1
|
Mattson MP. The cyclic metabolic switching theory of intermittent fasting. Nat Metab 2025; 7:665-678. [PMID: 40087409 DOI: 10.1038/s42255-025-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Intermittent fasting (IF) and ketogenic diets (KDs) have recently attracted much attention in the scientific literature and in popular culture and follow a longer history of exercise and caloric restriction (CR) research. Whereas IF involves cyclic metabolic switching (CMS) between ketogenic and non-ketogenic states, KDs and CR may not. In this Perspective, I postulate that the beneficial effects of IF result from alternating between activation of adaptive cellular stress response pathways during the fasting period, followed by cell growth and plasticity pathways during the feeding period. Thereby, I establish the cyclic metabolic switching (CMS) theory of IF. The health benefits of IF may go beyond those seen with continuous CR or KDs without CMS owing to the unique interplay between the signalling functions of the ketone β-hydroxybutyrate, mitochondrial adaptations, reciprocal activation of autophagy and mTOR pathways, endocrine and paracrine signalling, gut microbiota, and circadian biology. The CMS theory may have important implications for future basic research, clinical trials, development of pharmacological interventions, and healthy lifestyle practices.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Popa AD, Gherasim A, Mihalache L, Arhire LI, Graur M, Niță O. Fasting Mimicking Diet for Metabolic Syndrome: A Narrative Review of Human Studies. Metabolites 2025; 15:150. [PMID: 40137116 PMCID: PMC11943686 DOI: 10.3390/metabo15030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic syndrome (MetS) is an association of risk factors that share insulin resistance (IR), exerting a super cumulative effect on the risk of developing cardiometabolic diseases. Lifestyle optimization is a key element in the prevention and non-pharmacological therapy of MetS. Certain studies have concluded that some dietary patterns could be more beneficial as an adjunctive treatment for MetS. Fasting mimicking diet (FMD) is a form of periodic fasting in which caloric intake is restricted for 5 days each month. It has been studied for its beneficial effects not only in patients with neoplasia and neurodegenerative diseases but also for its effects on IR and metabolism. In this narrative review, the effects of FMD in patients with MetS were analyzed, focusing on its impact on key metabolic components and summarizing findings from human studies. FMD has demonstrated beneficial effects on MetS by reducing BMI and waist circumference, preserving lean mass, and improving the metabolic profile. Moreover, individuals with a higher BMI or a greater number of MetS components appear to derive greater benefits from this intervention. However, limitations such as high dropout rates, small sample sizes, and methodological constraints restrict the generalizability of current findings. Further large-scale studies are needed to confirm these effects and establish FMD as a viable non-pharmacological strategy for managing MetS.
Collapse
Affiliation(s)
- Alina Delia Popa
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Andreea Gherasim
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Laura Mihalache
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Lidia Iuliana Arhire
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Otilia Niță
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| |
Collapse
|
3
|
Nekoufar S, Ghorbani M, Safaei S, Khosroushahi GA, Shirian FI, Baradaran B, Tavakoli-Yaraki M. Exploring the potential of gemcitabine-metal-organic frameworks in combating pancreatic cancer under ketogenic conditions. BMC Cancer 2025; 25:53. [PMID: 39789481 PMCID: PMC11720622 DOI: 10.1186/s12885-024-13397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells. METHODS Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis. Various drug groups were established to evaluate their influences on cell cytotoxicity, apoptosis rate, cell cycle distribution, levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), and cell migration. RESULTS The gemcitabine-MOF was thoroughly analyzed to determine its size, morphology, and chemical composition, confirming its successful preparation. The treatment results showed an increase in the number of apoptotic cells following gemcitabine-MOF treatment, which was found to be associated with cell cycle arrest in the sub-G1 phase. Moreover, these treatments also resulted in reduced cell migration, decreased activity of antioxidant enzymes (SOD, GPx), and increased accumulation of MDA. Additionally, when exposed to ketogenic conditions (where beta-hydroxybutyrate is present in a glucose-limited medium), there was a further increase in cell cycle arrest, accompanied by a more pronounced decrease in SOD and GPx activity, as well as decreased migration. CONCLUSION The use of metal-organic framework to encapsulate gemcitabine yielded notable pro-apoptotic effects in MIA-PaCa-2 cells with which ketogenic conditions had a synergistic effect that can hold promise for improving therapeutic options.
Collapse
Affiliation(s)
- Samira Nekoufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzad Izak Shirian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran.
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
5
|
Mahajan VR, Nadel JA, King MT, Pawlosky RJ, Davis MI, Veech RL, Lovinger DM, Salinas AG. Ketone ester-enriched diet ameliorates motor and dopamine release deficits in MitoPark mice. Eur J Neurosci 2024; 60:6875-6890. [PMID: 39528410 PMCID: PMC11612846 DOI: 10.1111/ejn.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disease characterized by motor dysfunction and dopamine deficits. The MitoPark (MP) mouse model of PD recapitulates several facets of Parkinson's disease, including gradual development of motor deficits, which enables the study of potential therapeutic interventions. One therapeutic strategy involves decreasing the mitochondrial metabolic load by inducing ketosis and providing an alternative energy source for neurons, leading to decreased neuronal oxidative stress. Thus, we hypothesized that administration of a ketone ester-enriched diet (KEED) would improve motor and dopamine release deficits in MP mice. Motor function (rotarod and open field tests), dopamine release (fast-scan cyclic voltammetry), tissue dopamine levels (gas chromatography-mass spectrometry) and dopamine neurons and axons (immunofluorescence) were assessed in MP, and control mice fed either the standard or a KEED. When started on the ketone diet before motor dysfunction onset, MP mice had improved motor function relative to standard diet (SD) MP mice. While the KEED did not preserve dopamine neurons or striatal dopamine axons, dopamine release in ketone diet MP mice was greater than SD MP mice but less than control mice. In a follow-up experiment, we began the ketone diet after motor dysfunction onset and observed a modest preservation of motor function in ketone diet MP mice relative to SD MP mice. The improvement in motor dysfunction indicates that a KEED or ketone supplement may have a beneficial effect on delaying motor deficit progression in Parkinson's disease.
Collapse
Affiliation(s)
- Vikrant R. Mahajan
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Jacob A. Nadel
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - M. Todd King
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Robert J. Pawlosky
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Margaret I. Davis
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Richard L. Veech
- Laboratory for Metabolic ControlNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
| | - Armando G. Salinas
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockvilleMarylandUSA
- Department of Pharmacology, Toxicology & NeuroscienceLouisiana State University Health Sciences Center – ShreveportShreveportLouisianaUSA
| |
Collapse
|
6
|
Vaezi MA, Nekoufar S, Robati AK, Salimi V, Tavakoli-Yaraki M. Therapeutic potential of β-hydroxybutyrate in the management of pancreatic neoplasms: exploring novel diagnostic and treatment strategies. Lipids Health Dis 2024; 23:376. [PMID: 39543582 PMCID: PMC11562866 DOI: 10.1186/s12944-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pancreatic neoplasm, a highly aggressive and often fatal cancer, poses challenges due to late detection and nonspecific symptoms. Therefore, both early diagnosis and appropriate therapeutic approaches are necessary to augment the condition of these patients. Cancer cells undergo metabolic deregulation, which enables their proliferation, survival, and invasion. As a result, it is crucial to focus on the metabolic pathways in prevalent cancers and explore treatment strategies that target these pathways to control tumor growth effectively. This is particularly relevant in cancers like pancreatic cancer, which undergo numerous metabolic alterations. The ketogenic regimen, characterized by low carbohydrate and protein contents and high-fat sources, does not involve caloric restriction. This allows for the induction of ketogenesis and an increase in ketone bodies, while insulin and glucose levels remain low even after meals. This unique metabolic state may influence the tumor microenvironment. Given the lack of unanimous agreement on the precise role and mechanism of the ketogenic diet, this review aims to clarify the diagnostic value and accuracy of ketone bodies in various types of pancreatic tumors and explore the potential anti-cancer effects of the ketogenic diet when used alone or in conjunction with chemotherapy, also to determine the potential of the ketogenic diet to be used as adjuvant therapy. The outcomes of this study are instrumental in enhancing our understanding of the benefits and drawbacks associated with employing this diet for the management and diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekoufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
- Finetech in Medicine Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ogbonna HN, Roberts Z, Godwin N, Muri P, Turbitt WJ, Swalley ZN, Dempsey FR, Stephens HR, Zhang J, Plaisance EP, Norian LA. An Exogenous Ketone Ester Slows Tumor Progression in Murine Breast and Renal Cancer Models. Cancers (Basel) 2024; 16:3390. [PMID: 39410010 PMCID: PMC11476193 DOI: 10.3390/cancers16193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ketone esters (KEs) exhibit promise as anti-cancer agents but their impact on spontaneous metastases remains poorly understood. Although consumption of a ketogenic diet (KD) that is low in carbohydrates and high in fats can lead to KE production in vivo, the restrictive composition of KDs may diminish adherence in cancer patients. METHODS We investigated the effects of an exogenous ketone ester-supplemented (eKET), carbohydrate-replete diet on tumor growth, metastasis, and underlying mechanisms in orthotopic models of metastatic breast (4T1-Luc) and renal (Renca-Luc) carcinomas. Mice were randomized to diet after tumor challenge. RESULTS Administration of KEs did not alter tumor cell growth in vitro. However, in mice, our eKET diet increased circulating β-hydroxybutyrate and inhibited primary tumor growth and lung metastasis in both models. Body composition analysis illustrated the overall safety of eKET diet use, although it was associated with a loss of fat mass in mice with renal tumors. Immunogenetic profiling revealed divergent intratumoral eKET-related changes by tumor type. In mammary tumors, Wnt and TGFβ pathways were downregulated, whereas in renal tumors, genes related to hypoxia and DNA damage repair were downregulated. CONCLUSIONS Thus, our eKET diet exerts potent antitumor and antimetastatic effects in both breast and renal cancer models, albeit with different modes of action and physiologic effects. Its potential as an adjuvant dietary approach for patients with diverse cancer types should be explored further.
