1
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Conrad O, Burgy M, Foppolo S, Jehl A, Thiéry A, Guihard S, Vauchelles R, Jung AC, Mourtada J, Macabre C, Ledrappier S, Chenard MP, Onea MA, Danic A, Dourlhes T, Thibault C, Schultz P, Dontenwill M, Martin S. Tumor-Suppressive and Immunomodulating Activity of miR-30a-3p and miR-30e-3p in HNSCC Cells and Tumoroids. Int J Mol Sci 2023; 24:11178. [PMID: 37446353 DOI: 10.3390/ijms241311178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are heterogeneous tumors, well known for their frequent relapsing nature. To counter recurrence, biomarkers for early diagnosis, prognosis, or treatment response prediction are urgently needed. miRNAs can profoundly impact normal physiology and enhance oncogenesis. Among all of the miRNAs, the miR-30 family is frequently downregulated in HNSCC. Here, we determined how levels of the 3p passenger strands of miR-30a and miR-30e affect tumor behavior and clarified their functional role in LA-HNSCC. In a retrospective study, levels of miR-30a-3p and miR-30e-3p were determined in 110 patients and correlated to overall survival, locoregional relapse, and distant metastasis. miR-30a/e-3p were expressed in HNSCC cell lines and HNSCC patient-derived tumoroids (PDTs) to investigate their effect on tumor cells and their microenvironment. Both miRNAs were found to have a prognosis value since low miR-30a/e-3p expression correlates to adverse prognosis and reduces overall survival. Low expression of miR-30a/e-3p is associated with a shorter time until locoregional relapse and a shorter time until metastasis, respectively. miR-30a/e-3p expression downregulates both TGF-βR1 and BMPR2 and attenuates the survival and motility of HNSCC. Results were confirmed in PDTs. Finally, secretomes of miR-30a/e-3p-transfected HNSCC activate M1-type macrophages, which exert stronger phagocytic activities toward tumor cells. miR-30a/e-3p expression can discriminate subgroups of LA-HNSCC patients with different prognosis, making them good candidates as prognostic biomarkers. Furthermore, by targeting members of the TGF-β family and generating an immune-permissive microenvironment, they may emerge as an alternative to anti-TGF-β drugs to use in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ombline Conrad
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Mickaël Burgy
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sophie Foppolo
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Aude Jehl
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alicia Thiéry
- Department of Public Health, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sébastien Guihard
- Department of Radiotherapy, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Romain Vauchelles
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alain C Jung
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Jana Mourtada
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
| | - Christine Macabre
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sonia Ledrappier
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Marie-Pierre Chenard
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Mihaela-Alina Onea
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Aurélien Danic
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Thomas Dourlhes
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Claire Thibault
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Philippe Schultz
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Monique Dontenwill
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Sophie Martin
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| |
Collapse
|
4
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Skeik N, Golden M, Berg A, North M. Type A Aortic Dissection Caused by Loeys-Dietz Syndrome with Novel Variation. Ann Vasc Surg 2020; 68:567.e1-567.e4. [PMID: 32339686 DOI: 10.1016/j.avsg.2020.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
Loeys-Dietz syndrome (LDS) is a rare autosomal-dominant connective tissue disorder that can lead to aortic aneurysm and dissection. There are 5 different types caused by mutations in TGFβR1 (transforming growth factor β receptor), TGFβR2, SMAD3, TGFβ2 (transforming growth factor β), and TGFβ3 respectively. The prevalence of LDS is estimated to be less than 1 in 100,000. There is considerable variability in the phenotype of LDS, from mild features to severe systemic abnormalities. There is overlap in the manifestations of LDS and Marfan syndrome, including increased risk of ascending aortic aneurysm and aortic dissection, as well as abnormally long limbs and fingers. Management can be very challenging with a high risk of complications with revascularization. We report a 60-year-old female who presented with a type A aortic dissection that originated from the aortic root and extended to the bilateral common femoral arteries. Genetic testing revealed a novel alteration of the TGFβR1 gene (c689 C>A in exon 4) that to our knowledge has not been previously reported or found in large population cohorts. She was managed through a Bentall procedure that was complicated by a graft tear and stenosis of the distal anastomosis site, in addition to requiring a temporary pacemaker implantation and hemodialysis after the procedure. Ultimately, the patient was able to recover fully.
Collapse
Affiliation(s)
- Nedaa Skeik
- Department of Vascular Medicine, Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, MN.
| | - Max Golden
- Research Department, Minneapolis Heart Institute Foundation, Minneapolis, MN
| | - Allison Berg
- Genetic Department, Children's Minnesota Genetics, Minneapolis, MN
| | - Monique North
- Research Department, Minneapolis Heart Institute Foundation, Minneapolis, MN
| |
Collapse
|
7
|
Lin J, Vora M, Kane NS, Gleason RJ, Padgett RW. Human Marfan and Marfan-like Syndrome associated mutations lead to altered trafficking of the Type II TGFβ receptor in Caenorhabditis elegans. PLoS One 2019; 14:e0216628. [PMID: 31071172 PMCID: PMC6508650 DOI: 10.1371/journal.pone.0216628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family plays an important role in many developmental processes and when mutated often contributes to various diseases. Marfan syndrome is a genetic disease with an occurrence of approximately 1 in 5,000. The disease is caused by mutations in fibrillin, which lead to an increase in TGFβ ligand activity, resulting in abnormalities of connective tissues which can be life-threatening. Mutations in other components of TGFβ signaling (receptors, Smads, Schnurri) lead to similar diseases with attenuated phenotypes relative to Marfan syndrome. In particular, mutations in TGFβ receptors, most of which are clustered at the C-terminal end, result in Marfan-like (MFS-like) syndromes. Even though it was assumed that many of these receptor mutations would reduce or eliminate signaling, in many cases signaling is active. From our previous studies on receptor trafficking in C. elegans, we noticed that many of these receptor mutations that lead to Marfan-like syndromes overlap with mutations that cause mis-trafficking of the receptor, suggesting a link between Marfan-like syndromes and TGFβ receptor trafficking. To test this hypothesis, we introduced three of these key MFS and MFS-like mutations into the C. elegans TGFβ receptor and asked if receptor trafficking is altered. We find that in every case studied, mutated receptors mislocalize to the apical surface rather than basolateral surface of the polarized intestinal cells. Further, we find that these mutations result in longer animals, a phenotype due to over-stimulation of the nematode TGFβ pathway and, importantly, indicating that function of the receptor is not abrogated in these mutants. Our nematode models of Marfan syndrome suggest that MFS and MFS-like mutations in the type II receptor lead to mis-trafficking of the receptor and possibly provides an explanation for the disease, a phenomenon which might also occur in some cancers that possess the same mutations within the type II receptor (e.g. colon cancer).
