1
|
Lemaigre C, Ceuppens A, Valades-Cruz CA, Ledoux B, Vanbeneden B, Hassan M, Zetterberg FR, Nilsson UJ, Johannes L, Wunder C, Renard HF, Morsomme P. N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM. Traffic 2023; 24:190-212. [PMID: 36843549 DOI: 10.1111/tra.12883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.
Collapse
Affiliation(s)
- Camille Lemaigre
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Apolline Ceuppens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Cesar Augusto Valades-Cruz
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France.,SERPICO Project Team, UMR144 CNRS Institut Curie, PSL Research University, Paris, France.,SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Campus Universitaire de Beaulieu, Rennes, France
| | - Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Bastien Vanbeneden
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Christian Wunder
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
3
|
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev 2021; 61:27-37. [PMID: 34272152 DOI: 10.1016/j.cytogfr.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a glycoprotein involved in homotypic and heterotypic cell adhesion. ALCAM can be proteolytically cleaved at the cell surface by metalloproteases, which generate shedding of its ectodomain. In various tumors, ALCAM is overexpressed and serves as a valuable prognostic marker of disease progression. Moreover, CD166 has been identified as a putative cancer stem cell marker in particular cancers. Herein, we summarize biochemical aspects of ALCAM, including structure, proteolytic shedding, alternative splicing, and specific ligands, and integrate this information with biological functions of this glycoprotein including cell adhesion, migration and invasion. In addition, we discuss different patterns of ALCAM expression in distinct tumor types and its contribution to tumor progression. Finally, we highlight the role of ALCAM as a cancer stem cell marker and introduce current clinical trials associated with this molecule. Future studies are needed to define the value of shed ALCAM in biofluids or ALCAM isoform expression as prognostic biomarkers in tumor progression.
Collapse
Affiliation(s)
- Fátima Ferragut
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Vanina S Vachetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Chen X, Liang R, Lin H, Chen K, Chen L, Tian G, Zhu X. CD166 promotes cancer stem cell-like phenotype via the EGFR/ERK1/2 pathway in the nasopharyngeal carcinoma cell line CNE-2R. Life Sci 2020; 267:118983. [PMID: 33383046 DOI: 10.1016/j.lfs.2020.118983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
AIMS The present study aimed to investigate the role and underlying mechanisms of CD166 in cancer stem cell-like (CSCs) phenotype of the radioresistant nasopharyngeal carcinoma cell CNE-2R. MAIN METHODS Established CD166-shRNA- CNE-2R cell line by lentivirus-mediated silencing CD166. Then, CSC-related genes mRNAs and proteins, and EGFR/ERK1/2 signaling pathway were detected using RT-PCR and western blot. Sphere formation assay was performed to evaluate the sphere formation capacity in CD166-shRNA- CNE-2R cells. The tumorigenesis ability in vivo was examined in nude mice mode. KEY FINDINGS Downregulation of CD166 inhibited the expression of the CSC-related genes, pEGFR and pERK in vitro and vivo. The capacity to form spheres and tumorigenesis was significantly decreased in CD166-shRNA cells. Furthermore, EGF-stimulated CD166-shRNA cells exhibited an increase in CSC-like traits by activating EGFR/ERK1/2 signaling. SIGNIFICANCE CD166 induced CSCs formation by activating the EGFR/ERK1/2 signaling pathway in nasopharyngeal carcinoma, which may serve as a critical molecular target for NPC therapeutic strategies.
Collapse
Affiliation(s)
- Xishan Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China; Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, PR China
| | - Renba Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Huan Lin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China; Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, PR China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Li Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Ge Tian
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, PR China; Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, PR China.
| |
Collapse
|
5
|
The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognostic marker. Exp Mol Pathol 2020; 115:104443. [PMID: 32380056 DOI: 10.1016/j.yexmp.2020.104443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) or CD166 is a 100 to 105 KDa transmembrane immunoglobulin which is involved in activation of T-cells, hematopoiesis, neutrophils trans-endothelial migration, angiogenesis, inflammation and tumor propagation and invasiveness through formation of homophilic and heterophilic interactions. Recently, many studies have proposed that the expression pattern of ALCAM is highly associated with the grade, stage and invasiveness of tumors. Although ALCAM is a valuable prognostic marker in different carcinomas, similar expression patterns in different tumor types may be associated with completely different prognostic states, making it to be a tumor-type-dependent prognostic marker. In addition, ALCAM isoforms provide ways for primary detection of tumor cells with metastatic potential. More importantly, this prognostic marker has shown to be considerably dependent on the cytoplasmic and membranous expression, indirect and direct regulation of post-transcriptional molecules, pro-apoptotic proteins functionalities and several other oncogenic proteins or signalling pathways. This review mainly focuses on the pathways involved in expression of ALCAM and its prognostic value of in different types of cancers and the way in which it is regulated.
Collapse
|
6
|
Importance of activated leukocyte cell adhesion molecule (ALCAM) in prostate cancer progression and metastatic dissemination. Oncotarget 2019; 10:6362-6377. [PMID: 31695844 PMCID: PMC6824871 DOI: 10.18632/oncotarget.27279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023] Open
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM) has been linked to the progression of numerous human cancers, where it appears to play a complex role. The current study aims to further assess the importance of ALCAM in prostate cancer and the prognostic potential of serum ALCAM as a biomarker for prostate cancer progression. Here we demonstrate enhanced levels of tissue ALCAM are associated with metastasis. Additionally, elevated serum ALCAM is indicative of progression and poorer patient outlook, and demonstrates comparable prognostic ability to PSA in terms of metastasis and prostate cancer survival. ALCAM suppression enhanced proliferation and invasiveness in PC-3 cells and motility/migration in PC-3 and LNCaP cells. ALCAM suppressed PC-3 cells were generally less responsive to HGF and displayed reduced MET transcript expression. Furthermore a recombinant human ALCAM-Fc chimera was able to inhibit LNCaP cell attachment to HECV and hFOB1.19 cells. Taken together, ALCAM appears to be a promising biomarker for prostate cancer progression, with enhanced serum expression associated with poorer prognosis. Suppression of ALCAM appears to impact cell function and cellular responsiveness to certain micro environmental factors.
