RJ, Williamson EJ, Hodge AM, Clendenning M, Rosty C, Walters R, Room R, Southey MC, Jenkins MA, Milne RL, Hopper JL, Giles GG, Buchanan DD, English DR. Lifetime alcohol intake is associated with an increased risk of KRAS+ and BRAF-/KRAS- but not BRAF+ colorectal cancer. Int J Cancer 2017; 140:1485-1493. [PMID: 27943267 DOI: 10.1002/ijc.30568] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/14/2016] [Accepted: 11/24/2016] [Indexed: 12/16/2022]
Abstract
Ethanol in alcoholic beverages is a causative agent for colorectal cancer. Colorectal cancer is a biologically heterogeneous disease, and molecular subtypes defined by the presence of somatic mutations in BRAF and KRAS are known to exist. We examined associations between lifetime alcohol intake and molecular and anatomic subtypes of colorectal cancer. We calculated usual alcohol intake for 10-year periods from age 20 using recalled frequency and quantity of beverage-specific consumption for 38,149 participants aged 40-69 years from the Melbourne Collaborative Cohort Study. Cox regression was performed to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between lifetime alcohol intake and colorectal cancer risk. Heterogeneity in the HRs across subtypes of colorectal cancer was assessed. A positive dose-dependent association between lifetime alcohol intake and overall colorectal cancer risk (mean follow-up = 14.6 years; n = 596 colon and n = 326 rectal cancer) was observed (HR = 1.08, 95% CI: 1.04-1.12 per 10 g/day increment). The risk was greater for rectal than colon cancer (phomogeneity = 0.02). Alcohol intake was associated with increased risks of KRAS+ (HR = 1.07, 95% CI: 1.00-1.15) and BRAF-/KRAS- (HR = 1.05, 95% CI: 1.00-1.11) but not BRAF+ tumors (HR = 0.89, 95% CI: 0.78-1.01; phomogeneity = 0.01). Alcohol intake is associated with an increased risk of KRAS+ and BRAF-/KRAS- tumors originating via specific molecular pathways including the traditional adenoma-carcinoma pathway but not with BRAF+ tumors originating via the serrated pathway. Therefore, limiting alcohol intake from a young age might reduce colorectal cancer originating via the traditional adenoma-carcinoma pathway.
Collapse
Affiliation(s)
- Harindra Jayasekara
- Cancer Council Victoria, Cancer Epidemiology Centre, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
| | - Robert J MacInnis
- Cancer Council Victoria, Cancer Epidemiology Centre, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
| | - Elizabeth J Williamson
- Farr Institute of Health Informatics Research, London, NW1 2DA, United Kingdom
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Allison M Hodge
- Cancer Council Victoria, Cancer Epidemiology Centre, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Rhiannon Walters
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Herston, QLD, Australia
| | - Robin Room
- Centre for Alcohol Policy Research, La Trobe University, Melbourne, VIC, 3000, Australia
- Centre for Health Equity, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, 3010, Australia
- Centre for Social Research on Alcohol and Drugs, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
| | - Roger L Milne
- Cancer Council Victoria, Cancer Epidemiology Centre, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
| | - John L Hopper
- Cancer Council Victoria, Cancer Epidemiology Centre, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
| | - Graham G Giles
- Cancer Council Victoria, Cancer Epidemiology Centre, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Dallas R English
- Cancer Council Victoria, Cancer Epidemiology Centre, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, VIC, 3010, Australia
| |
Collapse
|
17
|
Chau R, Dashti SG, Ait Ouakrim D, Buchanan DD, Clendenning M, Rosty C, Winship IM, Young JP, Giles GG, Macrae FA, Boussioutas A, Parry S, Figueiredo JC, Levine AJ, Ahnen DJ, Casey G, Haile RW, Gallinger S, Le Marchand L, Thibodeau SN, Lindor NM, Newcomb PA, Potter JD, Baron JA, Hopper JL, Jenkins MA, Win AK. Multivitamin, calcium and folic acid supplements and the risk of colorectal cancer in Lynch syndrome. Int J Epidemiol 2016; 45:940-53. [PMID: 27063605 DOI: 10.1093/ije/dyw036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND People with a DNA mismatch repair (MMR) gene mutation have a substantially elevated risk of colorectal cancer (CRC) but the modifiers of this risk are not well established. We investigated the association between dietary supplement intake and CRC risk for carriers. METHODS This study included 1966 (56% female) carriers of an MMR gene mutation (719 MLH1, 931 MSH2, 211 MSH6 and 105 PMS2) who were recruited from the USA, Canada, Australia and New Zealand into the Colon Cancer Family Registry between 1997 and 2012. Information on lifestyle factors including supplement intake was collected at the time of recruitment. Using Cox proportional hazards regression weighted to correct for ascertainment bias, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between self-reported multivitamin, calcium and folic acid supplement intake and CRC risk. RESULTS Of 744 carriers with CRC, 18%, 6% and 5% reported intake of multivitamin, calcium and folic acid supplements for at least 1 month, respectively, compared with 27%, 11% and 10% of 1222 carriers without CRC. After adjusting for identified confounding variables, a decreased CRC risk was associated with multivitam inintake for at least 3 years (HR 0.47, 95% CI 0.32-0.69) and calcium intake for at least 3 years(HR 0.42, 95% CI 0.23-0.74), compared with never users. There was no evidence of an association between folic acid supplement intake and CRC risk (P = 0.82). CONCLUSION Intake of multivitamin and calcium supplements might be associated with a decreased risk of CRC for MMR gene mutation carriers.
Collapse
Affiliation(s)
- Rowena Chau
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology
| | | | - Driss Ait Ouakrim
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology
| | - Daniel D Buchanan
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology Colorectal Oncogenomics Group, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Pathology, University of Melbourne, Parkville, VIC, Australia School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Ingrid M Winship
- Department of Medicine Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Joanne P Young
- Departments of Haematology and Oncology, Queen Elizabeth Hospital SAHMRI Colorectal Node, Basil Hetzel Institute for Translational Research, Woodville, SA, Australia School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Graham G Giles
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Finlay A Macrae
- Department of Medicine Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Alex Boussioutas
- Department of Medicine Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Susan Parry
- New Zealand Familial Gastrointestinal Cancer Service, Auckland, New Zealand
| | - Jane C Figueiredo
- Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, USA
| | - A Joan Levine
- Department of Medicine, Stanford Cancer Institute, Stanford University, CA, USA
| | - Dennis J Ahnen
- Department of Medicine, University of Colorado School of Medicine, Denver, CO, USA
| | - Graham Casey
- Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, USA
| | - Robert W Haile
- Department of Medicine, Stanford Cancer Institute, Stanford University, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA School of Public Health, University of Washington, Seattle, WA, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA School of Public Health, University of Washington, Seattle, WA, USA Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - John A Baron
- Department of Medicine, University of North Carolina, Chapel Hill, Nc, USA
| | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology Department of Epidemiology and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| | - Mark A Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology
| | - Aung Ko Win
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology
| |
Collapse
|
18
|
Yashiro M. Molecular Alterations of Colorectal Cancer with Inflammatory Bowel Disease. Dig Dis Sci 2015; 60:2251-63. [PMID: 25840920 DOI: 10.1007/s10620-015-3646-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is an important etiologic factor in the development of colorectal cancer (CRC). The risk of CRC begins to increase 8 or 10 years after the diagnosis of IBD. This type of cancer is called colitis-associated CRC (CA-CRC). The molecular pathogenesis of inflammatory epithelium might play a critical role in the development of CA-CRC. Genetic alterations detected in CA-CRC such as genetic mutations, microsatellite instability, and DNA hypermethylation are also recognized in sporadic CRC; however, there are differences in the timing and frequency of molecular events between CA-CRC and sporadic CRC. Interaction between gene-environmental factors, including inflammation, lifestyle, psychological stress, and prior appendectomy, might be associated with the etiopathology of IBD. The mucosal inflammatory mediators, such as oxidant stress, free radicals, and chemokines, may cause the genetic alterations. Understanding the molecular mechanisms of CA-CRC might be important to develop clinical efficacies for patients with IBD. This review discusses the molecular characteristics of CA-CRC, especially ulcerative colitis-associated CRC, including clinical features, signaling pathways, and interactions between genetic alterations and environment involved in inflammatory carcinogenesis.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Department of Surgical Oncology, Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan,
| |
Collapse
|
19
|
Kato I, Startup J, Ram JL. Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Razzak AA, Oxentenko AS, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, Lynch CF, Anderson KE, French AJ, Haile RW, Harnack LJ, Potter JD, Slager SL, Smyrk TC, Thibodeau SN, Cerhan JR, Limburg PJ. Associations between intake of folate and related micronutrients with molecularly defined colorectal cancer risks in the Iowa Women's Health Study. Nutr Cancer 2013; 64:899-910. [PMID: 23061900 DOI: 10.1080/01635581.2012.714833] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Folate and related micronturients may affect colorectal cancer (CRC) risk, but the molecular mechanism(s) remain incompletely defined. We analyzed associations between dietary folate, vitamin B6, vitamin B12, and methionine with incident CRC, overall and by microsatellite instability (MSS/MSI-L or MSI-H), CpG island methylator phenotype (CIMP-negative or CIMP-positive), BRAF mutation (negative or positive), and KRAS mutation (negative or positive) status in the prospective, population-based Iowa Women's Health Study (IWHS; 55-69 years at baseline; n = 41,836). Intake estimates were obtained from baseline, self-reported food frequency questionnaires. Molecular marker data were obtained for 514 incident CRC cases. Folate intake was inversely associated with overall CRC risk in age-adjusted Cox regression models, whereas methionine intake was inversely associated with overall CRC risk in multivariable-adjusted models [relative risk (RR) = 0.81; 95% CI = 0.69-0.95; P trend = 0.001 and RR = 0.72; 95% CI = 0.54-0.96; P trend = 0.03 for highest vs. lowest quartiles, respectively]. None of the dietary exposures were associated with MSI, CIMP, BRAF, or KRAS defined CRC subtypes. These data provide minimal support for major effects from the examined micronutrients on overall or molecularly defined CRC risks in the IWHS cohort.
