1
|
Balaraman AK, Moglad E, Afzal M, Babu MA, Goyal K, Roopashree R, Kaur I, Kumar S, Kumar MR, Chauhan AS, Hemalatha S, Gupta G, Ali H. Liquid biopsies and exosomal ncRNA: Transforming pancreatic cancer diagnostics and therapeutics. Clin Chim Acta 2025; 567:120105. [PMID: 39706249 DOI: 10.1016/j.cca.2024.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Pancreatic cancer is a highly fatal malignancy due to poor early detection rate and resistance to conventional therapies. This review examines the potential for liquid biopsy as a transformative technology to identify diagnostic and therapeutic targets in pancreatic cancer. Specifically, we explore emerging biomarkers such as exosomal non-coding RNAs (ncRNAs), circulating tumor DNA (ctDNA), and circulating tumor cells (CTCs). Tumor-derived exosomes contain nucleic acid and protein that reflect the unique molecular landscape of the malignancy and can serve as an alternative diagnostic approach vs traditional biomarkers like CA19-9. Herein we highlight exosomal miRNAs, lncRNAs, and other ncRNAs alongside ctDNA and CTC-based strategies, evaluating their combined ability to improve early detection, disease monitoring and treatment response. Furthermore, the therapeutic implications of ncRNAs such as lncRNA UCA1 and miR-3960 in chemoresistance and progression are also discussed via suppression of EZH2 and PTEN/AKT pathways. Emerging therapeutic strategies that target the immune response, epithelial-mesenchymal transition (EMT) and drug resistance are explored. This review demonstrates a paradigm shift in pancreatic cancer management toward personalized, less invasive and more effective approaches.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - MRavi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - S Hemalatha
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
2
|
Maulat C, Canivet C, Cabarrou B, Pradines A, Selves J, Casanova A, Doussine A, Hanoun N, Cuellar E, Boulard P, Carrère N, Buscail L, Bournet B, Muscari F, Cordelier P. Prognostic impact of circulating tumor DNA detection in portal and peripheral blood in resected pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:27296. [PMID: 39516243 PMCID: PMC11549393 DOI: 10.1038/s41598-024-76903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In PDAC patients, ctDNA detection's prognostic significance needs validation especially in resected patients. This study investigated ctDNA kinetics in portal and peripheral blood before and after resection, and whether tissue mobilization during surgery influences ctDNA detection. In this single-center prospective cohort, portal and peripheral blood were drawn during pancreaticoduodenectomy before and after tissue mobilization, during 12 postoperative months and were associated with overall survival (OS), recurrence-free survival (RFS) and CA19-9 (secondary endpoints). Tumor mutations were identified using next-generation-sequencing and ctDNA detected by digital droplet PCR. From 2018 to 2022, 34 patients were included. The 2-year RFS and OS were 47.6%(95%CI[29.5; 63.6]) and 65.7%(95%CI[46.5; 79.4]) respectively. Intraoperatively, ctDNA detection in portal or peripheral blood was associated with worse RFS (HR[95%CI]3.26[1.26; 8.45],p = 0.010) and OS (HR[95%CI]5.46[1.65;18.01],p = 0.002). Portal vein sampling did not improve ctDNA detection. CtDNA levels were increased by 2.5-fold (p = 0.031) in peripheral blood after tissue mobilization but not significantly linked to RFS or OS. Detecting ctDNA intraoperatively was correlated with poorer RFS (HR [95% CI] 3.26 [1.26;8.45], p = 0.010) and 0S (HR [95% CI] 5.46 [1.65;18.01], p = 0.002). Portal vein sampling did not improve ctDNA detection. Tissue mobilization increases ctDNA levels. Intraoperative detection of ctDNA is associated with a worse prognosis.
Collapse
Affiliation(s)
- Charlotte Maulat
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France.
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
- Service de Chirurgie Digestive et Transplantation , CHU Rangueil , 1, avenue Jean Poulhès, Toulouse, 31059, France.
| | - Cindy Canivet
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Bastien Cabarrou
- Biostatistics and Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Anne Pradines
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Janick Selves
- Pathology Department, IUCT-Oncopole, Toulouse University Hospital Center (CHU), Toulouse, France
| | - Anne Casanova
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Aurélia Doussine
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Naïma Hanoun
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Emmanuel Cuellar
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Paul Boulard
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Nicolas Carrère
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Barbara Bournet
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Fabrice Muscari
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
| |
Collapse
|
3
|
Alexander EM, Miller HA, Egger ME, Smith ML, Yaddanapudi K, Linder MW. The Correlation between Plasma Circulating Tumor DNA and Radiographic Tumor Burden. J Mol Diagn 2024; 26:952-961. [PMID: 39181324 PMCID: PMC11524323 DOI: 10.1016/j.jmoldx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional blood-based biomarkers and radiographic imaging are excellent for use in monitoring different aspects of malignant disease, but given their specific shortcomings, their integration with other, complementary markers such as plasma circulating tumor DNA (ctDNA) will be beneficial toward a precision medicine-driven future. Plasma ctDNA analysis utilizes the measurement of cancer-specific molecular alterations in a variety of bodily fluids released by dying tumor cells to monitor and profile response to therapy, and is being employed in several clinical scenarios. Plasma concentrations of ctDNA have been reported to correlate with tumor burden. However, the strength of this association is generally poor and highly variable, confounding the interpretation of longitudinal plasma ctDNA measurements in conjunction with routine radiographic assessments. Herein is discussed what is currently understood with respect to the fundamental characteristics of tumor growth that dictate plasma ctDNA concentrations, with a perspective on its interpretation in conjunction with radiographically determined tumor burden assessments.
Collapse
Affiliation(s)
- Evan M Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Hunter A Miller
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Michael E Egger
- Hiram C. Polk, Jr, MD, Department of Surgery, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Melissa L Smith
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Kavitha Yaddanapudi
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
4
|
Overs A, Peixoto P, Hervouet E, Molimard C, Monnien F, Durand J, Guittaut M, Vienot A, Viot J, Herfs M, Borg C, Feugeas JP, Selmani Z. COL25A1 and METAP1D DNA methylation are promising liquid biopsy epigenetic biomarkers of colorectal cancer using digital PCR. Clin Epigenetics 2024; 16:146. [PMID: 39425144 PMCID: PMC11490026 DOI: 10.1186/s13148-024-01748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Colorectal cancer is a public health issue and was the third leading cause of cancer-related death worldwide in 2022. Early diagnosis can improve prognosis, making screening a central part of colorectal cancer management. Blood-based screening, diagnosis and follow-up of colorectal cancer patients are possible with the study of cell-free circulating tumor DNA. This study aimed to identify novel DNA methylation biomarkers of colorectal cancer that can be used for the follow-up of patients with colorectal cancer. METHODS A DNA methylation profile was established in the Gene Expression Omnibus (GEO) database (n = 507) using bioinformatics analysis and subsequently confirmed using The Cancer Genome Atlas (TCGA) database (n = 348). The in silico profile was then validated on local tissue and cell-free DNA samples using methylation-specific digital PCR in colorectal cancer patients (n = 35) and healthy donors (n = 35). RESULTS The DNA methylation of COL25A1 and METAP1D was predicted to be a colorectal cancer biomarker by bioinformatics analysis (ROC AUC = 1, 95% CI [0.999-1]). The two biomarkers were confirmed with tissue samples, and the combination of COL25A1 and METAP1D yielded 49% sensitivity and 100% specificity for cell-free DNA. CONCLUSION Bioinformatics analysis of public databases revealed COL25A1 and METAP1D DNA methylation as clinically applicable liquid biopsies DNA methylation biomarkers. The specificity implies an excellent positive predictive value for follow-up, and the high sensitivity and relative noninvasiveness of a blood-based test make these biomarkers compatible with colorectal cancer screening. However, the clinical impact of these biomarkers in colorectal cancer screening and follow-up needs to be established in further prospective studies.
Collapse
Affiliation(s)
- Alexis Overs
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France.
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France.
| | - Paul Peixoto
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Chloé Molimard
- Department of Pathology, University Hospital of Besançon, 25000, Besancon, France
| | - Franck Monnien
- Department of Pathology, University Hospital of Besançon, 25000, Besancon, France
| | - Jules Durand
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Michael Guittaut
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Angélique Vienot
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Julien Viot
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liège, Belgium
| | - Christophe Borg
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Jean-Paul Feugeas
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Zohair Selmani
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
5
|
Munnings R, Gibbs P, Lee B. Evolution of Liquid Biopsies for Detecting Pancreatic Cancer. Cancers (Basel) 2024; 16:3335. [PMID: 39409954 PMCID: PMC11475855 DOI: 10.3390/cancers16193335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterised by late diagnosis and poor prognosis. Despite advancements, current diagnostic and prognostic strategies remain limited. Liquid biopsy techniques, including circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), circulating tumour exosomes, and proteomics, offer potential solutions to improve PDAC diagnosis, prognostication, and management. A systematic search of Ovid MEDLINE identified studies published between 2019 and 2024, focusing on liquid biopsy biomarkers for PDAC. A total of 49 articles were included. ctDNA research shows some promise in diagnosing and prognosticating PDAC, especially through detecting mutant KRAS in minimal residual disease assays. CTC analyses had low sensitivity for early-stage PDAC and inconsistent prognostic results across subpopulations. Exosomal studies revealed diverse biomarkers with some diagnostic and prognostic potential. Proteomics, although relatively novel, has demonstrated superior accuracy in PDAC diagnosis, including early detection, and notable prognostic capacity. Proteomics combined with CA19-9 analysis has shown the most promising results to date. An update on multi-cancer early detection testing, given its significance for population screening, is also briefly discussed. Liquid biopsy techniques offer promising avenues for improving PDAC diagnosis, prognostication, and management. In particular, proteomics shows considerable potential, yet further research is needed to validate existing findings and comprehensively explore the proteome using an unbiased approach.
Collapse
Affiliation(s)
- Ryan Munnings
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Education, Melbourne Medical School, Parkville, VIC 3052, Australia
| | - Peter Gibbs
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Western Health, Footscray, VIC 3011, Australia
| | - Belinda Lee
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC 3052, Australia
- Northern Health, Epping, VIC 3076, Australia
| |
Collapse
|
6
|
Labiano I, Huerta AE, Alsina M, Arasanz H, Castro N, Mendaza S, Lecumberri A, Gonzalez-Borja I, Guerrero-Setas D, Patiño-Garcia A, Alkorta-Aranburu G, Hernández-Garcia I, Arrazubi V, Mata E, Gomez D, Viudez A, Vera R. Building on the clinical applicability of ctDNA analysis in non-metastatic pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:16203. [PMID: 39003322 PMCID: PMC11246447 DOI: 10.1038/s41598-024-67235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma represents one of the solid tumors showing the worst prognosis worldwide, with a high recurrence rate after adjuvant or neoadjuvant therapy. Circulating tumor DNA analysis raised as a promising non-invasive tool to characterize tumor genomics and to assess treatment response. In this study, surgical tumor tissue and sequential blood samples were analyzed by next-generation sequencing and were correlated with clinical and pathological characteristics. Thirty resectable/borderline pancreatic ductal adenocarcinoma patients treated at the Hospital Universitario de Navarra were included. Circulating tumoral DNA sequencing identified pathogenic variants in KRAS and TP53, and in other cancer-associated genes. Pathogenic variants at diagnosis were detected in patients with a poorer outcome, and were correlated with response to neoadjuvant therapy in borderline pancreatic ductal adneocarcinoma patients. Higher variant allele frequency at diagnosis was associated with worse prognosis, and thesum of variant allele frequency was greater in samples at progression. Our results build on the potential value of circulating tumor DNA for non-metastatic pancreatic ductal adenocarcinoma patients, by complementing tissue genetic information and as a non-invasive tool for treatment decision. Confirmatory studies are needed to corroborate these findings.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ana E Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain.
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Natalia Castro
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Saioa Mendaza
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Arturo Lecumberri
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Iranzu Gonzalez-Borja
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ana Patiño-Garcia
- Department of Pediatrics and Clinical Genetics, Clínica Universidad de Navarra (CUN), Cancer Center Clínica Universidad de Navarra (CCUN), Program in Solid Tumors, Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
| | | | - Irene Hernández-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Gomez
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Antonio Viudez
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| |
Collapse
|
7
|
Theparee T, Akroush M, Sabatini LM, Wang V, Mangold KA, Joseph N, Stocker SJ, Freedman A, Helseth DL, Talamonti MS, Kaul KL. Cell free DNA in patients with pancreatic adenocarcinoma: clinicopathologic correlations. Sci Rep 2024; 14:15744. [PMID: 38977725 PMCID: PMC11231234 DOI: 10.1038/s41598-024-65562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Detection of circulating tumor DNA (ctDNA) from plasma cell free DNA (cfDNA) has shown promise for diagnosis, therapeutic targeting, and prognosis. This study explores ctDNA detection by next generation sequencing (NGS) and associated clinicopathologic factors in patients with pancreatic adenocarcinoma (PDAC). Patients undergoing surgical exploration or resection of pancreatic lesions were enrolled with informed consent. Plasma samples (4-6 ml) were collected prior to surgery and cfDNA was recovered from 95 plasma samples. Adequate cfDNA for NGS (20 ng) was obtained from 81 patients. NGS was performed using the Oncomine Lung cfDNA assay on the Ion Torrent S5 sequencing platform. Twenty-five patients (30.9%) had detectable mutations in KRAS and/or TP53 with allele frequencies ranging from 0.05 to 8.5%, while mutations in other genes were detected less frequently and always along with KRAS or TP53. Detectable ctDNA mutations were more frequent in patients with poorly differentiated tumors, and patients without detectable ctDNA mutations showed longer survival (medians of 10.5 months vs. 18 months, p = 0.019). The detection of circulating tumor DNA in pancreatic adenocarcinomas is correlated with worse survival outcomes.
