1
|
Dey S, Ghosh M, Dev A. Signalling and molecular pathways, overexpressed receptors of colorectal cancer and effective therapeutic targeting using biogenic silver nanoparticles. Gene 2025; 936:149099. [PMID: 39557372 DOI: 10.1016/j.gene.2024.149099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Increasing morbidity and mortality in CRC is a potential threat to human health. The major challenges for better treatment outcomes are the heterogeneity of CRC cases, complicated molecular pathway cross-talks, the influence of gut dysbiosis in CRC, and the lack of multimodal target-specific drug delivery. The overexpression of many receptors in CRC cells may pave the path for targeting them with multiple ligands. The design of a more target-specific drug-delivery device with multiple ligand-functionalized, green-synthesized silver nanoparticles is highly promising and may also deliver other approved chemotherapeutic agents. This review presents the various aspects of colorectal cancer and over-expressed receptors that can be targeted with appropriate ligands to enhance the specific drug delivery potency of green synthesised silver nanoparticles. This review aims to broaden further research into this multi-ligand functionalised, safer and effective silver nano drug delivery system.
Collapse
Affiliation(s)
- Sandip Dey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India.
| |
Collapse
|
2
|
Abil OZ, Liu S, Yeh YW, Wu Y, Sen Chaudhuri A, Li NS, Deng C, Xiang Z. A mucosal vaccine formulation against tuberculosis by exploiting the adjuvant activity of S100A4-A damage-associated molecular pattern molecule. Vaccine 2024; 42:126151. [PMID: 39089961 DOI: 10.1016/j.vaccine.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains one of the top three causes of death. Currently, the only licensed vaccine against TB is the bacillus Calmette-Guerin (BCG), which lacks efficacy in preventing and controlling pulmonary TB in adults. We aimed to evaluate a nasal TB vaccine formulation composed of the Mtb-specific vaccine antigen ESAT-6, an Mtb-associated protein that can trigger protective immune responses, and S100A4, a recently characterized novel mucosal adjuvant. Mice were intranasally given recombinant ESAT-6 in the presence or absence of S100A4 as an adjuvant. We have provided experimental evidence demonstrating that S100A4 admixed to ESAT-6 could induce Mtb-specific adaptive immune responses after intranasal immunization. S100A4 remarkably augmented the levels of anti-ESAT-6 IgG in serum and IgA in mucosal sites, including lung exudates, bronchoalveolar lavage fluid (BALF) and nasal lavage. Furthermore, in both lung and spleen tissues, S100A4 strongly promoted ESAT-6-specific expansion of CD4 T cells. Both CD4 and CD8 T cells from these tissues expressed increased levels of IFN-γ, TNF-α, and IL-17, cytokines critical for antimicrobial activity. Antigen-reencounter-induced T cell proliferative responses, a key vaccine performance indicator, were augmented in the spleen of S100A4-adjuvanted mice. Furthermore, CD8 T cells from the spleen and lung tissues of these mice expressed higher levels of granzyme B upon antigen re-stimulation. S100A4-adjuvanted immunization may predict good mucosal protection against TB.
Collapse
Affiliation(s)
- Olifan Zewdie Abil
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shuwei Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu-Wen Yeh
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuxuan Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Arka Sen Chaudhuri
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Nga Shan Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chujun Deng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zou Xiang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
3
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
4
|
Yu J, Chu Q, Zhou J, Zhang L. The novel fish miRNA, Soc-miR-118, functions as a negative regulator in NF-κB-mediated inflammation by targeting IL-6 in teleost fish. Int J Biol Macromol 2024; 269:132100. [PMID: 38710252 DOI: 10.1016/j.ijbiomac.2024.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Inflammation is initiated as a protective response of the organism to remove invading bacterial and initiate the healing process. Prolonged inflammation and excessive production of inflammatory cytokines lead to inflammatory disorders or autoimmune diseases. Thus, different layers of negative regulators are needed to achieve balances between protective immunity and inflammatory pathology. Accumulating evidences show that miRNAs act as significant and multifunctional regulators involved in regulating networks of host-pathogen interactions. However, the functions and mechanisms of miRNAs in directly targeting and regulating inflammatory cytokines remains largely unknown in lower vertebrates. In this study, we report a novel miRNA, Soc-miR-118, identified from Sciaenops ocellatus, which plays a negative role in antibacterial immunity by regulating Interleukin-6 (IL-6). Specifically, we found that Soc-miR-118 directly targets IL-6 and suppresses the production of inflammatory cytokines through the NF-κB signaling pathway, thereby avoiding excessive inflammatory response. Particularly, the mechanism by which Soc-miR-118 regulates IL-6 expression also exist in other fish, suggesting that the miRNA in fish has evolutionarily conserved regulatory systems. The collective results that Soc-miR-118 acts as a negative regulator involved in host antibacterial immunity through directly regulating inflammatory cytokines, will greatly enrich the intricate networks of host-pathogen interaction in lower vertebrates.
Collapse
Affiliation(s)
- Jingyao Yu
- School of Agriculture, Ludong University, Yantai, China
| | - Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| | - Jiale Zhou
- School of Agriculture, Ludong University, Yantai, China
| | - Lin Zhang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
5
|
Wang YF, Zhang WL, Li ZX, Liu Y, Tan J, Yin HZ, Zhang ZC, Piao XJ, Ruan MH, Dai ZH, Wang SJ, Mu CY, Yuan JH, Sun SH, Liu H, Yang F. METTL14 downregulation drives S100A4 + monocyte-derived macrophages via MyD88/NF-κB pathway to promote MAFLD progression. Signal Transduct Target Ther 2024; 9:91. [PMID: 38627387 PMCID: PMC11021505 DOI: 10.1038/s41392-024-01797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.
Collapse
Affiliation(s)
- Yue-Fan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Wen-Li Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Zhi-Xuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, China
| | - Yue Liu
- The Department of Pharmaceutical Analysis, School of Pharmacy, Naval Medical University, 200433, Shanghai, China
| | - Jian Tan
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Zhi-Chao Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Xian-Jie Piao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Min-Hao Ruan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China
| | - Zhi-Hui Dai
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Si-Jie Wang
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Chen-Yang Mu
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Ji-Hang Yuan
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Shu-Han Sun
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, 200438, Shanghai, China.
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, 200433, Shanghai, China.
- Key Laboratory of Biosafety Defense, Ministry of Education, 200433, Shanghai, China.
- Shanghai Key Laboratory of Medical Biodefense, 200433, Shanghai, China.
| |
Collapse
|
6
|
Li X, Hou Y, Han G, Yang Y, Wang S, Lv X, Gao M. S100A4/NF-κB axis mediates the anticancer effect of epigallocatechin-3-gallate in platinum-resistant ovarian cancer. iScience 2024; 27:108885. [PMID: 38313051 PMCID: PMC10835441 DOI: 10.1016/j.isci.2024.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Resistance to cisplatin (cis-dichlorodiamineplatinum, DDP) in ovarian cancer is a significant clinical challenge. Epigallocatechin-3-gallate (EGCG) has shown promise in cancer therapy. However, its effects on DDP-resistant ovarian cancer remain understudied. This study aims to assess the impact of EGCG on DDP-resistant cells and elucidate the associated molecular mechanisms. DDP-resistant cell lines were utilized for biological characterization. EGCG effectively inhibited proliferation, mobility, and induced apoptosis in OC/DDP cells. It downregulated the expression of S100A4 and NF-κB while upregulating p53 expression. These effects were reversed upon overexpression of S100A4 or NF-κB. In vivo experiments confirmed tumor inhibition and KI67 inhibition by EGCG. Moreover, EGCG downregulated the expression of S100A4 and NF-κB while upregulating p53 in xenograft mice compared to those without EGCG treatment. This study suggests that EGCG suppresses cancer progression through the S100A4/NF-κB signaling pathway, involving interaction with p53. EGCG holds potential as an anticancer candidate for OC/DDP.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Yidan Hou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Gaoyang Han
- Department of Thoracic Surgery, Zhengzhou Central Hospital, Henan 450052, China
| | - Yudan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Shaofang Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Xiufang Lv
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| |
Collapse
|
7
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
8
|
Elsisi AE, Elmarhoumy EH, Osman EY. Protective effect of cilostazol and verapamil against thioacetamide-induced hepatotoxicity in rats may involve Nrf2/GSK-3β/NF-κB signaling pathway. Toxicol Res (Camb) 2022; 11:718-729. [PMID: 36337252 PMCID: PMC9618097 DOI: 10.1093/toxres/tfac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Verapamil (VER) and cilostazol (Cilo) are mostly used as cardiovascular drugs; they have beneficial effects on different organs toxicities. AIM we investigated whether the Nuclear factor erythroid 2-related factor 2 (Nrf2), Glycogen synthase kinase-3β (GSK-3β), and Nuclear factor-kappa B (NF-κB) pathway involved in the protective role of these drugs against Thioacetamide (TAA) induced hepatotoxicity. METHOD male rats were randomized divided into five groups, each group (n = 10): control, TAA, VER+TAA, Cilo+TAA, and VER+Cilo+TAA groups. Hepatotoxicity induced in rats by TAA injection once on the 7th day of the experiment. RESULTS TAA-induced hepatotoxicity indicated by a significant elevated in serum markers (Alanine aminotransferases (ALT), Aspartate aminotransferases (AST), and bilirubin), oxidative stress markers (Malondialdehyde (MDA), and Nitric oxide (NO)), and protein levels markers (NF-κB, and S100 calcium-binding protein A4 (S100A4)). Also, TAA decreased Nrf2, and increased GSK-3β genes expression. Histopathological alterations in the liver also appeared as a response to TAA injection. On the other hand VER and/or Cilo significantly prevented TAA-induced hepatotoxicity in rats through significantly decreased in ALT, AST, bilirubin, MDA, NO, NF-κB, and S100A4 protein levels. Also, they increased Nrf2 and decreased GSK-3β genes expression which caused improvement in the histopathological changes of the liver. CONCLUSION the addition of verapamil to cilostazol potentiated the hepatoprotective activity, and inhibited the progression of hepatotoxicity caused by TAA through the Nrf2/GSK-3β/NF-κBpathway and their activity on oxidative stress, inflammation, and NF-κB protein expression.