Collapse
Affiliation(s)
- Henry Nnaemeka Ogbonna
- Graduate Biomedical Sciences, Pathobiology, Pharmacology, and Physiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Zachary Roberts
- Undergraduate Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | | | - Pia Muri
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - Zoey N. Swalley
- Undergraduate Honors College, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Francesca R. Dempsey
- Graduate Biomedical Sciences, Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Holly R. Stephens
- Graduate Biomedical Sciences, Immunology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jianqing Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
8
|
Valerio J, Borro M, Proietti E, Pisciotta L, Olarinde IO, Fernandez Gomez M, Alvarez Pinzon AM. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. J Pers Med 2024; 14:929. [PMID: 39338183 PMCID: PMC11433106 DOI: 10.3390/jpm14090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Recent scientific research has shown that the ketogenic diet may have potential benefits in a variety of medical fields, which has led to the diet receiving a substantial amount of attention. Clinical and experimental research on brain tumors has shown that the ketogenic diet has a satisfactory safety profile. This safety profile has been established in a variety of applications, including the management of obesity and the treatment of drug-resistant epileptic cases. However, in human studies, the impact of ketogenic therapy on the growth of tumors and the life expectancy of patients has not provided results that are well characterized. Consequently, our purpose is to improve the comprehension of these features by succinctly presenting the developments and conclusions that have been gained from the most recent study that pertains to this non-pharmacological technique. According to the findings of our study, patients with brain tumors who stick to a ketogenic diet are more likely to experience improved survival rates. However, it is required to conduct additional research on humans in order to more accurately define the anti-tumor efficiency of this diet as well as the underlying processes that support the therapeutic effects of this dieting regimen.
Collapse
Affiliation(s)
- Jose Valerio
- Neurosurgery Oncology Center of Excellence, Neurosurgery Department, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
| | - Matteo Borro
- Internal Medicine Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Elisa Proietti
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Livia Pisciotta
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Operative Unit of Dietetics and Clinical Nutrition, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Immanuel O Olarinde
- Neurosurgery Department, Latino America Valerio Foundation, Weston, FL 33331, USA
| | | | - Andres Mauricio Alvarez Pinzon
- MCIFAU Cancer Center of Excellence, Memorial Cancer Institute, Memorial Healthcare System, Hollywood, FL 33021, USA
- Cancer Neuroscience Program, The Institute of Neuroscience of Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute for Human Health and Disease Intervention, Division of Research, FAU Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
9
|
Wu X, Xu L, Zhang H, Zhu Y, Zhang Q, Zhang C, E G. Genome-Wide Selection Sweep Analysis to Identify Candidate Genes with Black and Brown Color in Tibetan Sibu Yaks. Animals (Basel) 2024; 14:2458. [PMID: 39272243 PMCID: PMC11394208 DOI: 10.3390/ani14172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Although coat color is an important economic phenotype in domesticated yaks (Bos grunniens), its genetic basis is not yet fully understood. In this study, a genome-wide selective sweep and high-frequency runs of homozygosity (ROH) identification were performed on 50 yaks with different coat colors to investigate candidate genes (CDGs) related to coat color. The results suggested that 2263 CDGs were identified from the 5% interaction windows of the FST and θπ ratio, along with 2801 and 2834 CDGs from black and brown yaks with iHS, respectively. Furthermore, 648 and 691 CDGs from black and brown yaks, which were widely enriched in pathways related to melanogenesis, melanocyte differentiation, and melanosome organization via GO and KEGG functional enrichment, respectively, were confirmed on the basis of the intersection of three parameters. Additionally, the genome of brown yaks presented more ROH, longer ROH fragments, and higher inbreeding levels than those of black yaks. Specifically, a large number of genes related to melanin synthesis and regulation (e.g., UST, TCF25, and AHRR) from the ROH islands were confirmed to be under strong selection. In summary, the results of this study enhance the understanding of the genetic basis for determining yak coat color.
Collapse
Affiliation(s)
- Xinming Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Qiang Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Chengfu Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Ribeiro KS, Karmakar E, Park C, Garg R, Kung GP, Kadakia I, Gopianand JS, Arun T, Kisselev O, Gnana-Prakasam JP. Iron Regulates Cellular Proliferation by Enhancing the Expression of Glucose Transporter GLUT3 in the Liver. Cells 2024; 13:1147. [PMID: 38994998 PMCID: PMC11240476 DOI: 10.3390/cells13131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.
Collapse
|
11
|
Deemer SE, Roberts BM, Smith DL, Plaisance EP, Philp A. Exogenous ketone esters as a potential therapeutic for treatment of sarcopenic obesity. Am J Physiol Cell Physiol 2024; 327:C140-C150. [PMID: 38766768 DOI: 10.1152/ajpcell.00471.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Identifying effective treatment(s) for sarcopenia and sarcopenic obesity is of paramount importance as the global population advances in age and obesity continues to be a worldwide concern. Evidence has shown that a ketogenic diet can be beneficial for the preservation of muscle quality and function in older adults, but long-term adherence is low due in part to the high-fat (≥80%), very low carbohydrate (<5%) composition of the diet. When provided in adequate amounts, exogenous ketone esters (KEs) can increase circulating ketones to concentrations that exceed those observed during prolonged fasting or starvation without significant alterations in the diet. Ketone esters first emerged in the mid-1990s and their use in preclinical and clinical research has escalated within the past 10-15 years. We present findings from a narrative review of the existing literature for a proposed hypothesis on the effects of exogenous ketones as a therapeutic for preservation of skeletal muscle and function within the context of sarcopenic obesity and future directions for exploration. Much of the reviewed literature herein examines the mechanisms of the ketone diester (R,S-1,3-butanediol diacetoacetate) on skeletal muscle mass, muscle protein synthesis, and epigenetic regulation in murine models. Additional studies are needed to further examine the key regulatory factors producing these effects in skeletal muscle, examine convergent and divergent effects among different ketone ester formulations, and establish optimal frequency and dosing regimens to translate these findings into humans.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, Texas, United States
| | - Brandon M Roberts
- US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Fulman-Levy H, Cohen-Harazi R, Levi B, Argaev-Frenkel L, Abramovich I, Gottlieb E, Hofmann S, Koman I, Nesher E. Metabolic alterations and cellular responses to β-Hydroxybutyrate treatment in breast cancer cells. Cancer Metab 2024; 12:16. [PMID: 38812058 PMCID: PMC11134656 DOI: 10.1186/s40170-024-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS Using two cancer and one non-cancer breast cell line, we evaluate the effect of β-hydroxybutyrate (βHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of βHb on the gene expression profile. RESULTS Significant effects were observed following treatment by βHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following βHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS Based on our results, we conclude that differential response of cancer cell lines to βHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.
Collapse
Affiliation(s)
- Hadas Fulman-Levy
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Raichel Cohen-Harazi
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Bar Levi
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - Lital Argaev-Frenkel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Sarah Hofmann
- Medical Faculty Mannheim, Heidelberg University, 68167 , Mannheim, Germany
| | - Igor Koman
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| |
Collapse
|
13
|
Mohammed OA, Saber S, Abdel-Reheim MA, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Eleragi AMS, Eltahir HB, Abdalla MO, Bahashwan E, Ibrahim EK, Rezigalla AA, Abdel-Ghany S, Alzokaky AA, Doghish AS, El-Husseiny HM, Alghamdi M, Youssef ME. Tracking the therapeutic efficacy of a ketone mono ester and β-hydroxybutyrate for ulcerative colitis in rats: New perspectives. Toxicol Appl Pharmacol 2024; 486:116943. [PMID: 38677600 DOI: 10.1016/j.taap.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body β-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases β-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous β-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of β-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous β-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma β-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma β-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, University of Bisha, Bisha 61922, Saudi Arabia
| | - Hanan B Eltahir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohamed Osama Abdalla
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | | | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of basic medical sciences, Ibn Sina University for Medical Sciences, Amman 16197, Jordan
| | - Amany A Alzokaky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11231, Egypt.
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Al Qalyubia 13736, Egypt
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
14
|
Deng Y, Chen Q, Wan C, Sun Y, Huang F, Hu Y, Yang K. Microglia and macrophage metabolism: a regulator of cerebral gliomas. Cell Biosci 2024; 14:49. [PMID: 38632627 PMCID: PMC11022384 DOI: 10.1186/s13578-024-01231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Reciprocal interactions between the tumor microenvironment (TME) and cancer cells play important roles in tumorigenesis and progression of glioma. Glioma-associated macrophages (GAMs), either of peripheral origin or representing brain-intrinsic microglia, are the majority population of infiltrating immune cells in glioma. GAMs, usually classified into M1 and M2 phenotypes, have remarkable plasticity and regulate tumor progression through different metabolic pathways. Recently, research efforts have increasingly focused on GAMs metabolism as potential targets for glioma therapy. This review aims to delineate the metabolic characteristics of GAMs within the TME and provide a summary of current therapeutic strategies targeting GAMs metabolism in glioma. The goal is to provide novel insights and therapeutic pathways for glioma by highlighting the significance of GAMs metabolism.
