1
|
Hayderi A, Zegeye MM, Meydan S, Sirsjö A, Kumawat AK, Ljungberg LU. TNF Induces Laminin-332-Encoding Genes in Endothelial Cells and Laminin-332 Promotes an Atherogenic Endothelial Phenotype. Int J Mol Sci 2024; 25:8699. [PMID: 39201392 PMCID: PMC11354388 DOI: 10.3390/ijms25168699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Laminins are essential components of the basement membranes, expressed in a tissue- and cell-specific manner under physiological conditions. During inflammatory circumstances, such as atherosclerosis, alterations in laminin composition within vessels have been observed. Our study aimed to assess the influence of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine abundantly found in atherosclerotic lesions, on endothelial laminin gene expression and the effects of laminin-332 (LN332) on endothelial cells' behavior. We also evaluated the expression of LN332-encoding genes in human carotid atherosclerotic plaques. Our findings demonstrate that TNF induces upregulation of LAMB3 and LAMC2, which, along with LAMA3, encode the LN332 isoform. Endothelial cells cultured on recombinant LN332 exhibit decreased claudin-5 expression and display a loosely connected phenotype, with an elevated expression of chemokines and leukocyte adhesion molecules, enhancing their attractiveness and adhesion to leukocytes in vitro. Furthermore, LAMB3 and LAMC2 are upregulated in human carotid plaques and show a positive correlation with TNF expression. In summary, TNF stimulates the expression of LN332-encoding genes in human endothelial cells and LN332 promotes an endothelial phenotype characterized by compromised junctional integrity and increased leukocyte interaction. These findings highlight the importance of basement membrane proteins for endothelial integrity and the potential role of LN332 in atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Liza U. Ljungberg
- Cardiovascular Research Centre, Department of Medical Sciences, School of Medicine, Örebro University, 70362 Örebro, Sweden; (A.H.); (S.M.); (A.S.); (A.K.K.)
| |
Collapse
|
2
|
Li Y, Jiang J, Wang X, Cao Y, Tang L, Song X, Huang F, Li M, Chen F, Wan H, Ye S. Engrailed 2 serves as a master regulator of the super-enhancer in the TNC gene locus in non-small cell lung cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:1442-1455. [PMID: 37987507 DOI: 10.1002/tox.24047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Engrailed 2 (EN2) is a homeodomain-containing protein that is dysregulated in many types of cancer. However, the role of EN2 in non-small cell lung cancer (NSCLC) and the mechanism underlying its biological function are largely unclear. Here, we showed that EN2 played an oncogenic function in NSCLC and greatly enhanced the malignant phenotype of NSCLC cells. Meanwhile, EN2 was able to boost the expression of a well-studied oncogenic Tenascin-C (TNC) gene, which in turn activated the AKT signaling pathway. Interestingly, we found that EN2 directly bound to the super-enhancer (SE) region in the TNC locus. The histone marker H3K27ac was also enriched in the region, indicating the activation of the SE. Treatment of the cells with JQ1, an inhibitor of SE activity, abrogated the effect of EN2 on the expression of TNC and phosphorylation of AKT-Ser473. Collectively, our work unveils a novel mode of EN2 function, in which EN2 governs the SE in the TNC locus, consequently activating the oncogenic TNC-AKT axis in NSCLC.
Collapse
Affiliation(s)
- Yan Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Jie Jiang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Fang Huang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Sujuan Ye
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Molecular Cancer, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Expert consensus on the role of hematological markers in the early clinical screening of hepatocellular carcinoma. LIVER RESEARCH 2022; 6:66-71. [PMID: 39958624 PMCID: PMC11791851 DOI: 10.1016/j.livres.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
The disease burden of hepatocellular carcinoma (HCC) in China is heavy, and the prognosis is still unfavourable. Therefore, early screening of high-risk groups of HCC through simple methods is the key to achieving early diagnosis and treatment and improving survival. At present, alpha-fetoprotein and other hematological tests are still the main methods in the early screening of HCC, but the sensitivity and specificity are limited, and the risk of missed diagnosis is high. In recent years, with the continuous development of science and technology, the improvement of traditional detection methods and the emergence of novel markers such as methylated deoxyribonucleic acid and microRNA have brought hope for further improving the sensitivity and specificity of early HCC screening. This consensus summarizes the research progress of traditional and new hematological test methods and puts forward expert guidance on the role of hematological markers in the early screening of HCC to provide a basis for improving the prevention and control level in China.
