1
|
Moghbeli M. MicroRNAs as the critical regulators of bone metastasis during prostate tumor progression. Int J Biol Macromol 2025; 309:142912. [PMID: 40203904 DOI: 10.1016/j.ijbiomac.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Prostate cancer (PCa) is the most prevalent cancer among men globally. Although, there are various therapeutic methods for the localized or advanced cancers, there is still a high rate of mortality among PCa patients that is mainly associated with bone metastasis in advanced tumors. There are few options available for treating bone metastasis in PCa, which only provide symptom relief without curing the disease. Therefore, it is crucial to evaluate the molecular mechanisms associated with bone metastasis of PCa cells to suggest the novel diagnostic and therapeutic approaches that could lower the morbidity and mortality rates in PCa patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological processes such as tumor growth and osteoblasts/osteoclasts formation. Since, miRNA deregulation has been also frequently observed in PCa patients with bone metastasis, we discussed the role of miRNAs in bone metastasis during PCa progression. It has been reported that miRNAs mainly reduced the ability of PCa tumor cells for the bone metastasis through the regulation of WNT, NF-kB, PI3K/AKT, and TGF-β signaling pathways. They also affected the EMT process, transcription factors, and structural proteins to regulate the bone metastasis during PCa progression. This review paves the way to suggest the miRNAs as the reliable markers not only for the non-invasive early diagnosis, but also for the targeted therapy of PCa tumors with bone metastasis.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Bian Y, Xiang Z, Wang Y, Ren Q, Chen G, Xiang B, Wang J, Zhang C, Pei S, Guo S, Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023; 14:1285455. [PMID: 38035026 PMCID: PMC10684723 DOI: 10.3389/fphar.2023.1285455] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaofeng Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Guoming Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bei Xiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengbo Zhang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqiang Pei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianbo Xiao
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022; 14:cancers14071847. [PMID: 35406619 PMCID: PMC8998077 DOI: 10.3390/cancers14071847] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Having the capability to proteolyze diverse structural and signaling proteins, matrix metalloproteinase 9 (MMP9), one of the best-studied secretory endopeptidases, has been identified as a crucial mediator of processes closely associated with tumorigenesis, such as the extracellular matrix reorganization, epithelial to mesenchymal transition, cell migration, new blood vessel formation, and immune response. In this review, we present the current state of knowledge on MMP9 and its role in cancer growth in the context of cell adhesion/migration, cancer-related inflammation, and tumor microenvironment formation. We also summarize recent achievements in the development of selective MMP9 inhibitors and the limitations of using them as anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| | | | - Renata Tabola
- Department of Thoracic Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamilla Stach
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
4
|
Das S, Amin SA, Gayen S, Jha T. Insight into the structural requirements of gelatinases (MMP-2 and MMP-9) inhibitors by multiple validated molecular modelling approaches: Part II. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:167-192. [PMID: 35301933 DOI: 10.1080/1062936x.2022.2041722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Inhibition of the matrix metalloproteinases (MMPs) is effective against metastasis of secondary tumours. Previous MMP inhibitors have failed in clinical trials due to their off-target toxicity in solid tumours. Thus, newer MMP inhibitors now have paramount importance. Here, different molecular modelling techniques were applied on a dataset of 110 gelatinase (MMP-2 and MMP-9) inhibitors. The objectives of the present study were to identify structural fingerprints for gelatinase inhibition and also to develop statistically validated QSAR models for the screening and prediction of different derivatives as MMP-2 (gelatinase A) and MMP-9 (gelatinase B) inhibitors. The Bayesian classification study provided the ROC values for the training set of 0.837 and 0.815 for MMP-2 and MMP-9, respectively. The linear model also produced the leave-one-out cross-validated Q2 of 0.805 (eq. 1, MMP-2) and 0.724 (eq. 2, MMP-9), an r2 of 0.845 (eq. 1, MMP-2) and 0.782 (eq. 2, MMP-9), an r2Pred of 0.806 (eq. 1, MMP-2) and 0.732 (eq. 2, MMP-9). Similarly, non-linear learning models were also statistically significant and reliable. Overall, this study may help in the rational design of newer compounds with higher gelatinase inhibition to fight against both primary and secondary cancers in future.
Collapse
Affiliation(s)
- S Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
5
|
Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021; 44:751-775. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.
Collapse
Affiliation(s)
- Bikashita Kalita
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
6
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
7
|
Li X, Jin L, Tan Y. Different roles of matrix metalloproteinase 2 in osteolysis of skeletal dysplasia and bone metastasis (Review). Mol Med Rep 2021; 23:70. [PMID: 33236155 PMCID: PMC7716421 DOI: 10.3892/mmr.2020.11708] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Matrix metalloproteinase 2 (MMP2) is a well‑characterized protein that is indispensable for extracellular matrix remodeling and other pathological processes, such as tumor progression and skeletal dysplasia. Excessive activation of MMP2 promotes osteolytic metastasis and bone destruction in late‑stage cancers, while its loss‑of‑function mutations result in the decreased bone mineralization and generalized osteolysis occurring progressively in skeletal developmental disorders, particularly in multicentric osteolysis, nodulosis and arthropathy (MONA). Either upregulation or downregulation of MMP2 activity can result in the same osteolytic effects. Thus, different functions of MMP2 have been recently identified that could explain this observation. While MMP2 can degrade bone matrix, facilitate osteoclastogenesis and amplify various signaling pathways that enhance osteolysis in bone metastasis, its role in maintaining the number of bone cells, supporting osteocytic canalicular network formation and suppressing leptin‑mediated inhibition of bone formation has been implicated in osteolytic disorders caused by MMP2 deficiency. Furthermore, the proangiogenic activity of MMP2 is one of the potential mechanisms that are associated with both pathological situations. In the present article, the latest research on MMP2 in bone homeostasis is reviewed and the mechanisms underlying the role of this protein in skeletal metastasis and developmental osteolysis are discussed.
Collapse
Affiliation(s)
- Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Libin Jin
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanbin Tan
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
8
|
Prostate cancer-derived MMP-3 controls intrinsic cell growth and extrinsic angiogenesis. Neoplasia 2020; 22:511-521. [PMID: 32896761 PMCID: PMC7481881 DOI: 10.1016/j.neo.2020.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Bone metastatic prostate cancer significantly impacts patient quality of life and overall survival, and despite available therapies, it is presently incurable with an unmet need for improved treatment options. As mediators of tumor progression, matrix metalloproteinases (MMPs) can degrade extracellular matrix components and regulate growth factor and cytokine bioactivity. Depending on tissue context, MMPs can either promote or inhibit tumorigenesis. Therefore, it is essential to study individual MMPs in specific cancer contexts and microenvironments to support the design and application of selective MMP inhibitors. Here we report that tumor-derived MMP-3 contributes to bone metastatic prostate cancer progression via intrinsic and extrinsic routes. MMP-3 ablation in prostate cancer cell lines significantly reduced in vitro growth combined with lowered AKT and ERK phosphorylation and total VEGFR1 and FGFR3 protein levels. In vivo, MMP-3 ablated tumors grew at a slower rate and were significantly less vascularized. Quantitative PCR analyses of wild type and MMP-3 silenced prostate cancer cells also demonstrate downregulation of a wide array of angiogenic factors. The extrinsic role for MMP-3 in angiogenesis was supported by in vitro endothelial tube formation assays where the lack of MMP-3 in prostate cancer conditioned media resulted in slower rates of tube formation. Taken together, our results suggest that tumor-derived MMP-3 contributes to prostate cancer growth in bone. These data indicate that selective inhibition of MMP-3 and/or targeting MMP generated products could be efficacious for the treatment of prostate to bone metastases.