Collapse
Affiliation(s)
- Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Esraa H Elmarhoumy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Enass Y Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
10
|
du Plessis M, Fourie C, Riedemann J, de Villiers WJS, Engelbrecht AM. Cancer and Covid-19: Collectively catastrophic. Cytokine Growth Factor Rev 2022; 63:78-89. [PMID: 34794863 PMCID: PMC8536488 DOI: 10.1016/j.cytogfr.2021.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
The Covid-19 pandemic has spread rapidly across the globe, resulting in more than 3 million deaths worldwide. The symptoms of Covid-19 are usually mild and non-specific, however in some cases patients may develop acute respiratory distress syndrome (ARDS) and systemic inflammation. Individuals with inflammatory or immunocompromising illnesses, such as cancer, are more susceptible to develop ARDS and have higher rates of mortality. This is mediated through an initial hyperstimulated immune response which results in elevated levels of pro-inflammatory cytokines and a subsequent cytokine storm. This potentiates positive feedback loops which are unable to be balanced by anti-inflammatory mediators. Therefore, elevated levels of IL-1β, as a result of NLRP3 inflammasome activation, as well as IL-6 and TNF-α amongst many others, contribute to the progression of various cancer types. Furthermore, Covid-19 progression is associated with the depletion of CD8+ and CD4+ T cells, B cell and natural killer cell numbers. Collectively, a Covid-19-dependent pro-inflammatory profile and immune suppression promotes the optimal microenvironment for tumourigenesis, initiation and immune evasion of malignant cells, tumour progression and metastasis as well as cancer recurrence. There are, however, therapeutic windows of opportunity that may combat both Covid-19 and cancer to improve patient outcomes.
Collapse
Affiliation(s)
- M du Plessis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa.
| | - C Fourie
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - J Riedemann
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa; Cancer Care SA, Cape Gate and Panorama Oncology Centres, Cape Town, South Africa
| | - W J S de Villiers
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| | - A M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Sen Chaudhuri A, Yeh YW, Zewdie O, Li NS, Sun JB, Jin T, Wei B, Holmgren J, Xiang Z. S100A4 exerts robust mucosal adjuvant activity for co-administered antigens in mice. Mucosal Immunol 2022; 15:1028-1039. [PMID: 35729204 PMCID: PMC9212208 DOI: 10.1038/s41385-022-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The lack of clinically applicable mucosal adjuvants is a major hurdle in designing effective mucosal vaccines. We hereby report that the calcium-binding protein S100A4, which regulates a wide range of biological functions, is a potent mucosal adjuvant in mice for co-administered antigens, including the SARS-CoV-2 spike protein, with comparable or even superior efficacy as cholera toxin but without causing any adverse reactions. Intranasal immunization with recombinant S100A4 elicited antigen-specific antibody and pulmonary cytotoxic T cell responses, and these responses were remarkably sustained for longer than 6 months. As a self-protein, S100A4 did not stimulate antibody responses against itself, a quality desired of adjuvants. S100A4 prolonged nasal residence of intranasally delivered antigens and promoted migration of antigen-presenting cells. S100A4-pulsed dendritic cells potently activated cognate T cells. Furthermore, S100A4 induced strong germinal center responses revealed by both microscopy and mass spectrometry, a novel label-free technique for measuring germinal center activity. Importantly, S100A4 did not induce olfactory bulb inflammation after nasal delivery, which is often a safety concern for nasal vaccination. In conclusion, S100A4 may be a promising adjuvant in formulating mucosal vaccines, including vaccines against pathogens that infect via the respiratory tract, such as SARS-CoV-2.
Collapse
Affiliation(s)
- Arka Sen Chaudhuri
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China ,grid.16890.360000 0004 1764 6123The Hong Kong Polytechnic University Shenzhen Research Institute, 518000 Shenzhen, China
| | - Yu-Wen Yeh
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Olifan Zewdie
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Nga Shan Li
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jia-Bin Sun
- grid.8761.80000 0000 9919 9582University of Gothenburg Vaccine Research Institute (GUVAX) and Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Tao Jin
- grid.8761.80000 0000 9919 9582Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, SE-413 46 Göteborg, Sweden
| | - Bin Wei
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Jan Holmgren
- grid.8761.80000 0000 9919 9582University of Gothenburg Vaccine Research Institute (GUVAX) and Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Zou Xiang
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Shao Z, Bi S. Endocrine regulation and metabolic mechanisms of osteopontin in the development and progression of osteosarcoma, metastasis and prognosis. Front Endocrinol (Lausanne) 2022; 13:1100063. [PMID: 36714568 PMCID: PMC9880040 DOI: 10.3389/fendo.2022.1100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most common type of malignant bone tumor, occurring in adolescents and patients over 60. It has a bimodal onset and a poor prognosis, and its development has not yet been fully explained. Osteopontin (OPN) is a high protein consisting of 314 amino acid residues with a negative charge and is involved in many biological activities. OPN is not only an essential part of the regulation of the nervous system and endocrine metabolism of skeletal cells. Still, it is also involved in several other important biological activities, such as the division, transformation, and proliferation of skeletal cells and their associated cells, such as bone tumor cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoblasts, and osteoclasts. Osteoblasts and osteocytes. Recent studies have shown a strong correlation between OPN and the development and progression of many skeletal diseases, such as osteosarcoma and rheumatoid arthritis. This review aims to understand the mechanisms and advances in the role of OPN as a factor in the development, progression, metastasis, and prognosis of osteosarcoma in an attempt to provide a comprehensive summary of the mechanisms by which OPN regulates osteosarcoma progression and in the hope of contributing to the advancement of osteosarcoma research and clinical treatment.
Collapse
|
13
|
S100A4 plays a key role in TRPV3 ion channel expression and its electrophysiological function. Neurosci Lett 2021; 759:135999. [PMID: 34058292 DOI: 10.1016/j.neulet.2021.135999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Transient receptor potential vanilloid 3 (TRPV3), a non-selective cation ion channel, is regulated by small molecules such as Ca2+ and calmodulin (CaM). Together with S100A4 (S100 calcium-binding protein family), is critical in cell proliferation and progression. Although TRPV3 has been proved to play a role in Ca2+ regulation and participate in Ca2+-related cellular processes, its molecular mechanism remains unclear. In this study, we found that TRPV3 and S100A4 were co-expressed in the same region of the cell, and surprisingly, the protein expression level of TRPV3 significantly increased with the overexpression of S100A4. Moreover, co-immunoprecipitation results showed that these two proteins could bind with each other. Functionally, we found that when S100A4 was simultaneously expressed in cells, more Ca2+ would be transferred into the cells through the TRPV3 ion channel. Consistent with Ca2+ regulation results, electrophysiological recordings demonstrated that S100A4 improved the function of TRPV3 in ions' flux, suggesting that the S100A4 could bind with TRPV3 and simultaneously promoted its expression, thus affecting its functions on related ions' flux. Our findings identified the link between S100A4 and TRPV3 and provided a novel molecular mechanism for TRPV3 regulation.