Collapse
|
4
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
5
|
Miyazaki K, Togo S, Okamoto R, Idiris A, Kumagai H, Miyagi Y. Collective cancer cell invasion in contact with fibroblasts through integrin-α5β1/fibronectin interaction in collagen matrix. Cancer Sci 2020; 111:4381-4392. [PMID: 32979884 PMCID: PMC7734169 DOI: 10.1111/cas.14664] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Interaction of cancer cells with cancer-associated fibroblasts (CAFs) plays critical roles in tumor progression. Recently we proposed a new tumor invasion mechanism in which invasive cancer cells individually migrate on elongate protrusions of CAFs (CAF fibers) in 3-D collagen matrix. In this mechanism, cancer cells interact with fibronectin fibrils assembled on CAFs mainly through integrin-α5β1. Here we tested whether this mechanism is applicable to the collective invasion of cancer cells, using two E-cadherin-expressing adenocarcinoma cell lines, DLD-1 (colon) and MCF-7 (breast). When hybrid spheroids of DLD-1 cells with CAFs were embedded into collagen gel, DLD-1 cells collectively but very slowly migrated through the collagen matrix in contact with CAFs. Epidermal growth factor and tumor necrosis factor-α promoted the collective invasion, possibly by reducing the E-cadherin junction, as did the transforming growth factor-β inhibitor SB431542 by stimulating the outgrowth of CAFs. Transforming growth factor-β itself inhibited the cancer cell invasion. Efficient collective invasion of DLD-1 cells required large CAF fibers or their assembly as stable adhesion substrates. Experiments with function-blocking Abs and siRNAs confirmed that DLD-1 cells adhered to fibronectin fibrils on CAFs mainly through integrin-α5β1. Anti-E-cadherin Ab promoted the single cell invasion of DLD-1 cells by dissociating the E-cadherin junction. Although the binding affinity of MCF-7 cells to CAFs was lower than DLD-1, they also collectively invaded the collagen matrix in a similar fashion to DLD-1 cells. Our results suggest that the direct interaction with CAFs, as well as environmental cytokines, contributes to the collective invasion of cancers.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Molecular Pathology DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| | - Shinsaku Togo
- Division of Respiratory MedicineJuntendo University of MedicineTokyoJapan
| | - Reiko Okamoto
- Bio Science DivisionMaterial Integration LaboratoriesYokohamaJapan
- Present address:
Developing and Planning DivisionTechnology Development General DivisionElectronics CompanyAGC Inc.YokohamaJapan
| | - Alimjan Idiris
- Bio Science DivisionMaterial Integration LaboratoriesYokohamaJapan
| | | | - Yohei Miyagi
- Molecular Pathology DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| |
Collapse
|
6
|
Chang YC, Wang JD, Chang HY, Zhou P, Hahn RA, Gordon MK, Laskin JD, Gerecke DR. Expression of Laminin γ2 Proteolytic Fragments in Murine Skin Following Exposure to Sulfur Mustard. Anat Rec (Hoboken) 2020; 303:1642-1652. [PMID: 32421930 DOI: 10.1002/ar.24405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022]
Abstract
Laminin-332 is a basement membrane protein composed of three genetically distinct polypeptide chains that actively promote both skin epidermal cell adhesion and migration. Proteolytic fragments of the laminin γ2 chain stimulate migration and scattering of keratinocytes and cancer cells. Sulfur mustard (SM) is a bifunctional alkylating agent that induces separation of basal keratinocytes from the dermal-epidermal junction and invokes a strong inflammatory response leading to delayed wound repair. In the present studies, the role of laminin γ2 in SM-induced skin injury and wound repair was investigated using the mouse ear vesicant model. We found that laminin γ2 chain mRNA was preferentially upregulated in mouse ear skin exposed to SM. In situ hybridization confirmed overexpression of laminin γ2 transcript. Western blot analysis showed increased protein expression of the full-length proform of laminin γ2 and smaller processed fragments of laminin γ2 in skin exposed to SM. Dual immunofluorescence labeling indicated that laminin γ2 fragments are prevalent in suprabasal keratinocytes behind the leading edge in areas of hyperplasia in injured skin. In addition, co-expression of laminin γ2 and the senescent marker, p16-INK4a was found to overlap with the hyperplastic migratory epithelial sheet. This observation is similar to hypermotile keratinocytes reported in invasive carcinoma cells. Overall, our studies indicate that laminin γ2 is preferentially expressed in skin post SM exposure and that protein expression appears to become progressively more fragmented. The laminin γ2 fragments may play a role in regulating SM-induced skin wound repair. Anat Rec, 2020. © 2020 American Association for Anatomy.