Collapse
|
9
|
Fields GB. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Front Immunol 2019; 10:1278. [PMID: 31214203 PMCID: PMC6558196 DOI: 10.3389/fimmu.2019.01278] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis is facilitated by the proteolytic activities of members of the matrix metalloproteinase (MMP) family. More specifically, MMP-9 and MT1-MMP directly regulate angiogenesis, while several studies indicate a role for MMP-2 as well. The correlation of MMP activity to tumor angiogenesis has instigated numerous drug development programs. However, broad-based and Zn2+-chelating MMP inhibitors have fared poorly in the clinic. Selective MMP inhibition by antibodies, biologicals, and small molecules has utilized unique modes of action, such as (a) binding to protease secondary binding sites (exosites), (b) allosterically blocking the protease active site, or (c) preventing proMMP activation. Clinical trials have been undertaken with several of these inhibitors, while others are in advanced pre-clinical stages. The mechanistically non-traditional MMP inhibitors offer treatment strategies for tumor angiogenesis that avoid the off-target toxicities and lack of specificity that plagued Zn2+-chelating inhibitors.
Collapse
Affiliation(s)
- Gregg B Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, United States.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, United States
| |
Collapse
|
10
|
Fischer T, Senn N, Riedl R. Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chemistry 2019; 25:7960-7980. [DOI: 10.1002/chem.201805361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Nicole Senn
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
11
|
Liu BL, Cheng M, Hu S, Wang S, Wang L, Hu ZQ, Huang CX, Jiang H, Wu G. Effect of the Shensong Yangxin Capsule on Energy Metabolism in Angiotensin II-Induced Cardiac Hypertrophy. Chin Med J (Engl) 2018; 131:2287-2296. [PMID: 30246714 PMCID: PMC6166447 DOI: 10.4103/0366-6999.241819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Shensong Yangxin Capsule (SSYX), traditional Chinese medicine, has been used to treat arrhythmias, angina, cardiac remodeling, cardiac fibrosis, and so on, but its effect on cardiac energy metabolism is still not clear. The objective of this study was to investigate the effects of SSYX on myocardium energy metabolism in angiotensin (Ang) II-induced cardiac hypertrophy. Methods We used 2 μl (10-6 mol/L) AngII to treat neonatal rat cardiomyocytes (NRCMs) for 48 h. Myocardial α-actinin staining showed that the myocardial cell volume increased. Expression of the cardiac hypertrophic marker-brain natriuretic peptide (BNP) messenger RNA (mRNA) also increased by real-time polymerase chain reaction (PCR). Therefore, it can be assumed that the model of hypertrophic cardiomyocytes was successfully constructed. Then, NRCMs were treated with 1 μl of different concentrations of SSYX (0.25, 0.5, and 1.0 μg/ml) for another 24 h. To explore the time-depend effect of SSYX on energy metabolism, 0.5 μg/ml SSYX was added into cells for 0, 6, 12, 24, and 48 h. Mitochondria was assessed by MitoTracker staining and confocal microscopy. mRNA and protein expression of mitochondrial biogenesis-related genes - Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), energy balance key factor - adenosine monophosphate-activated protein kinase (AMPK), fatty acids oxidation factor - carnitine palmitoyltransferase-1 (CPT-1), and glucose oxidation factor - glucose transporter- 4 (GLUT-4) were measured by PCR and Western blotting analysis. Results With the increase in the concentration of SSYX (from 0.25 to 1.0 μg/ml), an increased mitochondrial density in AngII-induced cardiomyocytes was found compared to that of those treated with AngII only (0.25 μg/ml, 18.3300 ± 0.8895 vs. 24.4900 ± 0.9041, t = 10.240, P < 0.0001; 0.5 μg/ml, 18.3300 ± 0.8895 vs. 25.9800 ± 0.8187, t = 12.710, P < 0.0001; and 1.0 μg/ml, 18.3300 ± 0.8895 vs. 24.2900 ± 1.3120, t = 9.902, P < 0.0001; n = 5 per dosage group). SSYX also increased the mRNA and protein expression of PGC-1α (0.25 μg/ml, 0.8892 ± 0.0848 vs. 1.0970 ± 0.0994, t = 4.319, P = 0.0013; 0.5 μg/ml, 0.8892 ± 0.0848 vs. 1.2330 ± 0.0564, t = 7.150, P < 0.0001; and 1.0 μg/ml, 0.8892 ± 0.0848 vs. 1.1640 ± 0.0755, t = 5.720, P < 0.0001; n = 5 per dosage group), AMPK (0.25 μg/ml, 0.8872 ± 0.0779 vs. 1.1500 ± 0.0507, t = 7.239, P < 0.0001; 0.5 μg/ml, 0.8872 ± 0.0779 vs. 1.2280 ± 0.0623, t = 9.379, P < 0.0001; and 1.0 μg/ml, 0.8872 ± 0.0779 vs. 1.3020 ± 0.0450, t = 11.400, P < 0.0001; n = 5 per dosage group), CPT-1 (1.0 μg/ml, 0.7348 ± 0.0594 vs. 0.9880 ± 0.0851, t = 4.994, P = 0.0007, n = 5), and GLUT-4 (0.5 μg/ml, 1.5640 ± 0.0599 vs. 1.7720 ± 0.0660, t = 3.783, P = 0.0117; 1.0 μg/ml, 1.5640 ± 0.0599 vs. 2.0490 ± 0.1280, t = 8.808, P < 0.0001; n = 5 per dosage group). The effect became more obvious with the increasing concentration of SSYX. When 0.5 μg/ml SSYX was added into cells for 0, 6, 12, 24, and 48 h, the expression of AMPK (6 h, 14.6100 ± 0.6205 vs. 16.5200 ± 0.7450, t = 3.456, P = 0.0250; 12 h, 14.6100 ± 0.6205 vs. 18.3200 ± 0.9965, t = 6.720, P < 0.0001; 24 h, 14.6100 ± 0.6205 vs. 21.8800 ± 0.8208, t = 13.160, P < 0.0001; and 48 h, 14.6100 ± 0.6205 vs. 23.7400 ± 1.0970, t = 16.530, P < 0.0001; n = 5 per dosage group), PGC-1α (12 h, 11.4700 ± 0.7252 vs. 16.9000 ± 1.0150, t = 7.910, P < 0.0001; 24 h, 11.4700 ± 0.7252 vs. 20.8800 ± 1.2340, t = 13.710, P < 0.0001; and 48 h, 11.4700 ± 0.7252 vs. 22.0300 ± 1.4180, t = 15.390; n = 5 per dosage group), CPT-1 (24 h, 15.1600 ± 1.0960 vs. 18.5800 ± 0.9049, t = 6.048, P < 0.0001, n = 5), and GLUT-4 (6 h, 10.2100 ± 0.9485 vs. 12.9700 ± 0.8221, t = 4.763, P = 0.0012; 12 h, 10.2100 ± 0.9485 vs. 16.9100 ± 0.8481, t = 11.590, P < 0.0001; 24 h, 10.2100 ± 0.9485 vs. 19.0900 ± 0.9797, t = 15.360, P < 0.0001; and 48 h, 10.2100 ± 0.9485 vs. 14.1900 ± 0.9611, t = 6.877, P < 0.0001; n = 5 per dosage group) mRNA and protein increased gradually with the prolongation of drug action time. Conclusions SSYX could increase myocardial energy metabolism in AngII-induced cardiac hypertrophy. Therefore, SSYX might be considered to be an alternative therapeutic remedy for myocardial hypertrophy.