Collapse
|
14
|
Wu Y, Zanotelli MR, Zhang J, Reinhart-King CA. Matrix-driven changes in metabolism support cytoskeletal activity to promote cell migration. Biophys J 2021; 120:1705-1717. [PMID: 33705759 PMCID: PMC8204337 DOI: 10.1016/j.bpj.2021.02.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
The microenvironment provides both active and passive mechanical cues that regulate cell morphology, adhesion, migration, and metabolism. Although the cellular response to those mechanical cues often requires energy-intensive actin cytoskeletal remodeling and actomyosin contractility, it remains unclear how cells dynamically adapt their metabolic activity to altered mechanical cues to support migration. Here, we investigated the changes in cellular metabolic activity in response to different two-dimensional and three-dimensional microenvironmental conditions and how these changes relate to cytoskeletal activity and migration. Utilizing collagen micropatterning on polyacrylamide gels, intracellular energy levels and oxidative phosphorylation were found to be correlated with cell elongation and spreading and necessary for membrane ruffling. To determine whether this relationship holds in more physiological three-dimensional matrices, collagen matrices were used to show that intracellular energy state was also correlated with protrusive activity and increased with matrix density. Pharmacological inhibition of oxidative phosphorylation revealed that cancer cells rely on oxidative phosphorylation to meet the elevated energy requirements for protrusive activity and migration in denser matrices. Together, these findings suggest that mechanical regulation of cytoskeletal activity during spreading and migration by the physical microenvironment is driven by an altered metabolic profile.
Collapse
Affiliation(s)
- Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew R Zanotelli
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
15
|
Ferrucci V, Asadzadeh F, Collina F, Siciliano R, Boccia A, Marrone L, Spano D, Carotenuto M, Chiarolla CM, De Martino D, De Vita G, Macrì A, Dassi L, Vandenbussche J, Marino N, Cantile M, Paolella G, D'Andrea F, di Bonito M, Gevaert K, Zollo M. Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer. iScience 2020; 24:101938. [PMID: 33426510 PMCID: PMC7779777 DOI: 10.1016/j.isci.2020.101938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-β enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations. Prune-1 correlates to M2-TAMs confirming lung metastatic dissemination in GEMM Cytokines and EV proteins are responsible of M2-TAMs polarization processes A small molecule with immunomodulatory properties ameliorates metastatic dissemination Identification of gene variants within immune response and cell adhesion in TNBC
Collapse
Affiliation(s)
- Veronica Ferrucci
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy
| | - Fatemeh Asadzadeh
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | | | - Laura Marrone
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Marianeve Carotenuto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Daniela De Martino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Gennaro De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Luisa Dassi
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy
| | - Jonathan Vandenbussche
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Natascia Marino
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Department of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis 46202, USA
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | - Francesco D'Andrea
- Dipartimento di Sanità pubblica - AOU, Università; degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Maurizio di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | - Kris Gevaert
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Massimo Zollo
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Federico II, Naples 80131, Italy
| |
Collapse
|
16
|
Wan ML, Wang Y, Zeng Z, Deng B, Zhu BS, Cao T, Li YK, Xiao J, Han Q, Wu Q. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci Rep 2020; 40:BSR20200265. [PMID: 32149326 PMCID: PMC7087324 DOI: 10.1042/bsr20200265] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and one of the leading causes of cancer-related death among men worldwide. CRC is a multifactor digestive pathology, which is a huge problem faced not only by clinicians but also by researchers. Importantly, a unique feature of CRC is the dysregulation of molecular signaling pathways. To date, a series of reviews have indicated that different signaling pathways are disordered and have potential as therapeutic targets in CRC. Nevertheless, an overview of the function and interaction of multiple signaling pathways in CRC is needed. Therefore, we summarized the pathways, biological functions and important interactions involved in CRC. First, we investigated the involvement of signaling pathways, including Wnt, PI3K/Akt, Hedgehog, ErbB, RHOA, Notch, BMP, Hippo, AMPK, NF-κB, MAPK and JNK. Subsequently, we discussed the biological function of these pathways in pathophysiological aspects of CRC, such as proliferation, apoptosis and metastasis. Finally, we summarized important interactions among these pathways in CRC. We believe that the interaction of these pathways could provide new strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Mao-lin Wan
- Department of Hepatobiliary and Pancreatic Surgery, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Yu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Bo Deng
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Bi-sheng Zhu
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Ting Cao
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| | - Yu-kun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| |
Collapse
|
17
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
18
|
Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg Med Chem 2020; 28:115327. [PMID: 31992476 DOI: 10.1016/j.bmc.2020.115327] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/03/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic pro-inflammatory cytokine. Its deregulation is associated with chronic inflammation, and multifactorial auto-immune disorders. It mediates its biological roles through a hexameric complex composed of IL-6 itself, its receptor IL-6R, and glycoprotein 130 (IL-6/IL-6R/gp130). This complex, in turn, activates different signaling mechanisms (classical and trans-signaling) to execute various biochemical functions. The trans-signaling mechanism activates various pathological routes, like JAK/STAT3, Ras/MAPK, PI3K-PKB/Akt, and regulation of CD4+ T cells and VEGF levels, which cause cancer, multiple sclerosis, rheumatoid arthritis, anemia, inflammatory bowel disease, Crohn's disease, and Alzheimer's disease. Involvement of IL-6 in pathophysiology of these complex diseases makes it an important target for the treatment of these diseases. Though some anti-IL-6 monoclonal antibodies are being used clinically, but their high cost, only parenteral administration, and possibility of immunogenicity have limited their use, and warranted the development of novel small non-peptide molecules as IL-6 inhibitors. In the present report, all molecules reported in literature as IL-6 inhibitors have been classified as IL-6 production, IL-6R, and IL-6 signaling inhibitors. Reports available till date are critically studied to identify important and salient structural features common in these molecules. These analyses would assist medicinal chemists to design novel and potent IL-6 production and signaling inhibitors, through knowledge- and/or computer-based approaches, for the treatment of complex multifactorial diseases.
Collapse
Affiliation(s)
- Sukhvir Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| | - Raj Kumar
- Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
19
|
Roudnicky F, Lan Y, Friesen M, Dernick G, Zhang JD, Staempfli A, Bordag N, Wagner-Golbs A, Christensen K, Ebeling M, Graf M, Burcin M, Meyer CA, Cowan CA, Patsch C. Modeling the Effects of Severe Metabolic Disease by Genome Editing of hPSC-Derived Endothelial Cells Reveals an Inflammatory Phenotype. Int J Mol Sci 2019; 20:E6201. [PMID: 31835296 PMCID: PMC6940871 DOI: 10.3390/ijms20246201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/20/2023] Open
Abstract
The kinase AKT2 (PKB) is an important mediator of insulin signaling, for which loss-of-function knockout (KO) mutants lead to early onset diabetes mellitus, and dominant active mutations lead to early development of obesity and endothelial cell (EC) dysfunction. To model EC dysfunction, we used edited human pluripotent stem cells (hPSCs) that carried either a homozygous deletion of AKT2 (AKT2 KO) or a dominant active mutation (AKT2 E17K), which, along with the parental wild type (WT), were differentiated into ECs. Profiling of EC lines indicated an increase in proinflammatory and a reduction in anti-inflammatory fatty acids, an increase in inflammatory chemokines in cell supernatants, increased expression of proinflammatory genes, and increased binding to the EC monolayer in a functional leukocyte adhesion assay for both AKT2 KO and AKT2 E17K. Collectively, these findings suggest that vascular endothelial inflammation that results from dysregulated insulin signaling (homeostasis) may contribute to coronary artery disease, and that either downregulation or upregulation of the insulin pathway may lead to inflammation of endothelial cells. This suggests that the standard of care for patients must be expanded from control of metabolic parameters to include control of inflammation, such that endothelial dysfunction and cardiovascular disorders can ultimately be prevented.
Collapse
Affiliation(s)
- Filip Roudnicky
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Yanjun Lan
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Max Friesen
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA
| | - Gregor Dernick
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Jitao David Zhang
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Andreas Staempfli
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Natalie Bordag
- Metanomics Health-A BASF Group Company, 10589 Berlin, Germany
| | | | - Klaus Christensen
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Martin Ebeling
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Martin Graf
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Mark Burcin
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Claas Aiko Meyer
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Chad A Cowan
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Christoph Patsch
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| |
Collapse
|
20
|
Ni QF, Zhang Y, Yu JW, Hua RH, Wang QH, Zhu JW. miR-92b promotes gastric cancer growth by activating the DAB2IP-mediated PI3K/AKT signalling pathway. Cell Prolif 2019; 53:e12630. [PMID: 31713929 PMCID: PMC6985694 DOI: 10.1111/cpr.12630] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives miR‐92b has been reported to play critical roles in several carcinomas; however, our understanding of the mechanisms by which miR‐92b stimulates gastric cancer (GC) is incomplete. The aim of this study was to investigate the clinical significance and functional relevance of miR‐92b in GC. Materials and methods Expression of miR‐92b in GC and peritumoural tissues was determined using qRT‐PCR, in situ hybridization and bioinformatics. CCK‐8, colony formation and fluorescence‐activated cell sorting assays were utilized to explore the effect of miR‐92b on GC cells. A luciferase reporter assay and Western blotting were employed to verify miR‐92b targeting of DAB2IP. Furthermore, Western blotting was used to evaluate the levels of DAB2IP and PI3K/Akt signalling pathway‐related proteins. Results In this study, we found that miR‐92b was upregulated in GC tissues compared with peritumoural tissues. Overexpression of miR‐92b promoted cell proliferation, colony formation, and G0/G1 transition and decreased apoptosis. Our results indicated that miR‐92b repressed the expression of DAB2IP and that loss of DAB2IP activated the PI3K/AKT signalling pathway. Overexpression of DAB2IP rescued the effects of miR‐92b in GC cells. Finally, our results demonstrated a significant correlation between miR‐92b expression and DAB2IP expression in GC tissues. Conclusions Our results suggest that miR‐92b promotes GC cell proliferation by activating the DAB2IP‐mediated PI3K/AKT signalling pathway. The miR‐92b/DAB2IP/PI3K/AKT signalling axis may be a potential therapeutic target to prevent GC progression.