Collapse
Affiliation(s)
- Talent Theparee
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, IL, USA
- Department of Pathology, Chulalongkorn University Faculty of Medicine, Bangkok, Thailand
| | - Michael Akroush
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, IL, USA
| | - Linda M Sabatini
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, IL, USA
| | - Vivien Wang
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, IL, USA
| | - Kathy A Mangold
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, IL, USA
| | - Nora Joseph
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Susan Jane Stocker
- Department of Surgery, NorthShore University Health System, Evanston, IL, USA
| | - Alexa Freedman
- Northwestern University School of Medicine, Chicago, IL, USA
| | - Donald L Helseth
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, IL, USA
| | - Mark S Talamonti
- Department of Surgery, NorthShore University Health System, Evanston, IL, USA
| | - Karen L Kaul
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, IL, USA.
| |
Collapse
|
8
|
Arayici ME, İnal A, Basbinar Y, Olgun N. Evaluation of the diagnostic and prognostic clinical values of circulating tumor DNA and cell-free DNA in pancreatic malignancies: a comprehensive meta-analysis. Front Oncol 2024; 14:1382369. [PMID: 38983931 PMCID: PMC11231086 DOI: 10.3389/fonc.2024.1382369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The diagnostic and prognostic clinical value of circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) in pancreatic malignancies are unclear. Herein, we aimed to perform a meta-analysis to evaluate ctDNA and cfDNA as potential diagnostic and prognostic biomarkers. METHODS PRISMA reporting guidelines were followed closely for conducting the current meta-analysis. The PubMed/Medline, Scopus, and Web of Science (WoS) databases were scanned in detail to identify eligible papers for the study. A quality assessment was performed in accordance with the REMARK criteria. The risk ratios (RRs) of the diagnostic accuracy of ctDNA compared to that of carbohydrate antigen 19.9 (CA 19.9) in all disease stages and the hazard ratios (HRs) of the prognostic role of ctDNA in overall survival (OS) were calculated with 95% confidence intervals (CIs). RESULTS A total of 18 papers were evaluated to assess the diagnostic accuracy and prognostic value of biomarkers related to pancreatic malignancies. The pooled analysis indicated that CA19.9 provides greater diagnostic accuracy across all disease stages than ctDNA or cfDNA (RR = 0.64, 95% CI: 0.50-0.82, p < 0.001). Additionally, in a secondary analysis focusing on prognosis, patients who were ctDNA-positive were found to have significantly worse OS (HR = 2.00, 95% CI: 1.51-2.66, p < 0.001). CONCLUSION The findings of this meta-analysis demonstrated that CA19-9 still has greater diagnostic accuracy across all disease stages than KRAS mutations in ctDNA or cfDNA. Nonetheless, the presence of detectable levels of ctDNA was associated with worse patient outcomes regarding OS. There is a growing need for further research on this topic. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.37766/inplasy2023.12.0092, identifier INPLASY2023120092.
Collapse
Affiliation(s)
- Mehmet Emin Arayici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Abdullah İnal
- Department of General Surgery, Faculty of Medicine, İzmir Democracy University, İzmir, Türkiye
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| | - Nur Olgun
- Department of Clinical Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| |
Collapse
|
9
|
Andersson D, Kebede FT, Escobar M, Österlund T, Ståhlberg A. Principles of digital sequencing using unique molecular identifiers. Mol Aspects Med 2024; 96:101253. [PMID: 38367531 DOI: 10.1016/j.mam.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Massively parallel sequencing technologies have long been used in both basic research and clinical routine. The recent introduction of digital sequencing has made previously challenging applications possible by significantly improving sensitivity and specificity to now allow detection of rare sequence variants, even at single molecule level. Digital sequencing utilizes unique molecular identifiers (UMIs) to minimize sequencing-induced errors and quantification biases. Here, we discuss the principles of UMIs and how they are used in digital sequencing. We outline the properties of different UMI types and the consequences of various UMI approaches in relation to experimental protocols and bioinformatics. Finally, we describe how digital sequencing can be applied in specific research fields, focusing on cancer management where it can be used in screening of asymptomatic individuals, diagnosis, treatment prediction, prognostication, monitoring treatment efficacy and early detection of treatment resistance as well as relapse.
Collapse
Affiliation(s)
- Daniel Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Firaol Tamiru Kebede
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Mandy Escobar
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
10
|
Zhong J, Jiang H, Liu X, Liao H, Xie F, Shao B, Jia S, Li H. Variant allele frequency in circulating tumor DNA correlated with tumor disease burden and predicted outcomes in patients with advanced breast cancer. Breast Cancer Res Treat 2024; 204:617-629. [PMID: 38183515 PMCID: PMC10959836 DOI: 10.1007/s10549-023-07210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE In patients with first-line advanced breast cancer (ABC), the correlation between ctDNA variant allele frequency (VAF) and tumor disease burden, and its prognostic value remains poorly investigated. METHODS This study included patients with ABC diagnosed at Peking University Cancer Hospital who performed ctDNA test before receiving first-line treatment. Baseline plasma samples were collected for assessing ctDNA alterations and VAF with next-generation sequencing. The sum of tumor target lesion diameters (SLD) was measured with imaging methods according to RECIST 1.1 criteria. RESULTS The final cohort included 184 patients. The median age of the cohort was 49.4 (IQR: 42.3-56.8) years. The median VAF was 15.6% (IQR: 5.4%-33.7%). VAF showed positive correlation with SLD in patients with relatively large tumor lesions (r = 0.314, p = 0.003), but not in patients with small tumor lesions (p = 0.226). VAF was associated with multiple metastasis sites (p = 0.001). Multivariate Cox regression analysis showed that high VAF was associated with shorter overall survival (OS) (HR: 3.519, 95% confidence interval (CI): 2.149-5.761), and first-line progression-free survival (PFS) (HR: 2.352, 95%CI: 1.462-3.782). Combined VAF and SLD improved prediction performance, both median OS and PFS of patients in VAF(H)/SLD(H) group were significantly longer than VAF(L)/SLD(L) group (mOS: 49.3 vs. 174.1 months; mPFS: 9.6 vs. 25.3 months). CONCLUSION ctDNA VAF associated with tumor disease burden, and was a prognostic factor for patients with ABC. A combination of ctDNA test and radiographic imaging might enhance tumor burden evaluation, and improve prognosis stratification in patients with ABC.
Collapse
Affiliation(s)
- Jianxin Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanfang Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Liao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feng Xie
- Huidu Shanghai Medical Sciences, Shanghai, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Shidong Jia
- Huidu Shanghai Medical Sciences, Shanghai, China.
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
11
|
Huang L, Lv Y, Guan S, Yan H, Han L, Wang Z, Han Q, Dai G, Shi Y. High somatic mutations in circulating tumor DNA predict response of metastatic pancreatic ductal adenocarcinoma to first-line nab-paclitaxel plus S-1: prospective study. J Transl Med 2024; 22:184. [PMID: 38378604 PMCID: PMC10877900 DOI: 10.1186/s12967-024-04989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
AIMS We previously showed that the nab-paclitaxel plus S-1 (NPS) regimen had promising effects against metastatic pancreatic ducal adenocarcinoma (mPDAC), whose efficacy however could not be precisely predicted by routine biomarkers. This prospective study aimed to investigate the values of mutations in circulating tumor DNA (ctDNA) and their dynamic changes in predicting response of mPDAC to NPS chemotherapy. METHODS Paired tumor tissue and blood samples were prospectively collected from patients with mPDAC receiving first-line NPS chemotherapy, and underwent next-generation sequencing with genomic profiling of 425 genes for ctDNA. High mutation allelic frequency (MAF) was defined as ≥ 30% and ≥ 5% in tumor tissue and blood, respectively. Kappa statistics were used to assess agreement between mutant genes in tumor and ctDNA. Associations of mutations in ctDNA and their dynamic changes with tumor response, overall survival (OS), and progression-free survival (PFS) were assessed using the Kaplan-Meier method, multivariable-adjusted Cox proportional hazards regression, and longitudinal data analysis. RESULTS 147 blood samples and 43 paired tumor specimens from 43 patients with mPDAC were sequenced. The most common driver genes with high MAF were KRAS (tumor, 35%; ctDNA, 37%) and TP53 (tumor, 37%; ctDNA, 33%). Mutation rates of KRAS and TP53 in ctDNA were significantly higher in patients with liver metastasis, with baseline CA19-9 ≥ 2000 U/mL, and/or without an early CA19-9 response. κ values for the 5 most commonly mutated genes between tumor and ctDNA ranged from 0.48 to 0.76. MAFs of the genes mostly decreased sequentially during subsequent measurements, which significantly correlated with objective response, with an increase indicating cancer progression. High mutations of KRAS and ARID1A in both tumor and ctDNA, and of TP53, CDKN2A, and SMAD4 in ctDNA but not in tumor were significantly associated with shorter survival. When predicting 6-month OS, AUCs for the 5 most commonly mutated genes in ctDNA ranged from 0.59 to 0.84, larger than for genes in tumor (0.56 to 0.71) and for clinicopathologic characteristics (0.51 to 0.68). Repeated measurements of mutations in ctDNA significantly differentiated survival and tumor response. Among the 31 patients with ≥ 2 ctDNA tests, longitudinal analysis of changes in gene MAF showed that ctDNA progression was 60 and 58 days ahead of radiologic and CA19-9 progression for 48% and 42% of the patients, respectively. CONCLUSIONS High mutations of multiple driving genes in ctDNA and their dynamic changes could effectively predict response of mPDAC to NPS chemotherapy, with promising reliable predictive performance superior to routine clinicopathologic parameters. Inspiringly, longitudinal ctDNA tracking could predict disease progression about 2 months ahead of radiologic or CA19-9 evaluations, with the potential to precisely devise individualized therapeutic strategies for mPDAC.
Collapse
Affiliation(s)
- Lei Huang
- Medical Center on Aging of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yao Lv
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shasha Guan
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Huan Yan
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lu Han
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zhikuan Wang
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Quanli Han
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Guanghai Dai
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Gaoqiao Town, Shanghai, 200137, China.
| |
Collapse
|
12
|
Motobayashi H, Kitahata Y, Okada KI, Miyazawa M, Ueno M, Hayami S, Miyamoto A, Shimizu A, Sato M, Yoshimura T, Nakamura Y, Takemoto N, Nakai T, Hyo T, Matsumoto K, Yamaue H, Kawai M. Short-term serial circulating tumor DNA assessment predicts therapeutic efficacy for patients with advanced pancreatic cancer. J Cancer Res Clin Oncol 2024; 150:35. [PMID: 38277079 PMCID: PMC10817839 DOI: 10.1007/s00432-023-05594-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE We investigated the potential clinical utility of short-term serial KRAS-mutated circulating cell-free tumor DNA (ctDNA) assessment for predicting therapeutic response in patients undergoing first-line chemotherapy for advanced pancreatic cancer. METHODS We collected 144 blood samples from 18 patients with locally advanced or metastatic cancer that were undergoing initial first-line chemotherapy of gemcitabine plus nab-paclitaxel (GEM plus nab-PTX). Analysis of KRAS-mutated ctDNA was quantified by digital droplet polymerase chain reaction (ddPCR) as mutant allele frequency (MAF). This study investigated pretreatment KRAS-mutated ctDNA status and ctDNA kinetics every few days (days 1, 3, 5 and 7) after initiation of chemotherapy and their potential as predictive indicators. RESULTS Of the 18 enrolled patients, an increase in KRAS-mutated ctDNA MAF values from day 0-7 after initiation of chemotherapy was significantly associated with disease progression (P < 0.001). Meanwhile, positive pretreatment ctDNA status (MAF ≥ 0.02%) (P = 0.585) and carbohydrate antigen 19-9 (CA19-9) values above the median (P = 0.266) were not associated with disease progression. In univariate analysis, this short-term increase in ctDNA MAF values (day 0-7) was found to be associated with significantly shorter progression free survival (PFS) (hazard ration [HR], 24.234; range, (2.761-212.686); P = 0.0002). CONCLUSION This short-term ctDNA kinetics assessment may provide predictive information to reflect real-time therapeutic response and lead to effective refinement of regimen in patients with advanced pancreatic cancer undergoing systemic chemotherapy.