Collapse
Affiliation(s)
- Bei-Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Zheng-Qing Hu
- Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, Hubei 436000, China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, Hubei 436000, China
| |
Collapse
|
12
|
Liu BL, Cheng M, Hu S, Wang S, Wang L, Tu X, Huang CX, Jiang H, Wu G. Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy. Biomed Pharmacother 2018; 108:1347-1356. [PMID: 30372837 DOI: 10.1016/j.biopha.2018.09.146] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Our previous studies have shown that Src homology 2 (SH2) B adaptor protein 1 (SH2B1) plays an important role in cardiac hypertrophy, but the specific mechanism remains to be studied. Through bioinformatics and related research, it is found that miR-14 2-3 p is closely related to SH2B1. Exploring the relationship between miR-14 2-3 p and gene SH2B1 expression is beneficial for the treatment of cardiac hypertrophy. SH2B1 is a key factor regulating energy metabolism, mitochondria are the main organelles of energy metabolism and cardiac hypertrophy are closely related to mitochondrial dysfunction. So it is particularly important to explore the relationship between miR-14 2-3 p and SH2B1 and myocardial mitochondrial function. In this study, we investigated whether overexpression of miR-14 2-3 p can inhibit the expression of gene SH2B1, ameliorate cardiac mitochondrial dysfunction and cardiac hypertrophy. METHODS We first constructed a pressure overload myocardial hypertrophy model by ligation of the abdominal aorta(AB) of rats. After 4 weeks of modeling, echocardiographic examination showed that the heart volume of the model group became larger, and Hematoxylin and Eosin Staining Kit (HE) staining showed that the cross-sectional area of the heart tissue became larger. The expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β-Myosin Heavy Chain (β-MHC) messenger RNA (mRNA) increased by real‑time polymerase chain reaction (PCR), which proved that the model of cardiac hypertrophy was successfully constructed. Then, miR-14 2-3 p agomir was injected into the tail vein of rats 2 weeks and 4 weeks respectively. The expression of miR-4 2-3 p mRNA was increased by PCR, suggesting that the miR-14 2-3 p plasmid was successfully transfected. At 4 weeks of pressure overload myocardial hypertrophy model, echocardiography was used to detect cardiac function. HE staining of heart tissue and the expression of ANP, BNP, β-MHC mRNA were used to detect cardiac hypertrophy. Flow cytometry was used to detect changes in mitochondrial membrane potential. Secondly, we observed the effect of miR-14 2-3 p on cardiomyocyte hypertrophy and mitochondrial function in vitro by culture neonatal rat cardiomyocytes. Afterwards, using angiotensin (Ang)II-, miRNA mimic- and miRNA mimic nc- treated cardiomyocytes for a given time. α-actin staining found that the myocardial cells became larger, The expression of ANP, BNP, β-MHC mRNA increased by PCR, which proved that AngII-induced cardiac hypertrophy was successfully constructed. Then, the mitochondrial density was measured using mitochondrial Mito-Red staining by Confocal microscope, the mitochondrial membrane potential was evaluated using flow cytometry, Mitochondrial respiration oxygen consumption rate (OCR) was measured by a Seahorse Extracellular Flux Analyzer XF96, and the expression levels of miR-14 2-3 p, ANP, BNP, β-MHC mRNA, SH2B1 in the cardiomyocytes of different groups were measured by RT-PCR and Western blotting. Finally, we used luciferase assay and transfected miR-14 2-3 p agomir in rats, transfected miR-14 2-3 p mimic in Cardiomyocytes, it is found that myocardial SH2B1 mRNA and protein expression both were reduced. RESULTS When the pressure overload myocardial hypertrophy model was constructed for four weeks, echocardiography revealed that the heart volume, Left ventricular end diastolic diameter(LVIDd), Left ventricular end systolic diameter (LVIDs), Left ventricular posterior wall thickness (LVPWd), Systolic left ventricular posterior wall (LVPWs), Left ventricle (LV) Mass increased, Ejection fraction (EF) % decreased of AB group increased, but transfected with miR-14 2-3 p agomir of AB, these increase was not significant, EF% reduction was not obvious. HE staining showed that the myocardial cross-sectional area of AB group increased significantly, but the miR-14 2-3 p agomir treatment of AB group did not increase significantly. PCR analysis showed that the expression of ANP, BNP,β-MHC mRNA was significantly increased in AB group, but the miR-14 2-3 p agomir treatment of AB group was not significantly increased. Flow cytometry showed that the mitochondrial membrane potential of AB group was significantly reduced, and the miR-14 2-3 p agomir treatment of AB group was not significantly decreased. During AngII-induced cardiomyocyte hypertrophy, ANP, BNP,β-MHC mRNA expression was increased, while these factors was not significantly increased in miR-14 2-3 p mimic treatment group; mitochondrial membrane potential, mitochondrial density and OCR was significantly decreased in AngII treated group, and these were not significantly reduced in miR-14 2-3 p mimic treatment group; CONCLUSIONS: miR-14 2-3 p not only mitigate cardiac hypertrophy by directly inhibit the expression of gene SH2B1, but also can protect mitochondrial function in cardiac hypertrophy of vitro and vivo.
Collapse
Affiliation(s)
- Bei-Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, Hubei 436000, China.
| |
Collapse
|
13
|
Wang YH, Dai F, Zhou B. A Catechol-Type Resveratrol Analog Manifests Antiangiogenic Action by Constructing an Efficient Catalytic Redox Cycle with Intracellular Copper Ions and NQO1. Mol Nutr Food Res 2018; 62:e1700969. [PMID: 29923292 DOI: 10.1002/mnfr.201700969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/25/2018] [Indexed: 01/24/2023]
Abstract
SCOPE As part of our research project to understand why dietary polyphenols with the catechol skeleton tend to exhibit cancer chemopreventive activity, a catechol-type resveratrol analog (3,4-dihydroxy-trans-stilbene [3,4-DHS]) was selected to probe its antiangiogenic effects and mechanisms. METHODS AND RESULTS The antiangiogenic effects of 3,4-DHS on angiogenesis-related endothelial cell functions were examined, including migration, invasion, and tube formation, and in vivo angiogenesis on a chick chorioallantoic membrane assay. The potential molecular mechanisms for the suppression of cell migration by 3,4-DHS were analyzed using various specific inhibitors. 3,4-DHS was identified as a potent angiogenesis inhibitor by constructing an efficient catalytic redox cycle with intracellular copper ions and NAD(P)H quinone oxidoreductase I to generate reactive oxygen species and thereby downregulate matrix metalloproteinase-9. CONCLUSION This work provides further evidence that dietary catechols manifest antiangiogenic activity by virtue of their copper-dependent prooxidative instead of antioxidative role, and useful information for designing polyphenol-inspired angiogenesis inhibitors.