Collapse
Affiliation(s)
- Anthony A Razzak
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, Haile RW, Laird PW. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 2012; 131:1565-89. [PMID: 22740325 PMCID: PMC3432200 DOI: 10.1007/s00439-012-1189-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Changes in epigenetic marks such as DNA methylation and histone acetylation are associated with a broad range of disease traits, including cancer, asthma, metabolic disorders, and various reproductive conditions. It seems plausible that changes in epigenetic state may be induced by environmental exposures such as malnutrition, tobacco smoke, air pollutants, metals, organic chemicals, other sources of oxidative stress, and the microbiome, particularly if the exposure occurs during key periods of development. Thus, epigenetic changes could represent an important pathway by which environmental factors influence disease risks, both within individuals and across generations. We discuss some of the challenges in studying epigenetic mediation of pathogenesis and describe some unique opportunities for exploring these phenomena.
Collapse
Affiliation(s)
- Victoria K. Cortessis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Duncan C. Thomas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., SSB-202F, Los Angeles, CA 90089-9234 USA
| | - A. Joan Levine
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90089-9234 USA
| | - Thomas M. Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90089-9234 USA
| | - Robert W. Haile
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089 USA
| | - Peter W. Laird
- Departments of Surgery, Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Epigenome Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9601 USA
| |
Collapse
|
22
|
Poole EM, Curtin K, Hsu L, Duggan DJ, Makar KW, Xiao L, Carlson CS, Caan BJ, Potter JD, Slattery ML, Ulrich CM. Genetic variability in IL23R and risk of colorectal adenoma and colorectal cancer. Cancer Epidemiol 2011; 36:e104-10. [PMID: 22154103 DOI: 10.1016/j.canep.2011.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/09/2023]
Abstract
Inflammatory processes, including, specifically, the inflammatory conditions Crohn's disease (CD) and ulcerative colitis (UC) predispose to colorectal cancer. Interleukin-23 is involved in pro-inflammatory signaling; genetic variation in the interleukin-23 receptor (IL23R) has been consistently associated with CD and UC risk. In three case-control studies of colorectal adenoma (n=485 cases/578 controls), colon cancer (n=1424 cases/1780 controls) and rectal cancer (n=583 cases/775 controls), we investigated associations with 18 candidate and tagSNPs in IL23R. The three studies used an identical Illumina GoldenGate assay, allowing thorough investigation across stages and locations of colorectal neoplasia. We further explored associations with molecular cancer subtypes (MSI+, CIMP+, KRAS2mut, TP53mut). In this comprehensive study of genetic variability in IL23R across the spectrum of colorectal carcinogenesis, as well as within colon and rectal tumor molecular subtypes, we observed associations between SNPs in IL23R and risk of rectal cancer: the 88413 C>A (rs10889675) and 69450 C>A (rs7542081) polymorphisms were associated with decreased rectal cancer risk overall (p-trend=0.04 and 0.05 respectively), and specifically with rectal tumors bearing a TP53 mutation (88413 CA/AA vs. CC OR: 0.66; 95% CI: 0.46-94; 69450 CA/AA vs. CC OR: 0.60; 95% CI: 0.37-0.98). However, none of associations remained statistically significant after correction for multiple testing. These data provide some evidence that genetic variability in IL23R may contribute to rectal cancer risk and should be evaluated in additional studies.
Collapse
|
23
|
Razzak AA, Oxentenko AS, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, Lynch CF, Anderson KE, French AJ, Haile RW, Harnack LJ, Slager SL, Smyrk TC, Thibodeau SN, Cerhan JR, Limburg PJ. Alcohol intake and colorectal cancer risk by molecularly defined subtypes in a prospective study of older women. Cancer Prev Res (Phila) 2011; 4:2035-43. [PMID: 21900595 PMCID: PMC3584678 DOI: 10.1158/1940-6207.capr-11-0276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased alcohol consumption is a putative colorectal cancer (CRC) risk factor. However, existing data are less conclusive for women than men. Also, to date, relatively few studies have reported alcohol-related CRC risks based on molecularly defined tumor subtypes. We evaluated associations between alcohol intake and incident CRC, overall and by microsatellite instability [MSI high (MSI-H) or MSI low/microsatellite stable (MSI-L/MSS)], CpG island methylator phenotype (CIMP positive or CIMP negative), and BRAF mutation (mutated or wild-type) status in the prospective, population-based Iowa Women's Health Study (IWHS; n = 41,836). Subjects were 55 to 69 years at baseline (1986), and exposure data were obtained by self-report. Incident CRCs were prospectively identified and archived, paraffin-embedded tissue specimens were collected from 732 representative cases, diagnosed through December 31, 2002. Multivariate Cox regression models were fit to estimate relative risks (RR) and 95% confidence intervals (CI). Among alcohol consumers, the median intake (range) was 3.4 (0.9-292.8) g/d. Compared with nonconsumers, alcohol intake levels of 3.4 g/d or less (RR = 1.00; 95% CI, 0.86-1.15) and more than 3.4 g/d (RR = 1.06; 95% CI, 0.91-1.24) were not significantly associated with overall CRC risk. Analyses based on alcohol intake levels of 30 g/d or less and more than 30 g/d or quartile distributions yielded similar risk estimates. Null associations were also observed between each alcohol intake level and the MSI-, CIMP- or, BRAF-defined CRC subtypes (P > 0.05 for each comparison). These data do not support an adverse effect from alcohol intake on CRC risk, overall or by specific molecularly defined subtypes, among older women.
Collapse
Affiliation(s)
| | | | - Robert A. Vierkant
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | - Lori S. Tillmans
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Alice H. Wang
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Amy J. French
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Robert W. Haile
- Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, CA
| | - Lisa J. Harnack
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Susan L. Slager
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | - Thomas C. Smyrk
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | | | | | | |
Collapse
|
24
|
Gay LJ, Arends MJ, Mitrou PN, Bowman R, Ibrahim AE, Happerfield L, Luben R, McTaggart A, Ball RY, Rodwell SA. MLH1 promoter methylation, diet, and lifestyle factors in mismatch repair deficient colorectal cancer patients from EPIC-Norfolk. Nutr Cancer 2011; 63:1000-1010. [PMID: 21875327 DOI: 10.1080/01635581.2011.596987] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is conflicting evidence for the role diet and lifestyle play in the development of mismatch repair (MMR)-deficient colorectal cancers (CRC). In this study, associations between MMR deficiency, clinicopathological characteristics, and dietary and lifestyle factors in sporadic CRC were investigated. Tumor samples from 185 individuals in the EPIC-Norfolk study were analyzed for MLH1 gene promoter methylation and microsatellite instability (MSI). Dietary and lifestyle data were collected prospectively using 7-day food diaries (7dd) and questionnaires. MMR-deficient tumor cases (MLH1 promoter methylation positive, MSI-H) were more likely to be female, older at diagnosis, early Dukes' stage (A/B), and proximal in location (MSI-H P = 0.03, 0.03, 0.02, and 0.001, respectively). Tumors with positive MLH1 promoter methylation (>20%) were associated with poor differentiation (P = 0.03). Low physical activity was associated with cases without MSI (P = 0.05). MMR deficiency was not significantly associated with cigarette smoking or alcohol, folate, fruit, vegetable, or meat consumption. We conclude that MMR-deficient tumors represent a distinct subset of sporadic CRC that are proximal in location, early Dukes' stage, and poorly differentiated, in cases that are female and older at diagnosis. There is no overall role for diet and lifestyle in MMR status in CRC, consistent with age-related susceptibility to MLH1 promoter methylation.
