1
|
Bilal H, Khan MN, Khan S, Shafiq M, Fang W, Zeng Y, Guo Y, Li X, Zhao B, Lv QL, Xu B. Fungal Influences on Cancer Initiation, Progression, and Response to Treatment. Cancer Res 2025; 85:413-423. [PMID: 39589783 DOI: 10.1158/0008-5472.can-24-1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Fungal dysbiosis is increasingly recognized as a key factor in cancer, influencing tumor initiation, progression, and treatment outcomes. This review explores the role of fungi in carcinogenesis, with a focus on mechanisms such as immunomodulation, inflammation induction, tumor microenvironment remodeling, and interkingdom interactions. Fungal metabolites are involved in oncogenesis, and antifungals can interact with anticancer drugs, including eliciting potential adverse effects and influencing immune responses. Furthermore, mycobiota profiles have potential as diagnostic and prognostic biomarkers, emphasizing their clinical relevance. The interplay between fungi and cancer therapies can affect drug resistance, therapeutic efficacy, and risk of invasive fungal infections associated with targeted therapies. Finally, emerging strategies for modulating mycobiota in cancer care are promising approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Hazrat Bilal
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Muhammad Nadeen Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Pharmacology, Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuebin Zeng
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yangzhong Guo
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Xiaohui Li
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Bing Zhao
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Bin Xu
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| |
Collapse
|
2
|
Higham J, Scannapieco FA. Epidemiological associations between periodontitis and cancer. Periodontol 2000 2024; 96:74-82. [PMID: 39302022 DOI: 10.1111/prd.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/22/2024]
Abstract
There is a postulated association of periodontitis with a number of human cancers. This narrative review provides current epidemiological evidence on the association between periodontitis and cancer. A PubMed search with the relevant keywords (periodontal disease, periodontitis, cancer, and malignancy) was completed to identify relevent articles. We present a narrative review on the association between periodontal disease and a range of cancers, including oral cancer, stomach and esophageal cancer, colorectal cancer, lung cancer, pancreatic cancer, prostate cancer, hematological malignancies, liver cancer, breast cancer, and ovarian cancer. While there is a considerable body of epidemiological evidence that supports the association between periodontal disease and cancer, this is largely from cohort and case-control studies and the association may therefore be circumstantial as little evidence exists in the form of treatment trials that would validate the role of periodontal disease in the process of cancer initiation and development.
Collapse
Affiliation(s)
- Jon Higham
- Department of Oral Medicine, Birmingham Dental Hospital and School of Dentistry, Birmingham, UK
| | - Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Madugula S, Dhamodhar D, D P, R S, M R, S S, Devdoss P, Jayaraman Y. Oral dysbiosis and risk of gastrointestinal cancers: A systematic review and meta-analysis of longitudinal studies. Indian J Gastroenterol 2024; 43:729-739. [PMID: 38767806 DOI: 10.1007/s12664-024-01546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Poor oral health and oral dysbiosis were found to be associated with cancers, especially of the gastrointestinal (GI) system. But the cause-and-effect relationship and the effect of the risk are not yet known due to scarcity of literature. Understanding such risk relationship can contribute to an integrated multi-disciplinary approach for GI cancer prevention. AIM The aim of the present systematic review and meta-analysis is to assess the role of oral dysbiosis on increasing the risk of digestive system cancers. OBJECTIVE To evaluate the effect of poor oral health on increasing the risk of gastrointestinal cancers. METHODS We conducted a systematic search following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in databases PubMed, Elsevier, Wiley's online library and Web of Science from inception to February 2023 to include recent cohort studies that assessed the association between poor oral health and the risk of cancer. We assessed bias using the New Castle Ottawa scale. We used inferential statistics to describe the effect of oral dysbiosis on gastrointestinal cancers. We performed a sub-group analysis to assess the effect of oral conditions on individual cancers. RESULTS We included 10 longitudinal studies in the meta-analysis. The overall effect size of poor oral health and GI cancer risk was hazard's ratio (HR) =1.30 (95% CI: [1.14, 1.46]) (p<0.001) (I2 = 68.78). Sub-group analysis indicated that poor oral health increases the risk of esophageal cancer HR=1.61 (95% CI: [1.37, 1.85]), stomach cancer HR=1.33 (95% CI: [1.08, 1.58]), pancreatic cancer HR=1.90 (95% CI; [1.29, 2.50]) and colorectal and hepatocellular carcinoma HR=1.16 (95% CI: [1.08, 1.23]). CONCLUSION The meta-analysis indicated that poor oral health was significantly associated with increasing the risk of GI cancers.
Collapse
Affiliation(s)
| | - Dinesh Dhamodhar
- Public Health Dentistry, SRM Dental College, Chennai, 600 089, India
| | - Prabu D
- Public Health Dentistry, SRM Dental College, Chennai, 600 089, India.
| | - Sindhu R
- Public Health Dentistry, SRM Dental College, Chennai, 600 089, India
| | - Rajmohan M
- Public Health Dentistry, SRM Dental College, Chennai, 600 089, India
| | - Sathiyapriya S
- Public Health Dentistry, SRM Dental College, Chennai, 600 089, India
| | - Premkumar Devdoss
- Department of Medical Oncology, Govt. Arignar Anna Memorial Cancer Hospital, Kanchipuram, 631 552, India
| | - Yuvaraj Jayaraman
- National Institute of Epidemiology, Ayapakkam, Chennai, 600 077, India
| |
Collapse
|
4
|
Sidiropoulos T, Dovrolis N, Katifelis H, Michalopoulos NV, Kokoropoulos P, Arkadopoulos N, Gazouli M. Dysbiosis Signature of Fecal Microbiota in Patients with Pancreatic Adenocarcinoma and Pancreatic Intraductal Papillary Mucinous Neoplasms. Biomedicines 2024; 12:1040. [PMID: 38791002 PMCID: PMC11117863 DOI: 10.3390/biomedicines12051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer (PC) ranks as the seventh leading cause of cancer-related deaths, with approximately 500,000 new cases reported in 2020. Existing strategies for early PC detection primarily target individuals at high risk of developing the disease. Nevertheless, there is a pressing need to identify innovative clinical approaches and personalized treatments for effective PC management. This study aimed to explore the dysbiosis signature of the fecal microbiota in PC and potential distinctions between its Intraductal papillary mucinous neoplasm (IPMN) and pancreatic ductal adenocarcinoma (PDAC) phenotypes, which could carry diagnostic significance. The study enrolled 33 participants, including 22 diagnosed with PDAC, 11 with IPMN, and 24 healthy controls. Fecal samples were collected and subjected to microbial diversity analysis across various taxonomic levels. The findings revealed elevated abundances of Firmicutes and Proteobacteria in PC patients, whereas healthy controls exhibited higher proportions of Bacteroidota. Both LEfSe and Random Forest analyses indicated the microbiome's potential to effectively distinguish between PC and healthy control samples but fell short of differentiating between IPMN and PDAC samples. These results contribute to the current understanding of this challenging cancer type and highlight the applications of microbiome research. In essence, the study provides clear evidence of the gut microbiome's capability to serve as a biomarker for PC detection, emphasizing the steps required for further differentiation among its diverse phenotypes.
Collapse
Affiliation(s)
- Theodoros Sidiropoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| | - Nikolaos V. Michalopoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Panagiotis Kokoropoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| |
Collapse
|
5
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
6
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
7
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
9
|
Bruno JS, Fregnani ER. Oral microbiome as a new research-target for supportive care and precision oncology. Curr Opin Oncol 2023; 35:276-281. [PMID: 37222190 DOI: 10.1097/cco.0000000000000947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE OF REVIEW A growing number of studies demonstrate the oral bacterial shift in cancer patients and the enrichment of oral bacteria in distant tumours. During the oncological treatment, opportunistic oral bacteria correlate with oral toxicities. This review focused on the most recent studies to identify which genera are the most mentioned and deserved further investigation. RECENT FINDINGS This review evaluated bacterial changes in patients with head and neck, colorectal, lung and breast cancer. Greater composition of disease-related genera (e.g., Fusobacterium , Porphyromonas , Lactobacillus , Streptococcus , and Parvimonas ) are present in the oral cavity of these groups of patients. The tumour specimen characterisation of head and neck, pancreatic and colorectal cancer also describes the presence of oral taxa. No evidence indicates that commensal oral bacteria have protective roles in distant tumours. Regardless, oral care is critical to prevent the growth of oral pathogens and reduce infection foci. SUMMARY Recent evidence suggests that oral microbiota is a potential biomarker for oncological clinical outcomes and oral toxicities. Currently, the literature presents a remarkable methodological variety - from the sample collection site to the preference of the data analysis tools. For the oral microbiome to achieve the stage of being used as a clinical tool in the oncological context, more studies are necessary.