Collapse
Affiliation(s)
- Yi-Hua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| |
Collapse
|
14
|
Xiong K, Wu T, Fan Q, Chen L, Yan M. Novel Reduced Graphene Oxide/Zinc Silicate/Calcium Silicate Electroconductive Biocomposite for Stimulating Osteoporotic Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44356-44368. [PMID: 29211449 DOI: 10.1021/acsami.7b16206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the absence of external assistance, autogenous healing of bone fracture is difficult due to impaired regeneration ability under osteoporosis pathological conditions. In this study, a reduced graphene oxide/zinc silicate/calcium silicate (RGO/ZS/CS) conductive biocomposite with an optimal surface electroconductivity of 5625 S/m was prepared by a two-step spin-coating method. The presence of lamellar apatite nanocrystals on the surfaces of the biocomposite suggests that it has good in vitro biomineralization ability. The silicon and zinc released from the biocomposite induced a significant increase in the osteogenesis of mouse bone mesenchymal stem cells (mBMSCs). Furthermore, alkaline phosphatase activities were further promoted when 3 μA direct current was applied to stimulate the mBMSCs that were cultured on the RGO/ZS/CS surface. However, electrical stimulation failed to further upregulate the osteogenesis-related gene expression. Moreover, RGO/ZS/CS extracts were found to suppress the receptor activator of nuclear factor-κB ligand-induced osteoclastic differentiation of mouse leukemic monocyte macrophages (RAW264.7 cells). Although the zinc ions in the RGO/ZS/CS extracts showed an inhibitory role in human umbilical vein endothelial cell (HUVEC) proliferation, dilutions of the RGO/ZS/CS extracts (1/16, 1/32, and 1/64) promoted HUVEC proliferation, and their angiogenesis-related gene expression was also upregulated. On the basis of the results of the in vitro angiogenesis model, more interconnected tubes formed when the above dilutions of RGO/ZS/CS extracts were added to ECMatrix. The new RGO/ZS/CS electroconductive biocomposite has potential to be used for stimulating osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Kun Xiong
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology , Mianyang 621010, China
| | - Tingting Wu
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan University , Guangzhou 510630, China
| | - Qingbo Fan
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology , Mianyang 621010, China
| | - Lin Chen
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology , Mianyang 621010, China
| | - Minhao Yan
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology , Mianyang 621010, China
| |
Collapse
|
15
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
16
|
Li W, Qian L, Lin J, Huang G, Hao N, Wei X, Wang W, Liang J. CD44 regulates prostate cancer proliferation, invasion and migration via PDK1 and PFKFB4. Oncotarget 2017; 8:65143-65151. [PMID: 29029419 PMCID: PMC5630319 DOI: 10.18632/oncotarget.17821] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Our recent studies have shown that CD44, a cell-surface protein with functions in many biologic processes, involved in glucose metabolism of prostate cancer cells. However, the molecular mechanisms of the regulation need to be further elucidated. In present study, LNCaP cells infected with lentivirus vector overexpressing CD44. The expression levels of key enzymes in glucose metabolism known as PDK1 and PFKFB4 were determined using QRT-PCR and western blot. PDK1 and PFKFB4 in LNCaP and PC3 cells were knocked down with shRNA respectively, and then cell proliferation, invasion and cell migration assay were performed. We found that overexpression of CD44 increased expression levels of PDK1 and PFKFB4 in LNCaP cells. Silencing of PDK1 and PFKFB4 could decrease cell proliferation, inhibit invasion and migration ability of prostate cancer cells. In addition, CD44 inhibitor could decrease glucose consumption and increase ROS levels of PC-3 cells significantly, as well as sensitize PC-3 cells to docetaxel. Taken together, CD44 could modulate aggressive phenotype of prostate cancer cells, by regulation of the expression of PDK1 and PFKFB4. CD44 may be a novel potential therapeutic target.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| | - Li Qian
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| | - Junhao Lin
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| | - Guihai Huang
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| | - Nan Hao
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| | - Xiuwang Wei
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| | - Wei Wang
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| | - Jianbo Liang
- Department of Urology, The People's Hospital of Guangxi Zhuang Autonomous Region, NanNing, China
| |
Collapse
|
17
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
18
|
Meisel JE, Chang M. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2001-2014. [PMID: 28435009 DOI: 10.1016/j.bbamcr.2017.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022]
Abstract
The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
|
19
|
Frieling JS, Shay G, Izumi V, Aherne ST, Saul RG, Budzevich M, Koomen J, Lynch CC. Matrix metalloproteinase processing of PTHrP yields a selective regulator of osteogenesis, PTHrP 1-17. Oncogene 2017; 36:4498-4507. [PMID: 28368420 DOI: 10.1038/onc.2017.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/19/2017] [Accepted: 02/21/2017] [Indexed: 01/02/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is a critical regulator of bone resorption and augments osteolysis in skeletal malignancies. Here we report that the mature PTHrP1-36 hormone is processed by matrix metalloproteinases to yield a stable product, PTHrP1-17. PTHrP1-17 retains the ability to signal through PTH1R to induce calcium flux and ERK phosphorylation but not cyclic AMP production or CREB phosphorylation. Notably, PTHrP1-17 promotes osteoblast migration and mineralization in vitro, and systemic administration of PTHrP1-17 augments ectopic bone formation in vivo. Further, in contrast to PTHrP1-36, PTHrP1-17 does not affect osteoclast formation/function in vitro or in vivo. Finally, immunoprecipitation-mass spectrometry analyses using PTHrP1-17-specific antibodies establish that PTHrP1-17 is indeed generated by cancer cells. Thus, matrix metalloproteinase-directed processing of PTHrP disables the osteolytic functions of the mature hormone to promote osteogenesis, indicating important roles for this circuit in bone remodelling in normal and disease contexts.
Collapse
Affiliation(s)
- J S Frieling
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Shay
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - V Izumi
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - S T Aherne
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - R G Saul
- Antibody Characterization Lab, Leidos Biomedical Research, Frederick, MD, USA
| | - M Budzevich
- Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - J Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - C C Lynch
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
20
|
Tan W, Zhu S, Cao J, Zhang L, Li W, Liu K, Zhong J, Shang C, Chen Y. Inhibition of MMP-2 Expression Enhances the Antitumor Effect of Sorafenib in Hepatocellular Carcinoma by Suppressing the PI3K/AKT/mTOR Pathway. Oncol Res 2017; 25:1543-1553. [PMID: 28276313 PMCID: PMC7841021 DOI: 10.3727/096504017x14886444100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sorafenib has been globally approved as the standard treatment for patients with advanced hepatocellular carcinoma (HCC). However, the response rate of HCC patients to sorafenib is limited because of tumor recurrence and metastasis. Therefore, seeking combined therapeutic strategies with sorafenib is necessary to improve the antitumor efficiency. Here we demonstrated that expression of MMP-2 is positively correlated with the migration ability of HCC cells. Cells with a higher MMP-2 expression (SK-HEP-1 cells) were less sensitive to sorafenib than those with lower MMP-2 expression (HepG2 cells). Cotreatment of cells with SB-3CT and sorafenib more strongly inhibited migration ability than with sorafenib treatment alone in both HCC cells with high and low expression of MMP-2. In vivo cell metastasis experiments confirmed the synergistic effects of sorafenib and SB-3CT in reducing lung metastasis of SK-HEP-1 cells. Mechanistically, we showed that the synergistic antitumor effect may be attributed to inhibition of the PI3K/AKT/mTOR signaling pathway, but not the RAF/MEK/ERK signaling pathway. With these results taken together, the current study demonstrates that inhibiting MMP-2 expression can enhance the antitumor effect of sorafenib in HCC cells with a high MMP-2 expression, which may provide a novel strategy to improve therapeutic efficiency in HCC.
Collapse
|
21
|
Tauro M, Shay G, Sansil SS, Laghezza A, Tortorella P, Neuger AM, Soliman H, Lynch CC. Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol Cancer Ther 2017; 16:494-505. [PMID: 28069877 DOI: 10.1158/1535-7163.mct-16-0315-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
Abstract
Bone metastasis is common during breast cancer progression. Matrix metalloproteinase-2 (MMP-2) is significantly associated with aggressive breast cancer and poorer overall survival. In bone, tumor- or host-derived MMP-2 contributes to breast cancer growth and does so by processing substrates, including type I collagen and TGFβ latency proteins. These data provide strong rationale for the application of MMP-2 inhibitors to treat the disease. However, in vivo, MMP-2 is systemically expressed. Therefore, to overcome potential toxicities noted with previous broad-spectrum MMP inhibitors (MMPIs), we used highly selective bisphosphonic-based MMP-2 inhibitors (BMMPIs) that allowed for specific bone targeting. In vitro, BMMPIs affected the viability of breast cancer cell lines and osteoclast precursors, but not osteoblasts. In vivo, we demonstrated using two bone metastatic models (PyMT-R221A and 4T1) that BMMPI treatment significantly reduced tumor growth and tumor-associated bone destruction. In addition, BMMPIs are superior in promoting tumor apoptosis compared with the standard-of-care bisphosphonate, zoledronate. We demonstrated MMP-2-selective inhibition in the bone microenvironment using specific and broad-spectrum MMP probes. Furthermore, compared with zoledronate, BMMPI-treated mice had significantly lower levels of TGFβ signaling and MMP-generated type I collagen carboxy-terminal fragments. Taken together, our data show the feasibility of selective inhibition of MMPs in the bone metastatic breast cancer microenvironment. We posit that BMMPIs could be easily translated to the clinical setting for the treatment of bone metastases given the well-tolerated nature of bisphosphonates. Mol Cancer Ther; 16(3); 494-505. ©2017 AACR.