Collapse
Affiliation(s)
- Laura J Gay
- Medical Research Council Dunn Human Nutrition Unit, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fu Z, Shrubsole MJ, Smalley WE, Wu H, Chen Z, Shyr Y, Ness RM, Zheng W. Association of meat intake and meat-derived mutagen exposure with the risk of colorectal polyps by histologic type. Cancer Prev Res (Phila) 2011; 4:1686-97. [PMID: 21803984 DOI: 10.1158/1940-6207.capr-11-0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The association of meat intake and meat-derived mutagens with colorectal tumor risk remains unclear. We evaluated this hypothesis in a large colonoscopy-based case-control study. Included in the study were 2,543 patients with polyp [(1,881 with adenomas and 622 with hyperplastic polyp (HPP)] and 3,764 polyp-free controls. Surveys obtained information about meat intake by cooking methods and doneness levels plus other suspected or known risk factors for colorectal tumors. Unconditional logistic regression was used to derive ORs after adjusting for potential confounders. High intake of red meat and processed meat (P(trend) < 0.05), particularly red meat cooked using high-temperature cooking methods (P(trend) ≤ 0.01), was associated with an elevated risk for colorectal polyps. A significant positive association between exposures to meat-derived heterocyclic amines (HCA) and risk of polyps was found for both adenomas and HPPs. Furthermore, the positive association with red meat intake and HCA exposure was stronger for multiple adenomas than for single adenoma as well as for serrated than for nonserrated adenomas. This study supports a role for red meat and meat-derived mutagen exposure in the development of colorectal tumor.
Collapse
Affiliation(s)
- Zhenming Fu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE An association between alcohol and rectal cancer has been reported in the epidemiological literature. In this study we further explore the association by examining specific tumor markers with alcohol consumption as well as types of alcoholic beverages consumed. METHODS We assessed alcohol consumption with CpG Island Methylator Phenotype, TP53, and KRAS2 mutations in incident rectal cancer cases and compared them with population-based controls. We evaluated type, long-term, and recent alcohol consumption. RESULTS We observed a trend toward increasing risk of CpG Island Methylator Phenotype positive tumors and long-term alcohol consumption. In contrast, after adjusting for total alcohol intake, recent high beer consumption significantly increased the odds of having a TP53 mutation compared with those who did not drink beer (odds ratio, 1.97; 95% CI 1.24, 3.12). We observed a nonstatistically significant reduced risk of a TP53 mutation among those who drank wine (in particular, red wine) vs nonconsumers of wine. The association between TP53 mutations and recent beer consumption was strongest for transversion mutations. CONCLUSIONS These data suggest that both alcohol and specific constituents of alcoholic beverages contribute to rectal cancer risk among unique disease pathways.
Collapse
|
27
|
Slattery ML, Curtin K, Wolff RK, Herrick JS, Caan BJ, Samowitz W. Diet, physical activity, and body size associations with rectal tumor mutations and epigenetic changes. Cancer Causes Control 2010; 21:1237-45. [PMID: 20383576 DOI: 10.1007/s10552-010-9551-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 03/20/2010] [Indexed: 12/13/2022]
Abstract
Diet and lifestyle factors have been inconsistently associated with rectal tumors. It is possible that evaluation of specific tumor markers with these factors may help clarify these associations. In this study, we examine energy contributing nutrients, dietary fiber, BMI (kg/m2), and long-term physical activity with TP53 mutations, KRAS2 mutations, and CpG Island Methylator Phenotype (CIMP) in 750 population-based cases of rectal cancer compared to healthy controls. We observed that high levels of physical activity reduced the risk of having TP53 and KRAS2 rectal tumor mutations. Dairy products rich in fat were associated with an increased risk of CIMP+ tumors (OR 1.88 95% CI 0.92, 3.84), while low-fat dairy products reduced risk of CIMP+ tumors (OR 0.56 95% CI 0.29, 1.09). Omega-3 fatty acids were associated with a twofold increased risk of a CIMP+ tumor. High levels of vegetable intake reduced risk of both TP53 mutations (OR 0.73 95% CI 0.54, 1.00; p trend 0.02) and KRAS2 mutations (OR 0.60 95% CI 0.40, 0.89; p trend <0.01). High intake of whole grains reduced the likelihood of a TP53 mutation (OR 0.74 95% CI 0.56, 0.99), while high intake of refined grains increased the likelihood of a TP53 mutation (OR 1.41 95% CI 1.02, 1.96). Dietary fiber also was associated with reduced risk of TP53 and KRAS2 rectal tumor mutations. Overall, a prudent dietary pattern significantly reduced the likelihood of a KRAS2 tumor mutation (OR 0.68 95% CI 0.47, 0.98; p linear trend 0.03). These data suggest that diet and lifestyle factors are associated with specific types of rectal tumor mutations and epigenetic changes. Findings need confirmation in other studies.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Sidelnikov E, Bostick RM, Flanders WD, Long Q, Fedirko V, Shaukat A, Daniel CR, Rutherford RE. Effects of calcium and vitamin D on MLH1 and MSH2 expression in rectal mucosa of sporadic colorectal adenoma patients. Cancer Epidemiol Biomarkers Prev 2010; 19:1022-32. [PMID: 20332274 DOI: 10.1158/1055-9965.epi-09-0526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To further clarify and develop calcium and vitamin D as chemopreventive agents against colorectal cancer in humans and develop modifiable biomarkers of risk for colorectal cancer, we conducted a pilot, randomized, double-blind, placebo-controlled, 2 x 2 factorial clinical trial to test the effects of calcium and vitamin D(3), alone and in combination, on key DNA mismatch repair proteins in the normal colorectal mucosa. Ninety-two men and women with at least one pathology-confirmed colorectal adenoma were treated with 2.0 g/d calcium or 800 IU/d vitamin D(3), alone or in combination, versus placebo over 6 months. Colorectal crypt overall expression and distribution of MSH2 and MLH1 proteins in biopsies of normal-appearing rectal mucosa were detected by automated immunohistochemistry and quantified by image analysis. After 6 months of treatment, MSH2 expression along the full lengths of crypts increased by 61% (P = 0.11) and 30% (P = 0.36) in the vitamin D and calcium groups, respectively, relative to the placebo group. The estimated calcium and vitamin D treatment effects were more pronounced in the upper 40% of crypts (differentiation zone) in which MSH2 expression increased by 169% (P = 0.04) and 107% (P = 0.13) in the vitamin D and calcium groups, respectively. These findings suggest that higher calcium and vitamin D intakes may result in increased DNA MMR system activity in the normal colorectal mucosa of sporadic adenoma patients and that the strongest effects may be vitamin D related and in the differentiation zone of the colorectal crypt.
Collapse
Affiliation(s)
- Eduard Sidelnikov
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Poynter JN, Haile RW, Siegmund KD, Campbell PT, Figueiredo JC, Limburg P, Young J, Le Marchand L, Potter JD, Cotterchio M, Casey G, Hopper JL, Jenkins MA, Thibodeau SN, Newcomb PA, Baron JA. Associations between smoking, alcohol consumption, and colorectal cancer, overall and by tumor microsatellite instability status. Cancer Epidemiol Biomarkers Prev 2009; 18:2745-50. [PMID: 19755657 DOI: 10.1158/1055-9965.epi-09-0517] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Both smoking and alcohol consumption have been associated with modestly increased risks of colorectal cancer (CRC). Reports have suggested that these associations may differ by tumor molecular subtype, with stronger associations for microsatellite unstable (MSI-H) tumors. METHODS We used a population-based case-unaffected sibling design including 2,248 sibships (2,253 cases; 4,486 siblings) recruited to the Colon Cancer Family Registry to evaluate the association between smoking, alcohol consumption, and CRC. Associations were assessed using conditional logistic regression, treating sibship as the matching factor. RESULTS Although there were no statistically significant associations between any smoking variable and CRC overall, smoking did confer an increased risk of certain types of CRC. We observed an association between pack-years of smoking and rectal cancer [odds ratio (OR), 1.85; 95% confidence interval (CI), 1.23-2.79 for >40 pack-years versus nonsmokers; P(trend) = 0.03], and there was an increased risk of MSI-H CRC with increasing duration of smoking (OR, 1.94; 95% CI, 1.09-3.46 for >30 years of smoking versus nonsmokers). Alcohol intake was associated with a modest increase in risk for CRC overall (OR, 1.21; 95% CI, 1.03-1.44 for 12+ drinks per week versus nondrinkers), with more marked increases in risk for MSI-L CRC (OR, 1.85; 95% CI, 1.06-3.24) and rectal cancer (OR, 1.48; 95% CI, 1.08-2.02). CONCLUSIONS We found associations between cigarette smoking and increased risks of rectal cancer and MSI-H CRC. Alcohol intake was associated with increased risks of rectal cancer and MSI-L CRC. These results highlight the importance of considering tumor phenotype in studies of risk factors for CRC.