Collapse
|
10
|
McKinley KNL, Herremans KM, Riner AN, Vudatha V, Freudenberger DC, Hughes SJ, Triplett EW, Trevino JG. Translocation of Oral Microbiota into the Pancreatic Ductal Adenocarcinoma Tumor Microenvironment. Microorganisms 2023; 11:1466. [PMID: 37374966 PMCID: PMC10305341 DOI: 10.3390/microorganisms11061466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Oral dysbiosis has long been associated with pancreatic ductal adenocarcinoma (PDAC). In this work, we explore the relationship between the oral and tumor microbiomes of patients diagnosed with PDAC. Salivary and tumor microbiomes were analyzed using a variety of sequencing methods, resulting in a high prevalence and relative abundance of oral bacteria, particularly Veillonella and Streptococcus, within tumor tissue. The most prevalent and abundant taxon found within both saliva and tumor tissue samples, Veillonella atypica, was cultured from patient saliva, sequenced and annotated, identifying genes that potentially contribute to tumorigenesis. High sequence similarity was observed between sequences recovered from patient matched saliva and tumor tissue, indicating that the taxa found in PDAC tumors may derive from the mouth. These findings may have clinical implications in the care and treatment of patients diagnosed with PDAC.
Collapse
Affiliation(s)
- Kelley N. L. McKinley
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Kelly M. Herremans
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Andrea N. Riner
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Vignesh Vudatha
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
| | - Devon C. Freudenberger
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Jose G. Trevino
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
11
|
Bastos AR, Pereira-Marques J, Ferreira RM, Figueiredo C. Harnessing the Microbiome to Reduce Pancreatic Cancer Burden. Cancers (Basel) 2023; 15:cancers15092629. [PMID: 37174095 PMCID: PMC10177253 DOI: 10.3390/cancers15092629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer mortality is expected to rise in the next decades. This aggressive malignancy has a dismal prognosis due to late diagnosis and resistance to treatment. Increasing evidence indicates that host-microbiome interactions play an integral role in pancreatic cancer development, suggesting that harnessing the microbiome might offer promising opportunities for diagnostic and therapeutic interventions. Herein, we review the associations between pancreatic cancer and the intratumoral, gut and oral microbiomes. We also explore the mechanisms with which microbes influence cancer development and the response to treatment. We further discuss the potentials and limitations of using the microbiome as a target for therapeutic interventions, in order to improve pancreatic cancer patient outcomes.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Pereira-Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
12
|
Liao Y, Zhang JB, Lu LX, Jia YJ, Zheng MQ, Debelius JW, He YQ, Wang TM, Deng CM, Tong XT, Xue WQ, Cao LJ, Wu ZY, Yang DW, Zheng XH, Li XZ, Wu YX, Feng L, Ye W, Mu J, Jia WH. Oral Microbiota Alteration and Roles in Epstein-Barr Virus Reactivation in Nasopharyngeal Carcinoma. Microbiol Spectr 2023; 11:e0344822. [PMID: 36645283 PMCID: PMC9927204 DOI: 10.1128/spectrum.03448-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 01/17/2023] Open
Abstract
Microbiota has recently emerged as a critical factor associated with multiple malignancies. Nasopharyngeal carcinoma (NPC) is highly associated with Epstein-Barr virus (EBV); the oncovirus resides and is transmitted in the oral cavity. However, the alternation of oral microbiota in NPC patients and its potential link to EBV reactivation and host cell response under the simultaneous existence of EBV and specific bacteria is largely unknown. Here, oral microbiota profiles of 303 NPC patients and controls with detailed clinical information, including serum EBV anti-virus capsid antigen (VCA) IgA level, were conducted. A distinct microbial community with lower diversity and imbalanced composition in NPC patients was observed. Notably, among enriched bacteria in patients, Streptococcus sanguinis was associated with anti-VCA IgA, an indicator of NPC risk and EBV reactivation. By measuring the concentration of its metabolite, hydrogen peroxide (H2O2), in the saliva of clinical patients, we found the detection rate of H2O2 was 2-fold increased compared to healthy controls. Further coculture assay of EBV-positive Akata cells with bacteria in vitro showed that S. sanguinis induced EBV lytic activation by its metabolite, H2O2. Host and EBV whole genome-wide transcriptome sequencing and EBV methylation assays showed that H2O2 triggered the host cell signaling pathways, notably tumor necrosis factor alpha (TNF-α) via NF-κB, and induced the demethylation of the global EBV genome and the expression of EBV lytic-associated genes, which could result in an increase of virus particle release and potential favorable events toward tumorigenesis. In brief, our study identified a characterized oral microbial profile in NPC patients and established a robust link between specific oral microbial alteration and switch of latency to lytic EBV infection status in the oral cavity, which provides novel insights into EBV's productive cycle and might help to further clarify the etiology of NPC. IMPORTANCE EBV is classified as the group I human carcinogen and is associated with multiple cancers, including NPC. The interplays between the microbiota and oncovirus in cancer development remain largely unknown. In this study, we investigate the interactions between resident microbes and EBV coexistence in the oral cavity of NPC patients. We identify a distinct oral microbial feature for NPC patients. Among NPC-enriched bacteria, we illustrated that a specific species, S. sanguinis, associated with elevated anti-IgA VCA in patients, induced EBV lytic activation by its by-product, H2O2, and activated the TNF-α/NF-κB pathway of EBV-positive B cells in vitro, together with increased detection rate of H2O2 in patients' oral cavities, which strengthened the evidence of bacteria-virus-host interaction in physiological circumstances. The effects of imbalanced microbiota on the EBV latent-to-lytic switch in the oral cavity might create the likelihood of EBV infection in epithelial cells at the nasopharynx and help malignant transition and cancer development.
Collapse
Affiliation(s)
- Ying Liao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jiang-Bo Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li-Xia Lu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Jing Jia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Mei-Qi Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Justine W. Debelius
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yong-Qiao He
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Tong-Min Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Chang-Mi Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xia-Ting Tong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Qiong Xue
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lian-Jing Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zi-Yi Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Da-Wei Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Hui Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xi-Zhao Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan-Xia Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lin Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Wei-Hua Jia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
He F, Luo H, Yin L, Roosaar A, Axéll T, Zhao H, Ye W. Poor Oral Health as a Risk Factor for Dementia in a Swedish Population: A Cohort Study with 40 Years of Follow-Up. J Alzheimers Dis 2023; 92:171-181. [PMID: 36710668 DOI: 10.3233/jad-215177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Whether poor oral health is associated with dementia risk remains unclear. OBJECTIVE We conducted a cohort study of 14,439 participants who were followed up for up to 40 years in Uppsala County, central Sweden, aiming to explore the association between poor oral health, namely the number of tooth loss, dental plaque status, and oral mucosal lesions, and the risk of dementia. METHODS We used Cox proportional hazards regression model to derive cause-specific hazard ratios (HR) and corresponding 95% confidence intervals (CI), while adjusting for baseline potential confounders as well as a time-varying covariate, Charlson's Comorbidity Index score. RESULTS Dementia risk was substantially higher among those with a higher number of tooth loss; compared to the group with tooth loss 0-10, the HRs were 1.21 (95% CI: 1.02, 1.42), 1.17 (95% CI: 0.97, 1.40), and 1.30 (95% CI: 1.09, 1.54) respectively for groups with increasing number of tooth loss. There was some evidence of dose-risk association in this study, with a HR of 1.10 (1.04, 1.18) comparing adjacent groups (ptrend = 0.001). In a stratified analysis by attained age, tooth loss was more pronouncedly associated with the risk of dementia onset before age 80 (those with 21-32 versus 0-10 lost teeth, HR = 1.82, (95% CI: 1.32, 2.51); HR = 1.22 (95% CI: 1.10, 1.35) comparing adjacent groups, ptrend < 0.001). CONCLUSION In summary, there are some indications that poor oral health, as indicated by more tooth loss, is positively associated with an increased risk of dementia, especially for dementia onset before age 80.