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Animals, Genetically Modified
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Disease Models, Animal
- Humans
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Mutation, Missense
- Protein Domains
- Receptor, Transforming Growth Factor-beta Type II/chemistry
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- Jing Lin
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mehul Vora
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| | - Nanci S. Kane
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ryan J. Gleason
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard W. Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (MV); (RWP)
| |
Collapse
|
8
|
Single Nucleotide Polymorphism in SMAD7 and CHI3L1 and Colorectal Cancer Risk. Mediators Inflamm 2018; 2018:9853192. [PMID: 30498395 PMCID: PMC6222239 DOI: 10.1155/2018/9853192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers throughout the world. It represents the third most common cancer and the fourth in mortality. Most of CRC are sporadic, arise with no known high-penetrant genetic variation and with no previous family history. The etiology of sporadic CRC is considered to be multifactorial and arises from the interaction of genetic variants of low-penetrant genes and environmental risk factors. The most common well-studied genetic variation is single nucleotide polymorphisms (SNPs). SNP arises as a point mutation. If the frequency of the sequence variation reaches 1% or more in the population, it is referred to as polymorphism, but if it is lower than 1%, the allele is typically considered as a mutation. Lots of SNPs have been associated with CRC development and progression, for example, genes of TGF-β1 and CHI3L1 pathways. TGF-β1 is a pleiotropic cytokine with a dual role in cancer development and progression. TGF-β1 mediates its actions through canonical and noncanonical pathways. The most important negative regulatory protein for TGF-β1 activity is termed SMAD7. The production of TGF-β can be controlled by another protein called YKL-40. YKL-40 is a glycoprotein with an important role in cancer initiation and metastasis. YKL-40 is encoded by the CHI3L1 gene. The aim of the present review is to give a brief introduction of CRC, SNP, and examples of some SNPs that have been documented to be associated with CRC. We also discuss two important signaling pathways TGF-β1 and CHI3L1 that influence the incidence and progression of CRC.
Collapse
|
9
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
10
|
Wu F, Weigel KJ, Zhou H, Wang XJ. Paradoxical roles of TGF-β signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:98-105. [PMID: 29206939 PMCID: PMC5846704 DOI: 10.1093/abbs/gmx127] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling either promotes or inhibits tumor formation and/or progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-β signaling is mediated by a number of downstream proteins including Smad family proteins. Alterations in either TGF-β or Smad signaling can impact cancer. For instance, defects in TGF-β type I and type II receptors (TGF-βRI and TGF-βRII) and in Smad2/3/4 could promote tumor development. Conversely, increased TGF-β1 and activated TGF-βRI and Smad3 have all been shown to have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-β/Smad signaling, only TGF-βRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in the mouse model, highlighting the critical roles of TGF-βRII and Smad4 in tumor suppression. Herein, we review the dual roles of the TGF-β/Smad signaling pathway and related mechanisms in SCC, highlighting the potential benefits and challenges of TGF-β/Smad-targeted therapies.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelsey J Weigel
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Budi EH, Duan D, Derynck R. Transforming Growth Factor-β Receptors and Smads: Regulatory Complexity and Functional Versatility. Trends Cell Biol 2017; 27:658-672. [PMID: 28552280 DOI: 10.1016/j.tcb.2017.04.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-β family proteins control cell physiology, proliferation, and growth, and direct cell differentiation, thus playing key roles in normal development and disease. The mechanisms of how TGF-β family ligands interact with heteromeric complexes of cell surface receptors to then activate Smad signaling that directs changes in gene expression are often seen as established. Even though TGF-β-induced Smad signaling may be seen as a linear signaling pathway with predictable outcomes, this pathway provides cells with a versatile means to induce different cellular responses. Fundamental questions remain as to how, at the molecular level, TGF-β and TGF-β family proteins activate the receptor complexes and induce a context-dependent diversity of cell responses. Among the areas of progress, we summarize new insights into how cells control TGF-β responsiveness by controlling the TGF-β receptors, and into the key roles and versatility of Smads in directing cell differentiation and cell fate selection.
Collapse
Affiliation(s)
- Erine H Budi
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA
| | - Dana Duan
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco CA 94143, USA.
| |
Collapse
|
12
|
Prime SS, Davies M, Pring M, Paterson IC. The Role of TGF-β in Epithelial Malignancy and its Relevance to the Pathogenesis of Oral Cancer (Part II). ACTA ACUST UNITED AC 2016; 15:337-47. [PMID: 15574678 DOI: 10.1177/154411130401500603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of transforming growth factor-β (TGF-β) in epithelial malignancy is complex, but it is becoming clear that, in the early stages of carcinogenesis, the protein acts as a potent tumor suppressor, while later, TGF-β can function to advance tumor progression. We review the evidence to show that the pro-oncogenic functions of TGF-β are associated with (1) a partial loss of response to the ligand, (2) defects of components of the TGF-β signal transduction pathway, (3) over-expression and/or activation of the latent complex, (4) epithelial-mesenchymal transition, and (5) recruitment of signaling pathways which act in concert with TGF-β to facilitate the metastatic phenotype. These changes are viewed in the context of what is known about the pathogenesis of oral cancer and whether this knowledge can be translated into the development of new therapeutic modalities.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | | | | | | |
Collapse
|
13
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
14
|
Raudenska M, Gumulec J, Fribley AM, Masarik M. HNSCC Biomarkers Derived from Key Processes of Cancerogenesis. TARGETING ORAL CANCER 2016:115-160. [DOI: 10.1007/978-3-319-27647-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Andl T, Le Bras GF, Richards NF, Allison GL, Loomans HA, Washington MK, Revetta F, Lee RK, Taylor C, Moses HL, Andl CD. Concerted loss of TGFβ-mediated proliferation control and E-cadherin disrupts epithelial homeostasis and causes oral squamous cell carcinoma. Carcinogenesis 2014; 35:2602-10. [PMID: 25233932 DOI: 10.1093/carcin/bgu194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although the etiology of squamous cell carcinomas of the oral mucosa is well understood, the cellular origin and the exact molecular mechanisms leading to their formation are not. Previously, we observed the coordinated loss of E-cadherin (CDH1) and transforming growth factor beta receptor II (TGFBR2) in esophageal squamous tumors. To investigate if the coordinated loss of Cdh1 and Tgfbr2 is sufficient to induce tumorigenesis in vivo, we developed two mouse models targeting ablation of both genes constitutively or inducibly in the oral-esophageal epithelium. We show that the loss of both Cdh1 and Tgfbr2 in both models is sufficient to induce squamous cell carcinomas with animals succumbing to the invasive disease by 18 months of age. Advanced tumors have the ability to invade regional lymph nodes and to establish distant pulmonary metastasis. The mouse tumors showed molecular characteristics of human tumors such as overexpression of Cyclin D1. We addressed the question whether TGFβ signaling may target known stem cell markers and thereby influence tumorigenesis. From our mouse and human models, we conclude that TGFβ signaling regulates key aspects of stemness and quiescence in vitro and in vivo. This provides a new explanation for the importance of TGFβ in mucosal homeostasis.
Collapse
Affiliation(s)
- Thomas Andl
- Division of Dermatology, Department of Medicine, Department of Surgery, Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | | | | | | | | | - M Kay Washington
- Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Frank Revetta
- Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | | | | | - Harold L Moses
- Department of Cancer Biology, Vanderbilt Ingram Cancer Center
| | - Claudia D Andl
- Department of Surgery, Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and
| |
Collapse
|
16
|
Sheen YY, Kim MJ, Park SA, Park SY, Nam JS. Targeting the Transforming Growth Factor-β Signaling in Cancer Therapy. Biomol Ther (Seoul) 2014; 21:323-31. [PMID: 24244818 PMCID: PMC3825194 DOI: 10.4062/biomolther.2013.072] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/24/2013] [Indexed: 12/21/2022] Open
Abstract
TGF-β pathway is being extensively evaluated as a potential therapeutic target. The transforming growth factor-β (TGF-β) signaling pathway has the dual role in both tumor suppression and tumor promotion. To design cancer therapeutics successfully, it is important to understand TGF-β related functional contexts. This review discusses the molecular mechanism of the TGF-β pathway and describes the different ways of tumor suppression and promotion by TGF-β. In the last part of the review, the data on targeting TGF-β pathway for cancer treatment is assessed. The TGF-β inhibitors in pre-clinical studies, and Phase I and II clinical trials are updated.