Collapse
Affiliation(s)
- Hideki Motobayashi
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Yuji Kitahata
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan.
| | - Ken-Ichi Okada
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Motoki Miyazawa
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Masaki Ueno
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Atsushi Miyamoto
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Atsushi Shimizu
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Masatoshi Sato
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Tomohiro Yoshimura
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Yuki Nakamura
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Norio Takemoto
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Tomoki Nakai
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Takahiko Hyo
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Kyohei Matsumoto
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Hiroki Yamaue
- Department of Cancer Immunology, Wakayama Medical University, Wakayama, Japan
| | - Manabu Kawai
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| |
Collapse
|
13
|
Diez-Feijóo R, Andrade-Campos M, Gibert J, Sánchez-González B, Fernández-Ibarrondo L, Fernández-Rodríguez C, Garcia-Gisbert N, Camacho L, Lafuente M, Vázquez I, Colomo L, Salar A, Bellosillo B. Cell-Free DNA as a Biomarker at Diagnosis and Follow-Up in 256 B and T-Cell Lymphomas. Cancers (Basel) 2024; 16:321. [PMID: 38254810 PMCID: PMC10813584 DOI: 10.3390/cancers16020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) analysis has become a promising tool for the diagnosis, prognosis, and monitoring of lymphoma cases. Until now, research in this area has mainly focused on aggressive lymphomas, with scanty information from other lymphoma subtypes. METHODS We selected 256 patients diagnosed with lymphomas, including a large variety of B-cell and T-cell non-Hodgkin and Hodgkin lymphomas, and quantified cfDNA from plasma at the time of diagnosis. We further selected 49 large B-cell lymphomas (LBCL) and analyzed cfDNA levels at diagnosis (pre-therapy) and after therapy. In addition, we performed NGS on cfDNA and tissue in this cohort of LBCL. RESULTS Lymphoma patients showed a statistically significant higher cfDNA concentration than healthy controls (mean 53.0 ng/mL vs. 5.6 ng/mL, p < 0.001). The cfDNA concentration was correlated with lymphoma subtype, lactate dehydrogenase, the International Prognostic Index (IPI) score, Ann Arbor (AA), and B-symptoms. In 49 LBCL cases, the cfDNA concentration decreased after therapy in cases who achieved complete response (CR) and increased in non-responders. The median cfDNA at diagnosis of patients who achieved CR and later relapsed was higher (81.5 ng/mL) compared with levels of those who did not (38.6 ng/mL). A concordance of 84% was observed between NGS results in tumor and cfDNA samples. Higher VAF in cfDNA is correlated with advanced stage and bulky disease. CONCLUSIONS cfDNA analysis can be easily performed in almost all lymphoma cases. The cfDNA concentration correlated with the characteristics of the aggressiveness of the lymphomas and, in LBCL, with the response achieved after therapy. These results support the utility of cfDNA analysis as a complementary tool in the management of lymphoma patients.
Collapse
Affiliation(s)
- Ramón Diez-Feijóo
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Marcio Andrade-Campos
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Blanca Sánchez-González
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Lierni Fernández-Ibarrondo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Concepción Fernández-Rodríguez
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Nieves Garcia-Gisbert
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Laura Camacho
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Marta Lafuente
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Ivonne Vázquez
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Luis Colomo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Antonio Salar
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Beatriz Bellosillo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| |
Collapse
|
14
|
Poulet G, Hulot JS, Blanchard A, Bergerot D, Xiao W, Ginot F, Boutonnet-Rodat A, Justine A, Beinse G, Geromel V, Pellegrina L, Azizi M, Laurent-Puig P, Benhaim L, Taly V. Circadian rhythm and circulating cell-free DNA release on healthy subjects. Sci Rep 2023; 13:21675. [PMID: 38065990 PMCID: PMC10709451 DOI: 10.1038/s41598-023-47851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
In the last decade, clinical studies have investigated the clinical relevance of circulating cell-free-DNA (ccfDNA) as a diagnostic and prognosis tool in various diseases including cancers. However, limited knowledge on ccfDNA biology restrains its full development in the clinical practice. To improve our understanding, we evaluated the impact of the circadian rhythm on ccfDNA release in healthy subjects over a 24-h period. 10 healthy female subjects underwent blood sampling at 8am and 20 healthy male subjects underwent serial blood sampling (8:00 AM, 9:00 AM, 12:00 PM, 4:00 PM, 8:00 PM, 12:00 AM, 4 AM (+ 1 Day) and 8 AM (+ 1 Day)). We performed digital droplet-based PCR (ddPCR) assays to target 2 DNA fragments (69 & 243 bp) located in the KRAS gene to determine the ccfDNA concentration and fragmentation profile. As control, half of the samples were re-analyzed by capillary miniaturized electrophoresis (BIAbooster system). Overall, we did not detect any influence of the circadian rhythm on ccfDNA release. Instead, we observed a decrease in the ccfDNA concentration after meal ingestion, suggesting either a post-prandial effect or a technical detection bias due to a higher plasma load in lipids and triglycerides. We also noticed a potential effect of gender, weight and creatinine levels on ccfDNA concentration.
Collapse
Affiliation(s)
- Geoffroy Poulet
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Eurofins-Biomnis, Gerland, Lyon, France
| | - Jean-Sébastien Hulot
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Anne Blanchard
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Damien Bergerot
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Wenjin Xiao
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Abdelli Justine
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Guillaume Beinse
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Michel Azizi
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Pierre Laurent-Puig
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Biochemistry Department - Unit of Pharmacogenetic and Molecular Oncology, Hôpital Européen Georges Pompidou (HEGP), Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Leonor Benhaim
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Department of Visceral and Surgical Oncology, Gustave Roussy, Villejuif, France.
| | - Valerie Taly
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
15
|
Boscolo Bielo L, Trapani D, Repetto M, Crimini E, Valenza C, Belli C, Criscitiello C, Marra A, Subbiah V, Curigliano G. Variant allele frequency: a decision-making tool in precision oncology? Trends Cancer 2023; 9:1058-1068. [PMID: 37704501 DOI: 10.1016/j.trecan.2023.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Precision oncology requires additional predictive biomarkers for targeted therapy selection. Variant allele frequency (VAF), measuring the proportion of variant alleles within a genomic locus, provides insights into tumor clonality in somatic genomic testing, yielding a strong rationale for targeting dominant cancer cell populations. The prognostic and predictive roles of VAF have been evaluated across different studies. Yet, the absence of validated VAF thresholds and a lack of standardization between sequencing assays currently hampers its clinical utility. Therefore, analytical and clinical validation must be further examined. This Review summarizes the evidence regarding the use of VAF as a predictive biomarker and discusses challenges and opportunities for its clinical implementation as a decision-making tool for targeted therapy selection.
Collapse
Affiliation(s)
- Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Repetto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Early Drug Development service, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Vivek Subbiah
- Drug Development Unit, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
16
|
van den Ende T, van der Pol Y, Creemers A, Moldovan N, Boers D, van Berge Henegouwen MI, Hulshof MC, Cillessen SA, van Grieken NC, Pegtel DM, Derks S, Bijlsma MF, Mouliere F, van Laarhoven HW. Genome-wide and panel-based cell-free DNA characterization of patients with resectable esophageal adenocarcinoma. J Pathol 2023; 261:286-297. [PMID: 37615198 DOI: 10.1002/path.6175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Circulating tumor DNA (ctDNA) holds promise in resectable esophageal adenocarcinoma (EAC) to predict patient outcome but is not yet sensitive enough to be clinically applicable. Our aim was to combine ctDNA mutation data with shallow whole-genome sequencing (sWGS)-derived copy number tumor fraction estimates (ichorCNA) to improve pathological response and survival prediction in EAC. In total, 111 stage II/III EAC patients with baseline (n = 111), post-neoadjuvant chemoradiotherapy (nCRT) (n = 68), and pre-surgery (n = 92) plasma samples were used for ctDNA characterization. sWGS (<5× coverage) was performed on all time-point samples, and copy number aberrations were estimated using ichorCNA. Baseline and pre-surgery samples were sequenced using a custom amplicon panel for mutation detection. Detection of baseline ctDNA was successful in 44.3% of patients by amplicon sequencing and 10.5% by ichorCNA. Combining both, ctDNA could be detected in 50.5% of patients. Baseline ctDNA positivity was related to higher T stage (cT3, 4) (p = 0.017). There was no relationship between pathological response and baseline ctDNA positivity. However, baseline ctDNA metrics (variant allele frequency > 1% or ichorCNA > 3%) were associated with a high risk of disease progression [HR = 2.23 (95% CI 1.22-4.07), p = 0.007]. The non-clearance of a baseline variant or ichorCNA > 3% in pre-surgery samples was related to early progression [HR = 4.58 (95% CI 2.22-9.46), p < 0.001]. Multi-signal analysis improves detection of ctDNA and can be used for prognostication of resectable EAC patients. Future studies should explore the potential of multi-modality sequencing for risk stratification and treatment adaptation based on ctDNA results. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Ymke van der Pol
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Aafke Creemers
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Norbert Moldovan
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Dries Boers
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Mark I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Maarten Ccm Hulshof
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Nicole Ct van Grieken
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Sarah Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Florent Mouliere
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Hanneke Wm van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zhao J, Reuther J, Scozzaro K, Hawley M, Metzger E, Emery M, Chen I, Barbosa M, Johnson L, O'Connor A, Washburn M, Hartje L, Reckase E, Johnson V, Zhang Y, Westheimer E, O'Callaghan W, Malani N, Chesh A, Moreau M, Daber R. Personalized Cancer Monitoring Assay for the Detection of ctDNA in Patients with Solid Tumors. Mol Diagn Ther 2023; 27:753-768. [PMID: 37632661 PMCID: PMC10590345 DOI: 10.1007/s40291-023-00670-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Highly sensitive molecular assays have been developed to detect plasma-based circulating tumor DNA (ctDNA), and emerging evidence suggests their clinical utility for monitoring minimal residual disease and recurrent disease, providing prognostic information, and monitoring therapy responses in patients with solid tumors. The Invitae Personalized Cancer Monitoring™ assay uses a patient-specific, tumor-informed variant signature identified through whole exome sequencing to detect ctDNA in peripheral blood of patients with solid tumors. METHODS The assay's tumor whole exome sequencing and ctDNA detection components were analytically validated using 250 unique human specimens and nine commercial reference samples that generated 1349 whole exome sequencing and cell-free DNA (cfDNA)-derived libraries. A comparison of tumor and germline whole exome sequencing was used to identify patient-specific tumor variant signatures and generate patient-specific panels, followed by targeted next-generation sequencing of plasma-derived cfDNA using the patient-specific panels with anchored multiplex polymerase chain reaction chemistry leveraging unique molecular identifiers. RESULTS Whole exome sequencing resulted in overall sensitivity of 99.8% and specificity of > 99.9%. Patient-specific panels were successfully designed for all 63 samples (100%) with ≥ 20% tumor content and 24 (80%) of 30 samples with ≥ 10% tumor content. Limit of blank studies using 30 histologically normal, formalin-fixed paraffin-embedded specimens resulted in 100% expected panel design failure. The ctDNA detection component demonstrated specificity of > 99.9% and sensitivity of 96.3% for a combination of 10 ng of cfDNA input, 0.008% allele frequency, 50 variants on the patient-specific panels, and a baseline threshold. Limit of detection ranged from 0.008% allele frequency when utilizing 60 ng of cfDNA input with 18-50 variants in the patient-specific panels (> 99.9% sensitivity) with a baseline threshold, to 0.05% allele frequency when using 10 ng of cfDNA input with an 18-variant panel with a monitoring threshold (> 99.9% sensitivity). CONCLUSIONS The Invitae Personalized Cancer Monitoring assay, featuring a flexible patient-specific panel design with 18-50 variants, demonstrated high sensitivity and specificity for detecting ctDNA at variant allele frequencies as low as 0.008%. This assay may support patient prognostic stratification, provide real-time data on therapy responses, and enable early detection of residual/recurrent disease.
Collapse
Affiliation(s)
- Jianhua Zhao
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA.
| | | | - Kaylee Scozzaro
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Megan Hawley
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Emily Metzger
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Matthew Emery
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Ingrid Chen
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | - Laura Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Alijah O'Connor
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Mike Washburn
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Luke Hartje
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Erik Reckase
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Verity Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Yuhua Zhang
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | | | - Nirav Malani
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Adrian Chesh
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Michael Moreau
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Robert Daber
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| |
Collapse
|
18
|
Silvoniemi A, Laine J, Aro K, Nissi L, Bäck L, Schildt J, Hirvonen J, Hagström J, Irjala H, Aaltonen LM, Seppänen M, Minn H. Circulating Tumor DNA in Head and Neck Squamous Cell Carcinoma: Association with Metabolic Tumor Burden Determined with FDG-PET/CT. Cancers (Basel) 2023; 15:3970. [PMID: 37568786 PMCID: PMC10416934 DOI: 10.3390/cancers15153970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The detection of circulating tumor DNA (ctDNA) with next-generation sequencing (NGS) in venous blood is a promising tool for the genomic profiling of head and neck squamous cell carcinoma (HNSCC). The association between ctDNA findings and metabolic tumor burden detected with FDG-PET/CT imaging is of particular interest for developing prognostic and predictive algorithms in HNSCC. METHODS Twenty-six prospectively enrolled HNSCC patients were eligible for further analysis. All patients underwent tumor tissue and venous liquid biopsy sampling and FDG-PET/CT before definitive oncologic treatment. An NGS-based commercial panel was used for a genomic analysis of the samples. RESULTS Maximum variant allele frequency (VAF) in blood correlated positively with whole-body (WB) metabolic tumor volume (MTV) and total lesion glycolysis (TLG) (r = 0.510, p = 0.008 and r = 0.584, p = 0.002, respectively). A positive liquid biopsy was associated with high WB-TLG using VAF ≥ 1.00% or ≥5.00% as a cut-off value (p = 0.006 or p = 0.003, respectively). Additionally, ctDNA detection was associated with WB-TLG when only concordant variants detected in both ctDNA and tissue samples were considered. CONCLUSIONS A high metabolic tumor burden based on FDG imaging is associated with a positive liquid biopsy and high maximum VAF. Our findings suggest a complementary role of metabolic and genomic signatures in the pre-treatment evaluation of HNSCC.