Collapse
Affiliation(s)
- Yoke-Chen Chang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - James D Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Hui-Ying Chang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Rita A Hahn
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Marion K Gordon
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Jeffrey D Laskin
- Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey, USA
| | - Donald R Gerecke
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 2020; 62:149-165. [PMID: 31639412 DOI: 10.1016/j.semcancer.2019.09.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, β3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and β3 subunits.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Jean Yves Scoazec
- Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif cedex, France; Université Paris Sud, Faculté de Médecine de Bicêtre, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
8
|
Lugassy C, Kleinman HK, Vermeulen PB, Barnhill RL. Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread. Angiogenesis 2020; 23:27-41. [PMID: 31720876 DOI: 10.1007/s10456-019-09695-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Intravascular dissemination of tumor cells is the accepted mechanism of cancer metastasis. However, the phenomenon of angiotropism, pericyte mimicry (PM), and extravascular migratory metastasis (EVMM) has questioned the concept that tumor cells metastasize exclusively via circulation within vascular channels. This new paradigm of cancer spread and metastasis suggests that metastatic cells employ embryonic mechanisms for attachment to the abluminal surfaces of blood vessels (angiotropism) and spread via continuous migration, competing with and replacing pericytes, i.e., pericyte mimicry (PM). This is an entirely extravascular phenomenon (i.e., extravascular migratory metastasis or EVMM) without entry (intravasation) into vascular channels. PM and EVMM have mainly been studied in melanoma but also occur in other cancer types. PM and EVMM appear to be a reversion to an embryogenesis-derived program. There are many analogies between embryogenesis and cancer progression, including the important role of laminins, epithelial-mesenchymal transition, and the re-activation of embryonic signals by cancer cells. Furthermore, there is no circulation of blood during the first trimester of embryogenesis, despite the fact that there is extensive migration of cells to distant sites and formation of organs and tissues during this period. Embryonic migration therefore is a continuous extravascular migration as are PM and EVMM, supporting the concept that these embryonic migratory events appear to recur abnormally during the metastatic process. Finally, the perivascular location of tumor cells intrinsically links PM to vascular co-option. Taken together, these two new paradigms may greatly influence the development of new effective therapeutics for metastasis. In particular, targeting embryonic factors linked to migration that are detected during cancer metastasis may be particularly relevant to PM/EVMM.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Hynda K Kleinman
- Department of Molecular Medicine and Biochemistry, The George Washington School of Medicine, Washington, DC, USA
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- University of Paris, Réné Descartes Faculty of Medicine, Paris, France
| |
Collapse
|
9
|
Cui X, Zhang H, Cao A, Cao L, Hu X. Cytokine TNF-α promotes invasion and metastasis of gastric cancer by down-regulating Pentraxin3. J Cancer 2020; 11:1800-1807. [PMID: 32194791 PMCID: PMC7052870 DOI: 10.7150/jca.39562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023] Open
Abstract
As a novel multifaceted player in cancer, Pentraxin3(PTX3) was recognized to be a possible factor related with tumor development. Recent researches have indicated that PTX3 is involved in immune response, inflammation, as well as cancer, and is greatly controlled by numerous cytokines. Tumor necrosis factor (TNF-α) is an imperative cytokine that demonstrates an extensive array of biological consequences in gastric cancer advancement. Here, we inspected the expression of PTX3 in gastric carcinoma tissues along with gastric cell lines and established that PTX3 was suggestively inferior in gastric cancer tissue and cells. The treatment of the gastric cell lines BGC-823 as well as SGC-7901 with rhTNF-α caused substantial decrease in the expression of PTX3. Furthermore, PTX3 controlled the capability of cell migration, invasion as well as epithelial-mesenchymal transition (EMT) in gastric cancer cell lines mediated by TNF-α. Additionally, PTX3 upregulation inhibited tumorigenicity in vivo and could be reversed by exogenous TNF-α. Conversely, overexpression of PTX3 inhibited progress both in vitro as well as in vivo in gastric cancer mediated by TNF-α. Further studies are necessary to demonstrate the mechanism of interaction between PTX3 and cytokines.
Collapse
Affiliation(s)
- Xinye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| | - Han Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - An'na Cao
- Department of Pathology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Liang Cao
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| | - Xiang Hu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011,China
| |
Collapse
|
10
|
Li S, Shen L, Huang L, Lei S, Cai X, Breitzig M, Zhang B, Yang A, Ji W, Huang M, Zheng Q, Sun H, Wang F. PTBP1 enhances exon11a skipping in Mena pre-mRNA to promote migration and invasion in lung carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:858-869. [PMID: 31075540 DOI: 10.1016/j.bbagrm.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Alternative splicing (AS) events occur in the majority of human genes. AS in a single gene can give rise to different functions among multiple isoforms. Human ortholog of mammalian enabled (Mena) is a conserved regulator of actin dynamics that plays an important role in metastasis. Mena has been shown to have multiple splice variants in human tumor cells due to AS. However, the mechanism mediated Mena AS has not been elucidated. Here we showed that polypyrimidine tract-binding protein 1 (PTBP1) could modulate Mena AS. First, PTBP1 levels were elevated in metastatic lung cancer cells as well as during epithelial-mesenchymal transition (EMT) process. Then, knockdown of PTBP1 using shRNA inhibited migration and invasion of lung carcinoma cells and decreased the Mena exon11a skipping, whereas overexpression of PTBP1 had the opposite effects. The results of RNA pull-down assays and mutation analyses demonstrated that PTBP1 functionally targeted and physically interacted with polypyrimidine sequences on both upstream intron11 (TTTTCCCCTT) and downstream intron11a (TTTTTTTTTCTTT). In addition, the results of migration and invasion assays as well as detection of filopodia revealed that the effect of PTBP1 was reversed by knockdown of Mena but not Mena11a+. Overexpressed MenaΔ11a also rescued the PTBP1-induced migration and invasion. Taken together, our study provides a novel mechanism that PTBP1 modulates Mena exon11a skipping, and indicates that PTBP1 depends on the level of Mena11a- to promote lung cancer cells migration and invasion. The regulation of Mena AS may be a potential prognostic marker and a promising target for treatment of lung carcinoma.