Collapse
|
17
|
Zhang Q, Yu N, Lee C. Mysteries of TGF-β Paradox in Benign and Malignant Cells. Front Oncol 2014; 4:94. [PMID: 24860782 PMCID: PMC4026682 DOI: 10.3389/fonc.2014.00094] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022] Open
Abstract
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Nengwang Yu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, China
| | - Chung Lee
- Department of Urology, Northwestern University School of Medicine, Chicago, IL, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston Hospital, Evanston, IL, USA
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
- Department of Urology, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
18
|
Abstract
INTRODUCTION The transforming growth factor-β (TGF-β) signaling pathway has a pivotal role in tumor suppression and yet, paradoxically, in tumor promotion. Functional context dependent insights into the TGF-β pathway are crucial in developing TGF-β-based therapeutics for cancer. AREAS COVERED This review discusses the molecular mechanism of the TGF-β pathway and describes the different ways of tumor suppression by TGF-β. It is then explained how tumors can evade these effects and how TGF-β contributes to further growing and spreading of some of the tumors. In the last part of the review, the data on targeting TGF-β pathway for cancer treatment is assessed. This review focuses on anti-TGF-β based treatment and other options targeting activated pathways in tumors where the TGF-β tumor suppressor pathway is lost. Pre-clinical as well up to date results of the most recent clinical trials are given. EXPERT OPINION Targeting the TGF-β pathway can be a promising direction in cancer treatment. However, several challenges still exist, the most important are differentiating between the carcinogenic effects of TGF-β and its other physiological roles, and delineating the tumor suppressive versus the tumor promoting roles of TGF-β in each specific tumor. Future studies are needed in order to find safer and more effective TGF-β-based drugs.
Collapse
Affiliation(s)
- Lior H Katz
- Visiting Scientist, The University of Texas, M.D. Anderson Cancer Center, Department of Gastroenterology, Hepatology, & Nutrition, Houston, TX, USA
| | - Ying Li
- Assistant Professor (Research), The University of Texas, M. D. Anderson Cancer Center, Department of Gastroenterology, Hepatology, & Nutrition, Dr. Lopa Mishra’s Lab, Houston, TX, USA
| | - Jiun-Sheng Chen
- Research Assistant II, The University of Texas, M.D. Anderson Cancer Center, Department of Gastroenterology, Hepatology, & Nutrition, Dr. Lopa Mishra’s Lab, Houston, TX, USA
| | - Nina M Muñoz
- Research Scientist, The University of Texas, M.D. Anderson Cancer Center, Department of Gastroenterology, Hepatology, & Nutrition, Dr. Lopa Mishra’s Lab, Houston, TX, USA
| | - Avijit Majumdar
- Postdoctoral Fellow, The University of Texas, M.D. Anderson Cancer Center, Department of Gastroenterology, Hepatology, & Nutrition, Dr.Lopa Mishra’s Lab, Houston, TX, USA
| | - Jian Chen
- Instructor, The University of Texas, M.D. Anderson Cancer Center, Department of Gastroenterology, Hepatology, & Nutrition, Houston, TX, USA
| | - Lopa Mishra
- Del and Dennis McCarthy Distinguished Professor and Chair, The University of Texas, M.D. Anderson Cancer Center, Department of Gastroenterology, Hepatology, & Nutrition, Houston, TX, USA, Tel: +1 713 794 3221; Fax: +1 713 745 1886
| |
Collapse
|
19
|
Carneiro NK, Oda JMM, Losi Guembarovski R, Ramos G, Oliveira BV, Cavalli IJ, de S. F. Ribeiro EM, Gonçalves MSB, Watanabe MAE. Possible association between TGF-β1 polymorphism and oral cancer. Int J Immunogenet 2013; 40:292-8. [DOI: 10.1111/iji.12037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 01/29/2023]
Affiliation(s)
- N. K. Carneiro
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| | - J. M. M. Oda
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| | - R. Losi Guembarovski
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| | - G. Ramos
- Service of Head and Neck; Erasto Gaertner Hospital; Curitiba; PR; Brazil
| | - B. V. Oliveira
- Service of Head and Neck; Erasto Gaertner Hospital; Curitiba; PR; Brazil
| | - I. J. Cavalli
- Department of Genetic; Human Cytogenetic and Oncogenetic Laboratory; Federal University of Parana; Curitiba; PR; Brazil
| | - E. M. de S. F. Ribeiro
- Department of Genetic; Human Cytogenetic and Oncogenetic Laboratory; Federal University of Parana; Curitiba; PR; Brazil
| | - M. S. B. Gonçalves
- Laboratory of Histocompatibility; State University of Londrina; Londrina; PR; Brazil
| | - M. A. E. Watanabe
- Department of Pathological Sciences; Biological Science Center; Laboratory of Molecular Genetic and Immunology; State University of Londrina; Londrina; PR; Brazil
| |
Collapse
|
20
|
Chen K, Hawken R, Flickinger GH, Rodriguez-Zas SL, Rund LA, Wheeler MB, Abrahamsen M, Rutherford MS, Beever JE, Schook LB. Association of the porcine transforming growth factor beta type I receptor (TGFBR1) gene with growth and carcass traits. Anim Biotechnol 2012; 23:43-63. [PMID: 22292700 DOI: 10.1080/10495398.2011.630897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Growth and carcass traits are of great economic importance in livestock production. A large number of quantitative trait loci (QTL) have been identified for growth and carcass traits on porcine chromosome one (SSC1). A key positional candidate for this chromosomal region is TGFBR1 (transforming growth factor beta type I receptor). This gene plays a key role in inherited disorders at cardiovascular, craniofacial, neurocognitive, and skeletal development in mammals. RESULTS In this study, 27 polymorphic SNPs in the porcine TGFBR1 gene were identified on the University of Illinois Yorkshire × Meishan resource population. Three SNPs (SNP3, SNP43, SNP64) representing major polymorphic patterns of the 27 SNPs in F1 and F0 individuals of the Illinois population were selected for analyses of QTL association and genetic diversity. An association analysis for growth and carcass traits was completed using these three representative SNPs in the Illinois population with 298 F2 individuals and a large commercial population of 1008 animals. The results indicate that the TGFBR1 gene polymorphism (SNP64) is significantly associated (p < 0.05) with growth rates including average daily gains between birth and 56 kg (p = 0.049), between 5.5 and 56 kg (p = 0.024), between 35 and 56 kg (p = 0.021). Significant associations (p < 0.05) were also identified between TGFBR1 gene polymorphisms (SNP3/SNP43) and carcass traits including loin-eye-area (p = 0.022) in the Illinois population, and back-fat thickness (p = 0.0009), lean percentage (p = 0.0023) and muscle color (p = 0.021) in the commercial population. These three SNPs were also used to genotype a diverse panel of 130 animals representing 11 pig breeds. Alleles SNP3_T and SNP43_G were fixed in Pietrain and Sinclair pig breeds. SNP64_G allele was uniquely identified in Chinese Meishan pigs. Strong evidence of association (p < 0.01) between both SNP3 and SNP64 alleles and reproductive traits including gestation length and number of corpora lutea were also observed in the Illinois population. CONCLUSION This study gives the first evidence of association between the porcine TGFBR1 gene and traits of economic importance and provides support for using TGFBR1 markers for pig breeding and selection programs. The genetic diversities in different pig breeds would be helpful to understand the genetic background and migration of the porcine TGFBR1 gene.