Collapse
Affiliation(s)
- Antti Silvoniemi
- Department of Otorhinolaryngology—Head and Neck Surgery, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
| | - Jukka Laine
- Department of Pathology, Turku University Hospital, University of Turku, FI-20520 Turku, Finland
| | - Katri Aro
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Linda Nissi
- Department of Oncology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Leif Bäck
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Jukka Schildt
- Department of Nuclear Medicine, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
- Department of Radiology, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, FI-33520 Tampere, Finland
| | - Jaana Hagström
- Department of Oral Pathology and Radiology, University of Turku, FI-20520 Turku, Finland
- Department of Pathology, Helsinki University Hospital, Helsinki University, FI-00290 Helsinki, Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology—Head and Neck Surgery, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland
| | - Marko Seppänen
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland
- Department of Oncology, Turku University Hospital, University of Turku, FI-20521 Turku, Finland
| |
Collapse
|
19
|
Lee K, Lee J, Choi J, Sim SH, Kim JE, Kim MH, Park YH, Kim JH, Koh SJ, Park KH, Kang MJ, Ahn MS, Lee KE, Kim HJ, Ahn HK, Kim HJ, Park KU, Park IH. Genomic analysis of plasma circulating tumor DNA in patients with heavily pretreated HER2 + metastatic breast cancer. Sci Rep 2023; 13:9928. [PMID: 37336919 DOI: 10.1038/s41598-023-35925-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
We explored accumulated genomic alterations in patients with heavily treated HER2 + metastatic breast cancer enrolled in the KCSG BR18-14/KM10B trial. Targeted sequencing was performed with circulating tumor DNAs (ctDNAs) collected before the treatment of 92 patients. ctDNAs collected at the time of disease progression from seven patients who had a durable response for > 12 months were also analyzed. Sixty-five genes were identified as pathogenic alterations in 99 samples. The most frequently altered genes were TP53 (n = 48), PIKCA (n = 21) and ERBB3 (n = 19). TP53 and PIK3CA mutations were significantly related with shorter progression free survival (PFS), and patients with a higher ctDNA fraction showed a worse PFS. The frequency of homologous recombination deficiency (HRD)-related gene mutations was higher than that in matched tumor tissues, and these mutations tended to be associated with shorter PFS. New pathogenic variants were found at the end of treatment in all seven patients, including BRCA2, VHL, RAD50, RB1, BRIP1, ATM, FANCA, and PIK3CA mutations. In conclusion, TP53 and PIK3CA mutations, as well as a higher ctDNA fraction, were associated with worse PFS with trastuzumab and cytotoxic chemotherapy. The enrichment of HRD-related gene mutations and newly detected variants in ctDNA may be related to resistance to treatment.
Collapse
Affiliation(s)
- Kyoungmin Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jongwon Lee
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Sung Hoon Sim
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Yeon Hee Park
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Su-Jin Koh
- Department of Hematology and Oncology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Korea
| | - Kyong Hwa Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Myoung Joo Kang
- Division of Oncology, Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Mi Sun Ahn
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Kyoung Eun Lee
- Department of Hematology and Oncology, Ewha Womans University Hospital, Seoul, Korea
| | - Hee-Jun Kim
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Hee Kyung Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Han Jo Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Keon Uk Park
- Division of Hematology/Oncology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Korea
| | - In Hae Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Inagaki C, Kawakami H, Maeda D, Sakai D, Urakawa S, Nishida K, Kudo T, Doki Y, Eguchi H, Wada H, Satoh T. The potential clinical utility of cell-free DNA for gastric cancer patients treated with nivolumab monotherapy. Sci Rep 2023; 13:5652. [PMID: 37024664 PMCID: PMC10079661 DOI: 10.1038/s41598-023-32645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
To assess the potential clinical utility of cell-free DNA (cfDNA)-based biomarkers for identifying gastric cancer (GC) patients who benefit from nivolumab. From 31 GC patients treated with nivolumab monotherapy (240 mg/body, Bi-weekly) in 3rd or later line setting, we prospectively collected blood samples at baseline and before the 3rd dose. We compared cfDNA-based molecular findings, including microsatellite instability (MSI) status, to tissue-based biomarkers. We assessed the clinical value of blood tumor mutation burden (bTMB) and copy number alterations (CNA) as well as the cfDNA dynamics. The concordance between deficient-MMR and cfDNA-based MSI-high was 100% (3/3). Patients with bTMB ≥ 6 mut/Mb had significantly better progression-free survival (PFS) and overall survival (OS); however, such significance disappeared when excluding MSI-High cases. The combination of bTMB and CNA positivity identified patients with survival benefit regardless of MSI status (both PFS and OS, P < 0.001), with the best survival in those with bTMB≥6mut/Mb and CNAnegative. Moreover, patients with decreased bTMB during treatment had a better disease control rate (P = 0.04) and longer PFS (P = 0.04). Our results suggest that a combination of bTMB and CNA may predict nivolumab efficacy for GC patients regardless of MSI status. bTMB dynamics have a potential utility as an on-treatment biomarker.
Collapse
Affiliation(s)
- Chiaki Inagaki
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan.
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medicine, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Daisuke Sakai
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital, Suita, 565-0871, Japan
| | - Shinya Urakawa
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Kentaro Nishida
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital, Suita, 565-0871, Japan
| |
Collapse
|
21
|
Chiang CL, Ho HL, Yeh YC, Lee CC, Huang HC, Shen CI, Luo YH, Chen YM, Chiu CH, Chou TY. Efficacy of different platforms in detecting EGFR mutations using cerebrospinal fluid cell-free DNA from non-small-cell lung cancer patients with leptomeningeal metastases. Thorac Cancer 2023; 14:1251-1259. [PMID: 36977550 PMCID: PMC10175033 DOI: 10.1111/1759-7714.14866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Cell-free tumor DNA (ctDNA) obtained through liquid biopsy is useful for the molecular analysis of advanced non-small-cell lung cancer (NSCLC). Few studies have directly compared analysis platforms in terms of their diagnostic performance in analyzing ctDNA obtained from the cerebrospinal fluid (CSF) of patients with leptomeningeal metastasis (LM). METHODS We prospectively analyzed patients with epidermal growth factor receptor (EGFR)-mutant NSCLC who were subjected to CSF analysis for suspected LM. To detect EGFR mutations, CSF ctDNA was analyzed using the cobas EGFR Mutation Test and droplet digital polymerase chain reaction (ddPCR). CSF samples from osimertinib-refractory patients with LM were also subjected to next-generation sequencing (NGS). RESULTS Significantly higher rates of valid results (95.1% vs. 78%, respectively, p = 0.04) and EGFR common mutation detection (94.3% vs. 77.1%, respectively, p = 0.047) were obtained through ddPCR than through the cobas EGFR Mutation Test. The sensitivities of ddPCR and cobas were 94.3% and 75.6%, respectively. The concordance rate for EGFR mutation detection through ddPCR and the cobas EGFR Mutation Test was 75.6% and that for EGFR mutation detection in CSF and plasma ctDNA was 28.1%. In osimertinib-resistant CSF samples, all original EGFR mutations were detected through NGS. MET amplification and CCDC6-RET fusion were demonstrated in one patient each (9.1%). CONCLUSIONS The cobas EGFR Mutation Test, ddPCR, and NGS appear to be feasible methods for analyzing CSF ctDNA in patients with NSCLC and LM. In addition, NGS may provide comprehensive information regarding the mechanisms underlying osimertinib resistance.
Collapse
Affiliation(s)
- Chi-Lu Chiang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Yeh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Chia Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsu-Ching Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-I Shen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hung Luo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Hua Chiu
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Masterson AN, Chowdhury NN, Fang Y, Yip-Schneider MT, Hati S, Gupta P, Cao S, Wu H, Schmidt CM, Fishel ML, Sardar R. Amplification-Free, High-Throughput Nanoplasmonic Quantification of Circulating MicroRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection. ACS Sens 2023; 8:1085-1100. [PMID: 36853001 DOI: 10.1021/acssensors.2c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is often detected at an advanced stage. Earlier diagnosis of PDAC is key to reducing mortality. Circulating biomarkers such as microRNAs are gaining interest, but existing technologies require large sample volumes, amplification steps, extensive biofluid processing, lack sensitivity, and are low-throughput. Here, we present an advanced nanoplasmonic sensor for the highly sensitive, amplification-free detection and quantification of microRNAs (microRNA-10b, microRNA-let7a) from unprocessed plasma microsamples. The sensor construct utilizes uniquely designed -ssDNA receptors attached to gold triangular nanoprisms, which display unique localized surface plasmon resonance (LSPR) properties, in a multiwell plate format. The formation of -ssDNA/microRNA duplex controls the nanostructure-biomolecule interfacial electronic interactions to promote the charge transfer/exciton delocalization processes and enhance the LSPR responses to achieve attomolar (10-18 M) limit of detection (LOD) in human plasma. This improve LOD allows the fabrication of a high-throughput assay in a 384-well plate format. The performance of nanoplasmonic sensors for microRNA detection was further assessed by comparing with the qRT-PCR assay of 15 PDAC patient plasma samples that shows a positive correlation between these two assays with the Pearson correlation coefficient value >0.86. Evaluation of >170 clinical samples reveals that oncogenic microRNA-10b and tumor suppressor microRNA-let7a levels can individually differentiate PDAC from chronic pancreatitis and normal controls with >94% sensitivity and >94% specificity at a 95% confidence interval (CI). Furthermore, combining both oncogenic and tumor suppressor microRNA levels significantly improves differentiation of PDAC stages I and II versus III and IV with >91% and 87% sensitivity and specificity, respectively, in comparison to the sensitivity and specificity values for individual microRNAs. Moreover, we show that the level of microRNAs varies substantially in pre- and post-surgery PDAC patients (n = 75). Taken together, this ultrasensitive nanoplasmonic sensor with excellent sensitivity and specificity is capable of assaying multiple biomarkers simultaneously and may facilitate early detection of PDAC to improve patient care.
Collapse
Affiliation(s)
- Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Nayela N Chowdhury
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Yue Fang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Prashant Gupta
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Huangbing Wu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - C Max Schmidt
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
23
|
Sellahewa R, Moghaddam SM, Lundy J, Jenkins BJ, Croagh D. Circulating Tumor DNA Is an Accurate Diagnostic Tool and Strong Prognostic Marker in Pancreatic Cancer. Pancreas 2023; 52:e188-e195. [PMID: 37751379 DOI: 10.1097/mpa.0000000000002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE The objectives of the study are to investigate the sensitivity and specificity of circulating tumor DNA (ctDNA) for the diagnosis of pancreatic cancer and to assess the utility of ctDNA as a prognostic marker in this disease. METHODS Cell-free DNA was extracted from plasma of patients who underwent endoscopic ultrasound fine-needle aspiration or surgical resections for pancreatic cancer. The cell-free DNA was then analyzed using droplet digital polymerase chain reaction for KRAS G12/13 mutations. Eighty-one patients with pancreatic cancer and 30 patients with benign pancreatic disease were analyzed. RESULTS ctDNA KRAS G12/13 mutations were detected in 63% of all patients with pancreatic cancer and in 76% of those patients who also had KRAS G12/13 mutations detected in the pancreatic primary. Specificity and tissue concordance were both 100%. Circulating tumor DNA corresponded with tumor size and stage, and high ctDNA was associated with significantly worse prognosis on both univariate and multivariate testing. CONCLUSION Our study shows that ctDNA is an accurate diagnostic tool and strong prognostic marker in patients with pancreatic cancer. The continued investigation of ctDNA will enable its implementation in clinical practice to optimize the care and survival outcomes of patients with pancreatic cancer.