Collapse
Affiliation(s)
- Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinyan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Zhang Y, Li Y. β-hydroxybutyrate inhibits malignant phenotypes of prostate cancer cells through β-hydroxybutyrylation of indoleacetamide-N-methyltransferase. Cancer Cell Int 2024; 24:121. [PMID: 38555451 PMCID: PMC10981303 DOI: 10.1186/s12935-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent cancers in men and is associated with high mortality and disability rates. β-hydroxybutyrate (BHB), a ketone body, has received increasing attention for its role in cancer. However, its role in PCa remains unclear. This study aimed to explore the mechanism and feasibility of BHB as a treatment alternative for PCa. METHODS Colony formation assay, flow cytometry, western blot assay, and transwell assays were performed to determine the effect of BHB on the proliferation and metastasis of PCa cells. Tumor sphere formation and aldehyde dehydrogenase assays were used to identify the impact of BHB or indoleacetamide-N-methyltransferase (INMT) on the stemness of PCa cells. N6-methyladenosine (m6A)-meRIP real-time reverse transcription polymerase chain reaction and dual luciferase assays were conducted to confirm INMT upregulation via the METTL3-m6A pathway. Co-IP assay was used to detect the epigenetic modification of INMT by BHB-mediated β-hydroxybutyrylation (kbhb) and screen enzymes that regulate INMT kbhb. Mouse xenograft experiments demonstrated the antitumor effects of BHB in vivo. RESULTS BHB can inhibit the proliferation, migration, and invasion of PCa cells by suppressing their stemness. Mechanistically, INMT, whose expression is upregulated by the METTL3-m6A pathway, was demonstrated to be an oncogenic gene that promotes the stem-like characteristics of PCa cells. BHB can suppress the malignant phenotypes of PCa by kbhb of INMT, which in turn inhibits INMT expression. CONCLUSIONS Our findings indicate a role of BHB in PCa metabolic therapy, thereby suggesting an epigenetic therapeutic strategy to target INMT in aggressive PCa. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China.
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China
| |
Collapse
|
16
|
Giuliani G, Longo VD. Ketone bodies in cell physiology and cancer. Am J Physiol Cell Physiol 2024; 326:C948-C963. [PMID: 38189128 DOI: 10.1152/ajpcell.00441.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.
Collapse
Affiliation(s)
- Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
17
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
18
|
Liu Y, Fan L, Yang H, Wang D, Liu R, Shan T, Xia X. Ketogenic therapy towards precision medicine for brain diseases. Front Nutr 2024; 11:1266690. [PMID: 38450235 PMCID: PMC10915067 DOI: 10.3389/fnut.2024.1266690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Precision nutrition and nutrigenomics are emerging in the development of therapies for multiple diseases. The ketogenic diet (KD) is the most widely used clinical diet, providing high fat, low carbohydrate, and adequate protein. KD produces ketones and alters the metabolism of patients. Growing evidence suggests that KD has therapeutic effects in a wide range of neuronal diseases including epilepsy, neurodegeneration, cancer, and metabolic disorders. Although KD is considered to be a low-side-effect diet treatment, its therapeutic mechanism has not yet been fully elucidated. Also, its induced keto-response among different populations has not been elucidated. Understanding the ketone metabolism in health and disease is critical for the development of KD-associated therapeutics and synergistic therapy under any physiological background. Here, we review the current advances and known heterogeneity of the KD response and discuss the prospects for KD therapy from a precision nutrition perspective.
Collapse
Affiliation(s)
- Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Danli Wang
- Zhoushan People’s Hospital, Zhoushan, China
| | - Runhan Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Tikun Shan
- Neurosurgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xue Xia
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Pu K, Feng Y, Tang Q, Yang G, Xu C. Review of dietary patterns and gastric cancer risk: epidemiology and biological evidence. Front Oncol 2024; 14:1333623. [PMID: 38444674 PMCID: PMC10912593 DOI: 10.3389/fonc.2024.1333623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Due to rapid research expansion on dietary factors and development of cancer prevention guidelines, the field of dietary pattern and its relationship to cancer risk has gained more focus. Numerous epidemiology studies have reported associations between Gastric Cancer (GC) and both data-driven posteriori dietary pattern and priori dietary pattern defined by predetermined dietary indexes. As dietary patterns have evolved, a series of patterns based on biological markers has advanced, offering deeper insights into the relationship between diet and the risk of cancer. Although researches on dietary patterns and cancer risk are booming, there is limited body of literature focusing specifically on GC. In this study, we compare the similarities and differences among the specific components of dietary patterns and indices, summarize current state of knowledge regarding dietary patterns related to GC and illustrate their potential mechanisms for GC prevention. In conclusion, we offer suggestions for future research based on the emerging themes within this rapidly evolving field.
Collapse
Affiliation(s)
- Ke Pu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yang Feng
- Department of Neurosurgery, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Qian Tang
- Statesboro Office, Southeast Medical Group, Atlanta, GA, United States
| | - Guodong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Udumula MP, Singh H, Rashid F, Poisson L, Tiwari N, Dimitrova I, Hijaz M, Gogoi R, Swenor M, Munkarah A, Giri S, Rattan R. Intermittent fasting induced ketogenesis inhibits mouse epithelial ovarian cancer by promoting antitumor T cell response. iScience 2023; 26:107839. [PMID: 37822507 PMCID: PMC10562806 DOI: 10.1016/j.isci.2023.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023] Open
Abstract
In various cancer models, dietary interventions have been shown to inhibit tumor growth, improve anticancer drug efficacy, and enhance immunity, but no such evidence exists for epithelial ovarian cancer (EOC), the most lethal gynecologic cancer. The anticancer immune responses induced by 16-h intermittent fasting (IF) were studied in mice with EOC. IF consistently reduced metabolic growth factors and cytokines that stimulate tumor growth, creating a tumor-hostile environment. Immune profiling showed that IF dramatically alters anti-cancer immunity by increasing CD4+ and CD8+ cells, Th1 and cytotoxic responses, and metabolic fitness. β-hydroxy butyrate (BHB), a bioactive metabolite produced by IF, partially imitates its anticancer effects by inducing CD8+ effector function. In a direct comparison, IF outperformed exogenous BHB treatment in survival and anti-tumor immune response, probably due to increased ketogenesis. Thus, IF and one of its metabolic mediators BHB suppress EOC growth and sustain a potent anti-tumor T cell response.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Harshit Singh
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Faraz Rashid
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Laila Poisson
- Department of Public Health Services and Center for Bioinformatics and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Irina Dimitrova
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Radhika Gogoi
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Margaret Swenor
- Department of Lifestyle and Functional Medicine, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Adnan Munkarah
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Shailendra Giri
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
- Department of Oncology, Wayne State University, Detroit, MI, USA
- Department of Ob/Gyn, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Nagy S, Petrosky SN, Demory Beckler M, Kesselman MM. The Impact of Modern Dietary Practices on Cancer Risk and Progression: A Systematic Review. Cureus 2023; 15:e46639. [PMID: 37937022 PMCID: PMC10627144 DOI: 10.7759/cureus.46639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Cancer is a leading cause of mortality around the world, despite continued advancements in the management of cancer. Recent research efforts have shifted to evaluating the role that modifiable risk factors play in cancer risk and development, as diet and nutrition have been found to play a significant role in the onset and progression of cancer. As a result, there has been an increasing focus on the impact of dietary modifications on preventing the onset, progression, and reoccurrence of cancer. In this systematic review, data were collected on three common diets, the Mediterranean diet (MD), ketogenic diet (KD), and plant-based diet, to gain insight into the application of these three dietary modification approaches for risk prevention and limitation of cancer burden. Initially, 4,397 articles were identified from three databases (Ovid, Web of Science, and CINHAL). After removing studies based on the exclusion criteria, only 23 studies were eligible to be included in the systematic review of which 15 evaluated the MD, four assessed the ketogenic diet, and four evaluated the plant-based diet. Each article was considered for its methods, procedures, and findings. The findings indicate that dietary interventions may effectively reduce the odds of cancer development and the advancement of diagnosed cancers. With the introduction of the MD, KD, and plant-based diets, significant improvements in lowering cancer development, recurrence-free status, and limiting tumor growth were noted across numerous cancer types. Currently, the MD has been extensively studied in the literature, and amongst the widest variety of cancer types. Additional information and evaluation are required on the ketogenic and plant-based diets to fully understand their impact on the cancer burden across a wider subset of cancers. Clinicians should evaluate and recommend nutritional adaptations to their patients to limit the development of specific cancers and as an adjunctive therapy to traditional pharmacological treatment options for patients with diagnosed cancers.