Collapse
Affiliation(s)
- Kefei Chen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene 2011; 31:3322-32. [PMID: 22037217 DOI: 10.1038/onc.2011.494] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The molecular mechanisms that contribute to the initiation and progression of head and neck squamous cell carcinoma (HNSCC) have not been completely delineated. Our observations indicate that defects in the transforming growth factor-β and PI3K/Akt signaling pathways are common in human HNSCCs. Conditional activation of the PI3K/Akt pathway due to Pten deletion in the mouse head and neck epithelia gives rise to hyperproliferation, but only a few lesions progress to HNSCC. However, Pten-deficient mice developed full-penetrance HNSCC in combination with type I TGF-β receptor (Tgfbr1) deletion. Molecular analysis revealed enhanced cell proliferation, decreased apoptosis, and increased expression of CCND1 in the basal layer of the head and neck epithelia, as well as in the tumors of Tgfbr1/Pten double conditional knockout (2cKO) mice. Furthermore, neoplastic transformation involves senescence evasion, and is associated with an increased number of putative cancer stem cells. In addition, the nuclear factor-κB pathway activation, myeloid-derived suppressor cell infiltration, angiogenesis and immune suppression in the tumor microenvironment, all of which are characteristics of human HNSCCs, contribute significantly to head and neck carcinogenesis in 2cKO mice. These tumors display pathology and multiple molecular alterations resembling human HNSCCs. This suggests that the Tgfbr1/Pten 2cKO mouse model is suitable for preclinical intervention, and that it has significant implications in the development of diagnostic cancer biomarkers and effective strategies for prevention and treatment of HNSCCs.
Collapse
|
22
|
Tian M, Neil JR, Schiemann WP. Transforming growth factor-β and the hallmarks of cancer. Cell Signal 2011; 23:951-62. [PMID: 20940046 PMCID: PMC3076078 DOI: 10.1016/j.cellsig.2010.10.015] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.
Collapse
Affiliation(s)
- Maozhen Tian
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Jason R. Neil
- Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - William P. Schiemann
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
23
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
24
|
Abstract
Transforming growth factor beta (TGFβ) is a key regulator of epithelial cell proliferation, immune function and angiogenesis. Because TGFβ signaling maintains epithelial homeostasis, dysregulated TGFβ signaling is common in many malignancies, including head and neck squamous cell carcinoma (HNSCC). Defective TGFβ signaling in epithelial cells causes hyperproliferation, reduced apoptosis and increased genomic instability, and the compensatory increase in TGFβ production by tumor epithelial cells with TGFβ signaling defects further promotes tumor growth and metastases by increasing angiogenesis and inflammation in tumor stromal cells. Here, we review the mouse models that we used to study TGFβ signaling in HNSCC.
Collapse
|
25
|
Nagaraj NS, Datta PK. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 2010; 19:77-91. [PMID: 20001556 DOI: 10.1517/13543780903382609] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transforming growth factor-ss (TGF-beta) signaling pathway plays a pivotal role in diverse cellular processes. TGF-beta switches its role from a tumor suppressor in normal or dysplastic cells to a tumor promoter in advanced cancers. It is widely believed that the Smad-dependent pathway is involved in TGF-beta tumor-suppressive functions, whereas activation of Smad-independent pathways, coupled with the loss of tumor-suppressor functions of TGF-beta, is important for its pro-oncogenic functions. TGF-beta signaling has been considered a useful therapeutic target. The discovery of oncogenic actions of TGF-beta has generated a great deal of enthusiasm for developing TGF-beta signaling inhibitors for the treatment of cancer. The challenge is to identify the group of patients where targeted tumors are not only refractory to TGF-beta-induced tumor suppressor functions but also responsive to the tumor-promoting effects of TGF-beta. TGF-beta pathway inhibitors, including small and large molecules, have now entered clinical trials. Preclinical studies with these inhibitors have shown promise in a variety of different tumor models. Here, we focus on the mechanisms of signaling and specific targets of the TGF-beta pathway that are critical effectors of tumor progression and invasion. This report also examines the therapeutic intervention of TGF-ss signaling in human cancers.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Department of Surgery, Nashville, TN 37232, USA
| | | |
Collapse
|
26
|
Lei Z, Liu RY, Zhao J, Liu Z, Jiang X, You W, Chen XF, Liu X, Zhang K, Pasche B, Zhang HT. TGFBR1 haplotypes and risk of non-small-cell lung cancer. Cancer Res 2009; 69:7046-52. [PMID: 19690145 DOI: 10.1158/0008-5472.can-08-4602] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta (TGF-beta) receptors are centrally involved in TGF-beta-mediated cell growth and differentiation and are frequently inactivated in non-small-cell lung cancer (NSCLC). Constitutively decreased type I TGF-beta receptor (TGFBR1) expression is emerging as a novel tumor-predisposing phenotype. The association of TGFBR1 haplotypes with risk for NSCLC has not yet been studied. We tested the hypothesis that single-nucleotide polymorphisms (SNP) and/or TGFBR1 haplotypes are associated with risk of NSCLC. We genotyped six TGFBR1 haplotype-tagging SNPs (htSNP) by PCR-RFLP assays and one htSNP by PCR-single-strand conformation polymorphism assay in two case-control studies. Case-control study 1 included 102 NSCLC patients and 104 healthy controls from Suzhou. Case-control study 2 included 131 patients with NSCLC and 133 healthy controls from Wuxi. Individuals included in both case-control studies were Han Chinese. Haplotypes were reconstructed according to the genotyping data and linkage disequilibrium status of these seven htSNPs. None of the htSNP was associated with NSCLC risk in either study. However, a four-marker CTGC haplotype was significantly more common among controls than among cases in both studies (P = 0.014 and P = 0.010, respectively), indicating that this haplotype is associated with decreased NSCLC risk {adjusted odds ratio [OR], 0.09 [95% confidence interval (95% CI), 0.01-0.61] and 0.11 [95% CI, 0.02-0.59], respectively}. Combined analysis of both studies shows a strong association of this four-marker haplotype with decreased NSCLC risk (adjusted OR, 0.11; 95% CI, 0.03-0.39). This is the first evidence of an association between a TGFBR1 haplotype and risk for NSCLC.
Collapse
Affiliation(s)
- Zhe Lei
- Laboratory of Medical Genetics, School of Basic Medicine and Biological Sciences, The First Affiliated Hospital, Medical College of Soochow University, Suzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM, Kulkarni AB. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 2009; 69:5918-26. [PMID: 19584284 DOI: 10.1158/0008-5472.can-08-4623] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The precise role of transforming growth factor (TGF)-beta signaling in head and neck squamous cell carcinoma (SCC) is not yet fully understood. Here, we report generation of an inducible head- and neck-specific knockout mouse model by crossing TGF-beta receptor I (Tgfbr1) floxed mice with K14-CreER(tam) mice. By applying tamoxifen to oral cavity of the mouse to induce Cre expression, we were able to conditionally delete Tgfbr1 in the mouse head and neck epithelia. On tumor induction with 7,12-dimethylbenz(a)anthracene (DMBA), 45% of Tgfbr1 conditional knockout (cKO) mice (n = 42) developed SCCs in the head and neck area starting from 16 weeks after treatment. However, no tumors were observed in the control littermates. A molecular analysis revealed an enhanced proliferation and loss of apoptosis in the basal layer of the head and neck epithelia of Tgfbr1 cKO mice 4 weeks after tamoxifen and DMBA treatment. The most notable finding of our study is that the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated in SCCs that developed in the Tgfbr1 cKO mice on inactivation of TGF-beta signaling through Smad2/3 and DMBA treatment. These observations suggest that activation of Smad-independent pathways may contribute cooperatively with inactivation of Smad-dependent pathways to promote head and neck carcinogenesis in these mice. Our results revealed the critical role of the TGF-beta signaling pathway and its cross-talk with the PI3K/Akt pathway in suppressing head and neck carcinogenesis.