Collapse
Affiliation(s)
- Marilena Tauro
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gemma Shay
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Samer S Sansil
- Translational Research Core and, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Antonio Laghezza
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "A. Moro", Bari, Italy
| | - Paolo Tortorella
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "A. Moro", Bari, Italy
| | - Anthony M Neuger
- Translational Research Core and, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hatem Soliman
- Department of Women's Oncology and Experimental Therapeutics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
22
|
Marusak C, Bayles I, Ma J, Gooyit M, Gao M, Chang M, Bedogni B. The thiirane-based selective MT1-MMP/MMP2 inhibitor ND-322 reduces melanoma tumor growth and delays metastatic dissemination. Pharmacol Res 2016; 113:515-520. [PMID: 27687955 DOI: 10.1016/j.phrs.2016.09.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023]
Abstract
MT1-MMP and MMP2 have been implicated as pro-tumorigenic and pro-metastatic factors in a wide variety of cancers including melanoma. We have previously demonstrated that MT1-MMP is highly expressed in melanoma where it promotes melanoma cell invasion and metastasis in part through the activation of its target MMP2. Given the accessibility of MMPs, as they are either secreted (e.g. MMP2) or membrane-tethered (e.g. MT1-MMP), they represent ideal targets for specific inhibition via small molecules. Here we show that the novel small-molecule inhibitor ND-322 with high selectivity for MT1-MMP and MMP2, effectively inhibits MT1-MMP and MMP2 activity resulting in reduced in vitro melanoma cell growth, migration and invasion. Importantly, these inhibitory effects lead to significant reduction of melanoma tumor growth and metastasis. We further show that while cell migration and invasion could be similarly hampered by specific inhibition of either MT1-MMP or MMP2 via shRNAs, the growth inhibitory activity of ND-322 could only be mirrored by specific inhibition of MT1-MMP. These data support ND-322 as a novel effective inhibitor capable of counteracting both MT1-MMP and MMP2, two key proteases involved in melanoma growth and metastasis. ND-322 may therefore represent a new inhibitor in the repertoire of treatments against melanoma.
Collapse
Affiliation(s)
- Charles Marusak
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Ian Bayles
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jun Ma
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Major Gooyit
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States.
| |
Collapse
|
23
|
Belair DG, Schwartz MP, Knudsen T, Murphy WL. Human iPSC-derived endothelial cell sprouting assay in synthetic hydrogel arrays. Acta Biomater 2016; 39:12-24. [PMID: 27181878 PMCID: PMC5228278 DOI: 10.1016/j.actbio.2016.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events during angiogenesis in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by undefined substrates and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). We rapidly encapsulated iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres using thiol-ene chemistry and subsequently encapsulated cell-dense hydrogel spheres in a cell-free hydrogel layer. The hydrogel sprouting array supported pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. iPSC-ECs in the sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin, which confirms their functional role in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds from the US Environmental Protection Agency's ToxCast library identified six compounds that inhibited iPSC-EC sprouting and five compounds that were overtly cytotoxic to iPSC-ECs at a single concentration. The chemically-defined iPSC-EC sprouting model (iSM) is thus amenable to enhanced-throughput screening of small molecular libraries for effects on angiogenic sprouting and iPSC-EC toxicity assessment. STATEMENT OF SIGNIFICANCE Angiogenesis assays that are commonly used for drug screening and toxicity assessment applications typically utilize natural substrates like Matrigel(TM) that are difficult to spatially pattern, costly, ill-defined, and may exhibit lot-to-lot variability. Herein, we describe a novel angiogenic sprouting assay using chemically-defined, bioinert poly(ethylene glycol) hydrogels functionalized with biomimetic peptides to promote cell attachment and degradation in a reproducible format that may mitigate the need for natural substrates. The quantitative assay of angiogenic sprouting here enables precise control over the initial conditions and can be formulated into arrays for screening. The sprouting assay here was dependent on key angiogenic signaling axes in a screen of angiogenesis inhibitors and a blinded screen of putative vascular disrupting compounds from the US-EPA.
Collapse
Affiliation(s)
- David G Belair
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas Knudsen
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Material Science Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
24
|
Nuti E, Cantelmo AR, Gallo C, Bruno A, Bassani B, Camodeca C, Tuccinardi T, Vera L, Orlandini E, Nencetti S, Stura EA, Martinelli A, Dive V, Albini A, Rossello A. N-O-Isopropyl Sulfonamido-Based Hydroxamates as Matrix Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity. J Med Chem 2015; 58:7224-40. [DOI: 10.1021/acs.jmedchem.5b00367] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Elisa Nuti
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Anna Rita Cantelmo
- Science
and Technological Park, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | - Cristina Gallo
- Laboratory
of Translational Research, IRCCS Arcispedale Santa Maria Nuova, viale
Risorgimento 80, 42121 Reggio Emilia, Italy
| | - Antonino Bruno
- Science
and Technological Park, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | - Barbara Bassani
- Science
and Technological Park, IRCCS MultiMedica, via Fantoli 16/15, 20138 Milan, Italy
| | - Caterina Camodeca
- Division
of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele, via Olgettina 60, 20132 Milano, Italy
| | - Tiziano Tuccinardi
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Laura Vera
- CEA,
iBiTec-S, Service d’Ingenierie Moleculaire des Proteines (SIMOPRO), CE-Saclay 91191 Gif sur Yvette Cedex, France
| | | | - Susanna Nencetti
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Enrico A. Stura
- CEA,
iBiTec-S, Service d’Ingenierie Moleculaire des Proteines (SIMOPRO), CE-Saclay 91191 Gif sur Yvette Cedex, France
| | - Adriano Martinelli
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Vincent Dive
- CEA,
iBiTec-S, Service d’Ingenierie Moleculaire des Proteines (SIMOPRO), CE-Saclay 91191 Gif sur Yvette Cedex, France
| | - Adriana Albini
- Laboratory
of Translational Research, IRCCS Arcispedale Santa Maria Nuova, viale
Risorgimento 80, 42121 Reggio Emilia, Italy
| | - Armando Rossello
- Dipartimento
di Farmacia, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
25
|
Abstract
Heightened matrix metalloproteinase (MMP) activity has been noted in the context of the tumor microenvironment for many years, and causal roles for MMPs have been defined across the spectrum of cancer progression. This is primarily due to the ability of the MMPs to process extracellular matrix (ECM) components and to regulate the bioavailability/activity of a large repertoire of cytokines and growth factors. These characteristics made MMPs an attractive target for therapeutic intervention but notably clinical trials performed in the 1990s did not fulfill the promise of preclinical studies. The reason for the failure of early MMP inhibitor (MMPI) clinical trials that are multifold but arguably principal among them was the inability of early MMP-based inhibitors to selectively target individual MMPs and to distinguish between MMPs and other members of the metzincin family. In the decades that have followed the MMP inhibitor trials, innovations in chemical design, antibody-based strategies, and nanotechnologies have greatly enhanced our ability to specifically target and measure the activity of MMPs. These advances provide us with the opportunity to generate new lines of highly selective MMPIs that will not only extend the overall survival of cancer patients, but will also afford us the ability to utilize heightened MMP activity in the tumor microenvironment as a means by which to deliver MMPIs or MMP activatable prodrugs.
Collapse
|
26
|
Lee M, Hesek D, Noll BC, Oliver AG, Mobashery S. Enantiomers of a selective gelatinase inhibitor: (R)- and (S)-2-[(4-phenoxyphenyl)sulfonylmethyl]thiirane. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2014; 70:1003-6. [PMID: 25370094 DOI: 10.1107/s2053229614021214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022]
Abstract
The compound 2-[(4-phenoxyphenyl)sulfonylmethyl]thiirane, C15H14O3S2, a selective gelatinase inhibitor, was synthesized and structurally characterized. Two crystals were analyzed, one each for the R and S enantiomers, and the results were compared with the previously reported structure of the racemate. The enantiomerically pure compounds both crystallize with Z' = 2 in the space group P2₁, while the racemic mixture crystallizes with Z' = 1 in the space group P2₁/c, with disorder in the position of the thiirane group. This disorder accommodates both molecules for each of the enantiomerically pure crystals, showing good overlap of the molecules of the pure enantiomorphs with the components of the centrosymmetric structure.