Collapse
Affiliation(s)
- Stephanie Nagy
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Stephanie N Petrosky
- Nutrition, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
22
|
Nakamura K, Hagihara K, Nagai N, Egashira R, Takeuchi M, Nakano M, Saito H, Moriguchi M, Tonari S, Fujii H, Miyake A, Omae Y, Ashida K. Ketogenic effects of medium chain triglycerides containing formula and its correlation to breath acetone in healthy volunteers: a randomized, double-blinded, placebo-controlled, single dose-response study. Front Nutr 2023; 10:1224740. [PMID: 37829730 PMCID: PMC10566634 DOI: 10.3389/fnut.2023.1224740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
The efficacy of low-carbohydrate, high-fat diets, such as ketogenic diets, for cancer patients is of research interest. We previously demonstrated the efficacy of the ketogenic diet in a case study in which medium-chain triglycerides (MCTs) or MCT-containing formula (ketogenic formula) was used as a supplement to increase blood ketone bodies. However, little is known about the amounts needed to induce ketogenic effects and about the usefulness of monitoring of breath acetone. To investigate the pharmacokinetics of MCTs and their metabolites, blood ketone bodies and breath acetone, 24 healthy subjects received one of four single oral doses of the ketogenic formula (equivalent to 0, 10, 20, and 30 g of MCTs) under fasting conditions. Total blood ketone bodies, β-hydroxybutyrate, octanoic acid, and decanoic acid were increased in a dose-dependent manner. The ketogenic effect was considered to depend on octanoic and decanoic acids, because a positive correlation was observed between them. A strong positive correlation was also observed between total serum ketone bodies and breath acetone at each time points. Therefore, monitoring breath acetone levels seems a less invasive method to predict blood concentrations of ketone bodies during ketogenic diet therapy. Clinical trial registration:https://rctportal.niph.go.jp/en/detail?trial_id=UMIN000032634, UMIN-CTR UMIN000032634.
Collapse
Affiliation(s)
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoko Nagai
- Division of Nutritional Management, Osaka University Hospital, Osaka, Japan
| | - Ryuichiro Egashira
- Department of Advanced Hybrid Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mariko Takeuchi
- Department of Advanced Hybrid Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mai Nakano
- Department of Advanced Hybrid Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hitomi Saito
- Department of Advanced Hybrid Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Misaki Moriguchi
- Department of Advanced Hybrid Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoko Tonari
- Department of Advanced Hybrid Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisako Fujii
- Department of Drug and Food Evaluation, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akimitsu Miyake
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Yusuke Omae
- Co-Creation Center, Meiji Holdings Co., Ltd., Tokyo, Japan
| | - Kinya Ashida
- Co-Creation Center, Meiji Holdings Co., Ltd., Tokyo, Japan
| |
Collapse
|
23
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
24
|
Kishi K, Kuwatani M, Ohnishi Y, Kumaki Y, Kumeta H, Hirata H, Takishin Y, Furukawa R, Nagai K, Yonemura H, Nozawa S, Sugiura R, Kawakubo K, Aizawa T, Sakamoto N. Metabolomics of Duodenal Juice for Biliary Tract Cancer Diagnosis. Cancers (Basel) 2023; 15:4370. [PMID: 37686644 PMCID: PMC10486759 DOI: 10.3390/cancers15174370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The poor prognosis of malignant biliary diseases is partially caused by their difficult early diagnosis. Therefore, many patients are only diagnosed at advanced stages. This study aimed to improve diagnosis by clarifying the differences in the duodenal juice metabolomes of benign and malignant biliary diseases. From October 2021 to January 2023, duodenal juice was obtained from 67 patients with suspected biliary diseases who required endoscopic ultrasonography and endoscopic retrograde cholangiography for diagnosis/treatment. The samples metabolomes were analyzed via nuclear magnet resonance spectroscopy using an 800-MHz spectrometer. Metabolomes of malignant and benign diseases were then compared, and multivariate analysis was performed to determine the relevant factors for malignancy/benignancy. For benignancy, no significant predictors were observed. For malignancy, acetone was a significant predictor, with higher concentrations in the malignant group than in the benign group. Regarding the receiver operating characteristic curve analysis for biliary tract carcinoma diagnosis, the predictive value of acetone in duodenal juice was comparable with serum CA19-9 levels (area under the curve: 0.7330 vs. 0.691, p = 0.697). In conclusion, duodenal juice metabolomics is a feasible method that is available for differential diagnosis in the biliary disease field.
Collapse
Affiliation(s)
- Kazuma Kishi
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Yuki Ohnishi
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Yasuhiro Kumaki
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Hiroyuki Kumeta
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Hajime Hirata
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Yunosuke Takishin
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Ryutaro Furukawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Kosuke Nagai
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Hiroki Yonemura
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Shunichiro Nozawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Ryo Sugiura
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Tomoyasu Aizawa
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| |
Collapse
|
25
|
Catalano L, Aminzadeh-Gohari S, Weber DD, Poupardin R, Stefan VE, Smiles WJ, Tevini J, Feichtinger RG, Derdak S, Bilban M, Bareswill S, Heimesaat MM, Kofler B. Triple Therapy with Metformin, Ketogenic Diet, and Metronomic Cyclophosphamide Reduced Tumor Growth in MYCN-Amplified Neuroblastoma Xenografts. Metabolites 2023; 13:910. [PMID: 37623854 PMCID: PMC10456943 DOI: 10.3390/metabo13080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer in which amplification of the MYCN gene is the most acknowledged marker of poor prognosis. MYCN-amplified NB cells rely on both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) for energy production. Previously, we demonstrated that a ketogenic diet (KD) combined with metronomic cyclophosphamide (CP) delayed tumor growth in MYCN-amplified NB xenografts. The anti-diabetic drug metformin (MET) also targets complex I of the OXPHOS system. Therefore, MET-induced disruptions of mitochondrial respiration may enhance the anti-tumor effect of CP when combined with a KD. In this study, we found that MET decreased cell proliferation and mitochondrial respiration in MYCN-amplified NB cell lines, while the combination of KD, MET, and low-dose CP (triple therapy) also reduced tumor growth and improved survival in vivo in MYCN-amplified NB xenografts. Gene ontology enrichment analysis revealed that this triple therapy had the greatest effect on the transcription of genes involved in fatty acid ß-oxidation, which was supported by the increased protein expression of CPT1A, a key mitochondrial fatty acid transporter. We suspect that alterations to ß-oxidation alongside the inhibition of complex I may hamper mitochondrial energy production, thus explaining these augmented anti-tumor effects, suggesting that the combination of MET and KD is an effective adjuvant therapy to CP in MYCN-amplified NB xenografts.
Collapse
Affiliation(s)
- Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Victoria E. Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - William J. Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Bareswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| |
Collapse
|
26
|
Saber S, Alamri MMS, Alfaifi J, Saleh LA, Abdel-Ghany S, Aboregela AM, Farrag AA, Almaeen AH, Adam MIE, AlQahtani AAJ, Eleragi AMS, Abdel-Reheim MA, Ramadan HA, Mohammed OA. (R,R)-BD-AcAc2 Mitigates Chronic Colitis in Rats: A Promising Multi-Pronged Approach Modulating Inflammasome Activity, Autophagy, and Pyroptosis. Pharmaceuticals (Basel) 2023; 16:953. [PMID: 37513865 PMCID: PMC10384734 DOI: 10.3390/ph16070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Ulcerative colitis is a chronic and incurable form of inflammatory bowel disease that can increase the risk of colitis-associated cancer and mortality. Limited treatment options are available for this condition, and the existing ones often come with non-tolerable adverse effects. This study is the first to examine the potential benefits of consuming (R,R)-BD-AcAc2, a type of ketone ester (KE), and intermittent fasting in treating chronic colitis induced by dextran sodium sulfate (DSS) in rats. We selected both protocols to enhance the levels of β-hydroxybutyrate, mimicking a state of nutritional ketosis and early ketosis, respectively. Our findings revealed that only the former protocol, consuming the KE, improved disease activity and the macroscopic and microscopic features of the colon while reducing inflammation scores. Additionally, the KE counteracted the DSS-induced decrease in the percentage of weight change, reduced the colonic weight-to-length ratio, and increased the survival rate of DSS-insulted rats. KE also showed potential antioxidant activities and improved the gut microbiome composition. Moreover, consuming KE increased the levels of tight junction proteins that protect against leaky gut and exhibited anti-inflammatory properties by reducing proinflammatory cytokine production. These effects were attributed to inhibiting NFκB and NLRP3 inflammasome activation and restraining pyroptosis and apoptosis while enhancing autophagy as revealed by reduced p62 and increased BECN1. Furthermore, the KE may have a positive impact on maintaining a healthy microbiome. To conclude, the potential clinical implications of our findings are promising, as (R,R)-BD-AcAc2 has a greater safety profile and can be easily translated to human subjects.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | | | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Adel Mohamed Aboregela
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alshaimaa A. Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdulrahman H. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Masoud I. E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Ali M. S. Eleragi
- Department of Microbiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Osama A. Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This review presents details about types of ketogenic diet (KD), anticancer mechanisms, and the use of KD in experimental and clinical studies. Studies summarized in this review provide a solid ground for researchers to consider the use of KD to augment conventional treatments. RECENT FINDINGS KD is a dietary pattern composed of high fat, moderate proteins, and very-low-carbohydrate. This diet was suggested to have an anticancer effect and to augment conventional anticancer therapies. KD can target cancer cell by interfering with its metabolism without harming normal cells. SUMMARY Several experimental and clinical studies support the use of KD as adjuvant therapy to treat different cancers.