Collapse
Affiliation(s)
- Fei He
- Department of Epidemiology and Health Statistics, Fujian Medical University, Fuzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Huizi Luo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Li Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ann Roosaar
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tony Axéll
- Maxillofacial Unit, Halland Hospital Halmstad, Halmstad, Sweden
| | - Hongwei Zhao
- Department of Epidemiology and Biostatistics, Texas A & M University, College Station, TX, USA
| | - Weimin Ye
- Department of Epidemiology and Health Statistics, Fujian Medical University, Fuzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Poor dental health and risk of pancreatic cancer: a nationwide registry-based cohort study in Sweden, 2009-2016. Br J Cancer 2022; 127:2133-2140. [PMID: 36273086 PMCID: PMC9726876 DOI: 10.1038/s41416-022-02018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Previous studies have reported inconsistent results regarding the association between poor dental health and pancreatic cancer risk. This study aimed to assess this association using a well-functioning nationwide dental health registry in Sweden. METHODS Information of exposures (dental caries, root canal infection, mild inflammation, and periodontitis; the number of teeth) was ascertained from the Swedish Dental Health Register, and occurrence of pancreatic cancer was identified from both cancer and cause of death registries. Hazard ratios (HRs) were estimated using Cox models. RESULTS During a median of 7.2 years of follow-up, 10,081 pancreatic cancers were identified among 5,889,441 individuals. Compared with the healthy status, a higher risk of pancreatic cancer was observed in individuals with root canal infection, mild inflammation, and periodontitis in the <50 age group (P for trend <0.001). In the 50-70 age group, only the subgroup with periodontitis had an excess risk (multivariable-adjusted HR = 1.20, 95% confidence interval [CI] 1.11-1.29). No positive association with statistical significance was observed in the 70+ age group. Individuals with fewer teeth tended to have a higher risk in all age groups. CONCLUSIONS Our results confirmed the association between poor dental health and pancreatic cancer risk, which warrants further studies on underlying mechanisms.
Collapse
|
15
|
Wei A, Zhao H, Cong X, Wang L, Chen Y, Gou J, Hu Z, Hu X, Tian Y, Li K, Deng Y, Zuo H, Fu MR. Oral mycobiota and pancreatic ductal adenocarcinoma. BMC Cancer 2022; 22:1251. [PMID: 36460974 PMCID: PMC9716801 DOI: 10.1186/s12885-022-10329-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Early detection of pancreatic ductal adenocarcinoma (PDAC) is essential for survival. Preliminary research demonstrated significant associations between structural alternation of mycobiota and PDAC. In this study, we investigated the associations between oral mycobiota and PDAC. We further explored mycobiota biomarkers for PDAC detection. We enrolled 34 PDAC patients and 35 matched healthy controls from West China hospital in Southwest China. Demographic data, clinical information, and salivary samples were collected. Mycobiota characteristics were defined using Internal Transcribed Spacer (ITS) ribosomal RNA sequencing. We found that the PDAC patients had significant increase in fungal abundance (P < 0.001) and significant decrease in fungal diversity (P < 0.001) in comparison to the healthy controls. A higher abundance of Basidiomycota and Unclassifed_p_Ascomycota was associated with an increased risk of PDAC. With each increase of abundance of g__unclassified_k__Fungi and g__unclassified_p__Ascomycota in PDAC patients, the risk of pancreatic cancer increased by 1.359 odds and 1.260 odds, respectively. Aspergillus (AUC = 0.983, 95% CI 0.951-1.000) and Cladosporium (AUC = 0.969, 95% CI 0.921-1.000) achieved high classification powers to distinguish PDAC patients from the healthy controls. The rapid, inexpensive tests of ITS1 sequencing of mycobiota and PCR detection of potential fungal biomarkers make it promising for the clinical practice to use oral microbes for PDAC early detection and prevention. Results of our study provide evidence that salivary mycobiota may provide insights into cancer risk, prevention, and detection.
Collapse
Affiliation(s)
- Ailin Wei
- Guang’an People’s Hospital, Sichuan Province, Guang’an, 638001 China
| | - Huiling Zhao
- grid.13291.380000 0001 0807 1581West China School of Nursing/Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| | - Xue Cong
- grid.13291.380000 0001 0807 1581West China School of Public Health/West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041 Sichuan China
| | - Linyao Wang
- grid.13291.380000 0001 0807 1581West China School of Public Health/West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041 Sichuan China
| | - Yiyang Chen
- grid.13291.380000 0001 0807 1581West China School of Public Health/West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041 Sichuan China
| | - Juxiang Gou
- grid.13291.380000 0001 0807 1581West China School of Nursing/West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| | - Ziyi Hu
- grid.13291.380000 0001 0807 1581West China School of Nursing/West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| | - Xiuying Hu
- grid.13291.380000 0001 0807 1581West China School of Nursing/West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| | - Yali Tian
- grid.13291.380000 0001 0807 1581West China School of Nursing/West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| | - Ka Li
- grid.13291.380000 0001 0807 1581West China School of Nursing/West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| | - Yufeng Deng
- grid.13291.380000 0001 0807 1581West China School of Public Health/West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041 Sichuan China
| | - Haojiang Zuo
- grid.13291.380000 0001 0807 1581West China School of Public Health/West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu, 610041 Sichuan China ,grid.13291.380000 0001 0807 1581West China School of Nursing/West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| | - Mei Rosemary Fu
- grid.430387.b0000 0004 1936 8796Rutgers University, School of Nursing–Camden, 530 Federal Street, Camden, NJ 08102 USA
| |
Collapse
|
16
|
Associations Between Poor Oral Hygiene and Risk of Pancreatic Cancer: A Meta-analysis of Observational Studies. Pancreas 2022; 51:985-994. [PMID: 36607944 PMCID: PMC9835655 DOI: 10.1097/mpa.0000000000002143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Epidemiological studies have reported the association of poor oral hygiene, especially periodontal disease, and tooth loss with the risk of pancreatic cancer (PC). However, these studies have yielded inconsistent results. Therefore, this systematic review and meta-analysis aimed to investigate the relationship between oral disease and PC. METHODS We systematically searched the PubMed, Embase, and Cochrane Library databases for English literature since inception through May 2021. We used relative risks, hazard ratios, or odds ratios to measure the association between oral disease and PC. A fixed- or random-effects model was applied to evaluate pooled risk estimates, and sensitivity and subgroup analyses were performed to identify sources of heterogeneity and pooled estimation. RESULTS We identified 17 relevant observational studies involving 1,352,256 participants. Notably, oral disease correlated significantly with PC (hazard ratio [HR], 1.32; 95% confidence interval [CI], 1.13-1.54). In subgroup analyses, subjects with periodontal disease (HR, 1.38; 95% CI, 1.12-1.71) had a higher risk of developing PC than those with tooth loss (HR, 1.19; 95% CI, 0.97-1.46). CONCLUSIONS The results suggest that subjects with oral disease may face a significant and independent risk of PC. However, the mechanisms linking oral disease and PC are uncertain, and additional investigations of this correlation are warranted.
Collapse
|
17
|
Herremans KM, Riner AN, Cameron ME, McKinley KL, Triplett EW, Hughes SJ, Trevino JG. The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine. MICROBIOME 2022; 10:93. [PMID: 35701831 PMCID: PMC9199224 DOI: 10.1186/s40168-022-01262-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/23/2022] [Indexed: 05/09/2023]
Abstract
Pancreatic cancer is a deadly disease with limited diagnostic and treatment options. Not all populations are affected equally, as disparities exist in pancreatic cancer prevalence, treatment and outcomes. Recently, next-generation sequencing has facilitated a more comprehensive analysis of the human oral microbiome creating opportunity for its application in precision medicine. Oral microbial shifts occur in patients with pancreatic cancer, which may be appreciated years prior to their diagnosis. In addition, pathogenic bacteria common in the oral cavity have been found within pancreatic tumors. Despite these findings, much remains unknown about how or why the oral microbiome differs in patients with pancreatic cancer. As individuals develop, their oral microbiome reflects both their genotype and environmental influences. Genetics, race/ethnicity, smoking, socioeconomics and age affect the composition of the oral microbiota, which may ultimately play a role in pancreatic carcinogenesis. Multiple mechanisms have been proposed to explain the oral dysbiosis found in patients with pancreatic cancer though they have yet to be confirmed. With a better understanding of the interplay between the oral microbiome and pancreatic cancer, improved diagnostic and therapeutic approaches may be implemented to reduce healthcare disparities. Video Abstract.
Collapse
Affiliation(s)
- Kelly M. Herremans
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Andrea N. Riner
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Miles E. Cameron
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Kelley L. McKinley
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611-0700 USA
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611-0700 USA
| | - Steven J. Hughes
- Department of Surgery, University of Florida College of Medicine, P.O. Box 100286, Gainesville, FL 32610 USA
| | - Jose G. Trevino
- Division of Surgical Oncology, Virginia Commonwealth University, 1200 E Broad St, Richmond, VA 23298-0645 USA
| |
Collapse
|
18
|
Könönen E, Gursoy UK. Oral Prevotella Species and Their Connection to Events of Clinical Relevance in Gastrointestinal and Respiratory Tracts. Front Microbiol 2022; 12:798763. [PMID: 35069501 PMCID: PMC8770924 DOI: 10.3389/fmicb.2021.798763] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Prevotella is recognized as one of the core anaerobic genera in the oral microbiome. In addition, members of this genus belong to microbial communities of the gastrointestinal and respiratory tracts. Several novel Prevotella species, most of them of oral origin, have been described, but limited knowledge is still available of their clinical relevance. Prevotella melaninogenica is among the anaerobic commensals on oral mucosae from early months of life onward, and other early colonizing Prevotella species in the oral cavity include Prevotella nigrescens and Prevotella pallens. Oral Prevotella species get constant access to the gastrointestinal tract via saliva swallowing and to lower airways via microaspiration. At these extra-oral sites, they play a role as commensals but also as potentially harmful agents on mucosal surfaces. The aim of this narrative review is to give an updated overview on the involvement of oral Prevotella species in gastrointestinal and respiratory health and disease.