Collapse
|
24
|
Labiano I, Huerta AE, Arrazubi V, Hernandez-Garcia I, Mata E, Gomez D, Arasanz H, Vera R, Alsina M. State of the Art: ctDNA in Upper Gastrointestinal Malignancies. Cancers (Basel) 2023; 15:1379. [PMID: 36900172 PMCID: PMC10000247 DOI: 10.3390/cancers15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising non-invasive source to characterize genetic alterations related to the tumor. Upper gastrointestinal cancers, including gastroesophageal adenocarcinoma (GEC), biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PADC) are poor prognostic malignancies, usually diagnosed at advanced stages when no longer amenable to surgical resection and show a poor prognosis even for resected patients. In this sense, ctDNA has emerged as a promising non-invasive tool with different applications, from early diagnosis to molecular characterization and follow-up of tumor genomic evolution. In this manuscript, novel advances in the field of ctDNA analysis in upper gastrointestinal tumors are presented and discussed. Overall, ctDNA analyses can help in early diagnosis, outperforming current diagnostic approaches. Detection of ctDNA prior to surgery or active treatment is also a prognostic marker that associates with worse survival, while ctDNA detection after surgery is indicative of minimal residual disease, anticipating in some cases the imaging-based detection of progression. In the advanced setting, ctDNA analyses characterize the genetic landscape of the tumor and identify patients for targeted-therapy approaches, and studies show variable concordance levels with tissue-based genetic testing. In this line, several studies also show that ctDNA serves to follow responses to active therapy, especially in targeted approaches, where it can detect multiple resistance mechanisms. Unfortunately, current studies are still limited and observational. Future prospective multi-center and interventional studies, carefully designed to assess the value of ctDNA to help clinical decision-making, will shed light on the real applicability of ctDNA in upper gastrointestinal tumor management. This manuscript presents a review of the evidence available in this field up to date.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernandez-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - David Gomez
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
25
|
Wong D, Luo P, Znassi N, Arteaga DP, Gray D, Danesh A, Han M, Zhao EY, Pedersen S, Prokopec S, Sundaravadanam Y, Torti D, Marsh K, Keshavarzi S, Xu W, Krema H, Joshua AM, Butler MO, Pugh TJ. Integrated, Longitudinal Analysis of Cell-free DNA in Uveal Melanoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:267-280. [PMID: 36860651 PMCID: PMC9973415 DOI: 10.1158/2767-9764.crc-22-0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Uveal melanomas are rare tumors arising from melanocytes that reside in the eye. Despite surgical or radiation treatment, approximately 50% of patients with uveal melanoma will progress to metastatic disease, most often to the liver. Cell-free DNA (cfDNA) sequencing is a promising technology due to the minimally invasive sample collection and ability to infer multiple aspects of tumor response. We analyzed 46 serial cfDNA samples from 11 patients with uveal melanoma over a 1-year period following enucleation or brachytherapy (n = ∼4/patient) using targeted panel, shallow whole genome, and cell-free methylated DNA immunoprecipitation sequencing. We found detection of relapse was highly variable using independent analyses (P = 0.06-0.46), whereas a logistic regression model integrating all cfDNA profiles significantly improved relapse detection (P = 0.02), with greatest power derived from fragmentomic profiles. This work provides support for the use of integrated analyses to improve the sensitivity of circulating tumor DNA detection using multi-modal cfDNA sequencing. Significance Here, we demonstrate integrated, longitudinal cfDNA sequencing using multi-omic approaches is more effective than unimodal analysis. This approach supports the use of frequent blood testing using comprehensive genomic, fragmentomic, and epigenomic techniques.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nadia Znassi
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Diana P. Arteaga
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Gray
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ming Han
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eric Y. Zhao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephenie Prokopec
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Dax Torti
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kayla Marsh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sareh Keshavarzi
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Hatem Krema
- Department of Ocular Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Oncology, Kinghorn Cancer Centre, St. Vincent's Hospital and Garvan Institute of Medical Research, Sydney, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Marcus O. Butler
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada.,Corresponding Authors: Trevor J. Pugh, Princess Margaret Cancer Centre, University Health Network, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 9-305, Toronto, Ontario M5G 1L7, Canada. Phone: 416-581-7689; E-mail: ; and Marcus Butler, Princess Margaret Cancer Centre, 610 University Avenue, OPG 7-815, Toronto, Ontario M5G 2M9. Phone: 416-946-4501 x5485;
| | - Trevor J. Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Corresponding Authors: Trevor J. Pugh, Princess Margaret Cancer Centre, University Health Network, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 9-305, Toronto, Ontario M5G 1L7, Canada. Phone: 416-581-7689; E-mail: ; and Marcus Butler, Princess Margaret Cancer Centre, 610 University Avenue, OPG 7-815, Toronto, Ontario M5G 2M9. Phone: 416-946-4501 x5485;
| |
Collapse
|
26
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
27
|
Kirchweger P, Kupferthaler A, Burghofer J, Webersinke G, Jukic E, Schwendinger S, Wundsam H, Biebl M, Petzer A, Rumpold H. Prediction of response to systemic treatment by kinetics of circulating tumor DNA in metastatic pancreatic cancer. Front Oncol 2022; 12:902177. [PMID: 36110940 PMCID: PMC9468369 DOI: 10.3389/fonc.2022.902177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Pretherapeutic detectable circulating tumor DNA (ctDNA) represents a promising prognostic biomarker for predicting relapse and overall survival in patients with metastatic pancreatic cancer. However, the prognostic value of ctDNA dynamics during treatment has not been studied thus far. We aimed to investigate the correlation between the change of ctDNA levels and response to treatment in patients treated by systemic therapy. Material and methods CtDNA detection using liquid biopsy (droplet digital PCR (ddPCR) utilizing KRAS G12/13 and, if negative, Q61 commercial test kits) was prospectively performed on patients with stage IV pancreatic cancer i) prior to initiation of systemic chemotherapy and ii) serially every 2 weeks until restaging. Detection rates, levels of ctDNA, and the course of the relative ctDNA change (ctDNA kinetics) were correlated to treatment response and clinical outcome. Results The detection rate at baseline was 64.3% (45/70), and complete serial measurement records were available for 32 ctDNA-positive patients. Reduction of ctDNA levels below 57.9% of its baseline value at week 2 after treatment initiation was significantly predictive of response to treatment (area under the curve (AUC) = 0.918, sensitivity 91.67%, and specificity 100%) and was associated with prolonged overall survival (OS) (5.7 vs. 11.4 months, p = 0.006) and progression-free survival (PFS) (2.5 vs. 7.7 months, p < 0.000) regardless of treatment line. Pretherapeutic ctDNA detection was independently associated with worse OS in patients receiving a first-line regimen (7 vs. 11.3 months, p = 0.046) and regardless of treatment line (11.4 vs. 15.9 months, p = 0.045) as well as worse PFS (3.4 vs. 10.8 months, p = 0.018). Conclusion The change in magnitude of ctDNA during systemic treatment allows the prediction of treatment response and is associated with both OS and PFS. This finding adds significant clinical potential to the already established prognostic value of ctDNA positivity in metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Patrick Kirchweger
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz, Austria
- Department of Surgery, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Alexander Kupferthaler
- Department of Diagnostic and Interventional Radiology, Ordensklinikum Linz, Linz, Austria
| | - Jonathan Burghofer
- Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz, Linz, Austria
| | - Gerald Webersinke
- Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz, Linz, Austria
| | - Emina Jukic
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Schwendinger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Helwig Wundsam
- Department of Surgery, Ordensklinikum Linz, Linz, Austria
| | - Matthias Biebl
- Department of Surgery, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Petzer
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
| | - Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- *Correspondence: Holger Rumpold,
| |
Collapse
|
28
|
Zhang D, Cui F, Peng L, Wang M, Yang X, Xia C, Li K, Yin H, Zhang Y, Yu Q, Jin Z, Huang H. Establishing and validating an ADCP-related prognostic signature in pancreatic ductal adenocarcinoma. Aging (Albany NY) 2022; 14:6299-6315. [PMID: 35963640 PMCID: PMC9417234 DOI: 10.18632/aging.204221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
With the progress of precision medicine treatment in pancreatic ductal adenocarcinoma (PDAC), individualized cancer-related examination and prediction is of great importance in this high malignant tumor, and antibody-dependent cell phagocytosis (ADCP) with changed pathways highly enrolled in the carcinogenesis of PDAC. High-throughput data of pancreatic ductal adenocarcinoma were downloaded and 160 differentially expressed ADCP-related genes (ARGs) were obtained. Secondly, GO and KEGG enrichment analyses show that ADCP is a pivotal biologic process in pancreatic carcinogenesis. Next, CALB2, NLGN2, NCAPG and SERTAD2 are identified through multivariate Cox regression. These 4 genes are confirmed with significant prognostic value in PDAC. Then, a risk score formula is constructed and tested in PDAC samples. Finally, the correlation between these 4 genes and M2 macrophage polarization was screened. Some pivotal differentially expressed ADCP-related genes and biologic processes, four pivotal subgroup was among identified in the protein-protein network, and hub genes was found in these sub group. Then, an ADCP-related formula was set: CALB2* 0.355526 + NLGN2* -0.86862 + NCAPG* 0.932348 + SERTAD2* 1.153568. Additionally, the significant correlation between M2 macrophage-infiltration and the expression of each genes in PDAC samples was identified. Finally, the somatic mutation landscape and sensitive chemotherapy drug between high risk group and low risk group was explored. This study provides a potential prognostic signature for predicting prognosis of PDAC patients and molecular insights of ADCP in PDAC, and the formula focusing on the prognosis of PDAC can be effective. These findings will contribute to the precision medicine of pancreatic ductal adenocarcinoma treatment.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Meiqi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiaoli Yang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, China
| | - Hua Yin
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Yang Zhang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Qihong Yu
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| |
Collapse
|
29
|
Sheel A, Addison S, Nuguru SP, Manne A. Is Cell-Free DNA Testing in Pancreatic Ductal Adenocarcinoma Ready for Prime Time? Cancers (Basel) 2022; 14:3453. [PMID: 35884515 PMCID: PMC9322623 DOI: 10.3390/cancers14143453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) testing currently does not have a significant role in PDA management: it is insufficient to diagnose PDA, and its use is primarily restricted to identifying targetable mutations (if tissue is insufficient or unavailable). cfDNA testing has the potential to address critical needs in PDA management, such as pre-operative risk stratification (POR), prognostication, and predicting (and monitoring) treatment response. Prior studies have focused primarily on somatic mutations, specifically KRAS variants, and have shown limited success in addressing prognosis and POR. Recent studies have demonstrated the importance of other less prevalent mutations (ERBB2 and TP53), but no studies have provided reliable mutation panels for clinical use. Methylation aberrations in cfDNA (epigenetic markers) in PDA have been relatively less explored. However, early evidence has suggested they offer diagnostic and, to some extent, prognostic value. The inclusion of epigenetic markers of cfDNA adds another dimension to genomic testing and may open new therapeutic avenues beyond addressing critical areas of need in PDA treatment. For cfDNA to substantially influence PDA management, concerted efforts are required to include less frequent mutations and epigenetic markers. Furthermore, relying on KRAS mutations for PDA management will always be inadequate.
Collapse
Affiliation(s)
- Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 432120, USA;
| | - Sarah Addison
- School of Medicine, The Ohio State University, Columbus, OH 432120, USA;
| | - Surya Pratik Nuguru
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad 500012, India;
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Chapin WJ, Till JE, Hwang WT, Eads JR, Karasic TB, O'Dwyer PJ, Schneider CJ, Teitelbaum UR, Romeo J, Black TA, Christensen TE, Redlinger Tabery C, Anderson A, Slade M, LaRiviere M, Yee SS, Reiss KA, O'Hara MH, Carpenter EL. Multianalyte Prognostic Signature Including Circulating Tumor DNA and Circulating Tumor Cells in Patients With Advanced Pancreatic Adenocarcinoma. JCO Precis Oncol 2022; 6:e2200060. [PMID: 35939771 PMCID: PMC9384952 DOI: 10.1200/po.22.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. Multianalyte signatures, including liquid biopsy and traditional clinical variables, have shown promise for improving prognostication in other solid tumors but have not yet been rigorously assessed for PDAC. MATERIALS AND METHODS We performed a prospective cohort study of patients with newly diagnosed locally advanced pancreatic cancer (LAPC) or metastatic PDAC (mPDAC) who were planned to undergo systemic therapy. We collected peripheral blood before systemic therapy and assessed circulating tumor cells (CTCs), cell-free DNA concentration (cfDNA), and circulating tumor KRAS (ctKRAS)-variant allele fraction (VAF). Association of variables with overall survival (OS) was assessed in univariate and multivariate survival analysis, and comparisons were made between models containing liquid biopsy variables combined with traditional clinical prognostic variables versus models containing traditional clinical prognostic variables alone. RESULTS One hundred four patients, 40 with LAPC and 64 with mPDAC, were enrolled. CTCs, cfDNA concentration, and ctKRAS VAF were all significantly higher in patients with mPDAC than patients with LAPC. ctKRAS VAF (cube root; 0.05 unit increments; hazard ratio, 1.11; 95% CI, 1.03 to 1.21; P = .01), and CTCs ≥ 1/mL (hazard ratio, 2.22; 95% CI, 1.34 to 3.69; P = .002) were significantly associated with worse OS in multivariate analysis while cfDNA concentration was not. A model selected by backward selection containing traditional clinical variables plus liquid biopsy variables had better discrimination of OS compared with a model containing traditional clinical variables alone (optimism-corrected Harrell's C-statistic 0.725 v 0.681). CONCLUSION A multianalyte prognostic signature containing CTCs, ctKRAS, and cfDNA concentration outperformed a model containing traditional clinical variables alone suggesting that CTCs, ctKRAS, and cfDNA provide prognostic information complementary to traditional clinical variables in advanced PDAC.
Collapse
Affiliation(s)
- William J. Chapin
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob E. Till
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
| | - Jennifer R. Eads
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas B. Karasic
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter J. O'Dwyer
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles J. Schneider
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ursina R. Teitelbaum
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Janae Romeo
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Taylor A. Black
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa E. Christensen
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Colleen Redlinger Tabery
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Michael LaRiviere
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie S. Yee
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kim A. Reiss
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark H. O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica L. Carpenter
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Kirchweger P, Wundsam HV, Rumpold H. Circulating tumor DNA for diagnosis, prognosis and treatment of gastrointestinal malignancies. World J Clin Oncol 2022; 13:473-484. [PMID: 35949436 PMCID: PMC9244970 DOI: 10.5306/wjco.v13.i6.473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Minimally invasive detection of circulating tumor DNA (ctDNA) in peripheral blood or other body fluids of patients with gastrointestinal malignancies via liquid biopsy has emerged as a promising biomarker. This is urgently needed, as conventional imaging and plasma protein-derived biomarkers lack sensitivity and specificity in prognosis, early detection of relapse or treatment monitoring. This review summarizes the potential role of liquid biopsy in diagnosis, prognosis and treatment monitoring of gastrointestinal malignancies, including upper gastrointestinal, liver, bile duct, pancreatic and colorectal cancer. CtDNA can now be part of the clinical routine as a promising, highly sensitive and specific biomarker with a broad range of applicability. Liquid-biopsy based postoperative relapse prediction could lead to improved survival by intensification of adjuvant treatment in patients identified to be at risk of early recurrence. Moreover, ctDNA allows monitoring of antineoplastic treatment success, with identification of potentially developed resistance or therapeutic targets during the course of treatment. It may also assist in early change of chemotherapy in metastatic gastrointestinal malignancies prior to imaging findings of relapse. Nevertheless, clinical utility is dependent on the tumor’s entity and burden.