Collapse
Affiliation(s)
- Jenny N Poynter
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE Differences in acquired mutations in colon and rectal tumors may account for differences in risk factors. In this study, we examined similarities and differences in somatic alterations in colon and rectal tumors. METHODS Cases were identified from two large population-based case-control studies of colon cancer and rectal cancer. We sequenced Exons 5 to 8 of the p53 gene and Codons 12 and 13 of the Ki-ras gene to identify tumor mutations. Microsatellite instability was determined based on BAT26 and TGFbetaRII analysis; CpG island methylator phenotype was determined based on having two or more of the following markers methylated p16, MLH1, MINT1, MINT2, and MINT31. RESULTS p53 mutations were observed in 39.7% of proximal, 51.0% of distal, and 46.6% of rectal tumors; Ki-ras mutations were observed in 36.0% of proximal, 26.9% of distal, and 30.5% of rectal tumors. Although 40.9% of proximal tumors were considered CpG island methylator phenotype positive (having two or more of five markers methylated), only 12.9% of distal and 11.9% of rectal tumors were CpG island methylator phenotype positive. Likewise, microsatellite instability was observed in 23.7% of proximal and only 3.8% of distal and 2.0% of rectal tumors. More than 50% of distal colon or rectal tumors had only one acquired mutation, whereas only 35.1% of proximal tumors had one mutation. The most common single mutation for colon and rectal tumors was p53 followed by Ki-ras mutations. CONCLUSIONS Our findings suggest that unique mutational pathways are involved in the development of most colorectal tumors. Proximal colon cancers are more likely than rectal and distal colon tumors to have microsatellite instability, CpG island methylator phenotype, and Ki-ras mutations, whereas rectal and distal colon tumors are more likely than proximal colon tumors to have a p53 mutation. Overall, rectal and distal colon tumors share similar mutational frequencies which are different from those observed in proximal colon tumors.
Collapse
|
31
|
Sweeney C, Boucher KM, Samowitz WS, Wolff RK, Albertsen H, Curtin K, Caan BJ, Slattery ML. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors. Genes Chromosomes Cancer 2009; 48:1-9. [PMID: 18767147 DOI: 10.1002/gcc.20614] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis.
Collapse
Affiliation(s)
- Carol Sweeney
- Health Sciences Center, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Butler LM, Wang R, Koh WP, Stern MC, Yuan JM, Yu MC. Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese: a prospective study. Int J Cancer 2008; 124:678-86. [PMID: 18973226 DOI: 10.1002/ijc.23950] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental data support multiple roles for fatty acids in colorectal carcinogenesis. We examined dietary fatty acids and incidence of colorectal cancer, and evaluated effect modification by sex and stage of disease among a population-based cohort of 61,321 Singapore Chinese that was established between 1993 and 1998. As of December 31, 2005, 961 incident colorectal cancers were diagnosed. Presented hazard ratios (HRs) are for highest versus lowest quartiles with adjustment for potential confounders. Among women, we observed a dose-dependent, positive association between saturated fat and localized colorectal cancer (Dukes A or B) [(HR=1.69, 95% confidence interval (CI)=1.08-2.63, p for trend=0.01)]. No such associations were noted in men (p for interaction by sex=0.04). Marine n-3 polyunsaturated fatty acid (PUFA) intake was positively associated with advanced disease (Dukes C or D) (HR=1.33, 95% CI=1.05-1.70, p for trend=0.01), regardless of sex. The association with marine n-3 PUFAs was strongest among those with the shortest (<or=5 years) duration of follow-up (HR=1.49, 95% CI=1.00-2.21, p for trend=0.04). In contrast, we observed a small, albeit imprecise, inverse association with marine n-3 PUFAs for localized colorectal cancer among those with the longest duration of follow-up (>10 years) (HR=0.62, 95% CI=0.29-1.34, p for trend=0.55). Our findings suggest that subtypes of fatty acids may differentially influence risk of colorectal cancer of a specified stage.
Collapse
Affiliation(s)
- Lesley M Butler
- Department of Public Health Sciences, University of California-Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Slattery ML, Wolff RK, Curtin K, Fitzpatrick F, Herrick J, Potter JD, Caan BJ, Samowitz WS. Colon tumor mutations and epigenetic changes associated with genetic polymorphism: insight into disease pathways. Mutat Res 2008; 660:12-21. [PMID: 18992263 DOI: 10.1016/j.mrfmmm.2008.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/03/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Variation in genes associated with serum levels of proteins may be useful for examining specific disease pathways. Using data from a large study of colon cancer, we examine genetic variants in insulin, inflammation, estrogen, metabolizing enzymes, and energy homeostasis genes to explore associations with microsatellite instability (MSI), CpG Island methylator phenotype (CIMP), mutations of p53 in exons 5 through 8, and mutations in codons 12 and 13 of Ki-ras. Insulin-related genes were associated with CIMP-positive and MSI tumors, with the strongest associations among aspirin users. The Fok1 vitamin D receptor (VDR) polymorphism was associated with CIMP-positive/Ki-ras-mutated tumors; the Poly A and CDX2 VDR polymorphisms were associated only with Ki-ras-mutated tumors. NAT2 was associated with CIMP-positive/Ki-ras-mutated tumors but not with MSI tumors. The TCF7L2 rs7903146 polymorphism was associated with p53 mutated tumors. Most associations varied by recent aspirin/NSAID use: IL6 rs1800796 and rs1800795 polymorphisms were associated inversely with tumor mutations in the presence of aspirin/NSAIDs; POMC significantly reduced risk of Ki-ras-mutated tumors when aspirin/NSAIDs were not used; the TCF7L2 rs7903146 was associated with reduced risk of Ki-ras-mutated tumors in the presence of aspirin and increased risk in the absence of aspirin. These data, although exploratory, identify specific tumor subsets that may be associated with specific exposures/polymorphism combinations. The important modifying effects of aspirin/NSAIDs on associations with genetic polymorphisms reinforce the underlying role of inflammation in the etiology of colon cancer.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shin A, Shrubsole MJ, Rice JM, Cai Q, Doll MA, Long J, Smalley WE, Shyr Y, Sinha R, Ness RM, Hein DW, Zheng W. Meat intake, heterocyclic amine exposure, and metabolizing enzyme polymorphisms in relation to colorectal polyp risk. Cancer Epidemiol Biomarkers Prev 2008; 17:320-9. [PMID: 18268115 DOI: 10.1158/1055-9965.epi-07-0615] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most colorectal cancers arise from adenomatous polyps or certain hyperplastic polyps. Only a few studies have investigated potential genetic modifiers of the associations between meat intake and polyp risk, and results are inconsistent. Using data from the Tennessee Colorectal Polyp Study, a large colonoscopy-based study, including 1,002 polyp cases (557 adenoma only, 250 hyperplastic polyp only, 195 both polyps) and 1,493 polyp-free patients, we evaluated the association of colorectal polyp risk with carcinogen exposure from meat and genetic polymorphisms in enzymes involved in heterocyclic amine (HCA) metabolism, including N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2), cytochrome P450 1A2 (CYP1A2), and aryl hydrocarbon receptor (AhR). Data on intake levels of meats by preparation methods, doneness preferences, and other lifestyle factors were obtained. Fourteen single nucleotide polymorphisms in the AhR, CYP1A2, NAT1, and NAT2 genes were evaluated. No clear association was found for any polymorphisms with polyp risk. However, apparent interactions were found for intake of meat and HCAs with AhR, NAT1, and NAT2 genotypes, and the interactions were statistically significant for the group with both adenomatous and hyperplastic polyps. Dose-response relationships with meat or HCA intake were found only among those with the AhR GA/AA (rs2066853) genotype, NAT1 rapid, or NAT2 rapid/intermediate acetylators but not among those with other genotypes of these genes. This dose-response relationship was more evident among those with both AhR GA/AA and the NAT1 rapid acetylator than those without this genotype combination. These results provide strong evidence for a modifying effect of metabolizing genes on the association of meat intake and HCA exposure with colorectal polyp risk.