Collapse
|
7
|
Fernández MM, Ferragut F, Cárdenas Delgado VM, Bracalente C, Bravo AI, Cagnoni AJ, Nuñez M, Morosi LG, Quinta HR, Espelt MV, Troncoso MF, Wolfenstein-Todel C, Mariño KV, Malchiodi EL, Rabinovich GA, Elola MT. Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2255-2268. [PMID: 27130882 DOI: 10.1016/j.bbagen.2016.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/27/2016] [Accepted: 04/23/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that the activated leukocyte cell adhesion molecule (ALCAM/CD166) can interact with galectin-8 (Gal-8) in endothelial cells. ALCAM is a member of the immunoglobulin superfamily that promotes homophilic and heterophilic cell-cell interactions. Gal-8 is a "tandem-repeat"-type galectin, known as a matricellular protein involved in cell adhesion. Here, we analyzed the physical interaction between both molecules in breast cancer cells and the functional relevance of this phenomenon. METHODS We performed binding assays by surface plasmon resonance to study the interaction between Gal-8 and the recombinant glycosylated ALCAM ectodomain or endogenous ALCAM from MDA-MB-231 breast cancer cells. We also analyzed the binding of ALCAM-silenced or control breast cancer cells to immobilized Gal-8 by SPR. In internalization assays, we evaluated the influence of Gal-8 on ALCAM surface localization. RESULTS We showed that recombinant glycosylated ALCAM and endogenous ALCAM from breast carcinoma cells physically interacted with Gal-8 in a glycosylation-dependent fashion displaying a differential behavior compared to non-glycosylated ALCAM. Moreover, ALCAM-silenced breast cancer cells exhibited reduced binding to Gal-8 relative to control cells. Importantly, exogenously added Gal-8 provoked ALCAM segregation, probably trapping this adhesion molecule at the surface of breast cancer cells. CONCLUSIONS Our data indicate that Gal-8 interacts with ALCAM at the surface of breast cancer cells through glycosylation-dependent mechanisms. GENERAL SIGNIFICANCE A novel heterophilic interaction between ALCAM and Gal-8 is demonstrated here, suggesting its physiologic relevance in the biology of breast cancer cells.
Collapse
Affiliation(s)
- Marisa M Fernández
- Institute of Studies in Humoral Immunology, University of Buenos Aires (UBA) and National Council Research (CONICET), Microbiology, Immunology and Biotechnology Department, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fátima Ferragut
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Víctor M Cárdenas Delgado
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Candelaria Bracalente
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Alicia I Bravo
- Molecular Pathology Department, "Eva Perón" HIGA Hospital, Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Myriam Nuñez
- Department of Mathematics and Statistics, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Luciano G Morosi
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; Laboratory of Immunopathology, IBYME, CONICET, Buenos Aires, Argentina
| | - Héctor R Quinta
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - María V Espelt
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - María F Troncoso
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Institute of Studies in Humoral Immunology, University of Buenos Aires (UBA) and National Council Research (CONICET), Microbiology, Immunology and Biotechnology Department, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, IBYME, CONICET, Buenos Aires, Argentina; Faculty of Exact and Natural Sciences, UBA, Buenos Aires, Argentina
| | - María T Elola
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Jia G, Wang X, Yan M, Chen W, Zhang P. CD166-mediated epidermal growth factor receptor phosphorylation promotes the growth of oral squamous cell carcinoma. Oral Oncol 2016; 59:1-11. [DOI: 10.1016/j.oraloncology.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
9
|
Xiao M, Wang X, Yan M, Chen W. A systematic evaluation for the potential translation of CD166-related expression as a cancer biomarker. Expert Rev Mol Diagn 2016; 16:925-32. [PMID: 27398729 DOI: 10.1080/14737159.2016.1211932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meng Xiao
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Kudo-Saito C, Fuwa T, Kawakami Y. Targeting ALCAM in the cryo-treated tumour microenvironment successfully induces systemic anti-tumour immunity. Eur J Cancer 2016; 62:54-61. [PMID: 27208904 DOI: 10.1016/j.ejca.2016.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 11/15/2022]
Abstract
Cryoablative treatment has been widely used for treating cancer. However, the therapeutic efficacies are still controversial. The molecular mechanisms of the cryo-induced immune responses, particularly underlying the ineffectiveness, remain to be fully elucidated. In this study, we identified a new molecular mechanism involved in the cryo failure. We used cryo-ineffective metastatic tumour models that murine melanoma B16-F10 cells were subcutaneously and intravenously implanted into C57BL/6 mice. When the subcutaneous tumours were treated cryoablation on day 7 after tumour implantation, cells expressing activated leucocyte cell adhesion molecule (ALCAM/CD166) were significantly expanded not only locally in the treated tumours but also systemically in spleen and bone marrow of the mice. The cryo-induced ALCAM(+) cells including CD45(-) mesenchymal stem/stromal cells, CD11b(+)Gr1(+) myeloid-derived suppressor cells, and CD4(+)Foxp3(+) regulatory T cells significantly suppressed interferon γ production and cytotoxicity of tumour-specific CD8(+) T cells via ALCAM expressed in these cells. This suggests that systemic expansion of the ALCAM(+) cells negatively switches host-immune directivity to the tumour-supportive mode. Intratumoural injection with anti-ALCAM blocking monoclonal antibody (mAb) following the cryo treatment systemically induced tumour-specific CD8(+) T cells with higher cytotoxic activities, resulting in suppression of tumour growth and metastasis in the cryo-resistant tumour models. These suggest that expansion of ALCAM(+) cells is a determinant of limiting the cryo efficacy. Further combination with an immune checkpoint inhibitor anti-CTLA4 mAb optimized the anti-tumour efficacy of the dual-combination therapy. Targeting ALCAM may be a promising strategy for overcoming the cryo ineffectiveness leading to the better practical use of cryoablation in clinical treatment of cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takafumi Fuwa