Collapse
Affiliation(s)
- Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Zhuang Z, Gao M, Lv J, Yu C, Guo Y, Bian Z, Yang L, Du H, Chen Y, Ning F, Liu H, Chen J, Chen Z, Huang T, Li L. Associations of toothbrushing behaviour with risks of vascular and nonvascular diseases in Chinese adults. Eur J Clin Invest 2021; 51:e13634. [PMID: 34152010 PMCID: PMC7616900 DOI: 10.1111/eci.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Accumulating evidence has shown that poor oral hygiene is associated with increased risk of cardiometabolic diseases in Western populations. However, its relevance about the relationships in Chinese adults remains unclear. The China Kadoorie Biobank enrolled 512 715 adults aged 30-79 years in China during 2004-2008. Cox regression was used to estimate adjusted hazard ratios (HRs) for each disease associated with measures of oral hygiene. Overall 9.3% of the participants reported rarely or never brushing teeth at baseline. Participants who rarely or never brushed teeth had adjusted HR of 1.12 (95% CI: 1.09, 1.15) for MVE, with similar HRs for stroke (1.08, 1.05-1.12), intracerebral haemorrhage (1.18, 1.11-1.26) and pulmonary heart disease (1.22, 1.13-1.32) compared with those who brushed teeth regularly. Those who did not brush teeth also had increased risk of cancer (1.09, 1.04-1.14), chronic obstructive pulmonary disease (COPD) (1.12, 1.05-1.20), liver cirrhosis (1.25, 1.09-1.44) and all-cause death (1.25, 1.21-1.28) but not type 2 diabetes (0.94, 0.86-1.03) and chronic kidney disease (0.98, 0.81-1.18). Among Chinese adults, we found that poor oral hygiene is associated with higher risks of major vascular disease, cancer, COPD, liver cirrhosis and all-cause deaths, but not type 2 diabetes and chronic kidney disease.
Collapse
Affiliation(s)
- Zhenhuang Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Meng Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
- Peking University Institute of Environmental Medicine, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Feng Ning
- NCDs Prevention and Control Department, Qingdao CDC, Qingdao, China
| | - Huilin Liu
- NCDs Prevention and Control Department, Hunan CDC, Hunan, China
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | | |
Collapse
|
20
|
Daniluk J, Daniluk U, Rogalski P, Dabrowski A, Swidnicka-Siergiejko A. Microbiome-Friend or Foe of Pancreatic Cancer? J Clin Med 2021; 10:5624. [PMID: 34884327 PMCID: PMC8658245 DOI: 10.3390/jcm10235624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest human neoplasms. Despite the development of new surgical and adjuvant therapies, the prognosis remains very poor, with the overall survival rate not exceeding 9%. There is now increasing evidence that the human microbiome, which is involved in many physiological functions, including the regulation of metabolic processes and the modulation of the immune system, is possibly linked to pancreatic oncogenesis. However, the exact mechanisms of action are poorly understood. Our review summarizes the current understanding of how the microbiome affects pancreatic cancer development and progression. We discuss potential pathways of microbe translocation to the pancreas, as well as the mechanism of their action. We describe the role of the microbiome as a potential marker of pancreatic cancer diagnosis, progression, and survival. Finally, we discuss the possibilities of modifying the microbiome to improve treatment effectiveness for this deadly disease.
Collapse
Affiliation(s)
- Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 15-274 Bialystok, Poland;
| | - Pawel Rogalski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| | - Andrzej Dabrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| | - Agnieszka Swidnicka-Siergiejko
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (A.D.); (A.S.-S.)
| |
Collapse
|
21
|
Tijeras-Raballand A, Hilmi M, Astorgues-Xerri L, Nicolle R, Bièche I, Neuzillet C. Microbiome and pancreatic ductal adenocarcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101589. [PMID: 33607375 DOI: 10.1016/j.clinre.2020.101589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) incidence and related-deaths are increasing worldwide. PDAC is characterized by poor prognosis due to late diagnosis, high metastatic capacity and resistance to therapy. This is partially due to its specific microenvironment, where the stroma is prominent over tumor cells. Besides the oral and gut microbiota, the intratumor microbiome, i.e. the bacterial and fungal microorganisms present within the tumor, was recently introduced as a new partner of the tumor microenvironment of PDAC modulating pancreatic carcinogenesis, intratumor immune infiltrates, and response to chemotherapy. In this review, we propose an overview of current knowledge about the roles of bacteria and fungi in PDAC development and biology, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
| | - Marc Hilmi
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France
| | | | - Rémy Nicolle
- OncoMEGA, Lamorlaye, France; Carte d'Identité des Tumeurs (Tumors Identity Card), La Ligue Contre le Cancer, Paris, France
| | - Ivan Bièche
- Pharmacogenomic Unit, Genetic Department, Curie Institute, Paris, France
| | - Cindy Neuzillet
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France.
| |
Collapse
|
22
|
Pereira NF, López RM, Toporcov TN, Schmerling CK, Cicco RD, Michel-Crosato E, Biazevic MGH. Association between oral hygiene and head and neck cancer in Brazil. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2020; 23:e200094. [PMID: 32965303 DOI: 10.1590/1980-549720200094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/24/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Poor oral hygiene, regular use of mouthwash and absence of visits to the dentist could correspond to potential risk factors for the development of head and neck cancer. OBJECTIVE The objective of this study was to determine whether oral hygiene is associated with the occurrence of oral cavity and head and neck cancer in a Brazilian sample. METHOD The variables of oral hygiene condition, such as toothbrushing frequency, dental loss, need and use of prosthesis, and regular visit to the dentist in a case-control study were analyzed in patients from five hospitals in the state of São Paulo, Brazil, paired by gender and age, from the multicenter project Genoma do Câncer de Cabeça e Pescoço (GENCAPO). RESULTS The most frequent malignancies in the 899 patients included were those of the tongue border (11.41%) and tongue base (10.92%). The multivariable statistical analysis found odds ratio values: Brushing once 0.33 (95%CI 0.25 - 0.44); Brushing twice 0.42 (95%CI 0.35 - 0.52); Flossing always 0.19 (95%CI 0.13 - 0.27); Flossing sometimes 0.19 (95%CI 0.15 - 0.24); Bleeding 2.40 (95%CI 1.40 - 4.09); Prosthesis 1.99 (95%CI 1.54 - 2.56); Visiting the dentist 0.29 (95%CI 0.22 - 0.37); Good hygiene 0.21 (95%CI 0.17 - 0.27); Regular hygiene 0.20 (95%CI 0.15 - 0.25); number of missing teeth (6 or more) 3.30 (95%CI 2.67 - 4.08). CONCLUSION These data showed that, in the population studied, indicators of good hygiene such as brushing teeth and flossing were protective factors for mouth and head and neck cancer, while bleeding and many missing teeth were risk factors.
Collapse
Affiliation(s)
- Nayara Fernanda Pereira
- Community Dentistry Department, School of Dentistry, Universidade de São Paulo - São Paulo (SP), Brazil
| | - Rossana Mendoza López
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo - São Paulo (SP), Brazil
| | - Tatiana Natasha Toporcov
- Epidemiology Department, School of Public Health, Universidade de São Paulo - São Paulo (SP), Brazil
| | | | | | - Edgard Michel-Crosato
- Community Dentistry Department, School of Dentistry, Universidade de São Paulo - São Paulo (SP), Brazil
| | | |
Collapse
|
23
|
Arteta AA, Milanes-Yearsley M, Cardona-Castro N. Cholangiocyte derived carcinomas and local microbiota. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 29:1084-1093. [PMID: 32902144 DOI: 10.1002/jhbp.826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Trillions of bacteria are present in the gastrointestinal tract as part of the local microbiota. Bacteria have been associated with a wide range of gastrointestinal diseases including malignant neoplasms. The association of bacteria in gastrointestinal and biliary tract carcinogenesis is supported in the paradigm of Helicobacter pylori and intestinal-type gastric cancer. However, the association of bacterial species to a specific carcinoma, different from intestinal-type gastric cancer is unresolved. The relationship of bacteria to a specific malignant neoplasm can drive clinical interventions. We review the classic bacteria risk factors identified using cultures and PCR (polymerase chain reaction) with new research regarding a microbiota approach through 16S rRNA (16S ribosomal ribonucleic acid gene) or metagenomic analysis for selected carcinomas in the biliary tract.