Collapse
Affiliation(s)
- Aesun Shin
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 8th Floor, 2525 West End Avenue, Nashville, TN 37203, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Samowitz WS. Genetic and epigenetic changes in colon cancer. Exp Mol Pathol 2008; 85:64-7. [PMID: 18482722 DOI: 10.1016/j.yexmp.2008.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/03/2008] [Indexed: 11/30/2022]
Abstract
The genetic heterogeneity of colon cancer suggests that it is actually more than one disease, and perhaps represents a conglomeration of genetically different diseases which happen to occur in the same organ. The progressively more refined genetic definition of colon cancer has uncovered and/or strengthened heretofore obscured associations with clinicopathologic features and risk factors and has led to the development of numerous useful clinical tests, some of which may also have therapeutic implications. It is certainly possible that we have only begun to "scratch the surface" of this heterogeneity. Other techniques--expression microarray, microRNAs, etc.--will likely add to this heterogeneity and suggest future diagnostic and therapeutic evaluations. In addition, recent data on APC gene mutations challenges the existing paradigm for colon cancer carcinogenesis and precursor lesions, which may in turn have clinical implications for cancer prevention.
Collapse
Affiliation(s)
- Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
de Vogel S, Bongaerts BWC, Wouters KAD, Kester ADM, Schouten LJ, de Goeij AFPM, de Bruïne AP, Goldbohm RA, van den Brandt PA, van Engeland M, Weijenberg MP. Associations of dietary methyl donor intake with MLH1 promoter hypermethylation and related molecular phenotypes in sporadic colorectal cancer. Carcinogenesis 2008; 29:1765-73. [PMID: 18339680 DOI: 10.1093/carcin/bgn074] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intake of dietary factors that serve as methyl group donors may influence promoter hypermethylation in colorectal carcinogenesis. We investigated whether dietary folate, vitamin B2 and vitamin B6, methionine and alcohol were associated with mutL homologue 1 (MLH1) hypermethylation and the related molecular phenotypes of MLH1 protein expression, microsatellite instability (MSI) and BRAF mutations in patients with colorectal carcinomas. Within the Netherlands Cohort Study on diet and cancer (n = 120 852), 648 cases (367 men and 281 women) and 4059 subcohort members were available for data analyses from a follow-up period between 2.3 and 7.3 years after baseline. Gender-specific adjusted incidence rate ratios (RRs) were calculated over categories of dietary intake in case-cohort analyses. The intakes of folate, vitamin B2, methionine and alcohol were not associated with risk of tumors showing MLH1 hypermethylation, those lacking MLH1 protein expression or with MSI. Among men, we observed strong positive associations between folate and BRAF-mutated tumors (RR = 3.04 for the highest versus lowest tertile of intake, P(trend) = 0.03) and between vitamin B6 and tumors showing MLH1 hypermethylation (highest versus lowest tertile: RR = 3.23, P(trend) = 0.03). Among women, the relative risks of tumors with BRAF mutations or MLH1 hypermethylation were also increased in the highest tertiles of folate and vitamin B6 intake, respectively, but these did not reach statistical significance. The positive associations between folate intake and tumors harboring BRAF mutations and between vitamin B6 intake and those showing MLH1 hypermethylation were most pronounced among men and may suggest that these vitamins enhance colorectal cancer risk through genetic as well as epigenetic aberrations.
Collapse
Affiliation(s)
- Stefan de Vogel
- Department of Epidemiology, GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weijenberg MP, Lüchtenborg M, de Goeij AFPM, Brink M, van Muijen GNP, de Bruïne AP, Goldbohm RA, van den Brandt PA. Dietary fat and risk of colon and rectal cancer with aberrant MLH1 expression, APC or KRAS genes. Cancer Causes Control 2007; 18:865-79. [PMID: 17636402 PMCID: PMC2039842 DOI: 10.1007/s10552-007-9032-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/20/2007] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate baseline fat intake and the risk of colon and rectal tumors lacking MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2) repair gene expression and harboring mutations in the APC (adenomatous polyposis coli) tumor suppressor gene and in the KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) oncogene. METHODS After 7.3 years of follow-up of the Netherlands Cohort Study (n = 120,852), adjusted incidence rate ratios (RR) and 95% confidence intervals (CI) were computed, based on 401 colon and 130 rectal cancer patients. RESULTS Total, saturated and monounsaturated fat were not associated with the risk of colon or rectal cancer, or different molecular subgroups. There was also no association between polyunsaturated fat and the risk of overall or subgroups of rectal cancer. Linoleic acid, the most abundant polyunsaturated fatty acid in the diet, was associated with increased risk of colon tumors with only a KRAS mutation and no additional truncating APC mutation or lack of MLH1 expression (RR = 1.41, 95% CI 1.18-1.69 for one standard deviation (i.e., 7.5 g/day) increase in intake, p-trend over the quartiles of intake <0.001). Linoleic acid intake was not associated with risk of colon tumors without any of the gene defects, or with tumors harboring aberrations in either MLH1 or APC. CONCLUSION Linoleic acid intake is associated with colon tumors with an aberrant KRAS gene, but an intact APC gene and MLH1 expression, suggesting a unique etiology of tumors with specific genetic aberrations.
Collapse
Affiliation(s)
- Matty P Weijenberg
- Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Shin A, Shrubsole MJ, Ness RM, Wu H, Sinha R, Smalley WE, Shyr Y, Zheng W. Meat and meat-mutagen intake, doneness preference and the risk of colorectal polyps: the Tennessee Colorectal Polyp Study. Int J Cancer 2007; 121:136-42. [PMID: 17354224 DOI: 10.1002/ijc.22664] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although meat intake has been fairly consistently linked to the risk of colorectal cancer, only a few studies have evaluated meat intake by doneness level and the heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) produced by high temperature cooking of meat in relation to colorectal adenomatous and hyperplastic polyps. We evaluated these associations in a large colonoscopy-based case-control study. Included in this study were participants with adenomatous polyp only (n = 573), hyperplastic polyp only (n = 256), or both adenomatous and hyperplastic polyps (n = 199), and 1,544 polyp-free controls. In addition to information related to demographic and other lifestyle factors, meat intake by cooking method and doneness preference were obtained through telephone interviews. Polytomous logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals for the association between exposures and colorectal polyp risks. Presence of hyperplastic polyp was found to be positively associated with high consumption of total meat (p(trend) = 0.076) or red meat (p(trend) = 0.060), with an approximate 50-60% elevated risk observed in the highest vs. the lowest intake group. High intake of 2-amino-I-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,4,8-trimethylimidazo [4,5]quinoxaline (DiMeIQx) were associated with increased risk for hyperplastic polyp (p(trend) = 0.036 and 0.038, respectively). With a possible exception of the intake of total well-done meats (p(trend) = 0.055) or well-done red meats (p(trend) = 0.074) with the risk of large adenomas, no other positive association was found specifically for the risk of adenomas with any of the exposure variables aforementioned. This study provides additional support for a positive association of high intake of red meat with colorectal adenomas, and suggests that high intake of meats and meat carcinogens may also be associated with hyperplastic polyps.