Collapse
Affiliation(s)
- Qing-Feng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Jia-Wei Yu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ru-Heng Hua
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qu-Hui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian-Wei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Abstract
The metastasis-promoting S100A4 protein, a member of the S100 family, has recently been discovered as a potent factor implicated in various inflammation-associated diseases. S100A4 is involved in a range of biological functions such as angiogenesis, cell differentiation, apoptosis, motility, and invasion. Moreover, S100A4 is also a potent trigger of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions.Indeed, the release of S100A4 upon stress and mainly its pro-inflammatory role emerges as the most decisive activity in disease development, such as rheumatoid arthritis (RA), systemic sclerosis (SSc) allergy, psoriasis, and cancer. In the scope of this review, we will focus on the role of S100A4 as a mediator of pro-inflammatory pathways and its associated biological processes involved in the pathogenesis of various human noncommunicable diseases (NCDs) including cancer.
Collapse
|
22
|
Ieguchi K, Maru Y. Roles of EphA1/A2 and ephrin-A1 in cancer. Cancer Sci 2019; 110:841-848. [PMID: 30657619 PMCID: PMC6398892 DOI: 10.1111/cas.13942] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022] Open
Abstract
The biological functions of the Eph/ephrin system have been intensively investigated and well documented so far since its discovery in 1987. Although the Eph/ephrin system has been implicated in pathological settings such as Alzheimer's disease and cancer, the molecular mechanism of the Eph/ephrin system in those diseases is not well understood. Especially in cancer, recent studies have demonstrated that most of Eph and ephrin are up‐ or down‐regulated in various types of cancer, and have been implicated in tumor progression, tumor malignancy, and prognosis. However, they lack consistency and are in controversy. The localization patterns of EphA1 and EphA2 in mouse lungs are very similar, and both knockout mice showed similar phenotypes in the lungs. Ephrin‐A1 that is a membrane‐anchored ligand for EphAs was co‐localized with EphA1 and EphA2 in lung vascular endothelial cells. We recently uncovered the molecular mechanism of ephrin‐A1‐induced lung metastasis by understanding the physiological function of ephrin‐A1 in lungs. This review focuses on the function of EphA1, EphA2, and ephrin‐A1 in tumors and an establishment of pre‐metastatic microenvironment in the lungs.
Collapse
Affiliation(s)
- Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
23
|
Li Q, Dai C, Xue R, Wang P, Chen L, Han Y, Erben U, Qin Z. S100A4 Protects Myeloid-Derived Suppressor Cells from Intrinsic Apoptosis via TLR4-ERK1/2 Signaling. Front Immunol 2018; 9:388. [PMID: 29556233 PMCID: PMC5845385 DOI: 10.3389/fimmu.2018.00388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) often expand during cancer or chronic inflammation and dampen immune responses. However, mechanisms underlying their capacity to escape intrinsic apoptosis in the inflammatory environment are still largely unknown. In this study, we investigated this in mouse tumor models with MDSC accumulation. Spontaneous rejection of tumors implanted into mice deficient for the small Ca2+-binding protein S100A4 (S100A4-/-) was accompanied by low numbers of peripheral MDSCs. This was independent of S100A4 expression on tumor cells. In contrast, MDSCs from S100A4-/- tumor-bearing mice showed a diminished resistance to the induction of intrinsic apoptosis. Further studies demonstrated that S100A4 protects MDSCs from apoptosis through toll-like receptor-4/extracellular signal-regulated kinase-dependent caspase-9 inhibition. The finding that S100A4 is critical for MDSC survival in inflammatory environments might have important implications for the clinical treatment of cancer or inflammation-related diseases.
Collapse
Affiliation(s)
- Qingcui Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengliang Dai
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peigang Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yijie Han
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ulrike Erben
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Jung J, Kim GW, Lee W, Mok C, Chung SH, Jang W. Meta- and cross-species analyses of insulin resistance based on gene expression datasets in human white adipose tissues. Sci Rep 2018; 8:3747. [PMID: 29487289 PMCID: PMC5829071 DOI: 10.1038/s41598-017-18082-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
Ample evidence indicates that insulin resistance (IR) is closely related to white adipose tissue (WAT), but the underlying mechanisms of IR pathogenesis are still unclear. Using 352 microarray datasets from seven independent studies, we identified a meta-signature which comprised of 1,413 genes. Our meta-signature was also enriched in overall WAT in in vitro and in vivo IR models. Only 12 core enrichment genes were consistently enriched across all IR models. Among the meta-signature, we identified a drug signature made up of 211 genes with expression levels that were co-regulated by thiazolidinediones and metformin using cross-species analysis. To confirm the clinical relevance of our drug signature, we found that the expression levels of 195 genes in the drug signature were significantly correlated with both homeostasis model assessment 2-IR score and body mass index. Finally, 18 genes from the drug signature were identified by protein-protein interaction network cluster. Four core enrichment genes were included in 18 genes and the expression levels of selected 8 genes were validated by quantitative PCR. These findings suggest that our signatures provide a robust set of genetic markers which can be used to provide a starting point for developing potential therapeutic targets in improving IR in WAT.
Collapse
Affiliation(s)
- Junghyun Jung
- Department of Life Science, Dongguk University, 30 Pildong ro 1-gil, 04620, Seoul, Korea
| | - Go Woon Kim
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, 02447, Seoul, Korea
| | - Woosuk Lee
- Department of Life Science, Dongguk University, 30 Pildong ro 1-gil, 04620, Seoul, Korea
| | - Changsoo Mok
- Department of Life Science, Dongguk University, 30 Pildong ro 1-gil, 04620, Seoul, Korea
| | - Sung Hyun Chung
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, 02447, Seoul, Korea
| | - Wonhee Jang
- Department of Life Science, Dongguk University, 30 Pildong ro 1-gil, 04620, Seoul, Korea.
| |
Collapse
|
25
|
S100A4 drives non-small cell lung cancer invasion, associates with poor prognosis, and is effectively targeted by the FDA-approved anti-helminthic agent niclosamide. Oncotarget 2017; 7:34630-42. [PMID: 27127879 PMCID: PMC5085181 DOI: 10.18632/oncotarget.8969] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/10/2016] [Indexed: 01/11/2023] Open
Abstract
S100A4 (metastasin-1), a metastasis-associated protein and marker of the epithelial to mesenchymal transition, contributes to several hallmarks of cancer and has been implicated in the progression of several types of cancer. However, the impacts of S100A4 signaling in lung cancer progression and its potential use as a target for therapy in lung cancer have not been properly explored. Using established lung cancer cell lines, we demonstrate that S100A4 knockdown reduces cell proliferation, invasion and three-dimensional invasive growth, while overexpression of S100A4 increases invasive potential. In patient-derived tissues, S100A4 is preferentially elevated in lung adenocarcinoma. This elevation is associated with lymphovascular invasion and decreased overall survival. In addition, depletion of S100A4 by shRNA inhibits NF-κB activity and decreases TNFα-induced MMP9 expression. Furthermore, inhibition of the NF-κB/MMP9 axis decreases lung carcinoma invasive potential. Niclosamide, a reported inhibitor of S100A4, blocks expression and function of S100A4 with a reduction in proliferation, invasion and NF-κB-mediated MMP9 expression. Collectively, this study highlights the importance of the S100A4/NF-κB/MMP9 axis in lung cancer invasion and provides a rationale for targeting S100A4 to combat lung cancer.