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yutaka Kawakami
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
11
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
12
|
Qi W, Chen J, Cheng X, Huang J, Xiang T, Li Q, Long H, Zhu B. Targeting the Wnt-Regulatory Protein CTNNBIP1 by microRNA-214 Enhances the Stemness and Self-Renewal of Cancer Stem-Like Cells in Lung Adenocarcinomas. Stem Cells 2015; 33:3423-36. [PMID: 26299367 DOI: 10.1002/stem.2188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 01/07/2023]
Abstract
A novel hypothesis in cancer biology proposes that cancer growth is driven by cancer stem-like cells (CSLCs), also called tumor-initiating cells, which can self-renew and differentiate into multilineage progeny in a fashion similar to stem cells. However, the impact and underlying mechanisms of this process in lung adenocarcinoma (LAC) remain to be elucidated. Here, we report that microRNA-214 (miR-214) contributes to cell self-renewal by directly targeting catenin beta interacting protein 1 (CTNNBIP1), a member of the Wnt signaling pathway. We demonstrate that miR-214 overexpression enhances stem-like properties in LAC cells and that miR-214 shows increased expression in CSLCs derived from primary tumor tissue and from two LAC cell lines (A549 and NCI-H1650). Strikingly, downregulation of miR-214 expression in CSLCs resulted in a significant decrease in spheroid formation and the expression of the stem-cell markers Nanog, Oct-4, and Sox-2. Finally, CTNNBIP1 was identified as a target of miR-214. miR-214 expression in LAC was negatively correlated with CTNNBIP1 expression and positively correlated with differentiated cellular states. Moreover, CTNNBIP1 expression correlated with longer overall survival in LAC patients. This study reveals that miR-214 plays a critical role in CSLC self-renewal and stemness by targeting CTNNBIP1. The identification of this functional miR-214-CTNNBIP1 interaction that regulates self-renewal in CSLCs has the potential to direct the development of novel therapeutic strategies for LAC.
Collapse
Affiliation(s)
- Wei Qi
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Junying Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiaoming Cheng
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jiani Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Tong Xiang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qijing Li
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Biomedical Analysis Center, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Andisheh-Tadbir A, Ashraf MJ, Khademi B, Ahmadi S. Clinical implication of CD166 expression in salivary gland tumor. Tumour Biol 2014; 36:2793-9. [DOI: 10.1007/s13277-014-2905-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022] Open
|
14
|
Clauditz TS, von Rheinbaben K, Lebok P, Minner S, Tachezy M, Borgmann K, Knecht R, Sauter G, Wilczak W, Blessmann M, Münscher A. Activated leukocyte cell adhesion molecule (ALCAM/CD166) expression in head and neck squamous cell carcinoma (HNSSC). Pathol Res Pract 2014; 210:649-55. [DOI: 10.1016/j.prp.2014.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/22/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
15
|
BURANDT EIKE, NOUBAR TANAZBARI, LEBEAU ANNETTE, MINNER SARAH, BURDELSKI CHRISTOPH, JÄNICKE FRITZ, MÜLLER VOLLKMAR, TERRACCIANO LUIGI, SIMON RONALD, SAUTER GUIDO, WILCZAK WALDEMAR, LEBOK PATRICK. Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: A TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncol Rep 2014; 32:2628-34. [DOI: 10.3892/or.2014.3523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/25/2014] [Indexed: 11/06/2022] Open
|
16
|
Yan M, Yang X, Wang L, Clark D, Zuo H, Ye D, Chen W, Zhang P. Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Mol Cell Proteomics 2013; 12:3271-84. [PMID: 23903875 DOI: 10.1074/mcp.m112.025460] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Patients with advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis with the currently available therapy, and tumor recurrence is frequently observed. The discovery of specific membrane-associated cancer stem cell (CSC) markers is crucial for the development of novel therapeutic strategies to target these CSCs. To address this issue, we established sphere cultures to enrich CSCs and used them for plasma membrane proteomics to identify specific membrane signatures of the HNSCC spheres. Of a dataset that included a total of 376 identified proteins, 200 were bona fide membrane proteins. Among them, 123 proteins were at least 1.5-fold up- or down-regulated in the spheres relative to the adherent cultures. These proteins included cell adhesion molecules, receptors, and transporter proteins. Some of them play key roles in wnt, integrin, and TGFβ signaling pathways. When we compared our dataset with two published hESC membrane protein signatures, we found 18 proteins common to all three of the databases. CD166 and CD44 were two such proteins. Interestingly, the expression of CD166, rather than that of the well-established HNSCC CSC marker CD44, was significantly related to the malignant behavior of HNSCC. Relative to CD166(low) HNSCC cells, CD166(high) HNSCC cells had a greater sphere-formation ability in vitro and tumor formation ability in vivo. Patients whose tumors expressed high levels of CD166 had a significantly poorer clinical outcome than those whose tumors expressed low levels of CD166 (cohort 1: 96 cases, p = 0.040), whereas the level of CD44 expression had only a marginal influence on the clinical outcome of patients with HNSCC (p = 0.078). The level of CD166 expression in HNSCC tumors was also associated with the tumor recurrence rate (cohort 2: 104 cases, p = 0.016). This study demonstrates that CD166 is a valuable cell surface marker for the enrichment of HNSCC stem cells and that plasma membrane proteomics is a promising biological tool for investigating the membrane proteins of CSCs.