Collapse
Affiliation(s)
| | - Anfal Al-Dalaeen
- Department of Clinical Nutrition and Dietetics, Faculty of Allied Medical Sciences
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
28
|
Al-Jada DN, Takruri HR, Talib WH. From antiepileptic therapy to promising adjuvant in medical oncology: A historical view of the ketogenic diet. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
29
|
Polachini GM, de Castro TB, Smarra LFS, Henrique T, de Paula CHD, Severino P, López RVM, Carvalho AL, de Mattos Zeri AC, Silva IDCG, Tajara EH. Plasma metabolomics of oral squamous cell carcinomas based on NMR and MS approaches provides biomarker identification and survival prediction. Sci Rep 2023; 13:8588. [PMID: 37237049 DOI: 10.1038/s41598-023-34808-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolomics has proven to be an important omics approach to understand the molecular pathways underlying the tumour phenotype and to identify new clinically useful markers. The literature on cancer has illustrated the potential of this approach as a diagnostic and prognostic tool. The present study aimed to analyse the plasma metabolic profile of patients with oral squamous cell carcinoma (OSCC) and controls and to compare patients with metastatic and primary tumours at different stages and subsites using nuclear magnetic resonance and mass spectrometry. To our knowledge, this is the only report that compared patients at different stages and subsites and replicates collected in diverse institutions at different times using these methodologies. Our results showed a plasma metabolic OSCC profile suggestive of abnormal ketogenesis, lipogenesis and energy metabolism, which is already present in early phases but is more evident in advanced stages of the disease. Reduced levels of several metabolites were also associated with an unfavorable prognosis. The observed metabolomic alterations may contribute to inflammation, immune response inhibition and tumour growth, and may be explained by four nonexclusive views-differential synthesis, uptake, release, and degradation of metabolites. The interpretation that assimilates these views is the cross talk between neoplastic and normal cells in the tumour microenvironment or in more distant anatomical sites, connected by biofluids, signalling molecules and vesicles. Additional population samples to evaluate the details of these molecular processes may lead to the discovery of new biomarkers and novel strategies for OSCC prevention and treatment.
Collapse
Affiliation(s)
- Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Luis Fabiano Soares Smarra
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Carlos Henrique Diniz de Paula
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil.
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Rushing KA, Bolyard ML, Kelty T, Wieschhaus N, Pavela G, Rector RS, Plaisance EP. Dietary ketone ester attenuates the accretion of adiposity and liver steatosis in mice fed a high-fat, high-sugar diet. Front Physiol 2023; 14:1165224. [PMID: 37113697 PMCID: PMC10128912 DOI: 10.3389/fphys.2023.1165224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Objective: The ketone diester, R,S-1,3-butanediol diacetoacetate (BD-AcAc2), attenuates the accretion of adiposity and reduces hepatic steatosis in high-fat diet-induced obese mice when carbohydrate energy is removed from the diet to accommodate energy from the ester. Reducing carbohydrate energy is a potential confounder due to the well-known effects of carbohydrate restriction on components of energy balance and metabolism. Therefore, the current investigation was designed to determine whether the addition of BD-AcAc2 to a high-fat, high-sugar diet (with no reduction in carbohydrate energy) would attenuate the accretion of adiposity and markers of hepatic steatosis and inflammation. Methods: Sixteen 11-week-old male C57BL/6J mice were randomized to one of two groups for 9 weeks (n = 8 per group): 1) Control (CON, HFHS diet) or 2) Ketone ester (KE, HFHS diet + BD-AcAc2, 25% by kcals). Results: Body weight increased by 56% in CON (27.8 ± 2.5 to 43.4 ± 3.7 g, p < 0.001) and by 13% in KE (28.0 ± 0.8 to 31.7 ± 3.1 g, p = 0.001). Non-alcoholic fatty liver disease activity scores (NAS) for hepatic steatosis, inflammation, and ballooning were lower in the KE group compared to CON (p < 0.001 for all). Markers of hepatic inflammation [Tnfα (p = 0.036); Mcp1 (p < 0.001)], macrophage content [(Cd68 (p = 0.012)], and collagen deposition and hepatic stellate cell activation [(αSma (p = 0.004); Col1A1 (p < 0.001)] were significantly lower in the KE group compared to CON. Conclusion: These findings extend those of our previous work and show that BD-AcAc2 attenuates the accretion of adiposity and reduces markers of liver steatosis, inflammation, ballooning, and fibrosis in lean mice placed on a HFHS diet where carbohydrate energy was not removed to accommodate energy from addition of the diester.
Collapse
Affiliation(s)
- Kelsey A. Rushing
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mickey L. Bolyard
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Taylor Kelty
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Nicole Wieschhaus
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Gregory Pavela
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Udumula MP, Singh H, Faraz R, Poisson L, Tiwari N, Dimitrova I, Hijaz M, Gogoi R, Swenor M, Munkarah A, Giri S, Rattan R. Intermittent Fasting induced ketogenesis inhibits mouse epithelial ovarian tumors by promoting anti-tumor T cell response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531740. [PMID: 36945428 PMCID: PMC10028914 DOI: 10.1101/2023.03.08.531740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Epithelial Ovarian Cancer (EOC) is the most lethal gynecologic cancer with limited genetic alterations identified that can be therapeutically targeted. In tumor bearing mice, short-term fasting, fasting mimicking diet and calorie restriction enhance the activity of antineoplastic treatment by modulating systemic metabolism and boosting anti-tumor immunity. We tested the outcome of sixteen-hour intermittent fasting (IF) on mouse EOC progression with focus on fasting driven antitumor immune responses. IF resulted in consistent decrease of tumor promoting metabolic growth factors and cytokines, recapitulating changes that creates a tumor antagonizing environment. Immune profiling revealed that IF profoundly reshapes anti-cancer immunity by inducing increase in CD4+ and CD8+ cells, paralleled by enhanced antitumor Th1 and cytotoxic responses, by enhancing their metabolic fitness. Metabolic studies revealed that IF generated bioactive metabolite BHB which can be a potential substitute for simulating the antitumor benefits of IF. However, in a direct comparison, IF surpassed exogenous BHB therapy in improving survival and activating anti-tumor immune response. Thus, our data provides strong evidence for IF and its metabolic mediator BHB for ameliorating EOC progression and as a viable approach in maintaining and sustaining an effective anti-tumor T cell response.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Harshit Singh
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Rashid Faraz
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Laila Poisson
- Department of Public Health Services and Center for Bioinformatics and Henry Ford Cancer Institute, Detroit, MI
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Irina Dimitrova
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Radhika Gogoi
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI
| | - Margaret Swenor
- Department of Lifestyle and Functional Medicine, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Adnan Munkarah
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Shailendra Giri
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
- Department of Oncology, Wayne State University, Detroit, MI
| |
Collapse
|
32
|
Tamraz M, Al Ghossaini N, Temraz S. The Ketogenic Diet in Colorectal Cancer: A Means to an End. Int J Mol Sci 2023; 24:ijms24043683. [PMID: 36835094 PMCID: PMC9965563 DOI: 10.3390/ijms24043683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Some diets, such as high lipid and high glucose diets, are known to increase the risk of colorectal cancer. On the other hand, little is known about diets that prevent colonic carcinogenesis. The ketogenic diet, which is characterized by high fat and very low carbohydrate content, is one such diet. The ketogenic diet decreases the amount of available glucose for tumors and shifts to the production of ketone bodies as an alternative energy source for healthy cells. Cancer cells are unable to use the ketone bodies for energy thus depriving them of the energy needed for progression and survival. Many studies reported the beneficial effects of the ketogenic diet in several types of cancers. Recently, the ketone body β-hydroxybutyrate has been found to possess anti-tumor potential in colorectal cancer. Despite its beneficial effects, the ketogenic diet also has some drawbacks, some of which are related to gastrointestinal disorders and weight loss. Thus, studies are being directed at this time towards finding alternatives to following a strict ketogenic diet and supplementing patients with the ketone bodies responsible for its beneficial effects in the hope of overcoming some potential setbacks. This article discusses the mechanism by which a ketogenic diet influences growth and proliferation of tumor cells, it sheds the light on the most recent trials regarding its use as an adjunctive measure to chemotherapy in patients with metastatic colorectal cancer, and it explains the limitations of its usage in metastatic patients and the promising role of exogenous ketone supplementation in this setting.