Collapse
|
26
|
A review of S100 protein family in lung cancer. Clin Chim Acta 2017; 476:54-59. [PMID: 29146477 DOI: 10.1016/j.cca.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 02/08/2023]
Abstract
S100 protein family, representing 25 relatively small calcium binding proteins, has been reported to be involved in multiple stages of tumorigenesis and progression. These proteins are considered having potential value to be adopted as novel biomarkers in the detection and accurate prediction of many kinds of tumors, including lung cancer. As the one having the highest morbidity and mortality among all cancers, lung carcinoma is still occult for detection, especially at early stage. S100 proteins take participation in the lung neoplasia through playing intracellular and/or extracellular functions, therefore getting involved in a variety of biological processes such as differentiation, proliferation, and migration. A few members have also been testified to modulate TGF-β/Smad-3 mediated transcriptional activity of target genes involved in tumor promotion. In addition to that, a number of proteins in this family have already been reported to experience an abnormal trend in lung cancer at cell, serum and tissue levels. Thus, S100 proteins may serve as effective biomarkers for suspected or already diagnosed lung cancer patients. In future, S100 protein family might be applied as therapeutic targets in clinical treatment of lung cancer. In this review, we firstly summed up the biological and clinical evidence connecting S100 proteins and lung cancer, which has not been summarized before.
Collapse
|
27
|
Gao L, Qiu H, Liu J, Ma Y, Feng J, Qian L, Zhang J, Liu Y, Bian T. KLF15 promotes the proliferation and metastasis of lung adenocarcinoma cells and has potential as a cancer prognostic marker. Oncotarget 2017; 8:109952-109961. [PMID: 29299121 PMCID: PMC5746356 DOI: 10.18632/oncotarget.21972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/24/2017] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma (LADC)is a general form of non-small cell lung cancer that represents a significant threat to public health worldwide. The 5-year-survival rate for LADC is currently below 15%. The transcription factor KLF15, also called kidney-enriched KLF (KKLF), has been proven to play a role in inhibiting proliferation and diversification of carcinoma cells, including those of the endometrium, pancreas and breast, but the involvement of KLF15 in LADC has not previously been studied. In this study, we compared the in vitro expression of KLF15 in human LADC tissues and adjacent normal lung tissues. Expression of KLF15 was found to be abnormally high in LADC tissues and cells compared with adjacent non-tumorous tissues, and was correlated with tumor TNM stage and tumor differentiation (P = 0.003, P = 0.001, respectively). The effect of KLF15 on cell growth and migration were explored in vitro by Western Blotting, CCK8 and colony formation assays, flow cytometry analysis and transwell migration assays, and in vivo by analysis of tumorigenesis in 5-week old BALB/c nude mice. Knockdown of KLF15 significantly upregulated the protein levels of cleaved caspase-3, caspase-7, caspase-8 and PARP, thereby inducing apoptosis. Downregulation of KLF15 in A549 and NCI-H1650 cell lines resulted in these cell lines exhibiting markedly slower growth rates when injected subcutaneously into the flank of nude mice, compared with the comparator control groups (P < 0.05). Collectively, our findings suggest that KLF15 may have a significant effect on LADC cell survival, and that it represents a potential therapeutic and preventive biomarker for LADC prognosis and treatment.
Collapse
Affiliation(s)
- Lihua Gao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hongmei Qiu
- Department of Respiration, Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yuzhen Ma
- Centre of Reproductive Medicine, Inner Mongolia Hospital, Inner Mongolia, Hohhot, 010021, China
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
28
|
Sun JB, Holmgren J, Larena M, Terrinoni M, Fang Y, Bresnick AR, Xiang Z. Deficiency in Calcium-Binding Protein S100A4 Impairs the Adjuvant Action of Cholera Toxin. Front Immunol 2017; 8:1119. [PMID: 28951732 PMCID: PMC5600718 DOI: 10.3389/fimmu.2017.01119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/25/2017] [Indexed: 01/11/2023] Open
Abstract
The calcium-binding protein S100A4 has been described to promote pathological inflammation in experimental autoimmune and inflammatory disorders and in allergy and to contribute to antigen presentation and antibody response after parenteral immunization with an alum-adjuvanted antigen. In this study, we extend these findings by demonstrating that mice lacking S100A4 have a defective humoral and cellular immune response to mucosal (sublingual) immunization with a model protein antigen [ovalbumin (OVA)] given together with the strong mucosal adjuvant cholera toxin (CT), and that this impairment is due to defective adjuvant-stimulated antigen presentation by antigen-presenting cells. In comparison to wild-type (WT) mice, mice genetically lacking S100A4 had reduced humoral and cellular immune responses after immunization with OVA plus CT, including a complete lack of detectable germinal center reaction. Further, when stimulated in vitro with OVA plus CT, S100A4−/− dendritic cells (DCs) showed impaired responses in several CT-stimulated immune regulatory molecules including the co-stimulatory molecule CD86, inflammasome-associated caspase-1 and IL-1β. Coculture of OVA-specific OT-II T cells with S100A4−/− DCs that had been pulse incubated with OVA plus CT resulted in impaired OT-II T cell proliferation and reduced production of Th1, Th2, and Th17 cytokines compared to similar cocultures with WT DCs. In accordance with these findings, transfection of WT DCs with S100A4-targeting small interfering RNA (siRNA) but not mock-siRNA resulted in significant reductions in the expression of caspase-1 and IL-1β as well as CD86 in response to CT. Importantly, also engraftment of WT DCs into S100A4−/− mice effectively restored the immune response to immunization in the recipients. In conclusion, our results demonstrate that deficiency in S100A4 has a strong impact on the development of both humoral and cellular immunity after mucosal immunization using CT as adjuvant.
Collapse
Affiliation(s)
- Jia-Bin Sun
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Holmgren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Larena
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuela Terrinoni
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Yu Fang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Zou Xiang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Faculty of Health and Social Sciences, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| |
Collapse
|
29
|
Senoo K, Yamashiro K, Yamamoto T, Myokai F, Kawamura M, Takashiba S. Expression of optineurin isolated from rat-injured dental pulp and the effects on inflammatory signals in normal rat kidney cells. Odontology 2017; 106:135-144. [DOI: 10.1007/s10266-017-0314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/04/2017] [Indexed: 01/14/2023]
|
30
|
Zhang K, Yu M, Hao F, Dong A, Chen D. Knockdown of S100A4 blocks growth and metastasis of anaplastic thyroid cancer cells in vitro and in vivo. Cancer Biomark 2017; 17:281-291. [PMID: 27802204 DOI: 10.3233/cbm-160640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Anaplastic thyroid cancer (ATC) is a locally aggressive type of thyroid tumor with high rate of distant metastases. It is often incurable because it does not respond to radioiodine, radiotherapy, or chemotherapy. With conventional treatment, the median survival is about 6 months; therefore, new treatment options are needed. S100A4 is a calcium-binding protein related to the metastatic potential of carcinoma. Previous study has found S100A4 was overexpressed in human papillary thyroid carcinomas (PTC) tissues, and overexpression of S100A4 is associated with thyroid tumour invasion and metastasis. In the present study, we first examined S100A4 protein expression in 14 ATC tissues, 20 PTC tissues and 14 normal thyroid tissue by immunohistochemistry analysis. We then knocked down of S100A4 expression by RNA interference (S100A4 siRNA) and investigated its effects on growth and metastasis in two human ATC cell lines 8505C (BRAFV600E) and Cal-62 (BRAFwt) in vitro and in vivo. S100A4 and BRAFV600E protein expression was evaluated by western blot assay and immunohistochemistry analysis. Using immunohistochemistry, we found that high levels of S100A4 were detected in ATC specimens and PTC specimens. No S100A4 staining was observed in normal thyroid tissues. S100A4 siRNA significantly decreased proliferation and increased apoptosis, and inhibited the invasive potential of the two cells in vitro. In addition, S100A4 siRNA could effectively inhibit BRAFV600E expression in the 8505C cells, and treatment with 100 ng/ml human recombinant BRAF V600E in S100A4 siRNA/8505C cells could partly restore its proliferative and invasive ability. Results of implantation in vivo showed S100A4 shRNA could significantly inhibit abdominal cavity metastasis and tumor growth in vivo. Furthermore, knockdown of S100A4 has significant role on invasion, metastasis and growth inhibition in the 8505C cells than that of in the Cal-62 cells. These results support the hypothesis that S100A4 contributes significantly to growth and metastasis, and that down-regulation of S100A4 expression decreases the metastatic potential of ATC cells. Furthermore, down-regulation of S100A4 expression is more marked in BRAFV600E cells than that of in the BRAFwt cells.