Collapse
Affiliation(s)
- Shuaiguang Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Lianghua Shen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Luyuan Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sijia Lei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Xingdong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mason Breitzig
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 19, Tampa, FL 33612, USA
| | - Bin Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Annan Yang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenzuo Ji
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Meiyan Huang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Qing Zheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Oku T, Shimada K, Kenmotsu H, Ando Y, Kurisaka C, Sano R, Tsuiji M, Hasegawa S, Fukui T, Tsuji T. Stimulation of Peritoneal Mesothelial Cells to Secrete Matrix Metalloproteinase-9 (MMP-9) by TNF-α: A Role in the Invasion of Gastric Carcinoma Cells. Int J Mol Sci 2018; 19:ijms19123961. [PMID: 30544870 PMCID: PMC6321609 DOI: 10.3390/ijms19123961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
It has recently been recognized that inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), upregulate the secretion of matrix metalloproteinase-9 (MMP-9) from cancer cells and thereby promote peritoneal dissemination. In this study, we found that TNF-α also stimulated peritoneal mesothelial cells to secrete MMP-9 as assessed by zymography. MMP-9 gene expression in mesothelial cells induced by TNF-α was confirmed by quantitative RT-PCR analysis. We then utilized the reconstituted artificial mesothelium, which was composed of a monolayer of mesothelial cells cultured on a Matrigel layer in a Boyden chamber system, to examine the effects of TNF-α on carcinoma cell invasion. The transmigration of MKN1 human gastric carcinoma cells through the reconstituted mesothelium was promoted by TNF-α in a dose-dependent manner. The increased MKN1 cell migration was partially inhibited by the anti-α3 integrin antibody, indicating that the invasion process involves an integrin-dependent mechanism. Finally, we observed that the invasion of MMP-9-knockdown MKN1 cells into Matrigel membranes was potentiated by the exogenous addition of purified proMMP-9. These results suggest that TNF-α-induced MMP-9 secretion from mesothelial cells plays an important role in the metastatic dissemination of gastric cancer.
Collapse
Affiliation(s)
- Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Kentaro Shimada
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Hiroki Kenmotsu
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Yusuke Ando
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Rikio Sano
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Shinya Hasegawa
- Department of Health Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Tetsuya Fukui
- Department of Health Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
| |
Collapse
|
12
|
Lian J, Lin SH, Ye Y, Chang DW, Huang M, Dinney CP, Wu X. Serum microRNAs as predictors of risk for non-muscle invasive bladder cancer. Oncotarget 2018; 9:14895-14908. [PMID: 29599914 PMCID: PMC5871085 DOI: 10.18632/oncotarget.24473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in the development of nearly all cancers and may function as promising biomarkers for early detection, diagnosis and prognosis. We sought to investigate the role of serum miRNAs as potential diagnostic biomarkers or biomarkers of risk for early-stage bladder cancer. First, we profiled global serum miRNAs in a pilot set of 10 non-muscle invasive bladder cancer (NMIBC) cases and 10 healthy controls matched on age, gender and smoking status. Eighty nine stably detectable miRNAs were selected for further testing and quantification by high-throughput Taqman analysis using the Fluidigm BioMark HD System to assess their association with NMIBC risk in both discovery and validation sets totaling 280 cases and 278 controls. We found miR-409-3p and six miRNAs expression ratios were significantly associated with risk of bladder cancer in both discovery and validation sets. Interestingly, we identified expression of miR-409-3p and miR-342-3p inversely correlated with age and age of onset of NMIBC. A risk score was generated based on the combination of three miRNA ratios (miR-29a-3p/miR-222-3p, miR-150-5p/miR-331-3p, miR-409-3p/miR-423-5p). In dichotomized analysis, we found individuals with high risk score showed increased risk of bladder cancer in the discovery, validation, and combined sets. Pathway enrichment analyses suggested altered miRNAs and cognate target genes are linked to the retinoid acid receptor (RAR) signaling pathway. Overall, these results suggested specific serum miRNA signatures may serve as noninvasive predictors of NMIBC risk. Biological insights underlying bladder cancer development based on the pathway enrichment analysis may reveal novel therapeutic targets for personalized medicine.