Collapse
Affiliation(s)
- Aesun Shin
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232-2587, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
K Harper FW, Schmidt JE, Beacham AO, Salsman JM, Averill AJ, Graves KD, Andrykowski MA. The role of social cognitive processing theory and optimism in positive psychosocial and physical behavior change after cancer diagnosis and treatment. Psychooncology 2007; 16:79-91. [PMID: 16915564 DOI: 10.1002/pon.1068] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The physical and psychosocial 'health' behaviors of cancer patients have become a more pressing issue as 5-year survival rates continue to rise. This study investigated: (a) the extent of positive change in four psychosocial behaviors and two physical health behaviors, (b) the role of psychosocial predictors (drawn from theories of Social Cognitive Processing and optimism) in positive behavior change after cancer diagnosis and treatment, and (c) the possible influence of social desirability in reports of positive psychosocial and physical behavior change. The behavior showing the greatest positive change was time spent reflecting on life priorities; the behavior that was least likely to change after diagnosis and treatment was exercise. Optimism, social support, and cancer-related intrusions were positively associated with increases in physical health behaviors. Only optimism was positively associated with increases in psychosocial behaviors. Reports of positive change in physical and psychosocial behaviors were only modestly correlated. Social desirability was unrelated to reports of positive behavior change. Results are interpreted in light of theories of adaptation to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Felicity W K Harper
- Communication and Behavioral Oncology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Slattery ML, Curtin K, Sweeney C, Levin TR, Potter J, Wolff RK, Albertsen H, Samowitz WS. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer 2007; 120:656-63. [PMID: 17096326 DOI: 10.1002/ijc.22342] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been proposed that dietary factors such as folate, alcohol and methionine may be associated with colon cancer because of their involvement in DNA methylation processes. Data from a large population-based case-control study of incident colon cancer were used to evaluate whether intake of dietary, obesity, physical activity and nonsteroidal antiinflammatory drugs are associated with a CpG island methylator phenotype (CIMP). The BRAF V600E mutation and 5 CpG island markers (MINT1, MINT2, MINT31, p16 and hMLH1) were assessed in 1154 cases of colon cancer. We hypothesized that dietary factors involved in DNA methylation, cruciferous vegetables and use of aspirin/NSAIDs would be associated with CIMP-high tumors. Dietary folate, vitamins B(6) and B(12), methionine and alcohol were not associated with increased likelihood of colon tumors with the CIMP-high (2 or more markers methylated) phenotype. Dietary fiber, physical activity and aspirin and other nonsteroidal antiinflammatory drugs were inversely associated with both CIMP-low and CIMP-high tumors. Our results also suggested non-CIMP pathways as well. Obese individuals were at 2-fold increased risk of having a CIMP-low tumor. Alcohol was associated with an increased risk of tumors that were MSI+ and CIMP-low. In the presence of smoking 20 or more cigarettes per day, use of NSAIDs did not protect against a BRAF mutation. Our data suggest multiple pathways to colon cancer. They do not support a unique role for dietary folate, alcohol, vitamins B(6) and B(12) and methionine in a CpG island methylator phenotype.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
de Vogel S, van Engeland M, Lüchtenborg M, de Bruïne AP, Roemen GMJM, Lentjes MHFM, Goldbohm RA, van den Brandt PA, de Goeij AFPM, Weijenberg MP. Dietary folate and APC mutations in sporadic colorectal cancer. J Nutr 2006; 136:3015-21. [PMID: 17116713 DOI: 10.1093/jn/136.12.3015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Folate deficiency has been associated with colorectal cancer risk and may be involved in colorectal carcinogenesis through increased chromosome instability, gene mutations, and aberrant DNA methylation. Within the Netherlands Cohort Study on diet and cancer, we investigated the associations between dietary folate intake and colorectal cancer risk with (APC(+)) and without (APC(-)) truncating APC mutations, accounting for hMLH1 expression and K-ras mutations. In total, 528 cases and 4200 subcohort members were available for data analyses of the study cohort (n = 120,852) from a follow-up period between 2.3 and 7.3 y after baseline. Adjusted gender-specific incidence rate ratios (RR) over tertiles of folate intake were calculated in case-cohort analyses for colon and rectal cancer. Although relatively high folate intake was not associated with overall colorectal cancer risk, it reduced the risk of APC(-)colon tumors in men (RR 0.58, 95% CI 0.32-1.05, P(trend) = 0.06 for the highest vs. lowest tertile of folate intake). In contrast, it was positively associated with APC(+) colon tumors in men (highest vs. lowest tertile: RR 2.77, 95% CI 1.29-5.95, P(trend) = 0.008) and was even stronger when the lack of hMLH1 expression and K-ras mutations were excluded (RR 3.99, 95% CI 1.43-11.14, P(trend) = 0.007). Such positive associations were not observed among women; nor was folate intake associated with rectal cancer when APC mutation status was taken into account. Relatively high folate consumption reduced the risk of APC(-) colon tumors, but folate intake was positively associated with APC(+) colon tumors among men. These opposite results may indicate that folate enhances colorectal carcinogenesis through a distinct APC mutated pathway.
Collapse
Affiliation(s)
- Stefan de Vogel
- Research Institute Growth and Development (GROW), Department of Epidemiology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Slattery ML, Curtin K, Wolff R, Ma KN, Sweeney C, Murtaugh M, Potter JD, Levin TR, Samowitz W. PPARgamma and colon and rectal cancer: associations with specific tumor mutations, aspirin, ibuprofen and insulin-related genes (United States). Cancer Causes Control 2006; 17:239-49. [PMID: 16489531 DOI: 10.1007/s10552-005-0411-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/28/2005] [Indexed: 12/12/2022]
Abstract
We hypothesize that the peroxisome proliferator-activated receptor-gamma (PPARgamma) is associated with colorectal cancer given its association with insulin, diabetes, obesity, and inflammation. In this study, we evaluated the association between colorectal cancer and specific tumor mutations and the Pro12Ala (P12A) PPARgamma polymorphism. We also evaluated interactions between the PPARgamma gene and other insulin-related genes and use of aspirin and non-steroidal anti-inflammatory drug use. Data were available from 1,577 cases of colon cancer that were matched to 1,971 population-based controls and 794 cases of rectal cancer that were matched to 1,001 population-based controls. Colon tumors from the case subjects were evaluated for p53 and Ki-ras mutations and microsatellite instability (MSI). Insulin-related genes evaluated were the Bsm1, polyA, and Fok1 polymorphisms of the VDR gene; the G972R IRS1 polymorphism; the G1057D IRS2 polymorphism; the 19CA repeat polymorphism of the IGF1 gene; and the -200A>C IGFBP3 polymorphism. The odds ratio (OR) between the PA/AA genotypes and proximal tumors was 0.83 (95% CI: 0.69-1.01); for distal tumors was 1.00 (95% CI: 0.83-1.21); and for rectal tumors was 1.04 (95% CI: 0.86-1.25). Evaluation of specific types of tumor mutations showed that colon cancer cases with the PA or AA genotypes were less likely to have p53 tumor mutations (OR 0.78; 95% CI: 0.62-0.99), specifically transition mutations (OR 0.74; 95% CI: 0.56-0.97). Colon cancer cases also were less likely to have a tumor with MSI if they had the PA or AA PPARgamma genotype (OR 0.68; 95% CI: 0.47-0.98); differences in Ki-ras mutations were not seen in colon tumors by PPARgamma genotype. Those who did not take ibuprofen-type drugs and had the PA or AA genotypes were at a significantly greater risk of rectal cancer (OR 2.11; 95% CI: 1.52-2.92; p interaction 0.03) than people with the PP genotype regardless of ibuprofen-type drug use. There was a significant interaction between the -200A>C IGFBP3 polymorphism and the Pro12Ala PPARgamma polymorphism and risk of colon cancer (p for interaction = 0.02) with individuals being at significantly lower risk if they had both the CC IGFBP3 genotype and the PA/AA PPARgamma genotype. For rectal cancer there was a significant interaction between the Bsm1/polyA polymorphisms (p = 0.001) of the VDR gene and the PA/AA Pro12Ala PPARgamma polymorphism with the highest risk group being those with both the PA/AA Pro12Ala PPARgamma and the BB/SS VDR genotypes. These data suggest that PPARgamma may be associated with many aspects of colorectal cancer including insulin- and inflammation-related mechanisms.
Collapse
Affiliation(s)
- Martha L Slattery
- Health Research Center, University of Utah, Salt Lake City, 84108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chia VM, Newcomb PA, Bigler J, Morimoto LM, Thibodeau SN, Potter JD. Risk of microsatellite-unstable colorectal cancer is associated jointly with smoking and nonsteroidal anti-inflammatory drug use. Cancer Res 2006; 66:6877-83. [PMID: 16818666 DOI: 10.1158/0008-5472.can-06-1535] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smoking has been consistently associated with an increased risk of colorectal adenomas and hyperplastic polyps as well as colorectal cancer. Conversely, nonsteroidal anti-inflammatory drugs (NSAID) have been associated with reduced colorectal cancer risk. We conducted a population-based case-control study to evaluate the joint association between smoking and regular NSAID use with colorectal cancer risk; we also examined these associations stratified by tumor microsatellite instability (MSI). We analyzed 1,792 incident colorectal cancer cases and 1,501 population controls in the Seattle, Washington area from 1998-2002. MSI, defined as MSI high (MSI-H) or MSI-low/microsatellite stable (MSI-L/MSS), was assessed in tumors of 1,202 cases. Compared with nonsmokers, colorectal cancer risk was modestly increased among individuals who had ever smoked. Current NSAID use was associated with a 30% lower risk compared with nonusers. There was a statistically significant interaction between smoking duration and use of NSAIDs (P(interaction) = 0.05): relative to current NSAID users who never smoked, individuals who had both smoked for >40 years and had never used NSAIDs were at the highest risk for colorectal cancer (adjusted odds ratio, 2.8; 95% confidence intervals, 1.8-4.1). Compared with nonsmokers, there was a stronger association within MSI-H tumors with current smoking than there was within MSI-L/MSS tumors. Smokers of long duration were at elevated risk of MSI-H tumors even with NSAID use. The risk of MSI-L/MSS tumors was not elevated among long-duration smokers with long exposure to NSAIDs but was elevated among long-duration smokers who had never used NSAIDs. There seems to be a synergistic inverse association (implying protection) against colorectal cancer overall as a result of NSAID use and nonsmoking, but risk of MSI-H colorectal cancer remains elevated among smokers even when they have a history of NSAID use.