Collapse
Affiliation(s)
- Patrick Kirchweger
- Department of Surgery, Ordensklinikum Linz, Linz 4010, Austria
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz 4010, Austria
- Medical Faculty, JKU University Linz, Linz 4040, Austria
| | | | - Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz 4010, Austria
- Medical Faculty, JKU University Linz, Linz 4040, Austria
| |
Collapse
|
32
|
Uson Junior PLS, Majeed U, Yin J, Botrus G, Sonbol MB, Ahn DH, Starr JS, Jones JC, Babiker H, Inabinett SR, Wylie N, Boyle AW, Bekaii-Saab TS, Gores GJ, Smoot R, Barrett M, Nagalo B, Meurice N, Elliott N, Petit J, Zhou Y, Arora M, Dumbauld C, Barro O, Baker A, Bogenberger J, Buetow K, Mansfield A, Mody K, Borad MJ. Cell-Free Tumor DNA Dominant Clone Allele Frequency Is Associated With Poor Outcomes in Advanced Biliary Cancers Treated With Platinum-Based Chemotherapy. JCO Precis Oncol 2022; 6:e2100274. [PMID: 35666960 PMCID: PMC9200394 DOI: 10.1200/po.21.00274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/06/2021] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This investigation sought to evaluate the prognostic value of pretreatment of circulating tumor DNA (ctDNA) in metastatic biliary tract cancers (BTCs) treated with platinum-based first-line chemotherapy treatment. MATERIALS AND METHODS We performed a retrospective analysis of 67 patients who underwent ctDNA testing before platinum-based chemotherapy for first-line treatment for metastatic BTC. For analysis, we considered the detected gene with highest variant allele frequency as the dominant clone allele frequency (DCAF). Results of ctDNA analysis were correlated with patients' demographics, progression-free survival (PFS), and overall survival (OS). RESULTS The median age of patients was 67 (27-90) years. Fifty-four (80.6%) of 67 patients evaluated had intrahepatic cholangiocarcinoma; seven had extrahepatic cholangiocarcinoma, and six gallbladder cancers. Forty-six (68.6%) of the patients were treated with cisplatin plus gemcitabine, and 16.4% of patients received gemcitabine and other platinum (carboplatin or oxaliplatin) combinations, whereas 15% of patients were treated on a clinical trial with gemcitabine and cisplatin plus additional agents (CX4945, PEGPH20, or nab-paclitaxel). TP53, KRAS, FGFR2, ARID1A, STK11, and IDH1 were the genes with highest frequency as DCAF. The median DCAF was 3% (0%-97%). DCAF > 3% was associated with worse OS (median OS: 10.8 v 18.8 months, P = .032). Stratifying DCAF in quartiles, DCAF > 10% was significantly related to worse PFS (median PFS: 3 months, P = .014) and worse OS (median OS: 7.0 months, P = .001). Each 1% increase in ctDNA was associated with a hazard ratio of 13.1 in OS when adjusting for subtypes, metastatic sites, size of largest tumor, age, sex, and CA19-9. CONCLUSION DCAF at diagnosis of advanced BTC can stratify patients who have worse outcomes when treated with upfront platinum-based chemotherapy. Each increase in %ctDNA decreases survival probabilities.
Collapse
Affiliation(s)
- Pedro Luiz Serrano Uson Junior
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Umair Majeed
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Gehan Botrus
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mohamad Bassam Sonbol
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Daniel H. Ahn
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Jason S. Starr
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Jeremy C. Jones
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Hani Babiker
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Samantha R. Inabinett
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Natasha Wylie
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Ashton W.R. Boyle
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Tanios S. Bekaii-Saab
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Rochester, MN
| | - Rory Smoot
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | - Michael Barrett
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Bolni Nagalo
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Nathalie Meurice
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Natalie Elliott
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Joachim Petit
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Yumei Zhou
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mansi Arora
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Chelsae Dumbauld
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Oumar Barro
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Alexander Baker
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - James Bogenberger
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | | | | | - Kabir Mody
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Mitesh J. Borad
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Department of Molecular Medicine, Rochester, MN
- Mayo Clinic Cancer Center, Phoenix, AZ
| |
Collapse
|
33
|
Fernandez-Uriarte A, Pons-Belda OD, Diamandis EP. Cancer Screening Companies Are Rapidly Proliferating: Are They Ready for Business? Cancer Epidemiol Biomarkers Prev 2022; 31:1146-1150. [PMID: 35642390 DOI: 10.1158/1055-9965.epi-22-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer screening has been a major research front for decades. The classical circulating biomarkers for cancer (such as PSA, CEA, CA125, AFP, etc.) are neither sensitive nor specific and are not recommended for population screening. Recently, circulating tumor DNA (ctDNA) emerged as a new pan-cancer tumor marker, with much promise for clinical applicability. ctDNA released by tumor cells can be used as a proxy of the tumor burden and molecular composition. It has been hypothesized that if ctDNA is extracted from plasma and analyzed for genetic changes, it may form the basis for a non-invasive cancer detection test. Lately, there has been a proliferation of "for-profit" companies that will soon offer cancer screening services. Here, we comment on Grail, Thrive, Guardant, Delfi, and Freenome. Previously, we identified some fundamental difficulties associated with this new technology. In addition, clinical trials are exclusively case-control studies. The sensitivities/specificities/predictive values of the new screening tests have not been well-defined or, the literature-reported values are rather poor. Despite these deficiencies some of the aforementioned companies are already testing patients. We predict that the premature use of ctDNA as a cancer screening tool may add another disappointment in the long history of this field.
Collapse
Affiliation(s)
| | - Oscar D Pons-Belda
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| |
Collapse
|
34
|
Pietrasz D, Sereni E, Lancelotti F, Pea A, Luchini C, Innamorati G, Salvia R, Bassi C. Circulating tumour DNA: a challenging innovation to develop "precision onco-surgery" in pancreatic adenocarcinoma. Br J Cancer 2022; 126:1676-1683. [PMID: 35197581 PMCID: PMC9174156 DOI: 10.1038/s41416-022-01745-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the third leading cause of cancer-related mortality within the next decade. Management of PDAC remains challenging with limited effective treatment options and a dismal long-term prognosis. Liquid biopsy and circulating biomarkers seem to be promising to improve the multidisciplinary approach in PDAC treatment. Circulating tumour DNA (ctDNA) is the most studied blood liquid biopsy analyte and can provide insight into the molecular profile and individual characteristics of the tumour in real-time and in advance of standard imaging modalities. This could pave the way for identifying new therapeutic targets and markers of tumour response to supplement diagnostic and provide enhanced stratified treatment. Although its specificity seems excellent, the current sensitivity of ctDNA remains a limitation for clinical use, especially in patients with a low tumour burden. Increasing evidence suggests that ctDNA is a pertinent candidate biomarker to assess minimal residual disease after surgery but also a strong independent prognostic biomarker. This review explores the current knowledge and recent developments in ctDNA as a screening, diagnostic, prognostic and predictive biomarker in the management of resectable PDAC but also technical and analytical challenges that must be overcome to move toward "precision onco-surgery."
Collapse
Affiliation(s)
- Daniel Pietrasz
- APHP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Université Paris-Saclay, 94800, Villejuif, France.
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy.
| | - Elisabetta Sereni
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Francesco Lancelotti
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Pea
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giulio Innamorati
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Bassi
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| |
Collapse
|
35
|
Multi Cancer Early Detection by Using Circulating Tumor DNA—The Galleri Test. Reply to Klein et al. The Promise of Multicancer Early Detection. Comment on “Pons-Belda et al. Can Circulating Tumor DNA Support a Successful Screening Test for Early Cancer Detection? The Grail Paradigm. Diagnostics 2021, 11, 2171”. Diagnostics (Basel) 2022; 12:diagnostics12051244. [PMID: 35626399 PMCID: PMC9141547 DOI: 10.3390/diagnostics12051244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
We recently published some concerns with new technologies which are based on circulating tumor DNA (ctDNA) for early cancer detection. Most of our published criticism, including a commentary in this journal, has focused on tests developed by the biotechnology company GRAIL (their commercial product is also known as The Galleri Test). Scientists from GRAIL provided explanations and rebuttals to our criticism. They also posed some questions. Here, we reiterate our position and provide rebuttals, explanations and answers to these questions. We believe that constructive scientific debates, like this one, can profoundly contribute to advancements in scientific fields such as early cancer detection.
Collapse
|
36
|
Kirchweger P, Kupferthaler A, Burghofer J, Webersinke G, Jukic E, Schwendinger S, Weitzendorfer M, Petzer A, Függer R, Rumpold H, Wundsam H. Circulating tumor DNA correlates with tumor burden and predicts outcome in pancreatic cancer irrespective of tumor stage. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2022; 48:1046-1053. [PMID: 34876329 DOI: 10.1016/j.ejso.2021.11.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Circulating tumor DNA (ctDNA) represents a promising tool for diagnosis, prognosis and treatment monitoring of several malignancies. Its association with tumor burden in pancreatic ductal cancer (PDAC), especially in localized disease, is not fully explored yet. We aimed to investigate the association of pretherapeutic ctDNA levels in localized and metastatic PDAC with tumor volume and clinical outcomes. MATERIAL AND METHODS Liquid biopsy for ctDNA detection was prospectively obtained from patients with localized or disseminated PDAC prior to either resection or systemic treatment. Detection rates and levels of ctDNA (digital droplet PCR) were correlated to tumor volume, relapse rate and survival. RESULTS 60 patients with localized and 47 patients with metastatic PDAC were included. ctDNA was detected in 10% of localized and 57.4% of metastasized PDAC samples. In localized disease, ctDNA detection significantly correlated with the numbers of involved locoregional lymph nodes (p = 0.030). Primary tumor volume did not correlate with ctDNA levels in neither localized (p = 0.573) nor metastasized disease (p = 0.878). In disseminated disease, ctDNA levels correlated with total tumor volume (p = 0.026) and especially with liver metastases volume (p = 0.004), but not with other metastases. Detection of pretherapeutic ctDNA was associated with shorter DFS in localized (3.3 vs. 18.1 months, p = 0.000), whereas ctDNA levels were associated with worse survival in metastatic PDAC (5.7 vs. 7.8 months, p = 0.036). CONCLUSION ctDNA positivity indicates major nodal involvement or even presence of undetected distant metastases associated with early recurrence in localized PDAC. Moreover, it predicts worse clinical outcome in both localized and metastatic disease.
Collapse
Affiliation(s)
- Patrick Kirchweger
- Gastrointestinal Cancer Center, Linz, Austria; Department of Surgery, Ordensklinikum Linz, Austria; Johannes Kepler University Linz, Medical Faculty, Linz, Austria
| | | | - Jonathan Burghofer
- Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz, Austria
| | - Gerald Webersinke
- Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz, Austria
| | - Emina Jukic
- Institute of Human Genetics, Medical University of Innsbruck, Austria
| | | | | | - Andreas Petzer
- Johannes Kepler University Linz, Medical Faculty, Linz, Austria; Department of Internal Medicine I for Hematology with Stem Cell Transplantaation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Austria
| | - Reinhold Függer
- Department of Surgery, Ordensklinikum Linz, Austria; Johannes Kepler University Linz, Medical Faculty, Linz, Austria
| | - Holger Rumpold
- Gastrointestinal Cancer Center, Linz, Austria; Johannes Kepler University Linz, Medical Faculty, Linz, Austria
| | | |
Collapse
|
37
|
Li W, Zhou J, Zhang T, Tai Y, Xu Y, Bai Y, Jiang Y, Lu Z, Li L, Huang J, Pan Z, Wu X, Peng J, Lin J. A novel score system for predicting conversion to no evidence of Disease (C-NED) in initially unresectable colorectal cancer liver metastases. Am J Cancer Res 2022; 12:1648-1659. [PMID: 35530285 PMCID: PMC9077072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023] Open
Abstract
An estimated 70-80% of cases of colorectal cancer liver metastasis (CRLM) are defined as initially unresectable. "Converting" to no evidence of disease (NED) status may prolong survival. The current study aimed to develop a novel scoring system that predicts the conversion outcome for initially unresectable CRLM. A total of 215 consecutive CRLM patients who received first-line systemic therapy from December 2012 to January 2020 at Sun Yat-sen University Cancer Center were enrolled in the internal cohort. Forty CRLM patients from the database of the Chinese Colorectal Cancer Multidisciplinary Team Alliance were enrolled in the external cohort. A logistic regression model was applied to identify risk factors associated with the conversion outcome. The tumor-to-liver volume ratio (TLVR) was calculated as the total tumor volume divided by the total liver volume, and its cutoff value was 0.23. Three predictors of conversion failure were identified in the internal cohort and incorporated into the C-NED score: poor tumor differentiation (1 point), number of liver metastases > 8 (1 point) and TLVR ≥ 0.23 (1 point). The conversion rate was significantly negatively associated with the C-NED score (P < 0.001). The C-indexes of the C-NED score for predicting successful conversion outcome in the internal cohort and external cohort were 0.734 (95% confidence interval (CI), 0.668-0.800) and 0.736 (95% CIs, 0.566-0.907), respectively. Median progression-free survival (PFS) time (P = 0.001) and overall survival (OS) time (P = 0.003) were statistically significant different among different C-NED score groups. Our study demonstrated that the C-NED score is an effective scoring system that indicates the actual conversion probability for initially unresectable CRLM patients before treatment, which can serve as a tool that guides optimal first-line management strategies.