Collapse
Affiliation(s)
- Kejun Zhang
- Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Meiqin Yu
- Department of Clinical Laboratory, the Women and Children's Hospital of Qingdao, Qingdao, Shandong, China.,Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Anbing Dong
- Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong Chen
- Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
31
|
Zhang J, Zhi X, Shi S, Tao R, Chen P, Sun S, Bian L, Xu Z, Ma L. SPOCK1 is up-regulated and promotes tumor growth via the PI3K/AKT signaling pathway in colorectal cancer. Biochem Biophys Res Commun 2017; 482:870-876. [DOI: 10.1016/j.bbrc.2016.11.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022]
|
32
|
Chen D, Zheng Z, Xiao B, Li W, Long M, Chen H, Li M, Rock DL, Hao W, Luo S. Orf Virus 002 Protein Targets Ovine Protein S100A4 and Inhibits NF-κB Signaling. Front Microbiol 2016; 7:1389. [PMID: 27679610 PMCID: PMC5020088 DOI: 10.3389/fmicb.2016.01389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Orf virus (ORFV), a member of Parapoxvirus, has evolved various strategies to modulate the immune responses of host cells. The ORFV-encoded protein ORFV002, a regulator factor, has been found to inhibit the acetylation of NF-κB-p65 by blocking phosphorylation of NF-κB-p65 at Ser276 and also to disrupt the binding of NF-κB-p65 and p300. To explore the mechanism by which ORFV002 regulates NF-κB signaling, the understanding of ORFV002 potential binding partners in host cells is critical. In this study, ovine S100 calcium binding protein A4 (S100A4), prolyl endopeptidase-like (PREPL) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 8 (NDUFA8) were found to interact with ORFV002 based on the yeast two-hybrid (Y2H) assay using a cDNA library derived from primary ovine fetal turbinate cells (OFTu). GST pull-down and bidirectional co-immunoprecipitation assay results demonstrate that ORFV002 interacts with S100A4 directly. Following the pEGFP-ORFV002 (p002GFP) transfection, we found that cytoplasmic S100A4 translocates into the nucleus and co-localizes with ORFV002. Furthermore, the inhibitory effect of ORFV002 on NF-κB signaling was significantly restored by S100A4 knock-down phenotype, suggesting that ovine S100A4 participates in the ORFV002-mediated NF-κB signaling. These data demonstrate that ORFV002 inhibits the NF-κB activation through its interaction with S100A4 along with its nucleus translocation.
Collapse
Affiliation(s)
- Daxiang Chen
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Zewei Zheng
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Bin Xiao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Wei Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Mingjian Long
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Huiqin Chen
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Ming Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Daniel L Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
33
|
|
34
|
Kawczyk-Krupka A, Latos W, Latos M, Czuba ZP, Sieroń A. ALA-induced photodynamic effect on viability, apoptosis and secretion of S100 protein, secreted by colon cancer cells in vitro. Photodiagnosis Photodyn Ther 2016; 15:218-27. [PMID: 27469201 DOI: 10.1016/j.pdpdt.2016.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND S100 protein is a proven prognostic factor in cancers. In colorectal cancers, its secretion correlates with clinical stage of the disease. Photodynamic therapy (PDT) is used as a supporting therapy in treatment of this particular cancer. The main aim of our study was to estimate the effect of photodynamic therapy with 5-aminolevulinic acid (ALA) in sublethal doses (ALA-PDT) on the secretion of S100 protein by colon cancer cells. METHODS Investigations were performed on two colon cancer cell lines. The SW480 cell line is a culture containing locally malignant cancer. The SW620 line is characterized by high metastatic activity. Each line was exposed to different concentrations of photosensitizer's precursor-ALA, and various level of light radiation. Afterwards, cell viability, using MTT and LDH assays and apoptosis of both lines was assessed. Then measurement of S100 protein concentration was performed using a 2-step enzyme immunoassay. RESULTS After application of ALA PDT the S100 protein concentration was reduced by 27% in SW480 cell line and by 30% in SW620 cell line. At the same time there has been no increase in the concentration of S100 protein in cells exposed to the light alone. It was demonstrated that the more aggressive line SW620 releases higher levels of S100 proteins in comparison with the line SW480. CONCLUSION The outcome of this study presented beneficial effect of ALA-PDT on persistent colon cancer cells. This therapy leads to decrease of S100 protein concentration in both colon cancer cell lines: SW480 and SW620.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego 15, 41-902, Bytom, Poland.
| | - Wojciech Latos
- Center for Laser Diagnostics and Therapy, Specialist Hospital No 2 Batorego 15, 41-902, Bytom, Poland
| | - Magdalena Latos
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland
| | - Zenon P Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland
| | - Aleksander Sieroń
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego 15, 41-902, Bytom, Poland
| |
Collapse
|
35
|
Herwig N, Belter B, Wolf S, Haase-Kohn C, Pietzsch J. Interaction of extracellular S100A4 with RAGE prompts prometastatic activation of A375 melanoma cells. J Cell Mol Med 2016; 20:825-35. [PMID: 26928771 PMCID: PMC4831350 DOI: 10.1111/jcmm.12808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
S100A4, a member of the S100 protein family of EF-hand calcium-binding proteins, is overexpressed in various tumour entities, including melanoma, and plays an important role in tumour progression. Several studies in epithelial and mesenchymal tumours revealed a correlation between extracellular S100A4 and metastasis. However, exact mechanisms how S100A4 stimulates metastasis in melanoma are still unknown. From a pilot experiment on baseline synthesis and secretion of S100A4 in human melanoma cell lines, which are in broad laboratory use, A375 wild-type cells and, additionally, newly generated A375 cell lines stably transfected with human S100A4 (A375-hS100A4) or human receptor for advanced glycation endproducts (A375-hRAGE), were selected to investigate the influence of extracellular S100A4 on cell motility, adhesion, migration and invasion in more detail. We demonstrated that A375 cells actively secrete S100A4 in the extracellular space via an endoplasmic reticulum-Golgi-dependent pathway. S100A4 overexpression and secretion resulted in prometastatic activation of A375 cells. Moreover, we determined the influence of S100A4-RAGE interaction and its blockade on A375, A375-hS100A4, A375-hRAGE cells, and showed that interaction of RAGE with extracellular S100A4 contributes to the observed activation of A375 cells. This investigation reveals additional molecular targets for therapeutic approaches aiming at blockade of ligand binding to RAGE or RAGE signalling to inhibit melanoma metastasis.
Collapse
Affiliation(s)
- Nadine Herwig
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Birgit Belter
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Susann Wolf
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Cathleen Haase-Kohn
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
36
|
Yi WR, Li ZH, Qi BW, Ernest MER, Hu X, Yu AX. Downregulation of IDH2 exacerbates the malignant progression of osteosarcoma cells via increased NF-κB and MMP-9 activation. Oncol Rep 2016; 35:2277-85. [PMID: 26782630 DOI: 10.3892/or.2016.4553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/26/2015] [Indexed: 11/06/2022] Open
Abstract
Isocitrate dehydrogenase 2 (IDH2) is a mitochondrial NADP-dependent isocitrate dehydrogenase. It is considered to be a novel tumor suppressor in several types of tumors. However, the role and related mechanism of IDH2 in osteosarcoma remain unknown. The expression and significance of IDH2 were investigated by immunohistochemistry in formalin-fixed paraffin sections from 44 osteosarcoma patients. IDH2 was downregulated via lentiviral vector‑mediated RNA interference (RNAi) in the Saos-2 and MG-63 human osteosarcoma cell lines. The effect of IDH2 downregulation on human osteosarcoma was studied in vitro by MTT, flow cytometry and invasion assays. Nuclear factor-κB (NF-κB) and matrix metalloproteinase-9 (MMP-9) assays were also used to study the likely molecular mechanism of IDH2 downregulation on the malignant progression of osteosarcoma cells. The results revealed that the expression of IDH2 was inversely correlated with pathological grade and metastasis in osteosarcoma. IDH2 downregulation promoted a pro-proliferative effect on the Saos-2 and MG-63 osteosarcoma cell lines. IDH2 downregulation accelerated cell cycle progression from S to G2/M phase. The pro-proliferative effect induced by IDH2 downregulation may be ascribed to increased NF-κB activity via IκBα phosphorylation. The invasive activity of osteosarcoma cells was also significantly promoted by IDH2 downregulation and may result from elevated MMP-9 activity. In conclusion, IDH2 downregulation may exacerbate malignant progression via increased NF-κB and MMP-9 activity and may implicate the potential biological importance of IDH2 targeting in osteosarcoma cells. Downregulation of IDH2 exacerbates the malignant progression of osteosarcoma cells via increased NF-κB and MMP-9 activation.