Collapse
Affiliation(s)
- Yansong Bian
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4330, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aberrant methylation inactivates transforming growth factor Beta receptor I in head and neck squamous cell carcinoma. Int J Otolaryngol 2009; 2009:848695. [PMID: 20111589 PMCID: PMC2809419 DOI: 10.1155/2009/848695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/27/2009] [Indexed: 01/13/2023] Open
Abstract
Background. Alterations in TGF-beta signaling are common in head and neck cancer (HNSCC). Mutations in TGF-beta type II receptor (TbetaR-II) occur frequently in HNSCC while TGF-beta type I receptor (TbetaR-I) mutations are rare, suggesting that other molecular alterations in the TGF-beta pathway are likely. To identify abnormalities in TbetaR-I expression we analyzed 50 HNSCCs and correlated the results with clinical-pathologic features. Methods. Hypermethylation of TbetaR-I was evaluated via methylation-specific PCR (MSP) and restriction enzyme-mediated PCR (MSRE). Mutations in exons 1 and 7, mRNA and protein expression were analyzed by direct sequencing, semiquantitative RT-PCR and immunohistochemistry, respectively. Results. TbetaR-I expression was lost in 83% HNSCCs and was linked to DNA hypermethylation of the CpG-rich promoter region in 62% of the tumors. The variants 9A/6A and Int7G24A were found in two patients. Conclusions. This study shows that suppression of TbetaR-I expression in HNSCC is associated with DNA hypermethylation.
Collapse
|
29
|
Heldin CH, Landström M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 2009; 21:166-76. [PMID: 19237272 DOI: 10.1016/j.ceb.2009.01.021] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 01/05/2009] [Indexed: 12/13/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) family have important roles during embryogenesis, as well as in the control of tissue homeostasis in the adult. They exert their cellular effects via binding to serine/threonine kinase receptors. Members of the Smad family of transcription factors are important intracellular messengers, and recent studies have shown that the ubiquitin ligase TRAF6 mediates other specific signals. TGF-beta signaling is tightly controlled by post-translational modifications, which regulate the activity, stability, and subcellular localization of the signaling components. The aim of this review is to summarize some of the recent findings on the mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, BMC, Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Brown KA, Ham AJL, Clark CN, Meller N, Law BK, Chytil A, Cheng N, Pietenpol JA, Moses HL. Identification of novel Smad2 and Smad3 associated proteins in response to TGF-beta1. J Cell Biochem 2008; 105:596-611. [PMID: 18729074 PMCID: PMC2700048 DOI: 10.1002/jcb.21860] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta 1 (TGF-beta1) is an important growth inhibitor of epithelial cells and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. TGF-beta1 signals through the TGF-beta type I and type II receptors, and activates the Smad pathway via phosphorylation of Smad2 and Smad3. Since little is known about the selective activation of Smad2 versus Smad3, we set out to identify novel Smad2 and Smad3 interacting proteins in epithelial cells. A non-transformed human cell line was transduced with Myc-His(6)-Smad2 or Myc-His(6)-Smad3-expressing retrovirus and was treated with TGF-beta1. Myc-His(6)-Smad2 or Myc-His(6)-Smad3 was purified by tandem affinity purification, eluates were subject to SDS-PAGE and Colloidal Blue staining, and select protein bands were digested with trypsin. The resulting tryptic peptides were analyzed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS) and the SEQUEST algorithm was employed to identify proteins in the bands. A number of proteins that are known to interact with Smad2 or Smad3 were detected in the eluates. In addition, a number of putative novel Smad2 and Smad3 associated proteins were identified that have functions in cell proliferation, apoptosis, actin cytoskeleton regulation, cell motility, transcription, and Ras or insulin signaling. Specifically, the interaction between Smad2/3 and the Cdc42 guanine nucleotide exchange factor, Zizimin1, was validated by co-immunoprecipitation. The discovery of these novel Smad2 and/or Smad3 associated proteins may reveal how Smad2 and Smad3 are regulated and/or uncover new functions of Smad2 and Smad3 in TGF-beta1 signaling.
Collapse
Affiliation(s)
- Kimberly A. Brown
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Amy-Joan L. Ham
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Cara N. Clark
- Department of Pathology, Vanderbilt University, Nashville, TN 37232
| | - Nahum Meller
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| | - Anna Chytil
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Nikki Cheng
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Jennifer A. Pietenpol
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Harold L. Moses
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
31
|
Van Themsche C, Lafontaine L, Asselin E. X-linked inhibitor of apoptosis protein levels and protein kinase C activity regulate the sensitivity of human endometrial carcinoma cells to tumor necrosis factor alpha-induced apoptosis. Endocrinology 2008; 149:3789-98. [PMID: 18467439 DOI: 10.1210/en.2008-0275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endometrial carcinomas are often chemoresistant. TNFalpha shows potent antitumor activity against various cancers, and if it demonstrates good antitumor activity against endometrial cancer, the cytokine could represent a valuable alternative therapeutic approach. We have tested the ability of TNFalpha to induce apoptosis in endometrial carcinoma cells, and examined a putative role for X-linked inhibitor of apoptosis protein (XIAP) in regulating cellular sensitivity to the cytokine. Exposure to TNFalpha triggered TNF-R1-dependent activation of caspases-8, -9, and -3, down-regulated Akt and XIAP proteins and induced dose-dependent and time-dependent apoptosis in Ishikawa cells. On the opposite, TNFalpha up-regulated XIAP in Hec-1A cells; in these cells, the cytokine induced delayed TNF-R1-dependent activation of caspase-8, and failed to activate caspases -9 and -3 and to induce apoptosis. However, XIAP small interfering RNA restored TNFalpha-induced caspase signaling and apoptosis in Hec-1A cells; XIAP small interfering RNA also increased TNFalpha-induced apoptosis in Ishikawa cells. In addition, inhibition of protein kinase C activity enhanced TNFalpha-induced down-regulation of XIAP and potentiated apoptosis induction, in both Ishikawa and Hec-1A cells. Finally, we found XIAP immunoreactivity in epithelial cells from a large number of human endometrial tumor tissue samples, indicating that XIAP is produced by endometrial tumor cells in vivo. This could allow XIAP to play a putative in vivo role in counteracting TNFalpha-induced apoptosis in endometrial tumor cells; in this case, direct or indirect targeting of XIAP should potentiate the antitumor effect of TNFalpha.
Collapse
Affiliation(s)
- Céline Van Themsche
- Research Group in Molecular Oncology and Endocrinology, Department of Chemistry and Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | |
Collapse
|
32
|
Abstract
Transforming growth factor-beta (TGF-beta) stimulates phosphorylation of TGF-beta type I receptor. This receptor is now shown to be sumoylated, leading to enhanced activation and modulation of the downstream Smad signalling pathway.
Collapse
|
33
|
Abstract
Despite advances in understanding the underlying genetics, squamous cell carcinoma of the head and neck (SCCHN) remains a major health risk and one of the leading causes of mortality in the world. Current standards of treatment have significantly improved long-term survival rates of patients, but second tumors and metastases still remain the most frequent cause of high mortality in SCCHN patients. A better understanding of the underlying genetic mechanisms of SCCHN tumorigenesis will help in developing better diagnostics and, hence, better cures. In this article we will briefly outline the current state of diagnostics and treatment and our understanding of the molecular causes of SCCHN.