Collapse
Affiliation(s)
- Weihao Li
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Jian Zhou
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Tianqi Zhang
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Yi Tai
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Yanbo Xu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Yanfang Bai
- Department of Anesthesiology & Operating Theatre, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Yu Jiang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Zhenhai Lu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Liren Li
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Jinhua Huang
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Zhizhong Pan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Xiaojun Wu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Jianhong Peng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| | - Junzhong Lin
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhou 510060, Guangdong, P. R. China
| |
Collapse
|
38
|
Tjensvoll K, Lapin M, Gilje B, Garresori H, Oltedal S, Forthun RB, Molven A, Rozenholc Y, Nordgård O. Novel hybridization- and tag-based error-corrected method for sensitive ctDNA mutation detection using ion semiconductor sequencing. Sci Rep 2022; 12:5816. [PMID: 35388068 PMCID: PMC8986848 DOI: 10.1038/s41598-022-09698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a clinically useful tool for cancer diagnostics and treatment monitoring. However, ctDNA detection is complicated by low DNA concentrations and technical challenges. Here we describe our newly developed sensitive method for ctDNA detection on the Ion Torrent sequencing platform, which we call HYbridization- and Tag-based Error-Corrected sequencing (HYTEC-seq). This method combines hybridization-based capture with molecular tags, and the novel variant caller PlasmaMutationDetector2 to eliminate background errors. We describe the validation of HYTEC-seq using control samples with known mutations, demonstrating an analytical sensitivity down to 0.1% at > 99.99% specificity. Furthermore, to demonstrate the utility of this method in a clinical setting, we analyzed plasma samples from 44 patients with advanced pancreatic cancer, revealing mutations in 57% of the patients at allele frequencies as low as 0.23%.
Collapse
Affiliation(s)
- Kjersti Tjensvoll
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway.
| | - Morten Lapin
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Herish Garresori
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Satu Oltedal
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Rakel Brendsdal Forthun
- Department of Medical Genetics, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5020, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Citè, 75006, Paris, France
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| |
Collapse
|
39
|
Data of ‘Circulating tumor DNA correlates with tumor burden and predicts outcome in pancreatic cancer irrespective of tumor stage’. Data Brief 2022; 41:107944. [PMID: 35242926 PMCID: PMC8857573 DOI: 10.1016/j.dib.2022.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
|
40
|
Yang Q, Mao Y, Xie H, Qin T, Mai Z, Cai Q, Wen H, Li Y, Zhang R, Liu L. Identifying Outcomes of Patients With Advanced Pancreatic Adenocarcinoma and RECIST Stable Disease Using Radiomics Analysis. JCO Precis Oncol 2022; 6:e2100362. [PMID: 35319966 PMCID: PMC8966975 DOI: 10.1200/po.21.00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Few studies have explored the biomarkers for predicting the heterogeneous outcomes of patients with advanced pancreatic adenocarcinoma showing stable disease (SD) on the initial postchemotherapy computed tomography. We aimed to devise a radiomics signature (RS) to predict these outcomes for further risk stratification.
Collapse
Affiliation(s)
- Qiuxia Yang
- Department of Medical Imaging Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yize Mao
- Department of Pancreatic-Biliary Surgical Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hui Xie
- Department of Medical Imaging Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Mai
- Department of Medical Imaging Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qian Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hailin Wen
- Cancer Hospital Chinese Academy of Medical Science, Shenzhen Center, Shenzhen, China
| | - Yong Li
- Department of Medical Imaging Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Medical Imaging Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lizhi Liu
- Department of Medical Imaging Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
41
|
Moiseyenko FV, Kuligina ES, Zhabina AS, Belukhin SA, Laidus TA, Martianov AS, Zagorodnev KA, Sokolova TN, Chuinyshena SA, Kholmatov MM, Artemieva EV, Stepanova EO, Shuginova TN, Volkov NM, Yanus GA, Imyanitov EN. Changes in the concentration of EGFR-mutated plasma DNA in the first hours of targeted therapy allow the prediction of tumor response in patients with EGFR-driven lung cancer. Int J Clin Oncol 2022; 27:850-862. [PMID: 35171360 PMCID: PMC8853017 DOI: 10.1007/s10147-022-02128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/23/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to analyze changes in the plasma concentration of EGFR-mutated circulating tumor DNA (ctDNA) occurring immediately after the start of therapy with EGFR tyrosine kinase inhibitors (TKIs). METHODS Serial plasma samples were collected from 30 patients with EGFR-driven non-small cell lung cancer before intake of the first tablet and at 0.5, 1, 2, 3, 6, 12, 24, 36 and 48 h after the start of the therapy. The content of EGFR alleles (exon 19 deletions or L858R) in ctDNA was measured by ddPCR. RESULTS ctDNA was detected at base-line in 25/30 (83%) subjects. Twelve (50%) out of 24 informative patients showed > 25% reduction of the ctDNA content at 48 h time point; all these patients demonstrated disease control after 4 and 8-12 weeks of therapy. The remaining 12 individuals showed either stable content of EGFR-mutated ctDNA (n = 5) or the elevation of ctDNA concentration (n = 7). 10 of 12 patients with elevated or stable ctDNA level achieved an objective response at 4 weeks, but only 5 of 10 evaluable patients still demonstrated disease control at 8-12 weeks (p = 0.032, when compared to the group with ctDNA decrease). The decline of the amount of circulating EGFR mutant copies at 48 h also correlated with longer progression-free survival (14.7 months vs. 8.5 months, p = 0.013). CONCLUSION Comparison of concentration of EGFR-mutated ctDNA at base-line and at 48 h after the start of therapy is predictive for the duration of TKI efficacy.
Collapse
Affiliation(s)
- Fedor V. Moiseyenko
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
| | - Ekaterina S. Kuligina
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Albina S. Zhabina
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Sergey A. Belukhin
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Tatiana A. Laidus
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Aleksandr S. Martianov
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Kirill A. Zagorodnev
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Tatyana N. Sokolova
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
| | - Svetlana A. Chuinyshena
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Maxim M. Kholmatov
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
| | - Elizaveta V. Artemieva
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Ekaterina O. Stepanova
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Tatiana N. Shuginova
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Nikita M. Volkov
- City Cancer Center, 68A Leningradskaya street, Pesochny, Saint Petersburg, 197758 Russia
| | - Grigoriy A. Yanus
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
| | - Evgeny N. Imyanitov
- Laboratory of Molecular Oncology, Department of Tumor Biology, N.N. Petrov Institute of Oncology, 68 Leningradskaya street, Pesochny-2, St.-Petersburg, 197758 Russia
- St.-Petersburg Pediatric Medical University, 2 Litovskaya street, Saint Petersburg, 194100 Russia
- I.I. Mechnikov North-Western Medical University, 41 Kirochnaya street, Saint Petersburg, 191015 Russia
| |
Collapse
|
42
|
Henriksen TV, Drue SO, Frydendahl A, Demuth C, Rasmussen MH, Reinert T, Pedersen JS, Andersen CL. Error Characterization and Statistical Modeling Improves Circulating Tumor DNA Detection by Droplet Digital PCR. Clin Chem 2022; 68:657-667. [PMID: 35030248 DOI: 10.1093/clinchem/hvab274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Droplet digital PCR (ddPCR) is a widely used and sensitive application for circulating tumor DNA (ctDNA) detection. As ctDNA is often found in low abundance, methods to separate low-signal readouts from noise are necessary. We aimed to characterize the ddPCR-generated noise and, informed by this, create a sensitive and specific ctDNA caller. METHODS We built 2 novel complimentary ctDNA calling methods: dynamic limit of blank and concentration and assay-specific tumor load estimator (CASTLE). Both methods are informed by empirically established assay-specific noise profiles. Here, we characterized noise for 70 mutation-detecting ddPCR assays by applying each assay to 95 nonmutated samples. Using these profiles, the performance of the 2 new methods was assessed in a total of 9447 negative/positive reference samples and in 1311 real-life plasma samples from colorectal cancer patients. Lastly, performances were compared to 7 literature-established calling methods. RESULTS For many assays, noise increased proportionally with the DNA input amount. Assays targeting transition base changes were more error-prone than transversion-targeting assays. Both our calling methods successfully accounted for the additional noise in transition assays and showed consistently high performance regardless of DNA input amount. Calling methods that were not noise-informed performed less well than noise-informed methods. CASTLE was the only calling method providing a statistical estimate of the noise-corrected mutation level and call certainty. CONCLUSIONS Accurate error modeling is necessary for sensitive and specific ctDNA detection by ddPCR. Accounting for DNA input amounts ensures specific detection regardless of the sample-specific DNA concentration. Our results demonstrate CASTLE as a powerful tool for ctDNA calling using ddPCR.
Collapse
Affiliation(s)
- Tenna V Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon O Drue
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Amanda Frydendahl
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christina Demuth
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads H Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob S Pedersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Nikas IP, Mountzios G, Sydney GI, Ioakim KJ, Won JK, Papageorgis P. Evaluating Pancreatic and Biliary Neoplasms with Small Biopsy-Based Next Generation Sequencing (NGS): Doing More with Less. Cancers (Basel) 2022; 14:cancers14020397. [PMID: 35053560 PMCID: PMC8773813 DOI: 10.3390/cancers14020397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pancreatic cancer and cholangiocarcinoma are aggressive diseases mostly diagnosed at an advanced and inoperable stage. This review presents the value of next-generation sequencing (NGS) when performed on small biopsies—including fine-needle aspiration/biopsy samples, brushings, pancreatic juice and bile, and also blood—in the field of pancreatobiliary neoplasia. NGS could guide physicians while evaluating pancreatic solid and cystic lesions or suspicious biliary strictures, performing surveillance in high-risk individuals, or monitoring the disease and assessing prognosis in already diagnosed cancer patients. Evidence suggests that NGS performed on small biopsies is a robust tool for the diagnosis and pre-operative risk stratification of pancreatic and biliary lesions, whereas it also carries significant prognostic and therapeutic value. However, effective standardization of the pre-analytical and analytical assay parameters used for each clinical scenario is needed to fully implement NGS into routine practice and provide more personalized management in patients with suspected or established pancreatobiliary neoplasia. Abstract Pancreatic cancer and cholangiocarcinoma are lethal diseases mainly diagnosed at an inoperable stage. As pancreatobiliary surgical specimens are often unavailable for further molecular testing, this review aimed to highlight the diagnostic, prognostic, and therapeutic impact of next-generation sequencing (NGS) performed on distinct small biopsies, including endoscopic ultrasound fine-needle aspirations and biopsies of pancreatic solid and cystic lesions, biliary duct brushings, and also “liquid biopsies” such as the pancreatic juice, bile, and blood. NGS could clarify indeterminate pancreatic lesions or biliary strictures, for instance by identifying TP53 or SMAD4 mutations indicating high-grade dysplasia or cancer. It could also stratify pancreatic cystic lesions, by distinguishing mucinous from non-mucinous cysts and identifying high-risk cysts that should be excised in surgically fit patients, whereas the combination of cytology, elevated cystic CEA levels and NGS could improve the overall diagnostic accuracy. When NGS is performed on the pancreatic juice, it could stratify high-risk patients under surveillance. On the plasma, it could dynamically monitor the disease course and response to therapy. Notably, the circulating tumor DNA (ctDNA) levels have been associated with staging, grading, and survival. Lastly, NGS has shown potential in identifying potentially actionable molecular alterations. In conclusion, NGS applied on small biopsies could carry significant diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Correspondence:
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, 11526 Athens, Greece;
| | - Guy I. Sydney
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Kalliopi J. Ioakim
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (G.I.S.); (K.J.I.)
- Department of Internal Medicine, Limassol General Hospital, Limassol 4131, Cyprus
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital and College of Medicine, Seoul 03080, Korea;
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
44
|
Verhoek OG, Jungblut L, Lauk O, Blüthgen C, Opitz I, Frauenfelder T, Martini K. Sarcopenia, Precardial Adipose Tissue and High Tumor Volume as Outcome Predictors in Surgically Treated Pleural Mesothelioma. Diagnostics (Basel) 2022; 12:99. [PMID: 35054268 PMCID: PMC8774409 DOI: 10.3390/diagnostics12010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We evaluated the prognostic value of Sarcopenia, low precardial adipose-tissue (PAT), and high tumor-volume in the outcome of surgically-treated pleural mesothelioma (PM). METHODS From 2005 to 2020, consecutive surgically-treated PM-patients having a pre-operative computed tomography (CT) scan were retrospectively included. Sarcopenia was assessed by CT-based parameters measured at the level of the fifth thoracic vertebra (TH5) by excluding fatty-infiltration based on CT-attenuation. The findings were stratified for gender, and a threshold of the 33rd percentile was set to define sarcopenia. Additionally, tumor volume as well as PAT were measured. The findings were correlated with progression-free survival and long-term mortality. RESULTS Two-hundred-seventy-eight PM-patients (252 male; 70.2 ± 9 years) were included. The mean progression-free survival was 18.6 ± 12.2 months, and the mean survival time was 23.3 ± 24 months. Progression was associated with chronic obstructive pulmonary disease (COPD) (p = <0.001), tumor-stage (p = 0.001), and type of surgery (p = 0.026). Three-year mortality was associated with higher patient age (p = 0.005), presence of COPD (p < 0.001), higher tumor-stage (p = 0.015), and higher tumor-volume (p < 0.001). Kaplan-Meier statistics showed that sarcopenic patients have a higher three-year mortality (p = 0.002). While there was a negative correlation of progression-free survival and mortality with tumor volume (r = 0.281, p = 0.001 and r = -0.240, p < 0.001; respectively), a correlation with PAT could only be shown for epithelioid PM (p = 0.040). CONCLUSIONS Sarcopenia as well as tumor volume are associated with long-term mortality in surgically treated PM-patients. Further, while there was a negative correlation of progression-free survival and mortality with tumor volume, a correlation with PAT could only be shown for epithelioid PM.
Collapse
Affiliation(s)
- Oliver Guido Verhoek
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (O.G.V.); (L.J.); (C.B.); (T.F.)
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland; (O.L.); (I.O.)
| | - Lisa Jungblut
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (O.G.V.); (L.J.); (C.B.); (T.F.)