Collapse
Affiliation(s)
- Ming Yan
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Despite the tremendous number of studies of prognostic molecular markers in cancer, only a few such markers have entered clinical practise. The lack of clinical prognostic markers clearly reflects limitations in or an inappropriate approach to prognostic studies. This situation should be of great concern for the research community, clinicians and patients. In the present review, we evaluate immunohistochemical prognostic marker studies in oral squamous cell carcinomas (OSCC) from 2006 to 2012. We comment upon general issues such as study design, assay methods and statistical methods, applicable to prognostic marker studies irrespective of cancer type. The three most frequently studied markers in OSCC are reviewed. Our analysis revealed that most new molecular markers are reported only once. To draw conclusions of clinical relevance based on the few markers that appeared in more than one study was problematic due to between-study heterogeneity. Currently, much valuable tissue material, time and money are wasted on irrelevant studies.
Collapse
Affiliation(s)
- Tine M Søland
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo
| | | |
Collapse
|
18
|
Clinical significance of altered expression of β-catenin and E-cadherin in oral dysplasia and cancer: potential link with ALCAM expression. PLoS One 2013; 8:e67361. [PMID: 23840677 PMCID: PMC3696121 DOI: 10.1371/journal.pone.0067361] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/16/2013] [Indexed: 01/23/2023] Open
Abstract
Background Perturbations in cell adhesion molecules are linked to alterations in cadherin-catenin complexes and likely play major roles in invasion and metastasis; their impact on early precancerous stages remains yet unknown. We showed ALCAM overexpression in early oral lesions and its cytoplasmic accumulation in oral squamous cell carcinoma (OSCC) to be a predictor of disease progression and poor prognosis. This study tested the hypothesis that alterations in E-cadherin and β -catenin expressions are early events in oral tumorigenesis, associated with disease prognosis, and correlate with perturbations in ALCAM expression. Methods Expressions of E-cadherin and β-catenin were analyzed in the same cohort of 105 OSCCs, 76 oral lesions and 30 normal oral tissues by immunohistochemistry and correlated with clinicopathological parameters and prognosis. The effect of siRNA mediated ALCAM knockdown on E-cadherin and β -catenin was determined using western blot, confocal microscopy and RT-PCR analysis in oral cancer cells. Results Significant loss of membranous E-cadherin and β-catenin expression was observed from normal, hyperplasia, dysplasia to OSCCs (ptrend <0.001); and correlated with cytoplasmic ALCAM accumulation in OSCCs (p = 0.006). Multivariate analysis revealed β-catenin membrane loss and ALCAM/β-cateninnuclear/cytoplasmic accumulation to be significant predictors for late clinical stage (p<0.001, OR = 8.7; p = 0.006, OR = 9.9, respectively) and nodal metastasis (p = 0.003, OR = 3.8; p = 0.025, OR = 3.4 respectively). Cox’s regression showed E-cadherin membrane loss/ALCAM cytoplasmic expression [p<0.001; HR = 4.8] to be independent adverse prognosticators in OSCCs. siRNA mediated silencing of ALCAM resulted in concurrent increase in E-cadherin and β-catenin both at the transcript and protein levels. Conclusions Losses of E-cadherin and β-catenin expressions are early events in oral tumorigenesis; their associations with aggressive tumor behavior and disease recurrence underscore their potential as prognostic markers. Correlation of loss of E-cadherin and β-catenin with cytoplasmic ALCAM accumulation both in vitro and in in vivo suggests that these dynamic changes in cell adhesion system may play pivotal role in oral cancer.
Collapse
|
19
|
Chaker S, Kashat L, Voisin S, Kaur J, Kak I, MacMillan C, Ozcelik H, Michael Siu KW, Ralhan R, Walfish PG. Secretome proteins as candidate biomarkers for aggressive thyroid carcinomas. Proteomics 2013; 13:771-87. [DOI: 10.1002/pmic.201200356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/15/2012] [Accepted: 12/10/2012] [Indexed: 12/28/2022]
Affiliation(s)
- Seham Chaker
- Alex and Simona Shnaider Laboratory in Molecular Oncology; Samuel Lunenfeld Research Institute; Mount Sinai Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
| | - Lawrence Kashat
- Alex and Simona Shnaider Laboratory in Molecular Oncology; Samuel Lunenfeld Research Institute; Mount Sinai Hospital; Toronto ON Canada
| | - Sebastien Voisin
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON Canada
| | - Jatinder Kaur
- Alex and Simona Shnaider Laboratory in Molecular Oncology; Samuel Lunenfeld Research Institute; Mount Sinai Hospital; Toronto ON Canada
| | - Ipshita Kak
- Alex and Simona Shnaider Laboratory in Molecular Oncology; Samuel Lunenfeld Research Institute; Mount Sinai Hospital; Toronto ON Canada
| | - Christina MacMillan
- Department of Pathology & Laboratory Medicine; Mount Sinai Hospital; Toronto ON Canada
| | - Hilmi Ozcelik
- Samuel Lunenfeld Research Institute; Mount Sinai Hospital L6-303; Toronto ON Canada
| | - K. W. Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON Canada
| | - Ranju Ralhan
- Alex and Simona Shnaider Laboratory in Molecular Oncology; Samuel Lunenfeld Research Institute; Mount Sinai Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Department of Pathology & Laboratory Medicine; Mount Sinai Hospital; Toronto ON Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases; Department of Otolaryngology-Head and Neck Surgery Program; Mount Sinai Hospital; Toronto ON Canada