Collapse
Affiliation(s)
- Magie Tamraz
- Department of Nutrition and Dietetics, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon
| | - Najib Al Ghossaini
- Department of Internal Medicine, Ain Wazein Medical Village, Chouf 5841, Lebanon
| | - Sally Temraz
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon
- Correspondence: ; Tel.: +961-1-374374
| |
Collapse
|
33
|
Gu W, Pan Y, Zhao W, Liu J, Meng Y. Metabolic signatures of lymphangioleiomyomatosis in biofluids: nuclear magnetic resonance (NMR)-based metabonomics of blood plasma: a case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:76. [PMID: 36819539 PMCID: PMC9929845 DOI: 10.21037/atm-22-6420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Our aim was to analyze and compare the characteristics and differences of blood metabolites between lymphangioleiomyomatosis (LAM) patients and healthy controls, in order to find biomarkers that can be used for the diagnosis and classification of LAM. Methods Between January 2020 to January 2022, 61 eligible LAM patients [51 sporadic LAM (S-LAM) and 10 tuberous sclerosis complex LAM (TSC-LAM)] from the First Affiliated Hospital of Guangzhou Medical University and 30 healthy controls were enrolled. Blood samples were taken for nuclear magnetic resonance (NMR) detection. Data analysis was performed by the umbrella program, and Wilcoxon analysis was used for comparisons between groups. The difference indicators were modeled by logistic regression. Diagnostic accuracy of the best predictive parameters was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and the sensitivity and specificity were calculated. Results The indexes differed between LAM patients and healthy controls, S-LAM patients and healthy controls, and between TSC-LAM patients and healthy controls. There were two different metabolic indexes between S-LAM and TSC-LAM patients. After logistic regression modeling and ROC analysis, methionine (AUC =0.929, sensitivity =73.8%, specificity =100%, cut-off value =0.011 mmol/L) and acetic acid (AUC =0.966, sensitivity =95.1%, specificity =90%, cut-off value =0.006 mmol/L) had the highest diagnostic efficiency in LAM patients, and could be used to distinguish between affected and healthy people. Methionine was significantly associated with pneumothorax (P<0.05), and creatinine was significantly correlated with hysteromyoma (P<0.05). Conclusions Methionine and acetic acid in the plasma of LAM patients are potential biomarkers. Methionine was also associated with pneumothorax in LAM patients. Also, acetone and creatinine were promising metabolic markers to distinguish S-LAM from TSC-LAM. NMR as a new non-invasive diagnostic method had a good discriminatory power for LAM.
Collapse
Affiliation(s)
- Weili Gu
- Departments of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China;,The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yingxin Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wei Zhao
- Tianjin Key Laboratory of Clinical Multiomics, Tianjin, China
| | - Jie Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ying Meng
- Departments of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
35
|
Suk FM, Wu CY, Chiu WC, Chien CY, Chen TL, Liao YJ. HMGCS2 Mediation of Ketone Levels Affects Sorafenib Treatment Efficacy in Liver Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228015. [PMID: 36432116 PMCID: PMC9697984 DOI: 10.3390/molecules27228015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Primary liver cancer is the fifth leading death of cancers in men, and hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancer cases. Sorafenib is a first-line drug for advanced-stage HCC patients. Sorafenib is a multi-target kinase inhibitor that blocks tumor cell proliferation and angiogenesis. Despite sorafenib treatment extending survival, some patients experience side effects, and sorafenib resistance does occur. 3-Hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketogenesis, which synthesizes the ketone bodies, β-hydroxybutyrate (β-HB) and acetoacetate (AcAc). β-HB is the most abundant ketone body which is present in a 4:1 ratio compared to AcAc. Recently, ketone body treatment was found to have therapeutic effects against many cancers by causing metabolic alternations and cancer cell apoptosis. Our previous publication showed that HMGCS2 downregulation-mediated ketone body reduction promoted HCC clinicopathological progression through regulating c-Myc/cyclin D1 and caspase-dependent signaling. However, whether HMGCS2-regulated ketone body production alters the sensitivity of human HCC to sorafenib treatment remains unclear. In this study, we showed that HMGCS2 downregulation enhanced the proliferative ability and attenuated the cytotoxic effects of sorafenib by activating expressions of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-P38, and p-AKT. In contrast, HMGCS2 overexpression decreased cell proliferation and enhanced the cytotoxic effects of sorafenib in HCC cells by inhibiting ERK activation. Furthermore, we showed that knockdown HMGCS2 exhibited the potential migratory ability, as well as decreasing zonula occludens protein (ZO)-1 and increasing c-Myc expression in both sorafenib-treated Huh7 and HepG2 cells. Although HMGCS2 overexpression did not alter the migratory effect, expressions of ZO-1, c-Myc, and N-cadherin decreased in sorafenib-treated HMGCS2-overexpressing HCC cells. Finally, we investigated whether ketone treatment influences sorafenib sensitivity. We showed that β-HB pretreatment decreased cell proliferation and enhanced antiproliferative effect of sorafenib in both Huh7 and HepG2 cells. In conclusion, this study defined the impacts of HMGCS2 expression and ketone body treatment on influencing the sorafenib sensitivity of liver cancer cells.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Ying Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chia-Ying Chien
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tzu-Lang Chen
- Department of Family Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3333)
| |
Collapse
|
36
|
Roberts BM, Deemer SE, Smith DL, Mobley JA, Musi N, Plaisance EP. Effects of an exogenous ketone ester using multi-omics in skeletal muscle of aging C57BL/6J male mice. Front Nutr 2022; 9:1041026. [PMID: 36458175 PMCID: PMC9707703 DOI: 10.3389/fnut.2022.1041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Exogenous ketone ester supplementation provides a means to increase circulating ketone concentrations without the dietary challenges imposed by ketogenic diets. Our group has shown that oral R,S-1,3, butanediol diacetoacetate (BD-AcAc2) consumption results in body weight loss or maintenance with moderate increases in circulating ketones. We have previously shown a diet consisting of 25% BD-AcAc2 can maintain lean body mass (LBM) and induce fat mass (FM) loss in young, healthy male mice, but the underlying mechanisms are still unknown. Therefore, the purpose of this study was to determine if a diet consisting of 25% BD-AcAc2 (ketone ester, KE) would alter body composition, transcriptional regulation, the proteome, and the lipidome of skeletal muscle in aged mice. We hypothesized that the KE group would remain weight stable with improvements in body composition compared to controls, resulting in a healthy aging phenotype. Male C57BL/6J mice (n = 16) were purchased from Jackson Laboratories at 72 weeks of age. After 1 week of acclimation, mice were weighed and randomly assigned to one of two groups (n = 8 per group): control (CON) or KE. A significant group by time interaction was observed for body weight (P < 0.001), with KE fed mice weighing significantly less than CON. FM increased over time in the control group but was unchanged in the KE group. Furthermore, LBM was not different between CON and KE mice despite KE mice weighing less than CON mice. Transcriptional analysis of skeletal muscle identified 6 genes that were significantly higher and 21 genes that were significantly lower in the KE group compared to CON. Lipidomic analysis of skeletal muscle identified no differences between groups for any lipid species, except for fatty acyl chains in triacylglycerol which was 46% lower in the KE group. Proteomics analysis identified 44 proteins that were different between groups, of which 11 were lower and 33 were higher in the KE group compared to CON. In conclusion, 72-week-old male mice consuming the exogenous KE, BD-AcAc2, had lower age-related gains in body weight and FM compared to CON mice. Furthermore, transcriptional and proteomics data suggest a signature in skeletal muscle of KE-treated mice consistent with markers of improved skeletal muscle regeneration, improved electron transport chain utilization, and increased insulin sensitivity.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah E. Deemer
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
- San Antonio Geriatric Research, Education, and Clinical Center, San Antonio, TX, United States
| | - Eric P. Plaisance
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Eric P. Plaisance,
| |
Collapse
|
37
|
Aird R, Wills J, Roby KF, Bénézech C, Stimson RH, Wabitsch M, Pollard JW, Finch A, Michailidou Z. Hypoxia-driven metabolic reprogramming of adipocytes fuels cancer cell proliferation. Front Endocrinol (Lausanne) 2022; 13:989523. [PMID: 36329893 PMCID: PMC9623062 DOI: 10.3389/fendo.2022.989523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Objective Obesity increases the risk of certain cancers, especially tumours that reside close to adipose tissue (breast and ovarian metastasis in the omentum). The obesogenic and tumour micro-environment share a common pathogenic feature, oxygen deprivation (hypoxia). Here we test how hypoxia changes the metabolome of adipocytes to assist cancer cell growth. Methods Human and mouse breast and ovarian cancer cell lines were co-cultured with human and mouse adipocytes respectively under normoxia or hypoxia. Proliferation and lipid uptake in cancer cells were measured by commercial assays. Metabolite changes under normoxia or hypoxia were measured in the media of human adipocytes by targeted LC/MS. Results Hypoxic cancer-conditioned media increased lipolysis in both human and mouse adipocytes. This led to increased transfer of lipids to cancer cells and consequent increased proliferation under hypoxia. These effects were dependent on HIF1α expression in adipocytes, as mouse adipocytes lacking HIF1α showed blunted responses under hypoxic conditions. Targeted metabolomics of the human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes media revealed that culture with hypoxic-conditioned media from non-malignant mammary epithelial cells (MCF10A) can alter the adipocyte metabolome and drive proliferation of the non-malignant cells. Conclusion Here, we show that hypoxia in the adipose-tumour microenvironment is the driving force of the lipid uptake in both mammary and ovarian cancer cells. Hypoxia can modify the adipocyte metabolome towards accelerated lipolysis, glucose deprivation and reduced ketosis. These metabolic shifts in adipocytes could assist both mammary epithelial and cancer cells to bypass the inhibitory effects of hypoxia on proliferation and thrive.