Collapse
Affiliation(s)
- Ariel A Arteta
- Department of Pathology, University of Antioquia, Medellín, Colombia.,Basic Science Research Group, School of Medicine, CES University, Medellín (Antioquia), Colombia.,Grupo de Investigaciones en Patología, Universidad de Antioquia (GRIP-UdeA), Medellín (Antioquia), Colombia
| | - Martha Milanes-Yearsley
- Ohio State University, Columbus, OH, USA.,Gastrointestinal and Liver Pathology Department, Wexner Medical Center, Columbus, OH, USA
| | | |
Collapse
|
24
|
Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal disease and cancer: Epidemiologic studies and possible mechanisms. Periodontol 2000 2020; 83:213-233. [PMID: 32385885 PMCID: PMC7328760 DOI: 10.1111/prd.12329] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiologic and cancer control studies on the association of periodontal disease and cancer risk mostly suggest a positive association with overall cancer risk and certain specific types of cancer. These findings are generally consistent among cross‐sectional and longitudinal studies. In this paper, we review epidemiologic studies and current knowledge on periodontal disease and cancer, with a focus on those studies conducted in the years following the Joint European Federation of Periodontology/American Academy of Periodontology Workshop on “Periodontitis and Systemic Diseases” in November 2012. This review also explores the role of chronic inflammation as a biologically plausible mechanistic link between periodontal disease and risk of cancer. Furthermore, it highlights studies that have examined the potential importance of certain periodontal pathogens in this association.
Collapse
Affiliation(s)
- Ngozi Nwizu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, USA.,School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, USA.,Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, USA
| | - Jean Wactawski-Wende
- School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, USA
| | - Robert J Genco
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, USA
| |
Collapse
|
25
|
Shan YS, Chen LT, Wu JS, Chang YF, Lee CT, Wu CH, Chiang NJ, Huang HE, Yen CJ, Chao YJ, Tsai HJ, Chen CY, Kang JW, Kuo CF, Tsai CR, Weng YL, Yang HC, Liu HC, Chang JS. Validation of genome-wide association study-identified single nucleotide polymorphisms in a case-control study of pancreatic cancer from Taiwan. J Biomed Sci 2020; 27:69. [PMID: 32456644 PMCID: PMC7251895 DOI: 10.1186/s12929-020-00664-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Due to differences in genetic background, it is unclear whether the genetic loci identified by the previous genome-wide association studies (GWAS) of pancreatic cancer also play significant roles in the development of pancreatic cancer among the Taiwanese population. Methods This study aimed to validate the 25 pancreatic cancer GWAS-identified single nucleotide polymorphisms (SNPs) in a case-control study (278 cases and 658 controls) of pancreatic cancer conducted in Taiwan. Statistical analyses were conducted to determine the associations between the GWAS-identified SNPs and pancreatic cancer risk. Gene-environment interaction analysis was conducted to evaluate the interactions between SNPs and environmental factors on pancreatic cancer risk. Results Among the 25 GWAS-identified SNPs, 7 (rs2816938 (~ 11 kb upstream of NR5A2), rs10094872 (~ 28 kb upstream of MYC), rs9581943 (200 bp upstream of PDX1) and 4 chromosome 13q22.1 SNPs: rs4885093, rs9573163, rs9543325, rs9573166) showed a statistically significant association with pancreatic cancer risk in the current study. Additional analyses showed two significant gene-environment interactions (between poor oral hygiene and NR5A2 rs2816938 and between obesity and PDX1 rs9581943) on the risk of pancreatic cancer. Conclusions The current study confirmed the associations between 7 of the 25 GWAS-identified SNPs and pancreatic risk among the Taiwanese population. Furthermore, pancreatic cancer was jointly influenced by lifestyle and medical factors, genetic polymorphisms, and gene-environment interaction. Additional GWAS is needed to determine the genetic polymorphisms that are more relevant to the pancreatic cancer cases occurring in Taiwan.
Collapse
Affiliation(s)
- Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Ziyou 1st Road, Sanmin District, Kaohsiung, 80756, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Yin-Fan Chang
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chih-Ting Lee
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Nai-Jung Chiang
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Hsin-En Huang
- Department of Family Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chia-Jui Yen
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Ying-Jui Chao
- Department of Surgery, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chiung-Yu Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Jui-Wen Kang
- Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Chin-Fu Kuo
- Preventive Medicine Center, Taichung Tzu Chi Hospital, 88 Section 1, Fengxing Road, Tanzi District, Taichung, 427, Taiwan
| | - Chia-Rung Tsai
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan
| | - Ya-Ling Weng
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan
| | - Han-Chien Yang
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan
| | - Hui-Chin Liu
- Department of Nursing, National Cheng Kung University Hospital, National Cheng Kung University, 138 Sheng Li Road, Tainan, 70456, Taiwan
| | - Jeffrey S Chang
- National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456, Taiwan.
| |
Collapse
|
26
|
Wang Y, Yang G, You L, Yang J, Feng M, Qiu J, Zhao F, Liu Y, Cao Z, Zheng L, Zhang T, Zhao Y. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol Cancer 2019; 18:173. [PMID: 31785619 PMCID: PMC6885316 DOI: 10.1186/s12943-019-1103-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. Recent studies indicated that development of pancreatic cancer may be intimately connected with the microbiome. In this review, we discuss the mechanisms through which microbiomes affect the development of pancreatic cancer, including inflammation and immunomodulation. Potential therapeutic and diagnostic applications of microbiomes are also discussed. For example, microbiomes may serve as diagnostic markers for pancreatic cancer, and may also play an important role in determining the efficacies of treatments such as chemo- and immunotherapies. Future studies will provide additional insights into the various roles of microbiomes in pancreatic cancer.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| |
Collapse
|
27
|
Zhang Y, Sun C, Song EJ, Liang M, Shi T, Min M, Sun Y. Is periodontitis a risk indicator for gastrointestinal cancers? A meta‐analysis of cohort studies. J Clin Periodontol 2019; 47:134-147. [DOI: 10.1111/jcpe.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Yun Zhang
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago Chicago IL USA
| | - Evelyn J. Song
- Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Tingting Shi
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Min Min
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics School of Public Health Anhui Medical University Hefei China
- Center for Evidence‐Based Practice Anhui Medical University Hefei China
| |
Collapse
|
28
|
Jordão HWT, McKenna G, McMenamin ÚC, Kunzmann AT, Murray LJ, Coleman HG. The association between self-reported poor oral health and gastrointestinal cancer risk in the UK Biobank: A large prospective cohort study. United European Gastroenterol J 2019; 7:1241-1249. [PMID: 31700637 PMCID: PMC6826526 DOI: 10.1177/2050640619858043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Controversy remains as to whether poor oral health is independently associated with gastrointestinal cancers, due to potential confounding by smoking, alcohol and poor nutrition. The aim of this study was to investigate the association between oral health conditions and gastrointestinal cancer risk. METHODS Data from the large, prospective UK Biobank cohort, which includes n = 475,766 participants, were analysed. Cox proportional hazard models were applied to estimate the relationship between gastrointestinal cancer risk and self-reported poor oral health (defined as painful gums, bleeding gums and/or having loose teeth), adjusting for confounders. RESULTS During an average six years of follow-up, n = 4069 gastrointestinal cancer cases were detected, of which 13% self-reported poor oral health. Overall, there was no association between self-reported poor oral health and risk of gastrointestinal cancer detected (hazard ratio 0.97, 95% confidence interval 0.88-1.07). In site-specific analysis, an increased risk of hepatobiliary cancers was observed in those with self-reported poor oral health (hazard ratio 1.32, 95% confidence interval 0.95-1.80), which was stronger for hepatocellular carcinoma (hazard ratio 1.75, 95% confidence interval 1.04-2.92). CONCLUSION Overall there was no association between self-reported poor oral health and gastrointestinal cancer risk. However, there was a suggestion of an increased risk of hepatobiliary cancer, specifically hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haydée WT Jordão
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Gerry McKenna
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Úna C McMenamin
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Andrew T Kunzmann
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Liam J Murray
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Helen G Coleman
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
29
|
Zhang Y, Niu Q, Fan W, Huang F, He H. Oral microbiota and gastrointestinal cancer. Onco Targets Ther 2019; 12:4721-4728. [PMID: 31417273 PMCID: PMC6592037 DOI: 10.2147/ott.s194153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The microbiota inhabiting the oral cavity is a complex ecosystem and responsible for resisting pathogens, maintaining homeostasis, and modulating the immune system. Some components of the oral microbiota contribute to the etiology of some oral diseases. Accumulating evidence suggests that the human oral microbiota is implicated in the development and progression of gastrointestinal cancer. In this review, we described the current understanding of possible roles and mechanisms of oral microbiota in the gastrointestinal cancers studied to date. The perspectives for oral microbiota as the biomarkers for early detection and new therapeutic targets were also discussed.