- Department of Otolaryngology-Head and Neck Surgery; University of Toronto; Toronto ON Canada
| | - Paul G. Walfish
- Alex and Simona Shnaider Laboratory in Molecular Oncology; Samuel Lunenfeld Research Institute; Mount Sinai Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Department of Pathology & Laboratory Medicine; Mount Sinai Hospital; Toronto ON Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases; Department of Otolaryngology-Head and Neck Surgery Program; Mount Sinai Hospital; Toronto ON Canada
- Department of Medicine; Endocrine Division; Mount Sinai Hospital and University of Toronto Medical School; Toronto ON Canada. Department of Otolaryngology-Head and Neck Surgery; University of Toronto; Toronto ON Canada
| |
Collapse
|
20
|
Chaker S, Kak I, MacMillan C, Ralhan R, Walfish PG. Activated leukocyte cell adhesion molecule is a marker for thyroid carcinoma aggressiveness and disease-free survival. Thyroid 2013; 23:201-8. [PMID: 23148625 DOI: 10.1089/thy.2012.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Currently, there are no protein biomarkers for aggressive subtypes of thyroid carcinomas (TC) in clinical use that would allow for early detection and patient management. We hypothesized that activated leukocyte cell adhesion molecule (ALCAM or CD166) expression in thyroid tissues will reveal ALCAM to be a potential diagnostic and/or prognostic marker for TC aggressiveness. METHODS Forty-five benign and 158 malignant thyroid tissues were analyzed for ALCAM expression using immunohistochemistry. ALCAM expression was correlated with different subtypes and clinicopathological features of TC, as well as patient disease-free survival. RESULTS Combined membranous and cytoplasmic (total) expression of ALCAM was significantly reduced in patients with poorly/undifferentiated (aggressive) TC as compared to well-differentiated (nonaggressive) tumors (p<0.001; area-under-curve=0.865, sensitivity=82%, specificity=74%). The decreased ALCAM expression in TC correlated significantly with extrathyroidal extension, distant metastasis, and TC histotype. Notably, Kaplan-Meier survival analysis for follow-up data of 134 patients revealed significantly reduced disease-free survival for patients with TC with decreased ALCAM membranous, cytoplasmic, and total expression. Median survival of patients with decreased cytoplasmic ALCAM expression was 6 years, as compared to 13.7 years for patients with higher ALCAM expression (p<0.001). CONCLUSION ALCAM has the potential to serve as a diagnostic and prognostic biomarker for aggressive TC. This protein can be taken forward for analysis in sera of patients with TC to determine its applicability as a minimally invasive serum biomarker for TC aggressiveness and patient disease-free survival.
Collapse
Affiliation(s)
- Seham Chaker
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | |
Collapse
|
21
|
Membranous expression of activated leukocyte cell adhesion molecule contributes to poor prognosis and malignant phenotypes of non–small-cell lung cancer. J Surg Res 2013; 179:24-32. [DOI: 10.1016/j.jss.2012.08.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 11/21/2022]
|
22
|
Activated leukocyte cell-adhesion molecule (ALCAM) promotes malignant phenotypes of malignant mesothelioma. J Thorac Oncol 2012; 7:890-9. [PMID: 22722789 DOI: 10.1097/jto.0b013e31824af2db] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cell-adhesion molecules play important roles involving the malignant phenotypes of human cancer cells. However, detailed characteristics of aberrant expression status of cell-adhesion molecules in malignant mesothelioma (MM) cells and their possible biological roles for MM malignancy remain poorly understood. METHODS DNA microarray analysis was employed to identify aberrantly expressing genes using 20 MM cell lines. Activated leukocyte cell-adhesion molecule (ALCAM) expression in MM cell lines was analyzed with quantitative reverse transcription-polymerase chain reaction and Western blot analyses in 47 primary MM specimens with immunohistochemistry. ALCAM knockdown in MM cell lines was performed with lentivirus-mediated short hairpin RNA (shRNA) transduction. Purified soluble ALCAM (sALCAM) protein was used for in vitro experiments, whereas MM cell lines infected with the sALCAM-expressing lentivirus were tested for tumorigenicity in vivo. RESULTS ALCAM, a member of the immunoglobulin superfamily, was detected as one of the most highly upregulated genes among 103 cell-adhesion molecules with microarray analysis. Elevated expression levels of ALCAM messenger RNA and protein were detected in all 20 cell lines. Positive staining of ALCAM was detected in 26 of 47 MM specimens (55%) with immunohistochemistry. ALCAM knockdown with shRNA suppressed cell migration and invasion of MM cell lines. Purified sALCAM protein impaired the migration and invasion of MM cells in vitro, and the infection of sALCAM-expressing virus into MM cells significantly prolonged survival periods of MM-transplanted nude mice in vivo. CONCLUSION Our study suggests that overexpression of ALCAM contributes to tumor progression in MM and that ALCAM might be a potential therapeutic target of MM.
Collapse
|
23
|
Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D, Chen D, Li Y, Guo C, Zhang B, Fazli L, Gleave M, Witte ON, Garraway IP, Wu H. Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 2012; 7:e42564. [PMID: 22880034 PMCID: PMC3411798 DOI: 10.1371/journal.pone.0042564] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/09/2012] [Indexed: 12/29/2022] Open
Abstract
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics.