Collapse
Affiliation(s)
- Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
| | - Bruce C Noll
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
| |
Collapse
|
27
|
Abstract
Targeting prostate cancer metastasis has very high therapeutic potential. Prostate cancer is the second most common cause of cancer death among men in the USA, and death results from the development of metastatic disease. In order to metastasize, cancer cells must complete a series of steps that together constitute the metastatic cascade. Each step therefore offers the opportunity for therapeutic targeting. However, practical limitations have served as limiting roadblocks to successfully targeting the metastatic cascade. They include our still-emerging understanding of the underlying biology, as well as the fact that many of the dysregulated processes have critical functionality in otherwise normal cells. We provide a discussion of the underlying biology, as it relates to therapeutic targeting. Therapeutic inroads are rapidly being made, and we present a series of case studies to highlight key points. Finally, future perspectives related to drug discovery for antimetastatic agents are discussed.
Collapse
|
28
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
29
|
Wong D, Kandagatla P, Korz W, Chinni SR. Targeting CXCR4 with CTCE-9908 inhibits prostate tumor metastasis. BMC Urol 2014; 14:12. [PMID: 24472670 PMCID: PMC3912255 DOI: 10.1186/1471-2490-14-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/26/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CXCL12/CXCR4 transactivation of epidermal growth factor family receptors in lipid raft membrane microdomains on cell surface is thought to mediate tumor growth and subsequent development of metastatic disease. CTCE-9908 is a known inhibitor of CXCR4. Herein, we tested the efficacy of CTCE-9908 in inhibiting prostate cancer cell growth, invasion, and metastasis. METHODS We used a panel of in vitro assays utilizing human prostate cancer cell lines and an in vivo orthotopic prostate cancer model to assess the anti-tumoral activity of CTCE-9908. RESULTS We demonstrated that (a) CTCE-9908 treatment resulted in no significant change in the growth of PC-3 and C4-2B cells; (b) 50 μg/ml of CTCE-9908 inhibited the invasive properties of PC-3 cells; (c) 25 mg/kg of CTCE-9908 did not alter primary tumor growth but it did significantly reduce total tumor burden in the animal including the growth of prostate and soft tissue metastases to lymph node and distant organ tissues. Histological analysis showed that CTCE-9908 treatment resulted in tumor necrosis in primary prostate tumors and no significant change in proliferation of tumor cells as measured by Ki-67 staining; (d) CTCE-9908 inhibited the tumor angiogenesis as measured by CD34 positive vessels in tumors. CONCLUSIONS These data suggest that CXCR4 inhibition by CTCE-9908 decreases the invasion potential in vitro, which then translated to a reduction of tumor spread with associated reduction in angiogenesis. Hence, CTCE-9908 may prove to be an efficacious novel agent to prevent and treat the spread of metastatic prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Sreenivasa R Chinni
- Department of Urology, Wayne State University School of Medicine, 9200 Scott Hall 540 E, Canfield Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
30
|
Fabre B, Filipiak K, Coderch C, Zapico JM, Carbajo RJ, Schott AK, Pineda-Lucena A, de Pascual-Teresa B, Ramos A. New clicked thiirane derivatives as gelatinase inhibitors: the relevance of the P1′ segment. RSC Adv 2014. [DOI: 10.1039/c3ra46402d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Ding D, Lichtenwalter K, Pi H, Mobashery S, Chang M. Characterization of a selective inhibitor for matrix metalloproteinase-8 (MMP-8). MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00172a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MMP-8 has been implicated in various diseases using a reported selective MMP-8 inhibitor that is actually a broad-spectrum MMP inhibitor.
Collapse
Affiliation(s)
- Derong Ding
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| | | | - Hualiang Pi
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| | - Mayland Chang
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| |
Collapse
|
32
|
Lee M, Ikejiri M, Klimpel D, Toth M, Espahbodi M, Hesek D, Forbes C, Kumarasiri M, Noll BC, Chang M, Mobashery S. Structure-Activity Relationship for Thiirane-Based Gelatinase Inhibitors. ACS Med Chem Lett 2012; 3:490-495. [PMID: 22737278 DOI: 10.1021/ml300050b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An extensive structure-activity relationship study with the template of 2-(4-phenoxyphenylsulfonylmethyl)thiirane (1), a potent and highly selective inhibitor for human gelatinases, is reported herein. Syntheses of 65 new analogs, each in multistep processes, allowed for exploration of key structural components of the molecular template. This study reveals that the presence of the sulfonylmethylthiirane and the phenoxyphenyl group were important for gelatinase inhibition. However, para- and some meta-substitutions of the terminal phenyl ring enhanced inhibitory activity, and led to improve metabolic stability. This agrees with the result from metabolism studies with compound 1 that the primary route of biotransformation is oxidation, mainly at the para position of the phenyl ring and alpha position of the sulfonyl group in the aliphatic side chain.
Collapse
Affiliation(s)
- Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Masahiro Ikejiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Dennis Klimpel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Mana Espahbodi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Christopher Forbes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Bruce C. Noll
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556,
United States
| |
Collapse
|
33
|
Lan YY, Hsiao JR, Chang KC, Chang JSM, Chen CW, Lai HC, Wu SY, Yeh TH, Chang FH, Lin WH, Su IJ, Chang Y. Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase 9. J Virol 2012; 86:6656-67. [PMID: 22514348 PMCID: PMC3393536 DOI: 10.1128/jvi.00174-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/04/2012] [Indexed: 01/31/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is highly metastatic, and this malignant feature may be promoted by an EBV oncoprotein, latent membrane protein 2A (LMP2A). Acting as a signal regulator, LMP2A can enhance invasiveness and motility of epithelial cells. Downstream from the LMP2A-triggered signaling events, it is largely unknown what key effector proteins are induced and essentially promote cell invasion. In the present study, we found that in NPC cells, LMP2A upregulated matrix metalloproteinase 9 (MMP9), a metastasis-associated protease. LMP2A increased MMP9 expression at both the mRNA and protein levels. It also activated the MMP9 promoter, in which two AP-1 elements were required for the promoter activation. Among AP-1 transcription factors, Fra-1 was induced by LMP2A and is essential for LMP2A-triggered MMP9 expression. Induction of Fra-1 was dependent on the LMP2A-activated ERK1/2 pathway, and induction of the ERK1/2-Fra-1-MMP9 axis required PY motifs in the amino-terminal domain of LMP2A. Notably, LMP2A-promoted invasion of NPC cells was blocked when MMP9 expression, Fra-1 induction, or ERK1/2 activation was inhibited. In addition, we found an association of LMP2A with MMP9 expression in NPC tumor biopsy specimens, where Fra-1 was a major mediation factor. This study reveals an underlying mechanism of LMP2A-induced cell invasion, from signal transduction to upregulation of a critical protease. Considering that MMP9 can also be upregulated by another EBV oncoprotein, LMP1, this protease may be a pivotal effector at which the EBV-induced, invasion-promoting mechanisms converge, serving as an attractive therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology
- Graduate Institute of Basic Medical Science
| | | | | | - Jeffrey Shu-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chaio-Wei Chen
- National Institute of Infectious Diseases and Vaccinology
| | - Hsiao-Ching Lai
- National Institute of Infectious Diseases and Vaccinology
- Graduate Institute of Basic Medical Science
| | - Shih-Yi Wu
- National Institute of Infectious Diseases and Vaccinology
| | - Tzu-Hao Yeh
- National Institute of Infectious Diseases and Vaccinology
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Hsin Chang
- National Institute of Infectious Diseases and Vaccinology
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- National Institute of Infectious Diseases and Vaccinology
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology
- Graduate Institute of Basic Medical Science
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Ritchey L, Ottman R, Roumanos M, Chakrabarti R. A functional cooperativity between Aurora A kinase and LIM kinase1: implication in the mitotic process. Cell Cycle 2012; 11:296-309. [PMID: 22214762 DOI: 10.4161/cc.11.2.18734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aurora kinase A (Aur-A), a mitotic kinase, regulates initiation of mitosis through centrosome separation and proper assembly of bipolar spindles. LIM kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, is involved in the mitotic process through inactivating phosphorylation of cofilin. Phosphorylated LIMK1 is recruited to the centrosomes during early prophase, where it colocalizes with γ-tubulin. Here, we report a novel functional cooperativity between Aur-A and LIMK1 through mutual phosphorylation. LIMK1 is recruited to the centrosomes during early prophase and then to the spindle poles, where it colocalizes with Aur-A. Aur-A physically associates with LIMK1 and activates it through phosphorylation, which is important for its centrosomal and spindle pole localization. Aur-A also acts as a substrate of LIMK1, and the function of LIMK1 is important for its specific localization and regulation of spindle morphology. Taken together, the novel molecular interaction between these two kinases and their regulatory roles on one another's function may provide new insight on the role of Aur-A in manipulation of actin and microtubular structures during spindle formation.