Collapse
Affiliation(s)
- R. Aird
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - J. Wills
- MRC Institute of Genetics and Molecular Medicine, Edinburgh University, Edinburgh, United Kingdom
| | - K. F. Roby
- University of Kansas Medical Center, Kansas City, Kansas, KS, United States
| | - C. Bénézech
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - R. H. Stimson
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - M. Wabitsch
- University Medical Center Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - J. W. Pollard
- Medical Research Council (MRC) Centre for Reproductive Health, Edinburgh University, Edinburgh, United Kingdom
| | - A. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Z. Michailidou
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Dialysis as a Novel Adjuvant Treatment for Malignant Cancers. Cancers (Basel) 2022; 14:cancers14205054. [PMID: 36291840 PMCID: PMC9600214 DOI: 10.3390/cancers14205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary There is a clear need for new cancer therapies as many cancers have a very short long-term survival rate. For most advanced cancers, therapy resistance limits the benefit of any single-agent chemotherapy, radiotherapy, or immunotherapy. Cancer cells show a greater dependence on glucose and glutamine as fuel than healthy cells do. In this article, we propose using 4- to 8-h dialysis treatments to change the blood composition, i.e., lowering glucose and glutamine levels, and elevating ketone levels—thereby disrupting major metabolic pathways important for cancer cell survival. The dialysis’ impact on cancer cells include not only metabolic effects, but also redox balance, immunological, and epigenetic effects. These pleiotropic effects could potentially enhance the effectiveness of traditional cancer treatments, such as radiotherapies, chemotherapies, and immunotherapies—resulting in improved outcomes and longer survival rates for cancer patients. Abstract Cancer metabolism is characterized by an increased utilization of fermentable fuels, such as glucose and glutamine, which support cancer cell survival by increasing resistance to both oxidative stress and the inherent immune system in humans. Dialysis has the power to shift the patient from a state dependent on glucose and glutamine to a ketogenic condition (KC) combined with low glutamine levels—thereby forcing ATP production through the Krebs cycle. By the force of dialysis, the cancer cells will be deprived of their preferred fermentable fuels, disrupting major metabolic pathways important for the ability of the cancer cells to survive. Dialysis has the potential to reduce glucose levels below physiological levels, concurrently increase blood ketone body levels and reduce glutamine levels, which may further reinforce the impact of the KC. Importantly, ketones also induce epigenetic changes imposed by histone deacetylates (HDAC) activity (Class I and Class IIa) known to play an important role in cancer metabolism. Thus, dialysis could be an impactful and safe adjuvant treatment, sensitizing cancer cells to traditional cancer treatments (TCTs), potentially making these significantly more efficient.
Collapse
|
39
|
Ketogenic Diet in the Treatment of Gliomas and Glioblastomas. Nutrients 2022; 14:nu14183851. [PMID: 36145228 PMCID: PMC9504425 DOI: 10.3390/nu14183851] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, scientific interest in the use of the ketogenic diet (KD) as a complementary approach to the standard cancer therapy has grown, in particular against those of the central nervous system (CNS). In metabolic terms, there are the following differences between healthy and neoplastic cells: neoplastic cells divert their metabolism to anaerobic glycolysis (Warburg effect), they alter the normal mitochondrial functioning, and they use mainly certain amino acids for their own metabolic needs, to gain an advantage over healthy cells and to lead to a pro-oncogenetic effect. Several works in literature speculate which are the molecular targets of KD used against cancer. The following different mechanisms of action will be explored in this review: metabolic, inflammatory, oncogenic and oncosuppressive, ROS, and epigenetic modulation. Preclinical and clinical studies on the use of KD in CNS tumors have also increased in recent years. An interesting hypothesis emerged from the studies about the possible use of a ketogenic diet as a combination therapy along with chemotherapy (CT) and radiotherapy (RT) for the treatment of cancer. Currently, however, clinical data are still very limited but encouraging, so we need further studies to definitively validate or disprove the role of KD in fighting against cancer.
Collapse
|
40
|
Shalamu A, Dong Z, Liu B, Pan L, Cai Y, Liu L, Ma X, Hu K, Sun A, Ge J. Effects of the ketogenic diet in mice with hind limb ischemia. Nutr Metab (Lond) 2022; 19:59. [PMID: 36038886 PMCID: PMC9422126 DOI: 10.1186/s12986-022-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background The ketogenic diet (KD) has anti-tumor and anti-diabetic effects in addition to its anti-epileptic role. It could also improve cardiac function and attenuate neurological insult. However, the effect of KD on blood perfusion or tissue recovery after ischemia remains largely unknown. Thus, we observed blood flow and ischemic tissue recovery following hind limb ischemia (HLI) in mice. Methods C57 mice were fed with either a KD or normal diet (ND) for 2 weeks, before inducing hind limb ischemia, blood perfusion of ischemic limb tissue was observed at 0, 7, and 21 days post operation. Results KD not only decreased blood perfusion of ischemic limb tissue but also delayed muscle recovery after ischemia, induced muscle atrophy of non-ischemic tissue compared to mice fed with ND. Furthermore, KD delayed wound healing at the surgical site and aggravated inflammation of the ischemic tissue. At the cellular level, KD altered the metabolic status of limb tissue by decreasing glucose and ketone body utilization while increasing fatty acid oxidation. Following ischemia, glycolysis, ketolysis, and fatty acid utilization in limb tissue were all further reduced by KD, while ketogenesis was mildly increased post KD in this mice model.
Conclusion The KD may cause impaired tissue recovery after ischemia and possible muscle atrophy under a prolonged diet. Our results hint that patients with limb ischemia should avoid ketogenic diet. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00695-z.
Collapse
Affiliation(s)
- Adilan Shalamu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhen Dong
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bowen Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lihong Pan
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun Cai
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Liwei Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiurui Ma
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Shen S, Iyengar NM. Insulin-Lowering Diets in Metastatic Cancer. Nutrients 2022; 14:nu14173542. [PMID: 36079800 PMCID: PMC9460605 DOI: 10.3390/nu14173542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperinsulinemia is an independent risk factor for cancer mortality. Insulin-lowering dietary strategies such as calorie restriction (CR), low-carbohydrate or ketogenic diets (KD), and intermittent fasting (IF) are aimed at reducing systemic stores of nutrients utilized by cancer cells, attenuating insulin-related growth signaling, and improving obesity-related metabolic parameters. In this narrative review, we searched the published literature for studies that tested various insulin-lowering diets in metastatic cancer in preclinical and clinical settings. A total of 23 studies were identified. Of these, 14 were preclinical studies of dietary strategies that demonstrated improvements in insulin levels, inhibition of metastasis, and/or reduction in metastatic disease burden in animal models. The remaining nine clinical studies tested carbohydrate restriction, KD, or IF strategies which appear to be safe and feasible in patients with metastatic cancer. These approaches have also been shown to improve serum insulin and other metabolic parameters. Though promising, the anti-cancer efficacy of these interventions, such as impact on tumor response, disease-specific-, and overall survival, have not yet been conclusively demonstrated. Studies that are adequately powered to evaluate whether insulin-lowering diets improve cancer outcomes are warranted.
Collapse
Affiliation(s)
- Sherry Shen
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neil M. Iyengar
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
42
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
43
|
Oliva CR, Ali MY, Flor S, Griguer CE. Effect of Expression of Nuclear-Encoded Cytochrome C Oxidase Subunit 4 Isoforms on Metabolic Profiles of Glioma Cells. Metabolites 2022; 12:metabo12080748. [PMID: 36005623 PMCID: PMC9415780 DOI: 10.3390/metabo12080748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although often effective at treating newly diagnosed glioblastoma (GBM), increasing evidence suggests that chemo- and radiotherapy-induced alterations in tumor metabolism promote GBM recurrence and aggressiveness, as well as treatment resistance. Recent studies have demonstrated that alterations in glioma cell metabolism, induced by a switch in the isoform expression of cytochrome c oxidase subunit 4 (COX4), a key regulatory subunit of mammalian cytochrome c oxidase, could promote these effects. To understand how the two COX4 isoforms (COX4-1 and COX4-2) differentially affect glioma metabolism, glioma samples harvested from COX4-1- or COX4-2-overexpressing U251 cells were profiled using Gas chromatography–mass spectrometry GC-MS and Liquid Chromatography - Tandem Mass Spectrometry LC-MS/MS metabolomics platforms. The concentration of 362 metabolites differed significantly in the two cell types. The two most significantly upregulated pathways associated with COX4-1 overexpression were purine and glutathione metabolism; the two most significantly downregulated metabolic pathways associated with COX4-1 expression were glycolysis and fatty acid metabolism. Our study provides new insights into how Cytochrome c oxidase (CcO) regulatory subunits affect cellular metabolic networks in GBM and identifies potential targets that may be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Md Yousuf Ali
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, Department Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Susanne Flor
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
44
|
Evangeliou AE, Spilioti MG, Vassilakou D, Goutsaridou F, Seyfried TN. Restricted Ketogenic Diet Therapy for Primary Lung Cancer With Metastasis to the Brain: A Case Report. Cureus 2022; 14:e27603. [PMID: 36059366 PMCID: PMC9435310 DOI: 10.7759/cureus.27603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/05/2022] Open
Abstract
A high-fat and low-carbohydrate diet was administered as a complementary and alternative therapy to a 54-year-old man suffering from non-small-cell lung cancer (NSCLC) with brain metastasis. Three months after the cessation of chemotherapy and radiotherapy, a ketogenic diet (KD) was initiated. This approach was an attempt to stabilize the disease progression after chemotherapy and radiotherapy. Computed tomography following radiation and chemotherapy showed a reduction in the right frontal lobe lesion from 5.5 cm × 6.2 cm to 4 cm × 2.7 cm, while the mass in the upper-right lung lobe reduced from 6.0 cm × 3.0 cm to 2.0 × 1.8 cm. Two years after KD initiation and without any other therapeutic intervention, the right frontal lobe lesion calcified and decreased in size to 1.9 cm × 1.0 cm, while the size of the lung mass further decreased to 1.7 cm × 1.0 cm. The size of the brain and lung lesion remained stable after nine years of KD therapy. However, dyslipidemia developed after this time which led to the discontinuation of the diet. No tumor relapse or health issues occurred for two years after the discontinuation of the diet. This case report indicates that the inclusion of ketogenic metabolic therapy following radiation and chemotherapy is associated with better clinical and survival outcomes for our patient with metastatic NSCLC.