Collapse
Affiliation(s)
- Amit M Deshpande
- School of Dentistry and Dental Research Institute, University of California Los Angeles, CA, USA.
| | | |
Collapse
|
34
|
Kang JS, Saunier EF, Akhurst RJ, Derynck R. The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 2008; 10:654-64. [PMID: 18469808 DOI: 10.1038/ncb1728] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/17/2008] [Indexed: 12/17/2022]
Abstract
Post-translational sumoylation, the covalent attachment of a small ubiquitin-like modifier (SUMO), regulates the functions of proteins engaged in diverse processes. Often associated with nuclear and perinuclear proteins, such as transcription factors, it is not known whether SUMO can conjugate to cell-surface receptors for growth factors to regulate their functions. Here we show that the type I transforming growth factor-beta (TGF-beta) receptor, T beta RI, is sumoylated in response to TGF-beta and that its sumoylation requires the kinase activities of both T beta RI and the type II TGF-beta receptor, T beta RII. Sumoylation of T beta RI enhances receptor function by facilitating the recruitment and phosphorylation of Smad3, consequently regulating TGF-beta-induced transcription and growth inhibition. T beta RI sumoylation modulates the dissemination of transformed cells in a mouse model of T beta RI-stimulated metastasis. T beta RI sumoylation therefore controls responsiveness to TGF-beta, with implications for tumour progression. Sumoylation of cell-surface receptors may regulate other growth factor responses.
Collapse
Affiliation(s)
- Jong Seok Kang
- Department of Cell and Tissue Biology, Program in Cell Biology, University of California - San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
35
|
Infrequently methylated event at sites −362 to −142 in the promoter of TGFβR1 gene in non-small cell lung cancer. J Cancer Res Clin Oncol 2008; 134:919-25. [DOI: 10.1007/s00432-008-0392-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
36
|
Wang X, Sun W, Bai J, Ma L, Yu Y, Geng J, Qi J, Shi Z, Fu S. Growth inhibition induced by transforming growth factor-beta1 in human oral squamous cell carcinoma. Mol Biol Rep 2008; 36:861-9. [PMID: 18418730 DOI: 10.1007/s11033-008-9256-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 04/10/2008] [Indexed: 11/25/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a world-wide health problem and its incidence accounts for 1.9-3.5% of all malignant tumors. Transforming growth factor beta/Smads (TGF-beta/Smads) signaling pathway plays an important role in oncogenesis, but its function and molecular mechanisms in OSCC remain unclear. Expression of transforming growth factor-beta receptor type II (TbetaRII) and Smad4 was studied by immunohistochemistry in 108 OSCC patients and 10 normal controls. Function and molecular mechanisms of TGF-beta/Smads signaling pathway was then investigated in two human tongue squamous carcinoma cell lines with high and low metastasis (Tb and Tca8113) by RT-PCR, Western Blot, immunofluorescence, cell growth curve and flow cytometry (FCM), respectively. TbetaRII and Smad4 were significantly down-regulated in tumor tissues (with or without lymph node metastasis) compared to normal oral epithelium tissues (P < 0.05). TGF-beta1 induced arrest of the cell cycle rather than cell death in Tca8113 and Tb cells, and this influence was mediated by the increasing the expression and changing the location of its downstream components of TGF-beta1/Smads signaling pathway. TGF-beta1 rapidly increased the expression of p15 and p21 in both Tca8113 and Tb cells. TGF-beta1 did not increase p27 expression in Tca8113 cells, but p27 expression was increased in Tb cells. These indicated that TGF-beta1 induced G(1) arrest of cell cycle through a different regulating pathway in Tb cells compared with Tca8113 cells. Thus, we conclude that TGF-beta/Smads signaling pathway play a important role on cell growth and metastasis potential in OSCC.
Collapse
Affiliation(s)
- Xiumei Wang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kesari S, Jackson-Grusby L, Stiles CD. "Smad"eningly erratic: target gene methylation determines whether TGFbeta promotes or suppresses malignant glioma. Dev Cell 2007; 12:324-5. [PMID: 17336898 DOI: 10.1016/j.devcel.2007.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
TGFbeta functions as a tumor suppressor in some contexts and a tumor promoter in others. In a recent issue of Cancer Cell, Bruna et al. (2007) shed light on an epigenetic mechanism that underlies this schizophrenic behavior in malignant glioma. Their findings highlight a stem cell/cancer link...and a potential blind spot in large-scale cancer genome sequencing projects.
Collapse
Affiliation(s)
- Santosh Kesari
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
38
|
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional regulatory polypeptide that is the prototypical member of a large family of cytokines that controls many aspects of cellular function, including cellular proliferation, differentiation, migration, apoptosis, adhesion, angiogenesis, immune surveillance, and survival. The actions of TGF-beta are dependent on several factors including cell type, growth conditions, and the presence of other polypeptide growth factors. One of the biological effects of TGF-beta is the inhibition of proliferation of most normal epithelial cells using an autocrine mechanism of action, and this suggests a tumor suppressor role for TGF-beta. Loss of autocrine TGF-beta activity and/or responsiveness to exogenous TGF-beta appears to provide some epithelial cells with a growth advantage leading to malignant progression. This suggests a pro-oncogenic role for TGF-beta in addition to its tumor suppressor role. During the early phase of epithelial tumorigenesis, TGF-beta inhibits primary tumor development and growth by inducing cell cycle arrest and apoptosis. In late stages of tumor progression when tumor cells become resistant to growth inhibition by TGF-beta due to inactivation of the TGF-beta signaling pathway or aberrant regulation of the cell cycle, the role of TGF-beta becomes one of tumor promotion. Resistance to TGF-beta-mediated inhibition of proliferation is frequently observed in multiple human cancers, as are various alterations in the complex TGF-beta signaling and cell cycle pathways. TGF-beta can exert effects on tumor and stromal cells as well as alter the responsiveness of tumor cells to TGF-beta to stimulate invasion, angiogenesis, and metastasis, and to inhibit immune surveillance. Because of the dual role of TGF-beta as a tumor suppressor and pro-oncogenic factor, members of the TGF-beta signaling pathway are being considered as predictive biomarkers for progressive tumorigenesis, as well as molecular targets for prevention and treatment of cancer and metastasis.
Collapse
Affiliation(s)
- Sonia B Jakowlew
- National Cancer Institute, Cell and Cancer Biology Branch, 9610 Medical Center Drive, Suite 300, Rockville, MD 20850, USA.
| |
Collapse
|
39
|
Galliher AJ, Neil JR, Schiemann WP. Role of transforming growth factor-beta in cancer progression. Future Oncol 2007; 2:743-63. [PMID: 17155901 DOI: 10.2217/14796694.2.6.743] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Invasion and metastasis are the most lethal characteristics of cancer and the leading causes of cancer-related death. Transforming growth factor (TGF)-beta is a multifunctional cytokine that normally functions to prevent the uncontrolled proliferation of epithelial, endothelial and hematopoietic cells. Quite dichotomously, however, aberrant genetic or epigenetic events often negate the cytostatic function of TGF-beta in these cells, leading to tumor formation. Once freed from the growth-inhibitory effects of TGF-beta, cancer cells acquire the ability to proliferate, invade and metastasize when stimulated by TGF-beta. A thorough understanding of the molecular mechanisms underlying these paradoxical functions of TGF-beta remains elusive. Here, the authors review the tumor-suppressing and -promoting activities of TGF-beta and discuss the potential use and targeting of the TGF-beta-signaling system to prevent the progression and acquisition of metastatic phenotypes by human malignancies.
Collapse
Affiliation(s)
- Amy J Galliher
- University of Colorado Health Sciences Center, Department of Pharmacology, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
40
|
Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer 2006; 1775:21-62. [PMID: 16904831 DOI: 10.1016/j.bbcan.2006.06.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/24/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.