Collapse
Affiliation(s)
- Jie Lian
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David W. Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Lin Y, Ge X, Zhang X, Wu Z, Liu K, Lin F, Dai C, Guo W, Li J. Protocadherin-8 promotes invasion and metastasis via laminin subunit γ2 in gastric cancer. Cancer Sci 2018; 109:732-740. [PMID: 29325230 PMCID: PMC5834795 DOI: 10.1111/cas.13502] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Growing evidence suggests that protocadherins (PCDH) play crucial roles in pathogenesis and progression of cancers, including gastric cancer (GC). Protocadherin‐8 (PCDH8) was previously reported to be involved in metastasis of GC, but functional studies yielded inconsistent results and the molecular mechanism remained unknown. The present study aimed to explore the clinical relevance, function and molecular mechanism of PCDH8 in GC. Data from the GEPIA and Kaplan–Meier plotter databases showed that high expression of PCDH8 was significantly correlated with poorer prognosis in GC. Ectopic expression of PCDH8 in GC cells promoted invasion and migration in vitro and metastasis in vivo, and knockdown of PCDH8 inhibited invasion and migration in vitro. RNA sequencing followed by gene set enrichment analysis found a remarkable enrichment in the extracellular matrix receptor interaction pathway, with the expression of laminin subunit γ2 (LAMC2) being significantly increased in the PCDH8‐overexpressing group. High expression of LAMC2 was significantly correlated to poor prognosis in GC in GEPIA database. Upregulation of LAMC2 following PCDH8 overexpression was further confirmed by immunohistochemistry in liver metastatic lesions of nude mice. To our knowledge, this is the first report of the metastasis‐enhancing property and molecular mechanism through upregulation of LAMC2 of PCDH8 in cancer. High expression of PCDH8 could be used as a biomarker for poor prognosis in clinical practice.
Collapse
Affiliation(s)
- Ying Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxiao Ge
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaofei Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zheng Wu
- Department of Medical Oncology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kaiyi Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengjuan Lin
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Congqi Dai
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Substrate-mediated gene transduction of LAMA3 for promoting biological sealing between titanium surface and gingival epithelium. Colloids Surf B Biointerfaces 2018; 161:314-323. [DOI: 10.1016/j.colsurfb.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
|
15
|
Miyazaki K, Oyanagi J, Sugino A, Sato H, Yokose T, Nakayama H, Miyagi Y. Highly sensitive detection of invasive lung cancer cells by novel antibody against amino-terminal domain of laminin γ2 chain. Cancer Sci 2016; 107:1909-1918. [PMID: 27685891 PMCID: PMC5198959 DOI: 10.1111/cas.13089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022] Open
Abstract
The laminin γ2 chain, a subunit of laminin-332 (α3β3γ2), is a molecular marker for invasive cancer cells, but its pathological roles in tumor progression remain to be clarified. It was recently found that the most N-terminal, domain V (dV) of γ2 chain has activities to bind CD44 and stimulate tumor cell migration and vascular permeability. In the present study, we prepared a mAb recognizing γ2 dV. Immunoblotting with this antibody, for the first time, showed that proteolytic fragments containing dV in a range of 15-80 kDa were highly produced in various human cancer cell lines and lung cancer tissues. In immunohistochemistry of adenocarcinomas and squamous cell carcinomas of the lung, this antibody immunostained the cytoplasm of invasive tumor cells and adjacent stroma much more strongly than a widely used antibody recognizing the C-terminal core part of the processed γ2 chain. This suggests that the dV fragments are highly accumulated in tumor cells and stroma compared to the processed γ2 protein. The strong tumor cell staining with the dV antibody correlated with the tumor malignancy grade. We also found that the laminin β3 and α3 chains were frequently overexpressed in tumor cells and tumor stroma, respectively. The cytoplasmic dV detection was especially prominent in tumor cells infiltrating stroma, but low in the cells surrounded by basement membranes, suggesting that the active tumor-stroma interaction is critical for the aberrant γ2 expression. The present study suggests important roles of laminin γ2 N-terminal fragments in tumor progression.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Division of Cell BiologyKihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| | - Jun Oyanagi
- Department of PathologyKanagawa Cancer Center HospitalYokohamaJapan
| | - Atsuko Sugino
- Division of Cell BiologyKihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan
| | - Hiroki Sato
- Division of Cell BiologyKihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan
| | - Tomoyuki Yokose
- Department of PathologyKanagawa Cancer Center HospitalYokohamaJapan
| | - Haruhiko Nakayama
- Department of Thoracic SurgeryKanagawa Cancer Center HospitalYokohamaJapan
| | - Yohei Miyagi
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| |
Collapse
|
16
|
Teng Y, Wang Z, Ma L, Zhang L, Guo Y, Gu M, Wang Z, Wang Y, Yue W. Prognostic significance of circulating laminin gamma2 for early-stage non-small-cell lung cancer. Onco Targets Ther 2016; 9:4151-62. [PMID: 27462170 PMCID: PMC4939988 DOI: 10.2147/ott.s105732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Laminin gamma2 (Ln-γ2) chain, a distinctive subunit of heterotrimeric laminin-332, is frequently upregulated in carcinomas and is of great importance in cell migration and invasion. Despite this, the status of circulating Ln-γ2 in lung cancer patients is still uncertain. Patients and methods In this retrospective study, serum samples from 538 all-stage (stages I–IV) patients with non-small-cell lung cancer (NSCLC) and 94 age-matched healthy volunteers were investigated by enzyme-linked immunosorbent assay. Data were statistically analyzed in combination with clinicopathological information. Results Circulating Ln-γ2 was markedly increased in NSCLC, even in stage I cases (P<0.01), reflecting the progression of lung cancer. Survival analysis on 370 eligible patients indicated that serum Ln-γ2-negative patients survived much longer compared with Ln-γ2-positive individuals (P=0.028), and it was especially the case for stage I (P<0.001), stage T1 (P=0.001), and stage N0 patients (P=0.038), all of whom represented early-stage cases. For the advanced patients, however, overall survivals were not significantly different among stages II–IV (P=0.830), stages T2–T4 (P=0.575), stages N1–N3 (P=0.669), and stage M1 (P=0.849). Cox analysis subsequently defined serum Ln-γ2 as an independent prognostic indicator of NSCLC, particularly for early-stage patients. Furthermore, we demonstrated the association of serum Ln-γ2 with smoking behavior, but its association with tumor progression and early prognostic significance were not altered in the nonsmoking cohort. Conclusion Our study demonstrated that elevation of circulating Ln-γ2 was an early-emerging event in NSCLC and was significantly associated with poor prognosis in NSCLC, especially for early-stage cases.