Collapse
Affiliation(s)
- Victoria M Chia
- Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chan AO, Soliman AS, Zhang Q, Rashid A, Bedeir A, Houlihan PS, Mokhtar N, Al-Masri N, Ozbek U, Yaghan R, Kandilci A, Omar S, Kapran Y, Dizdaroglu F, Bondy ML, Amos CI, Issa JP, Levin B, Hamilton SR. Differing DNA methylation patterns and gene mutation frequencies in colorectal carcinomas from Middle Eastern countries. Clin Cancer Res 2006; 11:8281-7. [PMID: 16322286 DOI: 10.1158/1078-0432.ccr-05-1000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The epidemiology of colorectal carcinoma is well known to differ among countries but the molecular characteristics are usually assumed to be similar. International differences in molecular pathology have not been studied extensively but have implications for the management of patients in different countries and of immigrant patients. EXPERIMENTAL DESIGN We evaluated the CpG island methylator phenotype pathway characterized by concordant methylation of gene promoters that often silences transcription of the genes, the microsatellite instability pathway, and K-ras and p53 gene status in 247 colorectal carcinomas from the three selected Middle Eastern countries of Egypt, Jordan, and Turkey. RESULTS Colorectal carcinoma from Egypt had the lowest frequencies of methylation. In multinomial logistic regression analysis, Jordanian colorectal carcinoma more frequently had methylation involving the p16 tumor suppressor gene (odds ratio, 3.5; 95% confidence interval, 1.2-10.6; P = 0.023) and MINT31 locus (odds ratio, 2.3; 95% confidence interval, 1.0-5.1; P = 0.041). The K-ras proto-oncogene was more frequently mutated in colorectal carcinoma from Turkey (odds ratio, 2.9; 95% confidence interval, 1.2-6.7; P = 0.016), but p53 overexpression was more common in both Jordanian and Turkish colorectal carcinoma than in Egyptian cases (odds ratio, 2.5; 95% confidence interval, 1.2-5.5; P = 0.019; and odds ratio, 3.6; 95% confidence interval, 1.8-7.1; P = 0.0003, respectively). The findings in Turkish colorectal carcinoma were most similar to those reported for Western cases. CONCLUSIONS Colorectal carcinoma from Middle Eastern countries have differing gene methylation patterns and mutation frequencies that indicate dissimilar molecular pathogenesis, probably reflecting different environmental exposures. These molecular differences could affect prevention strategies, therapeutic efficacy, and transferability of clinical trial results.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adenocarcinoma, Mucinous/epidemiology
- Adenocarcinoma, Mucinous/genetics
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Medullary/epidemiology
- Carcinoma, Medullary/genetics
- Carcinoma, Signet Ring Cell/epidemiology
- Carcinoma, Signet Ring Cell/genetics
- Carrier Proteins/genetics
- Child
- Chromosomal Instability
- Colorectal Neoplasms/epidemiology
- Colorectal Neoplasms/genetics
- CpG Islands/genetics
- DNA Methylation
- DNA, Neoplasm/genetics
- Egypt/epidemiology
- Female
- Gene Frequency
- Genes, p16/physiology
- Genes, p53/genetics
- Genes, ras/genetics
- Humans
- Jordan/epidemiology
- Male
- Microsatellite Repeats
- Middle Aged
- MutL Protein Homolog 1
- Mutation/genetics
- Nuclear Proteins/genetics
- Phenotype
- Proto-Oncogene Mas
- Signal Transduction
- Turkey/epidemiology
Collapse
Affiliation(s)
- Annie O Chan
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Coxhead JM, Williams EA, Mathers JC. DNA mismatch repair status may influence anti-neoplastic effects of butyrate. Biochem Soc Trans 2005; 33:728-9. [PMID: 16042586 DOI: 10.1042/bst0330728] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HNPCC (hereditary non-polyposis colon cancer) is an autosomal-dominant disorder characterized by early-onset CRC (colorectal cancer). HNPCC is most often associated with mutations in the MMR (mismatch repair) genes hMLH1, hMSH2, hMSH6 or hPMS2. The mutator phenotype of a defective MMR system is MSI (microsatellite instability), which also occurs in approx. 15-25% of sporadic CRC cases, where it is associated with the hypermethylation of the promoter region of hMLH1. Dietary factors, including excessive alcohol consumption, ingestion of red meat and low folate intake, may increase the risk of MSI high tumour development. In contrast, aspirin may suppress MSI in MMR-deficient CRC cell lines. Butyrate, a short-chain-fatty-acid end product of carbohydrate fermentation in the colon, shares a number of anti-neoplastic properties with aspirin, including inhibiting proliferation and inducing apoptosis of CRC cells. Recent in vitro studies suggest that physiological concentrations of butyrate (0.5-2 mM) may have more potent anti-neoplastic effects in CRC cell lines deficient in MMR, but mechanisms for such a differential response remain to be established.
Collapse
Affiliation(s)
- J M Coxhead
- Human Nutrition Research Centre, School of Clinical Medical Sciences, Agriculture Building, University of Newcastle, Kings Road, Newcastle upon Tyne NE1 7RU, UK.
| | | | | |
Collapse
|
46
|
Eaton AM, Sandler R, Carethers JM, Millikan RC, Galanko J, Keku TO. 5,10-methylenetetrahydrofolate reductase 677 and 1298 polymorphisms, folate intake, and microsatellite instability in colon cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:2023-9. [PMID: 16103455 PMCID: PMC4540476 DOI: 10.1158/1055-9965.epi-05-0131] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The 5,10-methylenetetrahydrofolate reductase (MTHFR) gene plays a critical role in folate metabolism. Studies on the association between MTHFR polymorphisms and length changes in short tandem repeat DNA sequences [microsatellite instability (MSI)] are inconsistent. Using data from colon cancer cases (n=503) enrolled as part of an existing population-based case-control study, we investigated the association between MTHFR 677 and MTHFR 1298 polymorphisms and MSI. We also examined whether the association was modified by folate intake. Participants were case subjects enrolled as part of the North Carolina Colon Cancer Study. Consenting cases provided information about lifestyle and diet during in-home interviews as well as blood specimens and permission to obtain tumor blocks. DNA from normal and tumor tissue sections was used to determine microsatellite status (MSI). Tumors were classified as MSI if two or more microsatellite markers (BAT25, BAT26, D5S346, D2S123, and D17S250) had changes in the number of DNA sequence repeats compared with matched nontumor tissue. Tumors with one positive marker (MSI-low) or no positive markers (microsatellite stable) were grouped together as non-MSI tumors (microsatellite stable). MTHFR 677 and MTHFR 1298 genotypes were determined by real-time PCR using the 5' exonuclease (Taqman) assay. Logistic regression was used to calculate odds ratio (OR) and 95% confidence intervals (95% CI). MSI was more common in proximal tumors (OR, 3.8; 95% CI, 1.7-8.4) and in current smokers (OR, 4.0; 95% CI, 1.6-9.7). Compared with MTHFR 677 CC referent, MTHFR 677 CT/TT genotype was inversely associated with MSI among White cases (OR, 0.36; 95% CI, 0.16-0.81) but not significant among African Americans. Although not statistically significant, a similar inverse association was observed between MTHFR 677 CT/TT genotype and MSI among the entire case subjects (OR, 0.54; 95% CI, 0.26-1.10). Among those with adequate folate intake (>400 microg total folate), we found strong inverse associations between combined MTHFR genotypes and MSI (677 CC+1298 AC/CC, OR, 0.09; 95% CI, 0.01-0.59; 677 CT/TT+1298 AA, OR, 0.13; 95% CI, 0.02-0.85) compared with the combined wild-type genotypes (677 CC+1298 AA). This protective effect was not evident among those with low folate (<400 microg total folate) intake. Our results suggest that MTHFR variant genotypes are associated with reduced risk of MSI tumors under conditions of adequate folate intake, although the data are imprecise due to small numbers. These results indicate that the relationship between MTHFR genotypes and MSI is influenced by folate status.