Collapse
Affiliation(s)
- Yangyang Zhang
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- The Oral Medicine Clinical Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Qiaoli Niu
- The Oral Medicine Clinical Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Wenguo Fan
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fang Huang
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongwen He
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
30
|
Panebianco C, Pazienza V. Body site-dependent variations of microbiota in pancreatic cancer pathophysiology. Crit Rev Clin Lab Sci 2019; 56:260-273. [PMID: 31060399 DOI: 10.1080/10408363.2019.1615407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lack of specific symptoms and reliable biomarkers, along with aggressive nature and resistance to therapies makes pancreatic cancer (PC) one of the leading causes of death from cancer worldwide. The search for new diagnostic, prognostic, predictive, and therapeutic tools that could improve clinical outcomes of patients has led, in recent years, to the investigation of potential roles for the microbiota in the pathogenesis of this disease. The human microbiota encompasses trillions of microorganisms residing within several body tissues and organs, where they provide beneficial functions for host homeostasis and health. Derangements of the microbial ecology in different anatomic districts have been described in PC, as in many other diseases, both in patients and in animal models. In detail, infection from the gastric pathogen Helicobacter pylori and changes in composition and diversity of oral, intestinal, and pancreatic microbiota have been found to associate with PC. Future research should assess how to potentially exploit such differences in microbiota composition as diagnostic, prognostic, or predictive biomarkers, and as targets for therapeutic interventions, in the hope of improving the dismal prognosis of this insidious cancer.
Collapse
Affiliation(s)
- Concetta Panebianco
- a Division of Gastroenterology , Fondazione IRCCS Casa Sollievo della Sofferenza , San Giovanni Rotondo , Italy
| | - Valerio Pazienza
- a Division of Gastroenterology , Fondazione IRCCS Casa Sollievo della Sofferenza , San Giovanni Rotondo , Italy
| |
Collapse
|
31
|
Primary and Secondary Prevention of Pancreatic Cancer. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Jia G, Zhi A, Lai PFH, Wang G, Xia Y, Xiong Z, Zhang H, Che N, Ai L. The oral microbiota - a mechanistic role for systemic diseases. Br Dent J 2019; 224:447-455. [PMID: 29569607 DOI: 10.1038/sj.bdj.2018.217] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
Abstract
Human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in the oral cavity. Oral microbiota generally exists in the form of a biofilm and plays a crucial role in maintaining oral homeostasis, protecting the oral cavity and preventing disease development. Human oral microbiota has recently become a new focus research for promoting the progress of disease diagnosis, assisting disease treatment, and developing personalised medicines. In this review, the scientific evidence supporting the association that endogenous and exogenous factors (diet, smoking, drinking, socioeconomic status, antibiotics use and pregnancy) modulate oral microbiota. It provides insights into the mechanistic role in which oral microbiota may influence systemic diseases, and summarises the challenges of clinical diagnosis and treatment based on the microbial community information. It provides information for noninvasive diagnosis and helps develop a new paradigm of personalised medicine. All these benefit human health in the post-metagenomics era.
Collapse
Affiliation(s)
- G Jia
- Shanghai Engineering Research Centre of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - A Zhi
- Chemical Technology and Food Science College, Zhengzhou Institute of Engineering and Technology, Zhengzhou 450044, People's Republic of China
| | - P F H Lai
- Shanghai Engineering Research Centre of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - G Wang
- Shanghai Engineering Research Centre of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Y Xia
- Shanghai Engineering Research Centre of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Z Xiong
- Shanghai Engineering Research Centre of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - H Zhang
- Shanghai Engineering Research Centre of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - N Che
- Department of Otolaryngology, Tongji Hospital, Tongji University, Shanghai 200065, PR China
| | - L Ai
- Shanghai Engineering Research Centre of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
33
|
Zhang S, Yu P, Wang J, Fan J, Qiao Y, Taylor PR. Association between tooth loss and upper gastrointestinal cancer: A 30-year follow-up of the Linxian Dysplasia Nutrition Intervention Trial Cohort. Thorac Cancer 2019; 10:966-974. [PMID: 30883021 PMCID: PMC6449253 DOI: 10.1111/1759-7714.13037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This prospective study investigated the association between tooth loss and upper gastrointestinal (UGI) cancer mortality in the Linxian Dysplasia Nutrition Intervention Trial Cohort. METHODS Subjects were categorized into three groups according to age at baseline. No missing teeth and less or greater than median tooth loss in each group was defined as none, moderate, and severe, respectively. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were estimated using the Cox proportional hazard model. RESULTS Through 30 September 2015, 541 esophageal squamous cell carcinoma (ESCC), 284 gastric cardia carcinoma (GCC), and 77 gastric non-cardia carcinoma (GNCC) deaths occurred. In the six-year follow-up, severe tooth loss was associated with an increased risk of GCC mortality (HR 1.55, 95% CI 1.06-2.18). In the 15-year follow-up, moderate tooth loss increased the ESCC mortality risk by 58% (HR 1.58, 95% CI 1.06-2.35), while severe loss increased the GCC mortality risk by 30% (HR 1.30, 95% CI 1.03-1.64). In the 30-year follow-up, moderate tooth loss increased the risk of ESCC mortality (HR 1.34, 95% CI 1.01-1.76). In subjects aged < 55 at baseline and men, moderate tooth loss had 53% and 52% higher risks of ESCC mortality (HR<55 years 1.53, 95% CI 1.06-2.05; HRmen 1.52, 95% CI 1.01-2.28). No significant association was observed for GNCC in any subjects or subgroups. CONCLUSION Moderate tooth loss increased the risk of ESCC mortality, particularly in younger subjects and men. Severe tooth loss increased the risk of GCC mortality. Future studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Su Zhang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, 10021China
| | - Pei Yu
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, 10021China
| | - Jian‐Bing Wang
- Department of Epidemiology and BiostatisticsSchool of Public Health, Zhejiang University School of MedicineHangzhou, 310058China
| | - Jin‐Hu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, 10021China
| | - You‐Lin Qiao
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, 10021China
| | - Philip R. Taylor
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology & GeneticsNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
34
|
Gerlovin H, Michaud DS, Cozier YC, Palmer JR. Oral Health in Relation to Pancreatic Cancer Risk in African American Women. Cancer Epidemiol Biomarkers Prev 2019; 28:675-679. [PMID: 30923045 DOI: 10.1158/1055-9965.epi-18-1053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Incidence of pancreatic cancer is higher in African Americans than in U.S. whites. We hypothesized that poor oral health, disproportionately common in African Americans and associated with increased risk of pancreatic cancer in several studies of predominantly white populations, may play a role in this disparity. METHODS We examined the relation of self-reported measures of oral health (periodontal disease and adult tooth loss) in relation to pancreatic cancer incidence in the prospective Black Women's Health Study (BWHS). Cox proportional hazard analyses were used to calculate HRs of pancreatic cancer for women with periodontal disease, tooth loss, or both, relative to women who reported neither. Multivariable models adjusted for age, cigarette smoking, body mass index (BMI), type 2 diabetes, and alcohol consumption. RESULTS Participants aged 33 to 81 were followed for an average of 9.85 years from 2007 through 2016, with occurrence of 78 incidence cases of pancreatic cancer. Multivariable HRs for pancreatic cancer incidence were 1.77 [95% confidence interval (CI) 0.57-5.49] for periodontal disease with no tooth loss, 2.05 (95% CI, 1.08-3.88) for tooth loss without report of periodontal disease, and 1.58 (95% CI, 0.70-3.57) for both tooth loss and periodontal disease. The HR for loss of at least five teeth, regardless of whether periodontal disease was reported, was 2.20 (95% CI, 1.11-4.33). CONCLUSIONS The poor oral health experienced by many African Americans may contribute to their higher incidence of pancreatic cancer. IMPACT Future research will assess associations between the oral microbiome and pancreatic cancer risk in this population.