Collapse
Affiliation(s)
- Yu Teng
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Zitong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Li Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Yinan Guo
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Ziyu Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Yue Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Wentao Yue
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| |
Collapse
|
17
|
Yang G, Zhang J, Dong W, Liu L, Shi J, Wang H. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces. Sci Rep 2016; 6:23423. [PMID: 26996815 PMCID: PMC4800452 DOI: 10.1038/srep23423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.
Collapse
Affiliation(s)
- Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, P. R. China
| | - Jing Zhang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, P. R. China
| | - Wenjing Dong
- Department of Implantology, Stomatology Hospital of Xuzhou, P. R. China
| | - Li Liu
- Department of Prosthodontics, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, P. R. China
| | - Jue Shi
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, P. R. China
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, P. R. China
| |
Collapse
|
18
|
Qiang Y, Chen Z. Epithelial mesenchymal transition related molecular markers and invasion and metastasis of cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:4051-4059. [DOI: 10.11569/wcjd.v23.i25.4051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis is a major cause of death in patients with solid tumors. Epithelial mesenchymal transition (EMT) is a process in which the epithelial cells are transformed into the stroma cells. This process is accompanied by changes in gene expression and cell phenotype, which are often activated during tumor invasion and metastasis. Cholangiocarcinoma is a kind of malignancy originating from the bile duct epithelium, and its main biological characteristics are early invasion, metastasis and recurrence. The research of cholangiocarcinoma metastasis could provide a theoretical basis for the development of new treatment strategies to manage this malignancy. This paper reviews the roles of EMT related molecular markers metastasis in the invasion and metastasis of cholangiocarcinoma.
Collapse
|
19
|
Fukazawa S, Shinto E, Tsuda H, Ueno H, Shikina A, Kajiwara Y, Yamamoto J, Hase K. Laminin β3 expression as a prognostic factor and a predictive marker of chemoresistance in colorectal cancer. Jpn J Clin Oncol 2015; 45:533-40. [PMID: 25770060 DOI: 10.1093/jjco/hyv037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/22/2015] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Laminin-332, a marker of epithelial-mesenchymal transition, is composed of a heterotrimer of α3, β3 and γ2 chains that regulates cell adhesion and migration. This study aimed to disclose the respective clinical significance of laminin β3 immunoexpression in colorectal cancer as a prognostic factor and a predictive marker of chemoresistance. METHODS Tissue specimens from 323 Stage II and 232 Stage III colorectal cancer patients who underwent curative resection were assessed using laminin β3 immunostaining. RESULTS Among Stage III colorectal cancer patients, comparisons of 5-year disease-free survival rates revealed a poorer prognosis for the laminin β3-high group than for the laminin β3-low group (52.3 vs. 70.7%, P = 0.038), while there was no significant difference among Stage II patients. Among laminin β3-low Stage III patients, those who received adjuvant chemotherapy showed marginally better disease-free survival than those who did not receive it (75.8 vs. 62.8%; P = 0.096). Furthermore, multivariate analysis corroborated a distinct benefit of adjuvant chemotherapy in laminin β3-low patients (P = 0.035; hazard risk ratio = 1.66). Analyses of the laminin β3-high group, however, failed to show significance. CONCLUSIONS Laminin β3 chain immunoreactivity was a poor prognostic factor for Stage III colorectal cancer patients, and laminin β3-high patients of Stage III colorectal cancer derived no survival benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Satomi Fukazawa
- Department of Surgery, National Defense Medical College, Saitama
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, Saitama
| | - Hitoshi Tsuda
- Department of Pathology, National Defense Medical College, Saitama, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Saitama
| | - Atsushi Shikina
- Department of Surgery, National Defense Medical College, Saitama
| | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, Saitama
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical College, Saitama
| | - Kazuo Hase
- Department of Surgery, National Defense Medical College, Saitama
| |
Collapse
|
20
|
Amino-terminal fragments of laminin γ2 chain stimulate migration of metastatic breast cancer cells by interacting with CD44. Clin Exp Metastasis 2015; 32:405-15. [PMID: 25990436 DOI: 10.1007/s10585-015-9705-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/06/2015] [Indexed: 02/08/2023]
Abstract