Collapse
Affiliation(s)
- Wan-Rong Yi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zong-Huan Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bai-Wen Qi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Mendame Ehya Regis Ernest
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
37
|
Yao HS, Wang J, Zhang XP, Wang LZ, Wang Y, Li XX, Jin KZ, Hu ZQ, Wang WJ. Hepatocyte nuclear factor 4α suppresses the aggravation of colon carcinoma. Mol Carcinog 2015; 55:458-72. [PMID: 25808746 DOI: 10.1002/mc.22294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Hou Shan Yao
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Juan Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xiao Ping Zhang
- Medical Intervention Engineering; Tongji University; North Zhongshan Road; Shanghai China
| | - Liang Zhe Wang
- Department of pathology; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Yi Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xin Xing Li
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Kai Zhou Jin
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Zhi Qian Hu
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Wei Jun Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| |
Collapse
|
38
|
Grum-Schwensen B, Klingelhöfer J, Beck M, Bonefeld CM, Hamerlik P, Guldberg P, Grigorian M, Lukanidin E, Ambartsumian N. S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance. BMC Cancer 2015; 15:44. [PMID: 25884510 PMCID: PMC4335362 DOI: 10.1186/s12885-015-1034-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/23/2015] [Indexed: 01/19/2023] Open
Abstract
Background The tumor microenvironment plays a determinative role in stimulating tumor progression and metastasis. Notably, tumor-stroma signals affect the pattern of infiltrated immune cells and the profile of tumor-released cytokines. Among the known molecules that are engaged in stimulating the metastatic spread of tumor cells is the S100A4 protein. S100A4 is known as an inducer of inflammatory processes and has been shown to attract T-cells to the primary tumor and to the pre-metastatic niche. The present study aims to examine the immunomodulatory role of S100A4 in vivo and in vitro and assess the mode of action of 6B12, a S100A4 neutralizing antibody. Methods The therapeutic effect of the 6B12 antibody was evaluated in two different mouse models. First, in a model of spontaneous breast cancer we assessed the dynamics of tumor growth and metastasis. Second, in a model of metastatic niche formation we determined the expression of metastatic niche markers. The levels of cytokine expression were assessed using antibody as well as PCR arrays and the results confirmed by qRT-PCR and ELISA. T-cell phenotyping and in vitro differentiation analyses were performed by flow cytometry. Results We show that the S100A4 protein alters the expression of transcription factor and signal transduction pathway genes involved in the T-cell lineage differentiation. T-cells challenged with S100A4 demonstrated reduced proportion of Th1-polarized cells shifting the Th1/Th2 balance towards the Th2 pro-tumorigenic phenotype. The 6B12 antibody restored the Th1/Th2 balance. Furthermore, we provide evidence that the 6B12 antibody deploys its anti-metastatic effect, by suppressing the attraction of T-cells to the site of primary tumor and pre-metastatic niche. This was associated with delayed primary tumor growth, decreased vessel density and inhibition of metastases. Conclusion The S100A4 blocking antibody (6B12) reduces tumor growth and metastasis in a model of spontaneous breast cancer. The 6B12 antibody treatment inhibits T cell accumulation at the primary and pre-metastatic tumor sites. The 6B12 antibody acts as an immunomodulatory agent and thus supports the view that the 6B12 antibody is a promising therapeutic candidate to fight cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1034-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jörg Klingelhöfer
- Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| | - Mette Beck
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Charlotte Menné Bonefeld
- Institute of International Health, Immunology and Microbiology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| | - Petra Hamerlik
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Per Guldberg
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Mariam Grigorian
- Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| | - Eugene Lukanidin
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Noona Ambartsumian
- Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| |
Collapse
|
39
|
RAGE mediates S100A4-induced cell motility via MAPK/ERK and hypoxia signaling and is a prognostic biomarker for human colorectal cancer metastasis. Oncotarget 2015; 5:3220-33. [PMID: 24952599 PMCID: PMC4102805 DOI: 10.18632/oncotarget.1908] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Survival of colorectal cancer patients is strongly dependent on development of distant metastases. S100A4 is a prognostic biomarker and inducer for colorectal cancer metastasis. Besides exerting intracellular functions, S100A4 is secreted extracellularly. The receptor for advanced glycation end products (RAGE) is one of its interaction partners. The impact of the S100A4-RAGE interaction for cell motility and metastasis formation in colorectal cancer has not been elucidated so far. Here we demonstrate the RAGE-dependent increase in migratory and invasive capabilities of colorectal cancer cells via binding to extracellular S100A4. We show the direct interaction of S100A4 and RAGE, leading to hyperactivated MAPK/ERK and hypoxia signaling. The S100A4-RAGE axis increased cell migration (P<0.005) and invasion (P<0.005), which was counteracted with recombinant soluble RAGE and RAGE-specific antibodies. In colorectal cancer patients, not distantly metastasized at surgery, high RAGE expression in primary tumors correlated with metachronous metastasis, reduced overall (P=0.022) and metastasis-free survival (P=0.021). In summary, interaction of S100A4-RAGE mediates S100A4-induced colorectal cancer cell motility. RAGE by itself represents a biomarker for prognosis of colorectal cancer. Thus, therapeutic approaches targeting RAGE or intervening in S100A4-RAGE-dependent signaling early in tumor progression might represent alternative strategies restricting S100A4-induced colorectal cancer metastasis.
Collapse
|
40
|
Herrigel DJ, Moss RA. Diabetes mellitus as a novel risk factor for gastrointestinal malignancies. Postgrad Med 2015; 126:106-18. [PMID: 25414939 DOI: 10.3810/pgm.2014.10.2825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence of an emerging etiologic link between diabetes mellitus and several gastrointestinal malignancies is presented. Although a correlation between pancreatic cancer and diabetes mellitus has long been suspected, the potential role diabetes mellitus plays in the pathogenicity of both hepatocellular carcinoma and colon cancer is becoming increasingly well defined. Further supporting the prospect of etiologic linkage, the association of diabetes mellitus with colon cancer is consistently demonstrated to be independent of obesity. An increasing incidence of diabetes and obesity in the United States has led to a recent surge in incidence of hepatocellular cancer on the background of nonalcoholic fatty liver disease, and this disease is expected to commensurately grow in incidence. Widespread recognition of this emerging risk factor may lead to a change in screening practices. Although the mechanisms underlying the correlation are still under investigation, the role of insulin, the insulin-like growth factor-I, and related binding and signaling pathways as regulators of cell growth and cell proliferation are implicated in carcinogenesis and tumor growth. The potential role of metformin and other medications for diabetes mellitus in the chemoprevention, carcinogenesis, and treatment of gastrointestinal malignancies is also presented.
Collapse
Affiliation(s)
- Dana J Herrigel
- Department of Internal Medicine, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, NJ
| | | |
Collapse
|
41
|
Abstract
The primary bone malignancy osteosarcoma (OS) is a painful health burden, of which treatment remains a challenging problem. Identification of specific tumor biomarkers may help to investigate and develop the novel effective therapeutic approaches that have specific molecular target for the treatment of patients with OS. Osteopontin (OPN), a phosphorylated glycoprotein, is involved in many biological processes, such as biomineralization, bone remodeling and immune responses and has recently been reported to be associated with OS pathogenesis. Interestingly, both of the up- and down-regulation of OPN are involved in OS. During OS development, genetic or epigenetic disruption causes reduced expression of RUNX2 and OPN through the up-regulation of notch signaling pathway, leading to the development of OS. On the other hand, during hypoxic condition, upregulation of OPN induces the glucose uptake into hypoxic OS cells which is responsible for the OS cell proliferation and drug resistance. Recent evidences show that targeting OPN might be an important tool in OS therapeutics. This review has focused on the association of abnormal OPN expression with the pathogenesis of OS, the efficiency of OPN as a diagnostic tool for OS and the therapeutic aspects of OS by targeting OPN.
Collapse
|
42
|
Ataie-Kachoie P, Pourgholami MH, Richardson DR, Morris DL. Gene of the month: Interleukin 6 (IL-6). J Clin Pathol 2014; 67:932-7. [PMID: 25031389 DOI: 10.1136/jclinpath-2014-202493] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Interleukin 6 (IL-6) gene encodes the classic proinflammatory cytokine IL-6. It is also known as interferon-β2 (IFN-β2), B cell stimulatory factor-2 and hybridoma/plasmacytoma growth factor. IL-6 is a multifunctional cytokine with a central role in many physiological inflammatory and immunological processes. Due to its major role in initiation as well as resolving inflammation, deregulation of IL-6 is a mainstay of chronic inflammatory and autoimmune diseases. Additionally, IL-6 has been shown to be implicated in pathogenesis of many human malignancies. Thus, a better understanding of IL-6 and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target. This short review focuses on the structure, regulation and biological activities of IL-6. In addition we discuss the role of IL-6 in diseases with inflammatory background and cancer and also the therapeutic applications of anti-IL-6 agents.