Collapse
Affiliation(s)
- Hanna Gerlovin
- Slone Epidemiology Center at Boston University, Boston, Massachusetts.,Boston University School of Public Health, Boston, Massachusetts
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University Medical School, Boston, Massachusetts
| | - Yvette C Cozier
- Slone Epidemiology Center at Boston University, Boston, Massachusetts.,Boston University School of Public Health, Boston, Massachusetts
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts. .,Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
35
|
Ndegwa N, Ploner A, Liu Z, Roosaar A, Axéll T, Ye W. Association between poor oral health and gastric cancer: A prospective cohort study. Int J Cancer 2018; 143:2281-2288. [PMID: 29873081 DOI: 10.1002/ijc.31614] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/28/2018] [Accepted: 05/09/2018] [Indexed: 01/22/2023]
Abstract
Poor oral health may be involved in the pathogenesis of gastric cancer, however, some aspects have not been explored. Further, for previously studied aspects, for example, tooth-loss, the findings are inconsistent. We conducted a prospective cohort study of 19,831 participants from Uppsala, Sweden, cancer-free at baseline in 1973-1974 and followed until 2012 through linkage to national registers. We found that individuals with fewest teeth at baseline had an increased risk of gastric cancer relative to subjects with all examined teeth present (p = 1.75e-2). Presence of denture-associated lesions was also associated with an increased risk of gastric cancer (p = 1.00e-4). However, these excess risks significantly varied with attained age; estimated hazard ratio (HR) at attained age 50 for tooth loss was 4.24 [95% confidence interval (CI) 1.83-9.80] and 5.91 (95% CI 2.76-12.63) for denture-associated lesions, decreasing at an estimated 4% and 6% per year respectively, resulting in HR of 1.54 (95% CI 0.90-2.64) for tooth loss and HR 1.29 (95% CI 0.90-1.85) for denture-associated lesions at attained age 75. No increased risk of gastric cancer was found for individuals with higher levels of dental plaque, or with Candida-related or tongue lesions. In conclusion, tooth-loss and denture-associated lesions are associated with increased risks of gastric cancer. Previous conflicting findings of tooth-loss and gastric cancer risk may partly be explained by the age-varying relative risk of gastric cancer.
Collapse
Affiliation(s)
- Nelson Ndegwa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Zhiwei Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ann Roosaar
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tony Axéll
- Maxillofacial Unit, Halmstad Hospital Halland, Halmstad, Sweden
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Poor oral health and risk of incident myocardial infarction: A prospective cohort study of Swedish adults, 1973-2012. Sci Rep 2018; 8:11479. [PMID: 30065312 PMCID: PMC6068156 DOI: 10.1038/s41598-018-29697-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Previous studies provide conflicting evidence as to whether there is an association between poor oral health and an increased risk of myocardial infarction. The aim of the study was to deepen knowledge of the association between oral health and myocardial infarction risk using a large (n = 20,133), prospective, and population-based cohort in Uppsala, Sweden. Oral health was determined during a clinical dental examination at entry into the cohort in 1973/74. Individuals were followed through linkage with the Swedish National Patient Register, Cause of Death Register and Emigration Register. Cox proportional hazards regression models were used to estimate hazard ratios (HRs) for total, non-fatal and fatal myocardial infarction events. Increased risks of total, non-fatal and fatal myocardial infarction events among individuals with fewer reference teeth at examination, more dental plaque and a borderline significant increased risk among individuals with oral lesions were observed. Adjustment for multiple potential confounding factors did not change the results appreciably. However, the observed HRs generally decreased towards one when the analysis was confined to non-tobacco users only. The results from this study indicate that poor oral health is associated with a slightly increased risk of myocardial infarction; however, these results may be partly explained by residual confounding.
Collapse
|
37
|
Oral Health and the Oral Microbiome in Pancreatic Cancer: An Overview of Epidemiological Studies. ACTA ACUST UNITED AC 2018; 23:310-314. [PMID: 29189325 DOI: 10.1097/ppo.0000000000000287] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The aim was to provide a cohesive overview of epidemiological studies of periodontal disease, oral microbiome profiles, and pancreatic cancer risk. DESIGN A PubMed search of articles published in English through July 2017 with additional review of bibliographies of identified articles. RESULTS Risk estimates for periodontal disease associated with pancreatic cancer consistently ranged from 1.5 to 2, aligning with a meta-analysis summary relative risk of 1.74. Analyses of antibodies to pathogenic and/or commensal oral bacteria in prediagnostic blood provided evidence that some oral bacteria and oral microbial diversity may be related to pancreatic cancer. CONCLUSIONS Overall, the data present a plausible but complex relationship among pancreatic cancer, the oral microbiome, periodontal disease, and other risk factors that might be explained by systemic effects on immune and inflammatory processes. Larger comprehensive studies that examine serially collected epidemiological/clinical data and blood, tissue, and various microbial samples are needed to definitively determine how and whether oral health-related factors contribute to pancreatic cancer risk.
Collapse
|
38
|
Michaud DS, Fu Z, Shi J, Chung M. Periodontal Disease, Tooth Loss, and Cancer Risk. Epidemiol Rev 2018; 39:49-58. [PMID: 28449041 DOI: 10.1093/epirev/mxx006] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
Periodontal disease, which includes gingivitis and periodontitis, is highly prevalent in adults and disease severity increases with age. The relationship between periodontal disease and oral cancer has been examined for several decades, but there is increasing interest in the link between periodontal disease and overall cancer risk, with systemic inflammation serving as the main focus for biological plausibility. Numerous case-control studies have addressed the role of oral health in head and neck cancer, and several cohort studies have examined associations with other types of cancers over the past decade. For this review, we included studies that were identified from either 11 published reviews on this topic or an updated literature search on PubMed (between 2011 and July 2016). A total of 50 studies from 46 publications were included in this review. Meta-analyses were conducted on cohort and case-control studies separately when at least 4 studies could be included to determine summary estimates of the risk of cancer in relation to 1) periodontal disease or 2) tooth number (a surrogate marker of periodontal disease) with adjustment for smoking. Existing data provide support for a positive association between periodontal disease and risk of oral, lung, and pancreatic cancers; however, additional prospective studies are needed to better inform on the strength of these associations and to determine whether other cancers are associated with periodontal disease. Future studies should include sufficiently large sample sizes, improved measurements for periodontal disease, and thorough adjustment for smoking and other risk factors.
Collapse
|
39
|
Nasopharyngeal carcinoma: A review of current updates. Exp Ther Med 2018; 15:3687-3692. [PMID: 29556258 PMCID: PMC5844099 DOI: 10.3892/etm.2018.5878] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy worldwide, but it is endemic in a few areas including Southern China, Southeast Asia, North Africa and the Arctic. The underlying mechanisms behind this remarkable geographic distribution remain unclear. Although Epstein-Barr virus (EBV) infection has been suggested as a necessary cause of undifferentiated NPC, EBV itself is not sufficient to cause this malignancy. Other co-factors, such as environmental risk factors, and/or genetic susceptibility, may interact with EBV to play a role in the carcinogenesis of NPC. Survival rates differ significantly between NPC patients in early stages and late stages. Due to the close associations between EBV infection and NPC risk, EBV-related biomarkers have been used for early detection and screening for NPC in a few high-incidence areas. In the present review article the latest updates are discussed.
Collapse
|
40
|
Archibugi L, Signoretti M, Capurso G. The Microbiome and Pancreatic Cancer: An Evidence-based Association? J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S82-S85. [PMID: 30001289 DOI: 10.1097/mcg.0000000000001092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many risk factors for pancreatic cancer are related with microbiome alteration. In the past few years, the human microbiome and its relation with the immune system have been linked with carcinogenesis of different organs distant from the gut, including the pancreas. Patterns of oral microbiome associated with periodontitis are associated with an increased risk of pancreatic cancer, possibly because of the increased systemic inflammatory response, or to the capacity of some specific bacteria to alter the host immune response, making it more favorable to cancer cells. Helicobacter pylori infection when affecting the gastric body mucosa with subsequent hypochlorhydria also seems associated with an increased risk of pancreatic cancer. The composition of the intestinal microbiome is different in animal models and in humans with pancreatic cancer who have a distinct microbiome population compared with controls. Some specific bacteria can migrate from the intestine to the pancreas, and their ablation restores the immune system activity through its reprogramming with a switch toward a Th1 response and displays a protective effect toward tumor growth. More research in this area might lead to progress in terms of pancreatic cancer prevention and treatment, possibly in association with immunotherapy.
Collapse
Affiliation(s)
- Livia Archibugi
- Digestive and Liver Disease Unit, S. Andrea Hospital, University "Sapienza," Rome
| | - Marianna Signoretti
- Digestive and Liver Disease Unit, S. Andrea Hospital, University "Sapienza," Rome
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital, University "Sapienza," Rome
- Pancreato-Biliary Endoscopy Division and Endosonography Division, Pancreas Translational and Clinical Research Centre, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Zangiabadi S, Costanian C, Tamim H. Dental care use in Ontario: the Canadian community health survey (CCHS). BMC Oral Health 2017; 17:165. [PMID: 29284491 PMCID: PMC5747094 DOI: 10.1186/s12903-017-0453-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/10/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Oral health is a significant measure of overall health, and regular dental visits are recommended for the maintenance of oral health. The purpose of this study is to determine the pattern (amount and type) of, and factors associated with dental care use among Ontarians. METHODS Data from the 2014 cycle of the Canadian Community Health Survey was used and analysis was restricted to individuals aged 12 and above residing in Ontario. Dental care use was defined by two distinct outcomes: not visiting a dentist within the past year and visiting a dentist only for emergencies. Multivariable logistic regression was performed to examine the association between socio-demographic, health behavior, oral health, and other health-related factors and the two outcomes. RESULTS More than a quarter of participants reported not visiting the dentist in the last year, and 19% reported usually visiting a dentist only for emergencies. Multivariable logistic regression analysis suggested that males, individuals of Aboriginal status, those with low educational attainment, low household income, no dental insurance, who smoked, less frequent teeth brushing, poor health of teeth and mouth, or had diabetes were at a significant increased likelihood of not visiting the dentist within the past year, and only visiting a dentist for emergency care. CONCLUSIONS Socioeconomic status, self-reported oral health, and general health behaviors were associated with dental care use. These findings highlight the need for focusing efforts toward improving dental care use among Ontarians.