Collapse
Affiliation(s)
- Allison M. Eaton
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Sandler
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Gastrointestinal Biology and Disease, Schools of Public Health and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John M. Carethers
- Department of Medicine and Cancer Center, University of California at San Diego, San Diego, California
| | - Robert C. Millikan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Gastrointestinal Biology and Disease, Schools of Public Health and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph Galanko
- Center for Gastrointestinal Biology and Disease, Schools of Public Health and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Temitope O. Keku
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Gastrointestinal Biology and Disease, Schools of Public Health and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
47
|
Wark PA, Weijenberg MP, van 't Veer P, van Wijhe G, Lüchtenborg M, van Muijen GNP, de Goeij AFPM, Goldbohm RA, van den Brandt PA. Fruits, vegetables, and hMLH1 protein-deficient and -proficient colon cancer: The Netherlands cohort study. Cancer Epidemiol Biomarkers Prev 2005; 14:1619-25. [PMID: 16030092 DOI: 10.1158/1055-9965.epi-05-0109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Clinical and pathologic differences exist between colon carcinomas deficient and proficient in the mismatch repair protein hMLH1. Animal and in vitro studies suggest that fruits, vegetables, folate, and antioxidants are associated with colonic expression of mismatch repair genes. METHODS Associations between consumption of fruits and vegetables and hMLH1 protein-deficient and -proficient colon cancer were evaluated in the Netherlands Cohort Study on diet and cancer using a case-cohort approach. A self-administered food frequency questionnaire was completed, in 1986, by 120,852 individuals ages 55 to 69 years. Using immunohistochemistry, hMLH1 protein expression was assessed in colon cancer tissue obtained from 441 patients who were identified over 7.3 years of follow-up excluding the initial 2.3 years. Incidence rate ratios (RR) were estimated for hMLH1 protein-deficient and -proficient colon cancer. RESULTS hMLH1 protein expression was absent in 54 tumors (12.2%) and present in 387 tumors. Fruit consumption was associated with hMLH1 protein-deficient colon cancer [highest versus lowest tertile, RR, 0.46; 95% confidence interval (95% CI), 0.23-0.90; P(trend) = 0.029] but not with hMLH1 protein-proficient tumors (highest versus lowest tertile, RR, 1.03; 95% CI, 0.78-1.35; P(trend) = 0.81). Total consumption of vegetables was not associated with either type of tumor (hMLH1 protein deficient: RR, 0.86; 95% CI, 0.45-1.65; P(trend) = 0.67; hMLH1 protein proficient: RR, 0.94; 95% CI, 0.72-1.23; P(trend) = 0.72). No associations were observed for folate, fiber, antioxidants, or subgroups of vegetables. CONCLUSION These analyses indicate that an inverse association between consumption of fruits and colon cancer may be confined to the subgroup of tumors with a deficient mismatch repair system.
Collapse
Affiliation(s)
- Petra A Wark
- Department of Epidemiology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ulrich CM, Curtin K, Samowitz W, Bigler J, Potter JD, Caan B, Slattery ML. MTHFR variants reduce the risk of G:C->A:T transition mutations within the p53 tumor suppressor gene in colon tumors. J Nutr 2005; 135:2462-7. [PMID: 16177213 DOI: 10.1093/jn/135.10.2462] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
5,10-Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme in folate-mediated 1-carbon metabolism. Reduced MTHFR activity has been associated with genomic DNA hypomethylation. Methylated cytosines at CpG sites are easily mutated and have been implicated in G:C-->A:T transitions in the p53 tumor suppressor gene. We investigated 2 polymorphisms in the MTHFR gene (C677T and A1298C) and their associations with colon tumor characteristics, including acquired mutations in Ki-ras and p53 genes and microsatellite instability (MSI). The study population comprised 1248 colon cancer cases and 1972 controls, who participated in a population-based case-control study and had been analyzed previously for MSI, acquired mutations in Ki-ras, p53, and germline MTHFR polymorphisms. Multivariable-adjusted odds ratios are presented. Overall, MTHFR genotypes were not associated with MSI status or the presence of any p53 or Ki-ras mutation. Individuals with homozygous variant MTHFR genotypes had a significantly reduced risk of G:C-->A:T transition mutations within the p53 gene, yet, as hypothesized, only at CpG-associated sites [677TT vs. 677CC (referent group) OR = 0.4 (95% CI: 0.1-0.8) for CpG-associated sites; OR = 1.5 (0.7-3.6) for non-CpG associated sites]. Genotypes conferring reduced MTHFR activity were associated with a decreased risk of acquired G:C-->A:T mutations within the p53 gene occurring at CpG sites. Consistent with evidence on the phenotypic effect of the MTHFR C677T variant, we hypothesize that this relation may be explained by modestly reduced genomic DNA methylation, resulting in a lower probability of spontaneous deamination of methylated cytosine to thymidine. These results suggest a novel mechanism by which MTHFR polymorphisms can affect the risk of colon cancer.
Collapse
Affiliation(s)
- C M Ulrich
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Nan HM, Song YJ, Yun HY, Park JS, Kim H. Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer. World J Gastroenterol 2005; 11:3834-41. [PMID: 15991278 PMCID: PMC4504881 DOI: 10.3748/wjg.v11.i25.3834] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Hypermethylation of the promoter of the hMLH1 gene, which plays an important role in mismatch repair during DNA replication, occurs in more than 30% of human gastric cancer tissues. The purpose of this study was to investigate the effects of environmental factors, genetic polymorphisms of major metabolic enzymes, and microsatellite instability on hypermethylation of the promoter of the hMLH1 gene in gastric cancer.
METHODS: Data were obtained from a hospital-based, case-control study of gastric cancer. One hundred and ten gastric cancer patients and 220 age- and sex-matched control patients completed a structured questionnaire regarding their exposure to environmental risk factors. Hypermethylation of the hMLH1 gene promoter, polymorphisms of the GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2 and L-myc genes, microsatellite instability and mutations of p53 and Ki-ras genes were investigated.
RESULTS: Both smoking and alcohol consumption were associated with a higher risk of gastric cancer with hypermethylation of the hMLH1 gene promoter. High intake of vegetables and low intake of potato were associated with increased likelihood of gastric cancer with hypermethylation of the hMLH1 gene promoter. Genetic polymorphisms of the GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2, and L-myc genes were not significantly associated with the risk of gastric cancer either with or without hypermethylation in the promoter of the hMLH1 gene. Hypermethylation of the hMLH1 promoter was significantly associated with microsatellite instability (MSI): 10 of the 14 (71.4%) MSI-positive tumors showed hypermethylation, whereas 28 of 94 (29.8%) the MSI-negative tumors were hypermethylated at the hMLH1 promoter region. Hypermethylation of the hMLH1 gene promoter was significantly inversely correlated with mutation of the p53 gene.
CONCLUSION: These results suggest that cigarette smoking and alcohol consumption may influence the development of hMLH1-positive gastric cancer. Most dietary factors and polymorphisms of GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2, and L-myc genes are not independent risk factors for gastric cancer with hyperme-thylation of the hMLH1 promoter. These data also suggest that there could be two or more different molecular pathways in the development of gastric cancer, perhaps involving tumor suppression mechanisms or DNA mismatch repair.
Collapse
Affiliation(s)
- Hong-Mei Nan
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, 12 Kaeshin-dong, Hungdok-gu, Cheongju-si, Chungbuk 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
50
|
Heavey PM, McKenna D, Rowland IR. Colorectal cancer and the relationship between genes and the environment. Nutr Cancer 2005; 48:124-41. [PMID: 15231447 DOI: 10.1207/s15327914nc4802_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality in developed countries, with both genetic and environmental factors contributing to the etiology and progression of the disease. Several risk factors have been identified, including positive family history, red meat intake, smoking, and alcohol intake. Protective factors include vegetables, calcium, hormone replacement therapy, folate, nonsteroidal anti-inflammatory drugs, and physical activity. The interaction between these environmental factors, in particular diet and genes, is an area of growing interest. Currently, oncogenes, tumor suppressor genes, and mismatch repair genes are believed to play an essential role in colorectal carcinogenesis. When considering the genetics of CRC, only 10% of cases are inherited and only 2-6% can be ascribed to the highly penetrant genes, such as APC, hMLH and hMSH2. Lower penetrance genes combined with a Western-style diet contribute to the majority of sporadic CRCs. The purpose of this article is to give a brief overview of the epidemiologic studies that have been conducted and present the major findings. Here, we examine the molecular events in CRC, with particular focus on the interaction between genes and environment, and review the most current research in this area.
Collapse
Affiliation(s)
- Patricia M Heavey
- Northern Ireland Center for Diet and Health, Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA.
| | | | | |
Collapse
|