Collapse
Affiliation(s)
- Jing Jiao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Antreas Hindoyan
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shunyou Wang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linh M. Tran
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew S. Goldstein
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Devon Lawson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donghui Chen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yunfeng Li
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Changyong Guo
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Baohui Zhang
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ladan Fazli
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, Canada
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
| | - Isla P. Garraway
- Department of Urology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IG); (HW)
| |
Collapse
|
24
|
Cai X, Wang J, Xin X. CIAPIN1 nuclear accumulation predicts poor clinical outcome in epithelial ovarian cancer. World J Surg Oncol 2012; 10:112. [PMID: 22713669 PMCID: PMC3502349 DOI: 10.1186/1477-7819-10-112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/20/2012] [Indexed: 12/02/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is an aggressive disease with poor prognosis. The expression of cytokine-induced apoptosis inhibitor 1 (CIAPIN1) correlates with the malignant progression of several cancers. However, the relationship between the subcellular localization of CIAPIN1 and clinical characteristics in EOC remains unclear. Methods Immunohistochemistry was performed to detect CIAPIN1 expression in 108 EOC tissues. CIAPIN1 expressions in eight fresh EOC tissues were detected by Western blotting. The relationship between CIAPIN1 subcellular expression and patients’ clinicopathological features, including prognosis, was evaluated. Immunohistochemistry and immunofluorescence were employed to assess the CIAPIN1 subcellular localization in the EOC cell lines A2780 and HO8910. In addition, all patients were followed up to assess the prognostic value of CIAPIN1 in patients with EOC. Results CIAPIN1 is highly expressed in EOC, but is present at low levels in paired non-cancerous ovarian epithelial tissues. The results of Western blotting were in accordance with the immunohistochemical results. Poor differentiation of the tumors and EOC cell lines correlated with higher levels of CIAPIN1 nuclear expression. CIAPIN1 nuclear expression significantly correlated with the Federation International of Gynecology and Obstetrics (FIGO) stage and histological differentiation (P = 0.034 and P < 0.0001, respectively). Moreover, nuclear localization of CIAPIN1 was selected as an unfavorable prognostic factor by both univariate and multivariate analyses ( P < 0.001). However, no significant correlations were observed between cytoplasmic localization of CIAPIN1 and clinicopathological parameters. Conclusions CIAPIN1 might play a crucial role in the differentiation of EOC cells. Elevated expression of nuclear CIAPIN1 negatively correlated with the survival of EOC patients, suggesting that nuclear CIAPIN1 might serve as a prognostic biomarker for EOC patients.
Collapse
Affiliation(s)
- Xiaolan Cai
- Department of Gynecology and Obstetrics, Xijing Hospital, the Fourth Military Medical University, Number 15, Changle Western Road, Xi'an, 370032, China
| | | | | |
Collapse
|
25
|
McCabe KE, Liu B, Marks JD, Tomlinson JS, Wu H, Wu AM. An engineered cysteine-modified diabody for imaging activated leukocyte cell adhesion molecule (ALCAM)-positive tumors. Mol Imaging Biol 2012; 14:336-47. [PMID: 21630083 PMCID: PMC3227780 DOI: 10.1007/s11307-011-0500-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to generate and evaluate a positron emission tomography (PET) radiotracer targeting activated leukocyte cell adhesion molecule (ALCAM). PROCEDURES A human anti-ALCAM single chain variable fragment was reformatted to produce a covalent dimer, termed a cys-diabody (CysDb). Purified CysDb was characterized by gel electrophoresis and size exclusion chromatography, and immunoreactivity was assessed by flow cytometry and immunofluorescence. Targeting and imaging of ALCAM-positive tumors using (64)Cu-DOTA-CysDb were evaluated in mice bearing human pancreatic adenocarcinoma xenografts (HPAF-II or BxPC-3). RESULTS CysDb binds specifically to ALCAM-positive cells in vitro with an apparent affinity in the range of 1-3 nM. MicroPET images at 4 h showed specific targeting of positive tumors in vivo, a finding confirmed by biodistribution analysis, with positive/negative tumor ratios of 1.9 ± 0.6 and 2.4 ± 0.6, and positive tumor/blood ratios of 2.5 ± 0.9 and 2.9 ± 0.6 (HPAF-II and BxPC-3, respectively). CONCLUSIONS Successful imaging with (64)Cu-DOTA-CysDb in animal models suggests further investigation of ALCAM as an imaging biomarker is warranted.
Collapse
Affiliation(s)
- Katelyn E McCabe
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Matta A, Siu KWM, Ralhan R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets 2012; 16:515-23. [DOI: 10.1517/14728222.2012.668185] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Ihnen M, Kress K, Kersten JF, Kilic E, Choschzick M, Zander H, Müller V, Mahner S, Jänicke F, Woelber L, Milde-Langosch K. Relevance of activated leukocyte cell adhesion molecule (ALCAM) in tumor tissue and sera of cervical cancer patients. BMC Cancer 2012; 12:140. [PMID: 22475274 PMCID: PMC3348036 DOI: 10.1186/1471-2407-12-140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/04/2012] [Indexed: 01/18/2023] Open
Abstract
Background An altered expression of the activated leukocyte cell adhesion molecule (ALCAM) is associated with cancer progression in various cancer types. In some cancers ALCAM has a prognostic value or is predictive for the benefit of therapeutic interventions. To date there are no data on the role of ALCAM in cervical cancer available. Methods In this study, ALCAM expression was analysed by immunohistochemistry (IHC) in tissue samples of 233 patients with cervical cancer, among them 178 with complete follow-up information. In addition, soluble (s-)ALCAM was measured in sera of a subset of the included patients (n = 55) by enzyme-linked immunosorbent assay (ELISA). Results ALCAM overexpression was detected (immunoreactive score (IRS) 2-12) in 58.4% of the cervical cancer samples. The normal ectocervical or endocervical epithelium showed no ALCAM reactivity. In untreated patients, ALCAM overexpression in tumor tissue tended to be associated with shorter cancer-specific survival (CSS) and disease-free survival (DFS). Patients, whose tumor samples showed ALCAM overexpression receiving a cytotoxic therapy like radiotherapy or chemoradiation, however, had a favourable prognosis compared to those patients, whose cancers showed no or minimal ALCAM staining. This effect was particularly apparent in patients receiving chemoradiation where the CSS was significantly longer in patients with ALCAM-positive tumors (p = 0.038; cumulative incidence rates at 96 months 8%, 95% CI 0%-23%, and 26%, CI 3%-43% in ALCAM-positive and ALCAM-negative cases, respectively). Median preoperative s-ALCAM concentration in sera from tumor patients was 27.6 ng/ml (range 17.5-55.1 ng/ml, mean 28.9 ng/ml), serum levels did not correlate with intratumoral ALCAM expression. Conclusions The data of our retrospective study suggest that the prognostic value of ALCAM expression in cervical carcinoma might be therapy-dependent, and that ALCAM might function as a predictive marker for the response to chemoradiation. This should be confirmed in further, prospective studies.