Collapse
Affiliation(s)
- Safoura Zangiabadi
- School of Kinesiology and Health Sciences, York University, 4700 Keele Street, Toronto, ON M3J 1P3 Canada
| | - Christy Costanian
- School of Kinesiology and Health Sciences, York University, 4700 Keele Street, Toronto, ON M3J 1P3 Canada
| | - Hala Tamim
- School of Kinesiology and Health Sciences, York University, 4700 Keele Street, Toronto, ON M3J 1P3 Canada
| |
Collapse
|
42
|
Shi J, Leng W, Zhao L, Deng C, Xu C, Wang J, Wang Y, Peng X. Tooth loss and cancer risk: a dose-response meta analysis of prospective cohort studies. Oncotarget 2017; 9:15090-15100. [PMID: 29599929 PMCID: PMC5871100 DOI: 10.18632/oncotarget.23850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
Conflicting results to identify the relationship between tooth loss and cancer risk. Therefore, a dose-response meta-analysis was performed to clarify and quantitative assessed the correlation between tooth loss and cancer risk. Up to March 2017, 25 observational epidemiological studies were included in current meta-analysis. Tooth loss was significantly associated with a higher risk of cancer. Additionally, tooth loss was associated with significantly a higher risk of esophageal cancer, gastric cancer, head and neck cancer, colorectal cancer, pancreas cancer, lung cancer, prostate cancer, bladder cancer and hematopoietic cancer. Subgroup analysis showed consistent findings. Furthermore, a significant dose-response relationship was observed between tooth loss and cancer risk. Increasing per 10 of tooth loss was associated with a 9% increment of cancer risk, 14% increment of esophageal cancer risk, 9% increment of gastric cancer risk, 31% increment of head and neck cancer risk, 4% increment of colorectal cancer risk, 7% increment of pancreas cancer risk, 19% increment of lung cancer risk, 2% increment of bladder cancer risk and 3% increment of hematopoietic cancer risk. Considering these promising results, tooth loss might be harmful for health. Large sample size, different ethnic population and different cancer type are warranted to validate this association.
Collapse
Affiliation(s)
- Jun Shi
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lunhua Zhao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Cai Deng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Chenli Xu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jue Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yu Wang
- Department of Ultrasonography, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Xingchun Peng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.,Department of Ultrasonography, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China.,Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, 441300, China
| |
Collapse
|
43
|
Maisonneuve P, Amar S, Lowenfels A. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol 2017; 28:985-995. [DOI: 10.1093/annonc/mdx019] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Yin W, Ludvigsson JF, Liu Z, Roosaar A, Axéll T, Ye W. Inverse Association Between Poor Oral Health and Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol 2017; 15:525-531. [PMID: 27392757 DOI: 10.1016/j.cgh.2016.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/22/2016] [Accepted: 06/12/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The hygiene hypothesis (a lack of childhood exposure to microorganisms increases susceptibility to allergic diseases by altering immune development) has been proposed as an explanation for the increasing incidence of inflammatory bowel disease (IBD). However, there are few data on the relationship between oral hygiene and development of IBD, and study results have been inconsistent. We investigated the association between poor oral health and risks of IBD, ulcerative colitis (UC), and Crohn's disease (CD). METHODS We performed a population-based cohort study of 20,162 individuals followed for 40 years (from 1973 to 2012). Residents of 2 municipalities of Uppsala County, Sweden (N = 30,118), 15 years or older, were invited, and among them 20,333 were examined for tooth loss, dental plaques, and oral mucosal lesions at the time of study entry. Other exposure data were collected from questionnaires. Patients who later developed IBD (UC or CD) were identified by international classification codes from Swedish National Patient and Cause of Death Registers. Cox proportional hazards regression was used to estimate hazard ratios for IBD, UC, and CD. RESULTS From National Patient and Cause of Death Registers, we identified 209 individuals who developed IBD (142 developed UC and 67 developed CD), with an incidence rate of 37.3 per 100,000 person-years. We found an inverse relationship between poor oral health and IBD, especially in individuals with severe oral problems. Loss of 5-6 teeth of the 6 teeth examined was associated with a lower risk of IBD (hazard ratio, 0.56; 95% confidence interval, 0.32-0.98). Having dental plaques that covered more than 33% of tooth surface was negatively associated with CD (hazard ratio, 0.32; 95% confidence interval, 0.10-0.97). CONCLUSIONS In a population-based cohort study of more than 20,000 people in Sweden, we associated poor oral health with reduced risk of future IBD.
Collapse
Affiliation(s)
- Weiyao Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Zhiwei Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ann Roosaar
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tony Axéll
- Maxillofacial Unit, Halmstad Hospital Halland, Halmstad, Sweden
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Liu Z, Roosaar A, Axéll T, Ye W. Tobacco Use, Oral Health, and Risk of Parkinson's Disease. Am J Epidemiol 2017; 185:538-545. [PMID: 28338925 DOI: 10.1093/aje/kww146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/22/2016] [Indexed: 12/21/2022] Open
Abstract
Few studies have investigated the associations between use of Swedish moist snuff (snus), associated poor oral health, and risk of Parkinson's disease (PD). We followed 20,175 participants who were free of PD in 1973-1974 in Uppsala, Sweden, until the end of 2012. We used Cox proportional hazards regression models to estimate hazard ratios and corresponding 95% confidence intervals for the associations between tobacco use, oral health indicators, and PD risk. We found that tobacco use was associated with a lower risk of PD in males. Compared with males who never used any tobacco daily, pure ever tobacco smokers, pure ever snus users, and combined users had adjusted hazard ratios of 0.68 (95% confidence interval (CI): 0.49, 0.93; n = 83), 0.51 (95% CI: 0.27, 0.95; n = 11), and 0.21 (95% CI: 0.07, 0.67; n = 3), respectively. No association was observed for number of teeth, dental plaque, or detectable oral mucosal lesions and PD risk, although there was a suggestive association with Candida-related oral mucosal lesions in males (hazard ratio = 1.56, 95% CI: 0.92, 2.65; P = 0.098). Use of snus is associated with a lower risk of PD in males, while poor oral health seems not to be associated with PD occurrence.
Collapse
|
46
|
Wang Y, Peng J, Li Y, Luo H, Huang G, Luo S, Yin X, Song J. Association between tooth loss and risk of oesophageal cancer: a dose-response meta-analysis. SPRINGERPLUS 2016; 5:1020. [PMID: 27441139 PMCID: PMC4938834 DOI: 10.1186/s40064-016-2711-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
Many epidemiological studies have found that tooth loss is associated with susceptibility to oesophageal cancer. However, a definitive answer is yet to be discovered, and the findings are inconclusive. We performed a meta-analysis to assess the relationship between tooth loss and oesophageal cancer risk. We searched PubMed and Embase databases to screen eligible studies up to June 2015. Nine observational studies (eight articles) involving 2604 patients and 113,995 participants were included in the meta-analysis. The combined odds ratio for tooth loss and oesophageal cancer was 1.53 (95 % CI 1.02-2.29) for the high versus lowest teeth loss categories. However, inconsistent results were detected in the stratified and sensitivity analysis. In dose-response analysis, the summary odds ratio for each one tooth loss increment was 1.01 (95 % CI 1.00-1.02). The current evidence, based solely on six case-control studies and three cohort studies, suggests that tooth loss is a potential marker of oesophageal cancer. However, no firm conclusion can be drawn at this time that tooth loss may play a causal role in development of oesophageal cancer. Additional large-scale and high-quality prospective studies are required to evaluate the association between tooth loss and risk of oesophageal cancer.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, 550002 China
| | - Juxiang Peng
- Department of Orthodontics, Stomatology Hospital of Guiyang, Guizhou, 550002 China
| | - Yan Li
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, 550002 China
| | - Hong Luo
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, 550002 China
| | - Guanglei Huang
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, 550002 China
| | - Siyang Luo
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, 550002 China
| | - Xinhai Yin
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, 550002 China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guizhou, 550002 China
| |
Collapse
|