Collapse
Affiliation(s)
- Katerina Pardali
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
41
|
Ku JL, Park SH, Yoon KA, Shin YK, Kim KH, Choi JS, Kang HC, Kim IJ, Han IO, Park JG. Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in Smad3 associated with the inactivation of TGF-beta-induced transcriptional activation. Cancer Lett 2006; 247:283-92. [PMID: 16828225 DOI: 10.1016/j.canlet.2006.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/04/2006] [Accepted: 05/09/2006] [Indexed: 11/17/2022]
Abstract
To investigate genetic alterations involved in the TGF-beta signaling pathway in colorectal cancer, we assayed DNA synthesis rates after treating TGF-beta and checked for genetic alterations in TGF-betaRII, TGF-betaRI, Smad2, Smad3, and Smad4 in 12 colorectal cancer cell lines. Eleven lines, except SNU-61, show no significant change in DNA synthesis rate after TGF-beta treatment. In these 11 lines, several mutations were found in genes involved in the TGF-beta signaling pathway: (i) frameshift deletions in the poly(A)(10) tract of the TGF-betaRII gene in SNU-407, SNU-769A, SNU-769B, and SNU-1047 cell lines, (ii) a missense mutation of Smad2 (R321Q) in SNU-81, (iii) two missense mutations in TGF-betaRI (R487W in SNU-175 and A202V in SNU-1040), and (iv) a monoallelic loss at the Smad4 locus in three cell lines. Interestingly, a missense mutation (R373H) in Smad3 gene was found in SNU-769A. To our knowledge, this is the first report of Smad3 mutation in human malignancy. This mutation was found to result in the inhibition of translocation of Smad3 protein to the nucleus and a reduction in the activity of Smad3 during TGF-beta-induced transcriptional activation. These results indicate that the majority of cell lines, which are insensitive to TGF-beta, have alterations in genes involved in the TGF-beta signaling pathway in colorectal cancer cell lines.
Collapse
Affiliation(s)
- Ja-Lok Ku
- Laboratory of Cell Biology, Korean Cell Line Bank, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang HT. Int7G24A variant of the TGFBR1 gene and cancer risk: a meta-analysis of three case-control studies. Lung Cancer 2006; 49:419-20. [PMID: 15955593 DOI: 10.1016/j.lungcan.2005.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
|
43
|
Qiu W, Schönleben F, Li X, Su GH. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4. Cancer Lett 2006; 245:163-70. [PMID: 16478646 PMCID: PMC1741856 DOI: 10.1016/j.canlet.2006.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 12/30/2005] [Accepted: 01/04/2006] [Indexed: 11/21/2022]
Abstract
The role of the TGF-beta-Smad signaling pathway in the carcinogenesis of head and neck cancer has not been fully evaluated genetically. In this study, we screened for mutation in the five main members of the TGF-beta -Smad signaling pathway, TGF-beta type I receptor (TGFBRI), TGF-beta type II receptor (TGFBRII), SMAD2, SMAD3 and SMAD4, in eight human head and neck squamous cell carcinoma (HNSCC) cell lines. Two mutations with presumed loss of heterozygosity (LOH) were identified. A novel missense mutation of SMAD2, located in exon 8 at codon 276 TCG (ser) -->TTG (leu), was identified in cell line SCC-15. This is the first report of a biallelic mutation of the SMAD2 gene in HNSCC. A nonsense mutation of the SMAD4 gene in exon 5 codon 245 CAG (glut) -->TAG (stop) was found in cell line CAL27. Western blotting verified that this nonsense mutation gives rise to the complete loss of the Smad4 protein in the cells. While the down-regulation and loss of expressions of the TGF-beta-Smad signaling pathway have been described frequently in HNSCC, here we offer further genetic evidence that the pathway is directly targeted for mutation during the HNSCC tumorigenesis.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Base Sequence
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/physiopathology
- Cell Line, Tumor
- Codon, Nonsense
- DNA Mutational Analysis
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/physiopathology
- Humans
- Loss of Heterozygosity
- Mutation
- Mutation, Missense
- Polymorphism, Genetic
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/genetics
- Signal Transduction/physiology
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Smad2 Protein/genetics
- Smad2 Protein/metabolism
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Wanglong Qiu
- Department of Otolaryngology and Head and Neck Surgery, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, ICRC 10-04, New York, NY 10032, USA
| | | | | | | |
Collapse
|
44
|
Mátyás G, Arnold E, Carrel T, Baumgartner D, Boileau C, Berger W, Steinmann B. Identification and in silico analyses of novelTGFBR1 andTGFBR2 mutations in Marfan syndrome-related disorders. Hum Mutat 2006; 27:760-9. [PMID: 16791849 DOI: 10.1002/humu.20353] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Very recently, heterozygous mutations in the genes encoding transforming growth factor beta receptors I (TGFBR1) and II (TGFBR2) have been reported in Loeys-Dietz aortic aneurysm syndrome (LDS). In addition, dominant TGFBR2 mutations have been identified in Marfan syndrome type 2 (MFS2) and familial thoracic aortic aneurysms and dissections (TAAD). In the past, mutations of these genes were associated with atherosclerosis and several human cancers. Here, we report a total of nine novel and one known heterozygous sequence variants in the TGFBR1 and TGFBR2 genes in nine of 70 unrelated individuals with MFS-like phenotypes who previously tested negative for mutations in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1). To assess the pathogenic impact of these sequence variants, in silico analyses were performed by the PolyPhen, SIFT, and Fold-X algorithms and by means of a 3D homology model of the TGFBR2 kinase domain. Our results showed that in all but one of the patients the pathogenic effect of at least one sequence variant is highly probable (c.722C > T, c.799A > C, and c.1460G > A in TGFBR1 and c.773T > G, c.1106G > T, c.1159G > A, c.1181G > A, and c.1561T > C in TGFBR2). These deleterious alleles occurred de novo or segregated with the disease in the families, indicating a causative association between the sequence variants and clinical phenotypes. Since TGFBR2 mutations found in patients with MFS-related disorders cannot be distinguished from heterozygous TGFBR2 mutations reported in tumor samples, we emphasize the importance of segregation analysis in affected families. In order to be able to find the mutation that is indeed responsible for a MFS-related phenotype, we also propose that genetic testing for sequence alterations in TGFBR1 and TGFBR2 should be complemented by mutation screening of the FBN1 gene.