Collapse
Affiliation(s)
- Lisa Ritchey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | | | | |
Collapse
|
35
|
Thiolloy S, Edwards JR, Fingleton B, Rifkin DB, Matrisian LM, Lynch CC. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment. PLoS One 2012; 7:e29862. [PMID: 22238668 PMCID: PMC3251607 DOI: 10.1371/journal.pone.0029862] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/05/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. METHODOLOGY/PRINCIPAL FINDINGS To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). CONCLUSION/SIGNIFICANCE Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.
Collapse
Affiliation(s)
- Sophie Thiolloy
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - James R. Edwards
- Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom
| | - Barbara Fingleton
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Daniel B. Rifkin
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Lynn M. Matrisian
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Conor C. Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
36
|
Ranasinghe HS, Scheepens A, Sirimanne E, Mitchell MD, Williams CE, Fraser M. Inhibition of MMP-9 Activity following Hypoxic Ischemia in the Developing Brain Using a Highly Specific Inhibitor. Dev Neurosci 2012; 34:417-27. [DOI: 10.1159/000343257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022] Open
|
37
|
Abstract
Gelatin zymography is a simple yet powerful method to detect proteolytic enzymes capable of degrading gelatin from various biological sources. It is particularly useful for the assessment of two key members of the matrix metalloproteinase family, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), due to their potent gelatin-degrading activity. This polyacrylamide gel electrophoresis-based method can provide a reliable assessment of the type of gelatinase, relative amount, and activation status (latent, compared with active enzyme forms) in cultured cells, tissues, and biological fluids. The method can be used to investigate factors that regulate gelatinase expression and modulate zymogen activation in experimental systems. The system provides information on the pattern of gelatinase expression and activation in human cancer tissues and how this relates to cancer progression. Interpretation of the data obtained in gelatin zymography requires a thorough understanding of the principles and pitfalls of the technique; this is particularly important when evaluating enzyme levels and the presence of active gelatinase species. If properly used, gelatin zymography is an excellent tool for the study of gelatinases in biological systems.
Collapse
|
38
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
39
|
Hua H, Li M, Luo T, Yin Y, Jiang Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 2011; 68:3853-68. [PMID: 21744247 PMCID: PMC11114831 DOI: 10.1007/s00018-011-0763-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/31/2011] [Accepted: 06/21/2011] [Indexed: 02/05/2023]
Abstract
Proteases are crucial for development, tissue remodeling, and tumorigenesis. Matrix metalloproteinases (MMPs) family, in particular, consists of more than 20 members with unique substrates and diverse function. The expression and activity of MMPs in a variety of human cancers have been intensively studied. MMPs have well-recognized roles in the late stage of tumor progression, invasion, and metastasis. However, increasing evidence demonstrates that MMPs are involved earlier in tumorigenesis, e.g., in malignant transformation, angiogenesis, and tumor growth both at the primary and metastatic sites. Recent studies also suggest that MMPs play complex roles in tumor progression. While most MMPs promote tumor progression, some of them may protect the host against tumorigenesis in a context-dependent manner. MMPs have been chosen as promising targets for cancer therapy on the basis of their aberrant up-regulation in malignant tumors and their ability to promote cancer metastasis. Although preclinical studies testing the efficacy of MMP suppression in tumor models were so encouraging, the results of clinical trials in cancer patients have been rather disappointing. Here, we review the complex roles of MMPs and their endogenous inhibitors such as tissue inhibitors of metalloproteinase in tumorigenesis and strategies in suppressing MMPs.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minjing Li
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yancun Yin
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Gooyit M, Lee M, Schroeder VA, Ikejiri M, Suckow MA, Mobashery S, Chang M. Selective water-soluble gelatinase inhibitor prodrugs. J Med Chem 2011; 54:6676-90. [PMID: 21866961 DOI: 10.1021/jm200566e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SB-3CT (1), a selective and potent thiirane-based gelatinase inhibitor, is effective in animal models of cancer metastasis and stroke; however, it is limited by poor aqueous solubility and extensive metabolism. We addressed these issues by blocking the primary site of metabolism and capitalizing on a prodrug strategy to achieve >5000-fold increased solubility. The amide prodrugs were quantitatively hydrolyzed in human blood to a potent gelatinase inhibitor, ND-322 (3). The arginyl amide prodrug (ND-478, 5d) was metabolically stable in mouse, rat, and human liver microsomes. Both 5d and 3 were nonmutagenic in the Ames II mutagenicity assay. The prodrug 5d showed moderate clearance of 0.0582 L/min/kg, remained mostly in the extracellular fluid compartment (Vd = 0.0978 L/kg), and had a terminal half-life of >4 h. The prodrug 5d had superior pharmacokinetic properties than those of 3, making the thiirane class of selective gelatinase inhibitors suitable for intravenous administration in the treatment of acute gelatinase-dependent diseases.
Collapse
Affiliation(s)
- Major Gooyit
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Nuti E, Casalini F, Santamaria S, Gabelloni P, Bendinelli S, Da Pozzo E, Costa B, Marinelli L, La Pietra V, Novellino E, Bernardo MM, Fridman R, Da Settimo F, Martini C, Rossello A. Synthesis and biological evaluation in U87MG glioma cells of (ethynylthiophene)sulfonamido-based hydroxamates as matrix metalloproteinase inhibitors. Eur J Med Chem 2011; 46:2617-29. [PMID: 21514700 PMCID: PMC3319704 DOI: 10.1016/j.ejmech.2011.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/02/2011] [Accepted: 03/15/2011] [Indexed: 12/31/2022]
Abstract
Matrix metalloproteinases (MMPs) are important factors in gliomas since these enzymes facilitate invasion into the surrounding brain and participate in neovascularization. In particular, the gelatinases (MMP-2 and MMP-9), and more recently MMP-25, have been shown to be highly expressed in gliomas and have been associated with disease progression. Thus, inhibition of these MMPs may represent a promising non-cytotoxic approach to glioma treatment. We report herein the synthesis and biological evaluation of a series of 4-butylphenyl(ethynylthiophene)sulfonamido-based hydroxamates. Among the new compounds tested, a promising derivative, 5a, was identified, which exhibits nanomolar inhibition of MMP-2, MMP-9, and MMP-25, but weak inhibitory activity toward other members of the MMP family. This compound also exhibited anti-invasive activity of U87MG glioblastoma cells at nanomolar concentrations, without affecting cell viability.
Collapse
Affiliation(s)
- Elisa Nuti
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Francesca Casalini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Salvatore Santamaria
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Pamela Gabelloni
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Sara Bendinelli
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Eleonora Da Pozzo
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Barbara Costa
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, via Volta 4, 56126 Pisa, Italy
| | - Luciana Marinelli
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, via Domenico Montesano 49, 80131 Napoli, Italy
| | - Valeria La Pietra
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, via Domenico Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, via Domenico Montesano 49, 80131 Napoli, Italy
| | - M. Margarida Bernardo
- Department of Pathology and Protease and Cancer Program, Karmanos Cancer Institute, Wayne State University, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | - Rafael Fridman
- Department of Pathology and Protease and Cancer Program, Karmanos Cancer Institute, Wayne State University, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | - Federico Da Settimo
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
42
|
Testero SA, Bouley R, Fisher JF, Chang M, Mobashery S. Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases. Bioorg Med Chem Lett 2011; 21:2675-8. [PMID: 21256011 PMCID: PMC3081985 DOI: 10.1016/j.bmcl.2010.12.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/10/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
Abstract
The copper-mediated and non-basic oxidative cross-coupling of organotrifluoroborates with phenols was applied to elaboration of the structures of thiirane-based inhibitors of matrix metalloproteinases. By revision of the synthetic sequence to allow this cross-coupling as the final step, and taking advantage of the neutral nature of organotrifluoroborate cross-coupling, a focussed series of inhibitors showing aryloxy and alkenyloxy replacement of the phenoxy substituent was prepared. This reaction shows exceptional promise as an alternative to the classic copper-mediated but strongly basic Ullmann reaction, for the diversification of ether segments within base-labile lead structures.