Collapse
|
43
|
Bettum IJ, Vasiliauskaite K, Nygaard V, Clancy T, Pettersen SJ, Tenstad E, Mælandsmo GM, Prasmickaite L. Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Lett 2014; 344:28-39. [DOI: 10.1016/j.canlet.2013.10.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/26/2022]
|
44
|
Hu X, Liu Y, Qin C, Pan Z, Luo J, Yu A, Cheng Z. Up-regulated isocitrate dehydrogenase 1 suppresses proliferation, migration and invasion in osteosarcoma: in vitro and in vivo. Cancer Lett 2013; 346:114-21. [PMID: 24368190 DOI: 10.1016/j.canlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/27/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
Very few studies have been reported the function of wild type IDH1 in tumor progress. Previously, we reported that IDH1 correlated with pathological grade and metastatic potential inversely in human osteosarcoma. Here, IDH1 was found lower expressed in osteosarcoma tissues than that of adjacent normal bone tissues. In addition, we observed in vitro anti-proliferation and pro-apoptosis effects of up-regulated IDH1 on osteosarcoma cell lines. The migration and invasion activity was also markedly reduced by IDH1 up-regulation. Unexpectedly, IDH1 up-regulation also suppressed tumor growth and metastasis in vivo. Therefore, IDH1 may represent a potential novel treatment and preventive strategy for osteosarcoma.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Yang Liu
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Chunxia Qin
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Ephrin-A1 expression induced by S100A8 is mediated by the toll-like receptor 4. Biochem Biophys Res Commun 2013; 440:623-9. [DOI: 10.1016/j.bbrc.2013.09.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022]
|
46
|
Kozono S, Ohuchida K, Ohtsuka T, Cui L, Eguchi D, Fujiwara K, Zhao M, Mizumoto K, Tanaka M. S100A4 mRNA expression level is a predictor of radioresistance of pancreatic cancer cells. Oncol Rep 2013; 30:1601-8. [PMID: 23900547 DOI: 10.3892/or.2013.2636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/23/2013] [Indexed: 11/06/2022] Open
Abstract
Improving poor outcomes in patients with pancreatic cancer requires a greater understanding of the biological mechanisms contributing to radioresistance. We, therefore, sought to identify genes involved in the radioresistance of pancreatic cancer cells. Two pancreatic cancer cell lines, CFPAC-1 and Capan-1, were repeatedly exposed to radiation, establishing two radioresistant cell lines. Gene expression profiling using cDNA microarrays was performed to identify genes responsible for radioresistance. The levels of expression of mRNAs encoded by selected genes and their correlation with radiation dose resulting in 50% survival rate were analyzed in pancreatic cancer cell lines. The radiation dose resulting in a 50% survival rate was significantly higher in irradiated (IR) compared to parental CFPAC-1 cells (8.31 ± 0.85 Gy vs. 2.14 ± 0.04 Gy, P<0.0001), but was lower in IR compared with parental Capan-1 cells (2.66 ± 0.24 Gy vs. 2.25 ± 0.03 Gy, P=0.04). cDNA microarray analysis identified 4 genes, including S100 calcium binding protein A4 (S100A4), overexpressed and 23 genes underexpressed in the IR compared with the parental cell lines. The levels of S100A4 mRNA expression were correlated with radiation dose resulting in a 50% survival rate (Pearson's test, R2=0.81, P=0.0025). S100A4 mRNA expression may predict radioresistance of pancreatic cancer cells and may play an important role in the poor response of pancreatic cancer cells to radiation therapy.
Collapse
Affiliation(s)
- Shingo Kozono
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion. Neoplasia 2013; 14:1260-8. [PMID: 23308057 DOI: 10.1593/neo.121554] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/24/2022] Open
Abstract
The small Ca-binding protein, S100A4, has a well-established metastasis-promoting activity. Moreover, its expression is tightly correlated with poor prognosis in patients with numerous types of cancer. Mechanistically, the extracellular S100A4 drives metastasis by affecting the tumor microenvironment, making it an attractive target for anti-cancer therapy. In this study, we produced a function-blocking anti-S100A4 monoclonal antibody with metastasis-suppressing activity. Antibody treatment significantly reduced metastatic burden in the lungs of experimental animals by blocking the recruitment of T cells to the site of the primary tumor. In vitro studies demonstrated that this antibody efficiently reduced the invasion of T cells in a fibroblast monolayer. Moreover, it was capable of suppressing the invasive growth of human and mouse fibroblasts. We presume therefore that the antibody exerts its activity by suppressing stroma cell recruitment to the site of the growing tumor. Our epitope mapping studies suggested that the antibody recognition site overlaps with the target binding interface of human S100A4. We conclude here that this antibody could serve as a solid basis for development of an efficient anti-metastatic therapy.
Collapse
|
48
|
Ataie-Kachoie P, Pourgholami MH, Morris DL. Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev 2012; 24:163-73. [PMID: 23107589 DOI: 10.1016/j.cytogfr.2012.09.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022]
Abstract
Interleukin (IL)-6 is a pro-inflammatory cytokine that produces multifunctional effects. Deregulated IL-6 production and signaling are associated with chronic inflammatory diseases, auto-immunity and cancer. On this basis, inhibition of IL-6 production, its receptors or the signaling pathways are strategies currently being widely pursued to develop novel therapies for a wide range of diseases. This survey aims to provide an updated account of why IL-6 inhibitors are shaping up to become an important class of drugs potentially useful in the treatment of ailments and in particular in inflammation and cancer. In addition we discuss the role of different agents in modulating IL-6 and also recent clinical studies targeting IL-6 in inflammation-mediated diseases and cancer.
Collapse
Affiliation(s)
- Parvin Ataie-Kachoie
- University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, NSW 2217, Australia.
| | | | | |
Collapse
|
49
|
Shipman M, Lubick K, Fouchard D, Guram R, Grieco P, Jutila M, Dratz EA. Proteomic and systems biology analysis of monocytes exposed to securinine, a GABA(A) receptor antagonist and immune adjuvant. PLoS One 2012; 7:e41278. [PMID: 23028424 PMCID: PMC3441550 DOI: 10.1371/journal.pone.0041278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Securinine, a GABA(A) receptor antagonist, has been reported to enhance monocyte cell killing of Coxiella burnetii without obvious adverse effects in vivo. We employed multiplex 2D gel electrophoresis using Zdyes, a new generation of covalently linked fluorescent differential protein detection dyes to analyze changes in the monocyte proteome in response to Securinine. Securinine antagonism of GABA(A) receptors triggers the activation of p38. We used the differential protein expression results to guide a search of the literature and network analysis software to construct a systems biology model of the effect of Securinine on monocytes. The model suggests that various metabolic modulators (fatty acid binding protein 5, inosine 5'-monophosphate dehydrogenase, and thioredoxin) are at least partially reshaping the metabolic landscape within the monocytes. The actin bundling protein L-plastin, and the Ca(2+) binding protein S100A4 also appear to have important roles in the immune response stimulated by Securinine. Fatty acid binding protein 5 (FABP5) may be involved in effecting lipid raft composition, inflammation, and hormonal regulation of monocytes, and the model suggests that FABP5 may be a central regulator of metabolism in activated monocytes. The model also suggests that the heat shock proteins have a significant impact on the monocyte immune response. The model provides a framework to guide future investigations into the mechanisms of Securinine action and with elaboration may help guide development of new types of immune adjuvants.
Collapse
Affiliation(s)
- Matt Shipman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kongsgaard A, Lund-Iversen M, Berge G, Brustugun OT, Solberg SK, Mælandsmo GM, Boye K. Expression of S100A4, ephrin-A1 and osteopontin in non-small cell lung cancer. BMC Cancer 2012; 12:333. [PMID: 22853000 PMCID: PMC3458900 DOI: 10.1186/1471-2407-12-333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The metastasis-promoting protein S100A4 induces expression of ephrin-A1 and osteopontin in osteosarcoma cell lines. The aim of this study was to investigate S100A4-mediated stimulation of ephrin-A1 and osteopontin in non-small cell lung cancer (NSCLC) cell lines, and to characterize the expression of these biomarkers in primary tumor tissue from NSCLC patients. METHODS Four NSCLC cell lines were treated with extracellular S100A4, and ephrin-A1 and osteopontin expression was analyzed by real time RT-PCR and Western blotting. Immunohistochemical staining for S100A4, ephrin-A1 and osteopontin was performed on tissue microarrays containing primary tumor samples from a cohort of 217 prospectively recruited NSCLC patients, and associations with clinicopathological parameters were investigated. RESULTS S100A4 induced ephrin-A1 mRNA and protein expression in adenocarcinoma, but not in squamous carcinoma cell lines, whereas the level of osteopontin was unaffected by S100A4 treatment. In primary tumors, moderate or strong immunoreactivity was observed in 57% of cases for cytoplasmic S100A4, 46% for nuclear S100A4, 86% for ephrin-A1 and 77% for osteopontin. Interestingly, S100A4 expression was associated with ephrin-A1 also in vivo, but there was no association between S100A4 and osteopontin. Expression levels of S100A4 and ephrin-A1 were significantly higher in adenocarcinomas compared to other histological subtypes, and S100A4-positive tumors were smaller and more differentiated than tumors without expression. CONCLUSIONS Our findings suggest that S100A4, ephrin-A1 and osteopontin are involved in the biology of NSCLC, and further investigation of their potential use as biomarkers in NSCLC is warranted.
Collapse
Affiliation(s)
- Ane Kongsgaard
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Gisle Berge
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Odd Terje Brustugun
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Steinar K Solberg
- Department of Cardiovascular and Thoracic Surgery, Rikshospitalet, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Kjetil Boye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953, Nydalen, NO-0424, Oslo, Norway
| |
Collapse
|