Collapse
|
45
|
Hatami M, Doaei S, Gholamalizadeh M, Mosavi Jarrahi SA, Mirsafa F, Davoodi SH. Association of calorie and carbohydrate intake with tumour grade in early diagnosis of breast cancer: a case-control study. Arch Physiol Biochem 2022; 128:1111-1114. [PMID: 32374220 DOI: 10.1080/13813455.2020.1754430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND This study aimed to investigate the association of calorie and carbohydrate intake with tumour grade in early detection of breast cancer (BC) in Iranian women. MATERIALS AND METHODS This case-control study carried out on 62 women with high grade BC and 93 women with low grade BC. Information about confounding variables was collected through a questionnaire. Dietary intake of calorie and macronutrients was assessed by a valid 122-item semi-quantitative food frequency questionnaire. RESULTS Individuals with high grade BC had significantly lower calorie (0.16, 0.04-0.61) and higher carbohydrate intake (4.02; 1.28-12.63) compared with those with low grade BC after controlling for age. This correlation remained significant after adjusting for confounding factors. CONCLUSION Our results showed that lower intakes of calorie and higher carbohydrate are directly related to the high grade of tumour at the early detection of people with BC after modifying a wide range of confounding factors.
Collapse
Affiliation(s)
- Mahshid Hatami
- Department of Basic Sciences and Cellular and Molecular Nutrition, Faculty of Nutrition Sciences and Food Technology and National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Mirsafa
- Department of Basic Sciences and Cellular and Molecular Nutrition, Faculty of Nutrition Sciences and Food Technology and National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Basic Sciences and Cellular and Molecular Nutrition, Faculty of Nutrition Sciences and Food Technology and National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
47
|
Langer HT, Ramsamooj S, Liang RJ, Grover R, Hwang SK, Goncalves MD. Systemic Ketone Replacement Does Not Improve Survival or Cancer Cachexia in Mice With Lung Cancer. Front Oncol 2022; 12:903157. [PMID: 35719965 PMCID: PMC9203842 DOI: 10.3389/fonc.2022.903157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cachexia is a debilitating comorbidity affecting many lung cancer patients. We have previously found that cachectic mice with lung cancer have reduced serum ketone body levels due to low PPARα activity in the liver. Restoring hepatic PPARα activity with fenofibrate increased circulating ketones and delayed muscle and white adipose tissue wasting. We hypothesized that the loss of circulating ketones plays a pathophysiologic role in cachexia and performed two dietary intervention studies to test this hypothesis. In the first study, male and female mice were randomized to consume either a very low carbohydrate, ketogenic diet (KD) or normal chow (NC) after undergoing tumor induction. The KD successfully restored serum ketone levels and decreased blood glucose in cachectic mice but did not improve body weight maintenance or survival. In fact, there was a trend for the KD to worsen survival in male but not in female mice. In the second study, we compounded a ketone ester supplement into the NC diet (KE) and randomized tumor-bearing mice to KE or NC after tumor induction. We confirmed that KE was able to acutely and chronically increase ketone body abundance in the serum compared to NC. However, the restoration of ketones in the circulation was not able to improve body weight maintenance or survival in male or female mice with lung cancer. Finally, we investigated PPARα activity in the liver of mice fed KE and NC and found that animals fed a ketone ester supplement showed a significant increase in mRNA expression of several PPARα targets. These data negate our initial hypothesis and suggest that restoring ketone body availability in the circulation of mice with lung cancer does not alter cachexia development or improve survival, despite increasing hepatic PPARα activity.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Shakti Ramsamooj
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Roger J Liang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Rahul Grover
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Seo-Kyoung Hwang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States.,Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
48
|
Zuo Q, Park NH, Lee JK, Madak Erdogan Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022; 14:2376. [PMID: 35745105 PMCID: PMC9228756 DOI: 10.3390/nu14122376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
The median overall survival of patients with metastatic breast cancer is only 2-3 years, and for patients with untreated liver metastasis, it is as short as 4-8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via a dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
49
|
Bielecka-Wajdman AM, Ludyga T, Smyk D, Smyk W, Mularska M, Świderek P, Majewski W, Mullins CS, Linnebacher M, Obuchowicz E. Glucose Influences the Response of Glioblastoma Cells to Temozolomide and Dexamethasone. Cancer Control 2022; 29:10732748221075468. [PMID: 35225010 PMCID: PMC8891890 DOI: 10.1177/10732748221075468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective Current research indicates that weakness of glucose metabolism plays an important role in silencing of invasiveness and growth of hypoxic tumors such as GBM. Moreover, there are indications that DXM, frequently used in treatment, may support GBM energy metabolism and provoke its recurrence. Methods We carried out in vitro experiments on the commercial T98G cell line and two primary GBM lines (HROG02, HROG17) treated with TMZ and/or DXM in physiological oxygen conditions for GBM (2.5% oxygen) and for comparison, in standard laboratory conditions (20% oxygen). The influence of different glucose levels on selected malignancy features of GBM cells-cellular viability and division, dynamic of cell culture changes, colony formation and concentration of InsR have been elevated. Results Under 2.5% oxygen and high glucose concentration, an attenuated cytotoxic effect of TMZ and intensification of malignancy features in all glioblastoma cell lines exposed to DXM was seen. Furthermore, preliminary retrospective analysis to assess the correlation between serum glucose levels and Ki-67 expression in surgical specimens derived from patients with GBM (IV) treated with radio-chemotherapy and prophylactic DXM therapy was performed. Conclusion The data suggest a link between the in vitro study results and clinical data. High glucose can influence on GBM progression through the promotion of the following parameters: cell viability, dispersal, InsR expression and cell proliferation (Ki-67). However, this problem needs more studies and explain the mechanism of action studied drugs.
Collapse
Affiliation(s)
- Anna M Bielecka-Wajdman
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
- Anna Bielecka-Wajdman, Department of Pharmacology, Medical University of Silesia, Medyków 18, Katowice 40-055, Poland.
| | - Tomasz Ludyga
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daria Smyk
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Smyk
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Mularska
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Świderek
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Majewski
- Department of Radiotherapy, Maria Sklodowska-Curie Institute Oncology Center, Branch in Gliwice, Gliwice, Poland
| | | | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
50
|
Yang L, TeSlaa T, Ng S, Nofal M, Wang L, Lan T, Zeng X, Cowan A, McBride M, Lu W, Davidson S, Liang G, Oh TG, Downes M, Evans R, Von Hoff D, Guo JY, Han H, Rabinowitz JD. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. MED 2022; 3:119-136. [PMID: 35425930 PMCID: PMC9004683 DOI: 10.1016/j.medj.2021.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Ketogenic diet is a potential means of augmenting cancer therapy. Here, we explore ketone body metabolism and its interplay with chemotherapy in pancreatic cancer. Methods Metabolism and therapeutic responses of murine pancreatic cancer were studied using KPC primary tumors and tumor chunk allografts. Mice on standard high-carbohydrate diet or ketogenic diet were treated with cytotoxic chemotherapy (nab-paclitaxel, gemcitabine, cisplatin). Metabolic activity was monitored with metabolomics and isotope tracing, including 2H- and 13C-tracers, liquid chromatography-mass spectrometry, and imaging mass spectrometry. Findings Ketone bodies are unidirectionally oxidized to make NADH. This stands in contrast to the carbohydrate-derived carboxylic acids lactate and pyruvate, which rapidly interconvert, buffering NADH/NAD. In murine pancreatic tumors, ketogenic diet decreases glucose's concentration and tricarboxylic acid cycle contribution, enhances 3-hydroxybutyrate's concentration and tricarboxylic acid contribution, and modestly elevates NADH, but does not impact tumor growth. In contrast, the combination of ketogenic diet and cytotoxic chemotherapy substantially raises tumor NADH and synergistically suppresses tumor growth, tripling the survival benefits of chemotherapy alone. Chemotherapy and ketogenic diet also synergize in immune-deficient mice, although long-term growth suppression was only observed in mice with an intact immune system. Conclusions Ketogenic diet sensitizes murine pancreatic cancer tumors to cytotoxic chemotherapy. Based on these data, we have initiated a randomized clinical trial of chemotherapy with standard versus ketogenic diet for patients with metastatic pancreatic cancer (NCT04631445).
Collapse
Affiliation(s)
- Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tara TeSlaa
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Serina Ng
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michel Nofal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lin Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 5 Dong Dan San Tiao, Dongcheng District, Beijing 100005, China
| | - Taijin Lan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xianfeng Zeng
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexis Cowan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthew McBride
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gaoyang Liang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Daniel Von Hoff
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
- Lead contact
| |
Collapse
|