Collapse
MESH Headings
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/genetics
- Alleles
- Amino Acid Sequence
- Aortic Dissection/diagnosis
- Aortic Dissection/genetics
- Aortic Aneurysm, Thoracic/diagnosis
- Aortic Aneurysm, Thoracic/genetics
- Cohort Studies
- Computational Biology
- DNA Mutational Analysis
- Female
- Humans
- Male
- Marfan Syndrome/diagnosis
- Marfan Syndrome/genetics
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Pedigree
- Protein Serine-Threonine Kinases
- Protein Structure, Tertiary
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Sequence Alignment
- Structural Homology, Protein
- Syndrome
Collapse
Affiliation(s)
- Gábor Mátyás
- University of Zurich, Institute of Medical Genetics, Division of Medical Molecular Genetics and Gene Diagnostics, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta Rev Cancer 2005; 1765:178-88. [PMID: 16406676 DOI: 10.1016/j.bbcan.2005.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/27/2005] [Accepted: 11/28/2005] [Indexed: 01/11/2023]
Abstract
Angiogenesis plays a critical role in the growth and metastasis of tumors. Thrombospondin-1 (TSP-1) is a potent angiogenesis inhibitor, and down-regulation of TSP-1 has been suggested to alter tumor growth by modulating angiogenesis in a variety of tumor types. Expression of TSP-1 is up-regulated by the tumor suppressor gene, p53, and down-regulated by oncogenes such as Myc and Ras. TSP-1 inhibits angiogenesis by inhibiting endothelial cell migration and proliferation and by inducing apoptosis. In addition, activation of transforming growth factor beta (TGF-beta) by TSP-1 plays a crucial role in the regulation of tumor progression. An understanding of the molecular basis of TSP-1-mediated inhibition of angiogenesis and tumor progression will aid in the development of novel therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
46
|
Zhang HT, Zhao J, Zheng SY, Chen XF. Is TGFBR1*6A really associated with increased risk of cancer? J Clin Oncol 2005; 23:7743-4; author reply 7744-6. [PMID: 16234535 DOI: 10.1200/jco.2005.02.9108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Báez A, Cantor A, Fonseca S, Marcos-Martinez M, Mathews LA, Muro-Cacho CA, Muñoz-Antonia T. Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma. Clin Cancer Res 2005; 11:3191-7. [PMID: 15867212 DOI: 10.1158/1078-0432.ccr-04-1299] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The SMADs are a group of interrelated proteins that mediate transforming growth factor beta (TGF-beta) signaling. Upon TGF-beta binding the TGF-beta type I receptor phosphorylates Smad2 and Smad3, which then complex with Smad4 and translocate to the nucleus, with subsequent activation of target genes. Disruption of TGF-beta signaling is thought to contribute to the development of head and neck squamous cell carcinomas (HNSCC). Alterations in the function of the DPC4/Smad4 tumor suppressor gene have been found to inactivate TGF-beta signaling in several tumor types. For example, DPC4/Smad4 is lost or mutated in colorectal, pancreatic, and esophageal cancers. In addition, DPC4/Smad4 transcriptional activity and TGF-beta ability to inhibit DNA synthesis is blocked by the E7 protein of the human papillomavirus type 16 (HPV16) in cervical carcinoma cell lines. HPV16 infection is a risk factor for the development of a subset of HNSCC. This study was undertaken to investigate a potential correlation between expression of components of the TGF-beta signaling pathway and HPV16 status in HNSCC tumors. We examined the expression of TGF-beta signaling proteins Smad2, Smad2-P, and Smad4 by immunohistochemistry in 27 HPV16-negative and 16 HPV16-positive HNSCCs. We compared the expression patterns and assessed their relationship to HPV16 status. No significant differences were detected between HPV16-positive and HPV16-negative tumors in the expression of Smad2 and Smad2-P. Smad4 expression, however, was decreased in 56% of the HPV16-positive tumors and in 39% of HPV16-negative tumors. This difference was statistically significant (P = 0.01) suggesting that loss of Smad4 expression may be involved in HPV16-induced carcinogenesis of HNSCC.
Collapse
Affiliation(s)
- Adriana Báez
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chen T, Jackson C, Costello B, Singer N, Colligan B, Douglass L, Pemberton J, Deddens J, Graff JR, Carter JH. An intronic variant of the TGFBR1 gene is associated with carcinomas of the kidney and bladder. Int J Cancer 2004; 112:420-5. [PMID: 15382067 DOI: 10.1002/ijc.20419] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TGF-beta signaling is frequently perturbed in many human cancers, including renal cell carcinomas (RCCs) and transitional cell carcinomas (TCCs) of the bladder. Genetic alterations of the TGF-beta type 1 receptor (TGFBR1) may contribute to these perturbations. We therefore examined variations in the TGFBR1 gene by PCR, SSCP and RFLP in carcinomas of the urinary system and in tissues from noncancer, age-matched controls. A G-->A variant 24 bp downstream of the exon/intron 7 boundary of the TGFBR1 gene (Int7G24A) was evident in patients with RCC (46.5%, n = 86) and bladder and upper urinary tract TCC (49.2%, n = 65) significantly more frequently than in age-matched controls (28.3%, n = 113, p < 0.002 by chi2 test). Moreover, 8 homozygous variant carriers were found in the cancer groups, whereas not a single homozygous variant carrier was found in the control group. The Int7G24A allele (both heterozygous G/A and homozygous A/A carriers) was associated with increased RCC incidence (OR = 2.20, 95% CI 1.22-3.96) and TCC incidence (OR = 2.45, 95% CI 1.89-3.16). One somatic mutation of serine to phenylalanine at codon 57 of the TGFBR1 gene was confirmed in an upper urinary tract TCC. In conclusion, the Int7G24A variant in the TGFBR1 gene is significantly more frequent in patients with RCC and TCC than normal age-matched controls, suggesting that it may represent a risk factor for the development of kidney and bladder carcinomas.
Collapse
Affiliation(s)
- Taiping Chen
- Wood Hudson Cancer Research Laboratory, Newport, KY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Prime SS, Eveson JW, Stone AM, Huntley SP, Davies M, Paterson IC, Robinson CM. Metastatic dissemination of human malignant oral keratinocyte cell lines following orthotopic transplantation reflects response to TGF-beta 1. J Pathol 2004; 203:927-32. [PMID: 15258995 DOI: 10.1002/path.1603] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study examined the behaviour of nine human malignant oral keratinocyte cell lines following orthotopic transplantation to the floor of the mouth of athymic mice. Tumourigenesis, local spread, and metastatic dissemination were correlated with known cellular responses to transforming growth factor-beta 1 (TGF-beta 1). Six of nine cell lines were tumourigenic; four of these cell lines showed local spread which was characterized by vascular and bone invasion. Metastatic spread was uncommon, with only 9% of animals with primary tumours developing metastases and these were almost exclusively found in the regional lymph nodes; there was one pulmonary metastasis and no liver deposits. Tumour cell behaviour did not reflect the clinical stage of the original tumours. Cell lines that were resistant to TGF-beta 1-induced growth inhibition were more likely to form primary tumours, exhibit local spread, and metastasize than cells that were growth-inhibited by the ligand. The data demonstrate that tumourigenicity and tumour behaviour in this orthotopic mouse model varied between cell lines and that the pattern of local invasion and metastasis was similar to that seen in human oral cancer. Furthermore, cell lines that were refractory to the growth inhibitory effects of TGF-beta 1 behaved more aggressively than cells that underwent ligand-induced cell-cycle arrest.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, University of Bristol Dental School, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Huntley SP, Davies M, Matthews JB, Thomas G, Marshall J, Robinson CM, Eveson JW, Paterson IC, Prime SS. Attenuated type II TGF-beta receptor signalling in human malignant oral keratinocytes induces a less differentiated and more aggressive phenotype that is associated with metastatic dissemination. Int J Cancer 2004; 110:170-6. [PMID: 15069677 DOI: 10.1002/ijc.20111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined the effect of stable transfection of dominant negative TbetaR-II (dn TbetaR-II) cDNA in a human oral carcinoma cell line that contained normal Ras and was growth inhibited by TGF-beta1. Two clonal cell lines containing dn TbetaR-II were isolated and compared to the vector-only control and parent cell line. The treatment of cells with exogenous TGF-beta1 resulted in a decrease in ligand-induced growth inhibition and loss of c-myc downregulation in test cells compared to controls; transcriptional activation of certain genes including fra-1 and collagenase was retained. Cells containing dn TbetaR-II grew faster in monolayer culture, expressed less keratin 10 and exhibited increased motility and invasion in vitro compared to control cell lines. Endogenous TGF-beta1 production and the regulation of MMP-2 and MMP-9 by TGF-beta1 remained unchanged. After orthotopic transplantation to the floor of the mouth in athymic mice, cells containing dn TbetaR-II formed comparable numbers of primary tumours at the site of inoculation as controls but the tumours were less differentiated as demonstrated by the absence of keratin 10 immunostaining. Further, metastatic dissemination to the lungs and lymphatics was more evident in grafts of cells containing dn TbetaR-II than controls. Taken together, the results demonstrate that attenuation of TGF-beta signalling through transfection of dn TbetaR-II cDNA leads to an enhanced growth rate, a loss of tumour cell differentiation and an increase in migration and invasion, characteristics that corresponded to the development of the metastatic phenotype.
Collapse
Affiliation(s)
- Suzy P Huntley
- Department of Oral and Dental Science, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|