Laminin γ2 (Lmγ2) chain, a subunit of the basement membrane protein laminin-332, is regarded as a typical cancer invasion marker. The overexpression of Lmγ2 chain by invasive cancer cells correlates with poor prognosis of cancer patients, and its forced expression in human cancer cells promotes their invasive growth in a nude mouse model. However, its actual roles in cancer progression, as well as the mechanism of its proinvasive effect, remain unclear. CD44 is known to be an important cancer stem cell marker and support cancer progression and stem cell functions. Here we demonstrate that amino-terminal fragments of Lmγ2 interact with CD44 on the membrane of breast cancer cells. Lmγ2 highly bound to the metastatic cell line MDA-MB-231 but poorly to the benign cell line MCF-7. The membrane receptor for Lmγ2 on MDA-MB-231 cells was identified to be the standard form of CD44 (CD44s) by co-immunoprecipitation, affinity chromatography and direct protein interaction assay. Lmγ2 interacted with CD44s through EGF-like repeat 2/3 in the Lmγ2 amino-terminus. Amino-terminal fragments of Lmγ2 induced the phosphorylation of CD44 cytoplasmic domain and stimulated migration of the cancer cells in a CD44-dependent manner. This migration was blocked by inhibitors of TGF-β receptor I (TGF-βRI) kinase. These results suggest that two important tumor markers, Lmγ2 and CD44, cooperate for cancer progression and possibly for cancer stem cell functions. TGF-βRI may be involved in the Lmγ2/CD44 interaction.
Collapse
|
21
|
Sato H, Oyanagi J, Komiya E, Ogawa T, Higashi S, Miyazaki K. Amino-terminal fragments of laminin γ2 chain retract vascular endothelial cells and increase vascular permeability. Cancer Sci 2014; 105:168-75. [PMID: 24238220 PMCID: PMC4317827 DOI: 10.1111/cas.12323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/02/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Laminin γ2 (Lmγ2) chain, a subunit of laminin-332, is a typical molecular marker of invading cancer cells, and its expression correlates with poor prognosis of cancer patients. It was previously found that forced expression of Lmγ2 in cancer cells promotes their invasive growth in nude mice. However, the mechanism of the tumor-promoting activity of Lmγ2 remains unknown. Here we investigated the interaction between Lmγ2 and vascular endothelial cells. When treated with an N-terminal proteolytic fragment of γ2 (γ2pf), HUVECs became markedly retracted or shrunken. The overexpression of Lmγ2 or treatment with γ2pf stimulated T-24 bladder carcinoma cells to invade into the HUVEC monolayer and enhanced their transendothelial migration in vitro. Moreover, γ2pf increased endothelial permeability in vitro and in vivo. As the possible mechanisms, γ2pf activated ERK and p38 MAPK but inactivated Akt in HUVECs. Such effects of γ2pf led to prominent actin stress fiber formation in HUVECs, which was blocked by a ROCK inhibitor. In addition, γ2pf induced delocalization of VE-cadherin and β-catenin from the intercellular junction. As possible receptors, γ2pf interacted with heparan sulfate proteoglycans on the surface of HUVECs. Moreover, we localized the active site of γ2pf to the N-terminal epidermal growth factor-like repeat. These data suggest that the interaction between γ2pf and heparan sulfate proteoglycans induces cytoskeletal changes of endothelial cells, leading to the loss of endothelial barrier function and the enhanced transendothelial migration of cancer cells. These activities of Lmγ2 seem to support the aberrant growth of cancer cells.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Genome Science, Graduate School of Integrated Science and Nanobioscience, Yokohama City University, Yokohama, Japan; Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Liu W, Tian F, Jiang P, Zhao X, Guo F, Li X, Wang S. Aberrant expression of laminin γ2 correlates with poor prognosis and promotes invasion in extrahepatic cholangiocarcinoma. J Surg Res 2013; 186:150-6. [PMID: 24124977 DOI: 10.1016/j.jss.2013.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/18/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND To investigate the potential role of laminin γ2 and its correlation with prognosis in patients with extrahepatic cholangiocarcinoma (CCA). MATERIALS AND METHODS Laminin γ2 expression was evaluated by immunohistochemistry in 72 extrahepatic CCA patients after surgical resection. Knockdown of laminin γ2 was achieved via small interfering RNA transfection in the extrahepatic CCA cell line QBC939. RESULTS Thirty-six of 72 extrahepatic CCAs (50%) stained positive for laminin γ2 in two types of patterns: stromal staining (28/72, 39%) and cytoplasmic staining (24/72, 33%). All 16 paracancerous tissue samples showed negative staining. Both stromal and cytoplasmic laminin γ2 expressions correlated with lymph node metastasis. Kaplan-Meier analysis showed that aberrant expression of laminin γ2 correlated with poor overall survival and early recurrence. Cox regression analysis further demonstrated that laminin γ2 expression was a significant independent predictor of poor overall survival and early recurrence. Immunofluorescence staining revealed cytoplasmic expression of laminin γ2 in QBC939 cells. Knockdown of laminin γ2 significantly reduced QBC939 cell invasion and migration. CONCLUSIONS Aberrant expression of laminin γ2 correlates with poor prognosis and promotes invasion in extrahepatic CCA.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Infectious Disease, 324 Hospital of People's Liberation Army (PLA), Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Kang SG, Ha YR, Ko YH, Kang SH, Joo KJ, Cho HY, Park HS, Kim CH, Kwon SY, Kim JJ, Cheon J, Lee JG. Effect of laminin 332 on motility and invasion in bladder cancer. Kaohsiung J Med Sci 2013; 29:422-9. [PMID: 23906232 DOI: 10.1016/j.kjms.2012.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/28/2011] [Indexed: 01/05/2023] Open