Collapse
Affiliation(s)
- Maike Ihnen
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Minner S, Kraetzig F, Tachezy M, Kilic E, Graefen M, Wilczak W, Bokemeyer C, Huland H, Sauter G, Schlomm T. Low activated leukocyte cell adhesion molecule expression is associated with advanced tumor stage and early prostate-specific antigen relapse in prostate cancer. Hum Pathol 2011; 42:1946-52. [DOI: 10.1016/j.humpath.2011.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/08/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
|
29
|
Liang S, Huang C, Jia S, Wang B. Activated leukocyte cell adhesion molecule expression is up-regulated in the development of endometrioid carcinoma. Int J Gynecol Cancer 2011; 21:523-8. [PMID: 21430457 DOI: 10.1097/igc.0b013e31820e135a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a member of the immunoglobulin superfamily that contributes to cell migration. The present study investigated the potential role of ALCAM in the transition from normal endometrium to endometrioid adenocarcinoma (EEC). METHODS To clarify the role of ALCAM in endometrial tumorigenesis, we determined the levels of protein and messenger RNA expression of ALCAM in human endometrial tissue (proliferative phase [n = 20], secretory phase [n = 20], simple hyperplasia [n = 15], complex hyperplasia [n = 12], atypical hyperplasia [AH, n = 14], EEC [n = 42]) using immunohistochemistry, Western blot, and semiquantitative reverse transcription-polymerase chain reaction, respectively. RESULTS Expression of ALCAM detected by immunohistochemistry showed a gradual increase from normal endometrium to atypical hyperplasia in a membranous pattern; in addition, cytoplasmic staining emerged in a few cases of simple hyperplasia and complex hyperplasia, which also showed an increasing tendency. Most cases of EEC showed a homogenously strong staining in all parts of the tumor; other cases showed either membranous or cytoplasmic strong staining; heterogeneous loss of membranous staining was also found in some cases. Similar results of ALCAM expression were detected by reverse transcription-polymerase chain reaction and Western blot. In EEC, ALCAM expression was significantly increased in high-grade tumors and cases with myometrial invasion; however, no correlation was found between ALCAM expression and surgical pathological stages. CONCLUSIONS The up-regulation of ALCAM expression during endometrial carcinogenesis and the correlations of ALCAM expression with grade and myometrial invasion suggest its potential role as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Shumei Liang
- Department of Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
30
|
Macha MA, Matta A, Chauhan SS, Siu KWM, Ralhan R. Guggulsterone targets smokeless tobacco induced PI3K/Akt pathway in head and neck cancer cells. PLoS One 2011; 6:e14728. [PMID: 21383988 PMCID: PMC3044714 DOI: 10.1371/journal.pone.0014728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 12/14/2010] [Indexed: 01/22/2023] Open
Abstract
Background Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Methods and Results Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins - Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. Conclusions In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST / nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST / nicotine associated head and neck cancer.
Collapse
Affiliation(s)
- Muzafar A. Macha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Matta
- Department of Chemistry and Center for Research In Mass Spectrometry, York University, Toronto, Ontario, Canada
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - K. W. Michael Siu
- Department of Chemistry and Center for Research In Mass Spectrometry, York University, Toronto, Ontario, Canada
| | - Ranju Ralhan
- Department of Chemistry and Center for Research In Mass Spectrometry, York University, Toronto, Ontario, Canada
- Alex and Simona Shnaider Laboratory of Molecular Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada
- Joseph and Mildred Sonshine Family Centre for Head & Neck Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Otolaryngology - Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
31
|
Affiliation(s)
- Amanda G Hansen
- Pathology and Cancer Biology, Vanderbilt University, TN 37232, US
| | - Guido W Swart
- FNWI-WiNSt (Faculty of Science, Mathematics & Informatics), Radboud University Nijmegen, 6500 GL, NL
| | - Andries Zijlstra
- Pathology and Cancer Biology, Vanderbilt University, TN 37232, US
| |
Collapse
|
32
|
Ishigami S, Ueno S, Arigami T, Arima H, Uchikado Y, Kita Y, Sasaki K, Nishizono Y, Omoto I, Kurahara H, Matsumoto M, Kijima Y, Natsugoe S. Clinical implication of CD166 expression in gastric cancer. J Surg Oncol 2011; 103:57-61. [PMID: 20886585 DOI: 10.1002/jso.21756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND CD166 is one of the cell-surface immunoglobulins, and is well known to regulate leukocyte mobility. Its expression is associated with aggressive tumor behavior. CD166 expression is a prognostic marker in several cancers, but the predictive value of CD166 expression in gastric cancer has not been clarified yet. PATIENTS AND METHODS A total of 142 gastric cancer patients who consecutively received curative gastrectomy in Kagoshima University Hospital were enrolled in the current study. The patients were composed of 99 men and 43 women, ranging in age from 42 to 84 years (mean 63 years). Cancerous CD166 expression was evaluated immunohistochemically. RESULTS Cancerous CD166 expression was identified in not only cellular membrane but also cytoplasm. The rates of membranous and cytoplasmic CD166 positivities were 25.4% and 34.4%, respectively. Cytoplasmic and membranous CD166 positivities were significantly correlated with nodal involvement and vascular invasion. Survival analysis of the 142 gastric cancer patients revealed that membranous CD166-positive group (median survival 18.6 months, range 0.3-104.5 months) had a significantly poorer outcome than CD166-negative group (median 25.7 months range 1.4-106 months) (P < 0.05). CONCLUSIONS Membranous CD166-positivity may contribute to one of the promising prognostic markers in gastric cancer.