Collapse
Affiliation(s)
- Sebastian A Testero
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
43
|
Testero SA, Llarrull LI, Fisher JF, Chang M, Mobashery S. Exploring the functional space of thiiranes as gelatinase inhibitors using click chemistry. ACTA ACUST UNITED AC 2011; 2011:221-226. [PMID: 32774191 DOI: 10.3998/ark.5550190.0012.719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A series of 4-[(triazolyl)methoxy]phenyl analogs of the phenoxyphenyl-substituted thiirane SB-3CT 1 was evaluated for its ability to inhibit gelatinases, members of the matrix metalloproteinase family of enzymes. The triazole segment of these inhibitors was assembled using the Meldal-Sharpless copper-catalyzed Huisgen dipolar cycloaddition of an azide and a terminal alkyne. While these triazole derivatives possessed fair activity as gelatinase inhibitors, an intermediate used in the dipolar cycloaddition, 4-(propargyloxy)phenyl derivative 2, showed very good activity (>50% inhibitory activity following a 3 h pre-incubation of 2 at a concentration of 3 μM) as an inhibitor of human matrix metalloproteinase-2.
Collapse
Affiliation(s)
- Sebastian A Testero
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Leticia I Llarrull
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
44
|
Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 2011; 48:44-53. [PMID: 20601294 DOI: 10.1016/j.bone.2010.06.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 01/29/2023]
Abstract
Bone remodeling is a delicate balancing act between the bone matrix synthesizing osteoblasts and bone resorbing osteoclasts. Active bone metastases typically subvert this process to generate lesions that are comprised of extensive areas of pathological osteogenesis and osteolysis. The resultant increase in bone matrix remodeling enhances cytokine/growth factor bioavailability thus creating a vicious cycle that stimulates tumor progression. Given the extent of matrix remodeling occurring in the tumor-bone microenvironment, the expression of matrix metalloproteinases (MMPs) would be expected, since collectively they have the ability to degrade all components of the extracellular matrix (ECM). However, in addition to being "matrix bulldozers", MMPs control the bioavailability and bioactivity of factors such as RANKL and TGFβ that have been described as crucial for tumor-bone interaction, thus implicating MMPs as key regulators of the vicious cycle of bone metastases.
Collapse
Affiliation(s)
- Conor C Lynch
- Department of Orthopaedics and Rehabilitation, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
45
|
Bonfil RD, Cher ML. The role of proteolytic enzymes in metastatic bone disease. ACTA ACUST UNITED AC 2011. [DOI: 10.1138/20110487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Qian Y, Huang HZ. The role of RANKL and MMP-9 in the bone resorption caused by ameloblastoma. J Oral Pathol Med 2010; 39:592-8. [DOI: 10.1111/j.1600-0714.2009.00882.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Bruni-Cardoso A, Johnson LC, Vessella RL, Peterson TE, Lynch CC. Osteoclast-derived matrix metalloproteinase-9 directly affects angiogenesis in the prostate tumor-bone microenvironment. Mol Cancer Res 2010; 8:459-70. [PMID: 20332212 PMCID: PMC2946627 DOI: 10.1158/1541-7786.mcr-09-0445] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In human prostate to bone metastases and in a novel rodent model that recapitulates prostate tumor-induced osteolytic and osteogenic responses, we found that osteoclasts are a major source of the proteinase, matrix metalloproteinase (MMP)-9. Because MMPs are important mediators of tumor-host communication, we tested the effect of host-derived MMP-9 on prostate tumor progression in the bone. To this end, immunocompromised mice that were wild-type or null for MMP-9 received transplants of osteolytic/osteogenic-inducing prostate adenocarcinoma tumor tissue to the calvaria. Surprisingly, we found that that host MMP-9 significantly contributed to prostate tumor growth without affecting prostate tumor-induced osteolytic or osteogenic change as determined by microcomputed tomography, microsingle-photon emission computed tomography, and histomorphometry. Subsequent studies aimed at delineating the mechanism of MMP-9 action on tumor growth focused on angiogenesis because MMP-9 and osteoclasts have been implicated in this process. We observed (a) significantly fewer and smaller blood vessels in the MMP-9 null group by CD-31 immunohistochemistry; (b) MMP-9 null osteoclasts had significantly lower levels of bioavailable vascular endothelial growth factor-A(164); and (c) using an aorta sprouting assay, conditioned media derived from wild-type osteoclasts was significantly more angiogenic than conditioned media derived from MMP-9 null osteoclasts. In conclusion, these studies show that osteoclast-derived MMP-9 affects prostate tumor growth in the bone microenvironment by contributing to angiogenesis without altering prostate tumor-induced osteolytic or osteogenic changes.
Collapse
Affiliation(s)
- Alexandre Bruni-Cardoso
- Department of Cell Biology, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | | | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Conor C. Lynch
- Department of Orthopaedics and Rehabilitation, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
48
|
Bonfil RD, Fridman R, Mobashery S, Cher ML. Are matrix metalloproteinases relevant therapeutic targets for prostate cancer bone metastasis? ACTA ACUST UNITED AC 2010; 15:188-92. [PMID: 18769612 PMCID: PMC2528310 DOI: 10.3747/co.v15i4.216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After basal and squamous cell skin cancers, prostate cancer is the most frequent cancer in men in the United States, with 186,320 men estimated to be diagnosed with the disease and 28,660 expected to die from it in 2008 1. [...]
Collapse
Affiliation(s)
- R D Bonfil
- Department of Urology, Wayne State University School of Medicine, and The Barbara Ann Karmanos Cancer Institute, Detroit, MI, U.S.A.
| | | | | | | |
Collapse
|
49
|
Abstract
The recognition that the successful clinical use of MMP inhibitors will require quantitative correlation of MMP activity with disease type, and to disease progression, has stimulated intensive effort toward the development of sensitive assay methods, improved analytical methods for the determination of the structural profile for MMP-sub-type inhibition, and the development of new methods for the determination - in both quantitative and qualitative terms - of MMP activity. This chapter reviews recent progress toward these objectives, with particular emphasis on the quantitative and qualitative profiling of MMP activity in cells and tissues. Quantitative determination of MMP activity is made from the concentration of the MMP from the tissue, using immobilization of a broad-spectrum MMP inhibitor on a chromatography resin. Active MMP, to the exclusion of MMP zymogens and endogenous TIMP-inhibited MMPs, is retained on the column. Characterization of the MMP sub-type(s) follows from appropriate analysis of the active MMP eluted from the resin. Qualitative determination of MMP involvement in disease can be made using an MMP sub-type-selective inhibitor. The proof of principle, with respect to this qualitative determination of the disease involvement of the gelatinase MMP-2 and MMP-9 sub-types, is provided by the class of thiirane-based MMP mechanism-based inhibitors (SB-3CT as the prototype). Positive outcomes in animal models of disease having MMP-2 and/or -9 dependency follow administration of this MMP inhibitor, whereas this inhibitor is inactive in disease models where other MMPs (such as MMP-14) are involved.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, Walther Cancer Research Center, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
50
|
Kim EY, Seo JM, Cho KJ, Kim JH. Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene 2009; 29:1167-78. [DOI: 10.1038/onc.2009.412] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|