Abstract
We examined the correlation between laminin 332 and malignancy in bladder cancer patients, and, using a strain of invasive bladder cancer cells, determined whether laminin 332 causes bladder cancer motility and invasion. To investigate the correlation between laminin 332 g2 distribution and patient outcome, we performed a semiquantitative immunohistochemical analysis of 35 paraffin-embedded samples using the antibody D4B5, which is specific for the laminin 5 γ2 chain. To evaluate the role of laminin 332 in NBT-II cell motility and invasion, we used a scratch assay and the Boyden chamber chemoinvasion system. Tumor stage and grade were significantly correlated with a loss of laminin 332 γ2 chain from the basement membrane (p = 0.001) and its retention in the cytoplasm (p = 0.001) (Kruskal-Wallis test). Kaplan-Meier survival curves revealed an association between the risk of progression and cytoplasmic retention of the laminin 332 γ2 chain. In addition, an in vitro scratch assay showed an increase in the migration of cells treated with laminin 332 from their cluster. The Boyden chamber assay showed that laminin 332 potentiated NBT-II cell invasion. Immunohistochemistry results showed that bladder cancer patients with a higher malignancy expressed more laminin 332. The in vitro scratch and invasion assay showed that laminin 332 stimulated the motility and invasion of bladder cancer cells. The invasion assay explains the correlation between laminin 332 expression and bladder cancer malignancy.
Collapse
Affiliation(s)
- Sung-Gu Kang
- Department of Urology, Korea University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oyanagi J, Ogawa T, Sato H, Higashi S, Miyazaki K. Epithelial-mesenchymal transition stimulates human cancer cells to extend microtubule-based invasive protrusions and suppresses cell growth in collagen gel. PLoS One 2012; 7:e53209. [PMID: 23300891 PMCID: PMC3534040 DOI: 10.1371/journal.pone.0053209] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial event in tumor invasion and metastasis. However, most of past EMT studies have been conducted in the conventional two-dimensional (2D) monolayer culture. Therefore, it remains unclear what invasive phenotypes are acquired by EMT-induced cancer cells. To address this point, we attempted to characterize EMT cells in more physiological, three-dimensional (3D) collagen gel culture. EMT was induced by treating three human carcinoma cell lines (A549, Panc-1 and MKN-1) with TGF-ß. The TGF-ß treatment stimulated these cells to overexpress the invasion markers laminin γ2 and MT1-MMP in 2D culture, in addition to the induction of well-known morphological change and EMT marker expression. EMT induction enhanced cell motility and adhesiveness to fibronectin and collagen in 2D culture. Although EMT cells showed comparable cell growth to control cells in 2D culture, their growth rates were extremely suppressed in soft agar and collagen gel cultures. Most characteristically, EMT-induced cancer cells commonly and markedly extended invasive protrusions in collagen gel. These protrusions were mainly supported by microtubules rather than actin cytoskeleton. Snail-introduced, stable EMT cells showed similar protrusions in 3D conditions without TGF-ß. Moreover, these protrusions were suppressed by colchicine or inhibitors of heat shock protein 90 (HSP-90) and protein phosphatase 2A. However, MMP inhibitors did not suppress the protrusion formation. These data suggest that EMT enhances tumor cell infiltration into interstitial stroma by extending microtubule-based protrusions and suppressing cell growth. The elevated cell adhesion to fibronectin and collagen and high cell motility also seem important for the tumor invasion.
Collapse
Affiliation(s)
- Jun Oyanagi
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City Universi, Yokohama, Japan
| | - Takashi Ogawa
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | - Hiroki Sato
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City Universi, Yokohama, Japan
| | - Shouichi Higashi
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City Universi, Yokohama, Japan
| | - Kaoru Miyazaki
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City Universi, Yokohama, Japan
- * E-mail:
| |
Collapse
|
25
|
Kamoshida G, Matsuda A, Miura R, Takashima Y, Katsura A, Tsuji T. Potentiation of tumor cell invasion by co-culture with monocytes accompanying enhanced production of matrix metalloproteinase and fibronectin. Clin Exp Metastasis 2012; 30:289-97. [DOI: 10.1007/s10585-012-9536-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
|