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland; (O.L.); (I.O.)
| | - Olivia Lauk
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland; (O.L.); (I.O.)
- Department of Thoracic Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Christian Blüthgen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (O.G.V.); (L.J.); (C.B.); (T.F.)
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland; (O.L.); (I.O.)
| | - Isabelle Opitz
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland; (O.L.); (I.O.)
- Department of Thoracic Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (O.G.V.); (L.J.); (C.B.); (T.F.)
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland; (O.L.); (I.O.)
| | - Katharina Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (O.G.V.); (L.J.); (C.B.); (T.F.)
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland; (O.L.); (I.O.)
| |
Collapse
|
45
|
van Velzen MJM, Creemers A, van den Ende T, Schokker S, Krausz S, Reinten RJ, Dijk F, van Noesel CJM, Halfwerk H, Meijer SL, Mearadji B, Derks S, Bijlsma MF, van Laarhoven HWM. Circulating tumor DNA predicts outcome in metastatic gastroesophageal cancer. Gastric Cancer 2022; 25:906-915. [PMID: 35763187 PMCID: PMC9365750 DOI: 10.1007/s10120-022-01313-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has predictive and prognostic value in localized and metastatic cancer. This study analyzed the prognostic value of baseline and on-treatment ctDNA in metastatic gastroesophageal cancer (mGEC) using a region-specific next generation sequencing (NGS) panel. METHODS Cell free DNA was isolated from plasma of patients before start of first-line palliative systemic treatment and after 9 and 18 weeks. Two NGS panels were designed comprising the most frequently mutated genes and targetable mutations in GEC. Tumor-derived mutations in matched metastatic biopsies were used to validate that the sequencing panels assessed true tumor-derived variants. Tumor volumes were calculated from baseline CT scans and correlated to variant allele frequency (VAF). Survival analyses were performed using univariable and multivariable Cox-regression analyses. RESULTS ctDNA was detected in pretreatment plasma in 75% of 72 patients and correlated well with mutations in metastatic biopsies (86% accordance). The VAF correlated with baseline tumor volume (Pearson's R 0.53, p < 0.0001). Detection of multiple gene mutations at baseline in plasma was associated with worse overall survival (OS, HR 2.16, 95% CI 1.10-4.28; p = 0.027) and progression free survival (PFS, HR 2.71, 95% CI 1.28-5.73; p = 0.009). OS and PFS were inferior in patients with residual detectable ctDNA after 9 weeks of treatment (OS: HR 4.95, 95% CI 1.53-16.04; p = 0.008; PFS: HR 4.08, 95% CI 1.31-12.75; p = 0.016). CONCLUSION Based on our NGS panel, the number of ctDNA mutations before start of first-line chemotherapy has prognostic value. Moreover, residual ctDNA after three cycles of systemic treatment is associated with inferior survival.
Collapse
Affiliation(s)
- Merel J. M. van Velzen
- grid.7177.60000000084992262Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Aafke Creemers
- grid.7177.60000000084992262Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,grid.7177.60000000084992262Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tom van den Ende
- grid.7177.60000000084992262Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sandor Schokker
- grid.7177.60000000084992262Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Krausz
- grid.7177.60000000084992262Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Roy J. Reinten
- grid.7177.60000000084992262Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Frederike Dijk
- grid.7177.60000000084992262Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carel J. M. van Noesel
- grid.7177.60000000084992262Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Hans Halfwerk
- grid.7177.60000000084992262Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Sybren L. Meijer
- grid.7177.60000000084992262Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Banafsche Mearadji
- grid.7177.60000000084992262Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Sarah Derks
- grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- grid.7177.60000000084992262Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Hanneke W. M. van Laarhoven
- grid.7177.60000000084992262Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Bunduc S, Gede N, Váncsa S, Lillik V, Kiss S, Dembrovszky F, Eróss B, Szakács Z, Gheorghe C, Mikó A, Hegyi P. Prognostic role of cell-free DNA biomarkers in pancreatic adenocarcinoma: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 169:103548. [PMID: 34843928 DOI: 10.1016/j.critrevonc.2021.103548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
This systematic review and meta-analysis evaluated the prognostic role of cell-free DNA (cfDNA) in pancreatic ductal adenocarcinoma (PDAC). Eligible studies reported differences in overall (OS) and progression-free survival (PFS) by cfDNA status. The random effect model yielded the pooled hazard ratios (HRs) and 95 % confidence intervals (CI). Detection of circulant-tumor DNA (ctDNA), KRAS mutations and other cfDNA alterations constitute detectable cfDNA biomarkers. Altogether, 38 studies (3,318 patients) were eligible. Progression-free and overall survival were decreased with detectable ctDNA (HR = 1.92, 95 %CI:(1.29,2.86); HR = 2.25, 95 %CI:(1.73,2.92)) and KRAS mutations (HR = 1.88, CI:1.22,2.92,); HR = 1.52, 95 %CI:(1.22,1.90)) respectively, across various stages. In unresectable cases, ctDNA (HR = 2.50, 95 %CI:(1.94,3.23)), but not KRAS mutations (HR = 1.16, 95 %CI:(0.46,2.94)) signaled risk for progression. Detectable cfDNA biomarkers correlated with worse prognosis in resectable cases and if detected during treatment. In conclusion, cfDNA biomarkers indicate accelerated progression and decreased survival in PDAC. Significance of KRAS mutations detection in unresectable cases is to be determined.
Collapse
Affiliation(s)
- Stefania Bunduc
- Carol Davila University of Medicine and Pharmacy, 020021, Bucharest, Dionisie Lupu street 37, Romania; Fundeni Clinical Institute, 022328, Fundeni street 258, Bucharest, Romania; Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; Centre for Translational Medicine, Semmelweis University, 1085, Budapest, Üllői út. 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085, Budapest, Baross út. 8, Hungary.
| | - Noémi Gede
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary.
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; Centre for Translational Medicine, Semmelweis University, 1085, Budapest, Üllői út. 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085, Budapest, Baross út. 8, Hungary.
| | - Veronika Lillik
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; University of Pécs, Medical School, Department of Medical Genetics, 7624, Pécs, Szigeti út 12, Hungary.
| | - Szabolcs Kiss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; Doctoral School of Clinical Medicine, University of Szeged, 6720, Szeged, Szeged, Dugonics tér 1, Hungary.
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; Centre for Translational Medicine, Semmelweis University, 1085, Budapest, Üllői út. 26, Hungary.
| | - Bálint Eróss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; Centre for Translational Medicine, Semmelweis University, 1085, Budapest, Üllői út. 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085, Budapest, Baross út. 8, Hungary.
| | - Zsolt Szakács
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; First Department of Medicine, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary.
| | - Cristian Gheorghe
- Carol Davila University of Medicine and Pharmacy, 020021, Bucharest, Dionisie Lupu street 37, Romania; Fundeni Clinical Institute, 022328, Fundeni street 258, Bucharest, Romania.
| | - Alexandra Mikó
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; University of Pécs, Medical School, Department of Medical Genetics, 7624, Pécs, Szigeti út 12, Hungary.
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, 7624, Pécs, Szigeti út 12, Hungary; Centre for Translational Medicine, Semmelweis University, 1085, Budapest, Üllői út. 26, Hungary; Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1085, Budapest, Baross út. 8, Hungary.
| |
Collapse
|
47
|
Pons-Belda OD, Fernandez-Uriarte A, Ren A, Diamandis EP. Prognostic significance of blood-based multi-cancer detection in plasma cell-free DNA. Clin Chem Lab Med 2021; 60:88-89. [DOI: 10.1515/cclm-2021-1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Oscar D. Pons-Belda
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - Amaia Fernandez-Uriarte
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - Annie Ren
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada
- Department of Clinical Biochemistry , University Health Network , Toronto , ON , Canada
| |
Collapse
|
48
|
Zhang D, Wang M, Peng L, Yang X, Li K, Yin H, Xia C, Cui F, Huang H, Jin Z. Identification and Validation of Three PDAC Subtypes and Individualized GSVA Immune Pathway-Related Prognostic Risk Score Formula in Pancreatic Ductal Adenocarcinoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:4986227. [PMID: 34987579 PMCID: PMC8723862 DOI: 10.1155/2021/4986227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND With the progress of precision medicine treatment in pancreatic ductal adenocarcinoma (PDAC), individualized cancer-related medical examination and prediction are of great importance in this high malignant tumor and tumor-immune microenvironment with changed pathways highly enrolled in the carcinogenesis of PDAC. METHODS High-throughput data of pancreatic ductal adenocarcinoma were downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. After batch normalization, the enrichment pathway and relevant scores were identified by the enrichment of immune-related pathway signature using gene set variation analysis (GSVA). Then, cancerous subtype in TCGA and GEO samples was defined through the NMF methods by cancertypes packages in R software, respectively. Subsequently, the significance between the characteristics of each TCGA sample and cancer type and the significant prognosis-related pathway with risk score formula is calculated through t-test and univariate Cox analysis. Next, the prognostic value of gained risk score formula and each significant prognosis-related pathway were validated in TCGA and GEO samples by survival analysis. The pivotal hub genes in the enriched significant prognosis-related pathway are identified and validated, and the TIMER database was used to identify the potential role of hub genes in the PDAC immune environment. The potential role of hub genes is promoting the transdifferentiation of cancer-associated fibroblasts. RESULTS The enrichment pathway and relevant scores were identified by GSVA, and 3 subtypes of pancreatic ductal adenocarcinoma were defined in TCGA and GEO samples. The clinical stage, tumor node metastasis classification, and tumor grade are strongly relative to the subtype above in TCGA samples. A risk formula about GSVA significant pathway "GSE45365_WT_VS_IFNAR_KO_CD11B_DC_MCMV_INFECTION_DN ∗ 0.80 + HALLMARK_GLYCOLYSIS ∗ 16.8 + GSE19888_CTRL_VS_T_CELL_MEMBRANES_ACT_MAST_CELL_DN ∗ 14.4" was identified and validated in TCGA and GEO samples through survival analysis with significance. DCN, VCAN, B4GALT7, SDC1, SDC2, B3GALT6, B3GAT3, SDC3, GPC1, and XYLT2 were identified as hub genes in these GSVA significant pathways and validated in silico. CONCLUSIONS Three pancreatic ductal adenocarcinoma subtypes are identified, and an individualized GSVA immune pathway score-related prognostic risk score formula with 10 hub genes is identified and validated. The predicted function of the 10 upregulated hub genes in tumor-immune microenvironment was promoting the infiltration of cancer-associated fibroblasts. These findings will contribute to the precision medicine of pancreatic ductal adenocarcinoma treatment and tumor immune-related basic research.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Meiqi Wang
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Xiaoli Yang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Yin
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| |
Collapse
|
49
|
Guven DC, Sahin TK, Yildirim HC, Aktepe OH, Dizdar O, Yalcin S. A systematic review and meta-analysis of the association between circulating tumor DNA (ctDNA) and prognosis in pancreatic cancer. Crit Rev Oncol Hematol 2021; 168:103528. [PMID: 34800650 DOI: 10.1016/j.critrevonc.2021.103528] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is a deadly disease with limited therapeutic options. Several strategies are being investigated to improve disease management, including the early diagnosis of recurrences and treatment tailoring by better prognosis estimation. Circulating tumor DNA (ctDNA) could be a promising tool in this regard, although the data is limited. Therefore, we conducted a systemical review and meta-analysis of the published studies on the association of ctDNA and survival outcomes in pancreatic cancer. In the pooled analysis, positive preoperative or postoperative ctDNA was associated with lower RFS/PFS (HR: 2.27, 95 % CI: 1.59-3.24, p < 0.001) and OS (HR: 2.04, 95 % CI: 1.29-3.21, p = 0.002) in localized pancreatic cancer. Similarly, positive baseline ctDNA was associated with lower RFS/PFS (HR: 2.61, 95 % CI: 1.94-3.51, p < 0.001) and OS (HR: 2.41, 95 % CI: 1.74-3.34, p < 0.001) in advanced pancreatic cancer. In conclusion, ctDNA could be a promising tool to individualize treatment planning and to improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Omer Dizdar
- Hacettepe University Cancer Institute, Ankara, Turkey
| | - Suayib Yalcin
- Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
50
|
Can Circulating Tumor DNA Support a Successful Screening Test for Early Cancer Detection? The Grail Paradigm. Diagnostics (Basel) 2021; 11:diagnostics11122171. [PMID: 34943407 PMCID: PMC8700281 DOI: 10.3390/diagnostics11122171] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Circulating tumor DNA (ctDNA) is a new pan-cancer tumor marker with important applications for patient prognosis, monitoring progression, and assessing the success of the therapeutic response. Another important goal is an early cancer diagnosis. There is currently a debate if ctDNA can be used for early cancer detection due to the small tumor burden and low mutant allele fraction (MAF). We compare our previous calculations on the size of detectable cancers by ctDNA analysis with the latest experimental data from Grail’s clinical trial. Current ctDNA-based diagnostic methods could predictably detect tumors of sizes greater than 10–15 mm in diameter. When tumors are of this size or smaller, their MAF is about 0.01% (one tumor DNA molecule admixed with 10,000 normal DNA molecules). The use of 10 mL of blood (4 mL of plasma) will likely contain less than a complete cancer genome, thus rendering the diagnosis of cancer impossible. Grail’s new data confirm the low sensitivity for early cancer detection (<30% for Stage I–II tumors, <20% for Stage I tumors), but specificity was high at 99.5%. According to these latest data, the sensitivity of the Grail test is less than 20% in Stage I disease, casting doubt if this test could become a viable pan-cancer clinical screening tool.
Collapse
|