Collapse
Affiliation(s)
- Sumiya Ishigami
- Digestive Surgery, Surgical Oncology, Kagoshima University School of Medicine, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
D’Aguanno S, D’Alessandro A, Pieroni L, Roveri A, Zaccarin M, Marzano V, Canio MD, Bernardini S, Federici G, Urbani A. New Insights into Neuroblastoma Cisplatin Resistance: A Comparative Proteomic and Meta-Mining Investigation. J Proteome Res 2010; 10:416-28. [DOI: 10.1021/pr100457n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona D’Aguanno
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Annamaria D’Alessandro
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Luisa Pieroni
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Antonella Roveri
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Mattia Zaccarin
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Valeria Marzano
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Michele De Canio
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Sergio Bernardini
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Giorgio Federici
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| | - Andrea Urbani
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy, S. Lucia Foundation - IRCCS, Rome, Italy, and Departement of Biological Chemistry, University of Padova, Padova, Italy
| |
Collapse
|
34
|
He Y, Wu X, Liu X, Yan G, Xu C. LC−MS/MS Analysis of Ovarian Cancer Metastasis-Related Proteins Using a Nude Mouse Model: 14-3-3 Zeta as a Candidate Biomarker. J Proteome Res 2010; 9:6180-90. [PMID: 21028892 DOI: 10.1021/pr100822v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yifeng He
- Municipal Key Laboratory for Diseases Related to Women's Reproductive and Endocrine Systems, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People’s Republic of China, and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Xin Wu
- Municipal Key Laboratory for Diseases Related to Women's Reproductive and Endocrine Systems, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People’s Republic of China, and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Xiaohui Liu
- Municipal Key Laboratory for Diseases Related to Women's Reproductive and Endocrine Systems, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People’s Republic of China, and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Guoquan Yan
- Municipal Key Laboratory for Diseases Related to Women's Reproductive and Endocrine Systems, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People’s Republic of China, and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Congjian Xu
- Municipal Key Laboratory for Diseases Related to Women's Reproductive and Endocrine Systems, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People’s Republic of China, and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| |
Collapse
|
35
|
Hein S, Müller V, Köhler N, Wikman H, Krenkel S, Streichert T, Schweizer M, Riethdorf S, Assmann V, Ihnen M, Beck K, Issa R, Jänicke F, Pantel K, Milde-Langosch K. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue. Breast Cancer Res Treat 2010; 129:347-60. [DOI: 10.1007/s10549-010-1219-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/06/2010] [Indexed: 01/26/2023]
|
36
|
A novel human recombinant single-chain antibody targeting CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth. Cancer Immunol Immunother 2010; 59:1665-74. [PMID: 20635083 PMCID: PMC2929338 DOI: 10.1007/s00262-010-0892-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/30/2010] [Indexed: 11/17/2022]
Abstract
Screening a phage-display single-chain antibody library for binding to the breast cancer cell line PM-1 an antibody, scFv173, recognising activated leukocyte cell adhesion molecule (ALCAM, CD166) was isolated and its binding profile was characterized. Positive ALCAM immunohistochemical staining of frozen human tumour sections was observed. No ALCAM staining was observed in the majority of tested normal human tissues (nine of ten). Flow cytometry analyses revealed binding to 22 of 26 cancer cell lines of various origins and no binding to normal blood and bone marrow cells. Antibody binding inhibited invasion of the breast cancer cell line MDA-MB-231 by 50% in an in vitro Matrigel-coated membrane invasion assay. Reduced growth of tumours in nude mice was observed in an in vivo model in which the mice were injected subcutaneously with colorectal carcinoma HCT 116 cells and treated with scFv173 when compared to control. In summary, we have characterized a novel fully human scFv antibody recognising ALCAM on cancer cells and in tumour tissues that reduces cancer cell invasion and tumour growth in accordance with the hypothesised role for ALCAM in cell growth and migration control.
Collapse
|
37
|
van den Brand M, Takes RP, Blokpoel-deRuyter M, Slootweg PJ, van Kempen LC. Activated leukocyte cell adhesion molecule expression predicts lymph node metastasis in oral squamous cell carcinoma. Oral Oncol 2010; 46:393-8. [DOI: 10.1016/j.oraloncology.2010.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 01/22/2023]
|
38
|
van Kilsdonk JWJ, van Kempen LCLT, van Muijen GNP, Ruiter DJ, Swart GWM. Soluble adhesion molecules in human cancers: sources and fates. Eur J Cell Biol 2010; 89:415-27. [PMID: 20227133 DOI: 10.1016/j.ejcb.2009.11.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 11/20/2009] [Indexed: 12/18/2022] Open
Abstract
Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Besides these membrane-bound adhesion molecules several soluble adhesion molecules are detected in the supernatant of tumor cell lines and patient body fluids. Truncated soluble adhesion molecules can be generated by several conventional mechanisms, including alternative splicing of mRNA transcripts, chromosomal translocation, and extracellular proteolytic ectodomain shedding. Secretion of vesicles (ectosomes and exosomes) is an alternative mechanism mediating the release of full-length adhesion molecules. Soluble adhesion molecules function as modulators of cell adhesion, induce proteolytic activity and facilitate cell signalling. Additionally, adhesion molecules present on secreted vesicles might be involved in the vesicle-target cell interaction. Based on currently available data, released soluble adhesion molecules contribute to cancer progression and therefore should not be regarded as unrelated and non-functional side products of tumor progression.
Collapse
Affiliation(s)
- Jeroen W J van Kilsdonk
- Department of Biomolecular Chemistry, IMM & NCMLS, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Macha MA, Matta A, Sriram U, Thakkar A, Shukla NK, Datta Gupta S, Ralhan R. Clinical significance of TC21 overexpression in oral cancer. J Oral Pathol Med 2009; 39:477-85. [DOI: 10.1111/j.1600-0714.2009.00854.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|