1
|
Ece G, Aktaş A, Caner A, Sağlık İ, Kula Atik T, Ulusan Bağcı Ö, Bayındır Bilman F, Demirbakan H, Güdül Havuz S, Kaya E, Koyuncu Özyurt Ö, Yetkin G, Zorbozan O. The Urogenital System Microbiota: Is It a New Gamechanger in Urogenital Cancers? Microorganisms 2025; 13:315. [PMID: 40005682 PMCID: PMC11858393 DOI: 10.3390/microorganisms13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The human microbiome, which encompasses microbial communities and their genetic material, significantly influences health and disease, including cancer. The urogenital microbiota, naturally present in the urinary and genital tracts, interact with factors such as age, lifestyle, and health conditions to affect homeostasis and carcinogenesis. Studies suggest that alterations in this microbiota contribute to the development and progression of genitourinary cancers, emphasizing the concept of oncobiome, which refers to microbial genetic contributions to cancer. Similarly, gut microbiota can influence hormone levels and systemic inflammation, impacting cancers such as cervical and prostate cancer. Advanced studies indicate that microbial communities in genitourinary cancers have distinct profiles that may serve as diagnostic biomarkers or therapeutic targets. Dysbiosis of the urinary microbiota correlates with bladder and kidney cancer. Additionally, gut microbiota influence the effectiveness of cancer treatments. However, further research is necessary to clarify causality, the role of microbial metabolites, and hormonal regulation. The aim of this review is to understand that these dynamics present opportunities for innovative cancer diagnostics and therapies, highlighting the need for integration of microbiology, oncology, and genomics to explore the role of microbiota in genitourinary cancers. For this, a comprehensive search of relevant databases was conducted, applying specific inclusion and exclusion criteria to identify studies examining the association between microbiota and urogenital cancers. Research into the mechanisms by which microbiota influence urogenital cancers may pave the way for new diagnostic and therapeutic approaches, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Gülfem Ece
- Department of Medical Microbiology, İzmir City Hospital, İzmir 35540, Türkiye; (G.E.); (F.B.B.)
| | - Ahmet Aktaş
- İstanbul Provincial Health Directorate, Istanbul Public Health Laboratory No. 2, İstanbul 34524, Türkiye;
| | - Ayse Caner
- Department of Parasitology, Faculty of Medicine, Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir 35100, Türkiye
| | - İmran Sağlık
- Department of Medical Microbiology, Faculty of Medicine, Uludag University, Bursa 16059, Türkiye;
| | - Tuğba Kula Atik
- Department of Microbiology, Faculty of Medicine, Balıkesir University, Balıkesir 10145, Türkiye;
| | - Özlem Ulusan Bağcı
- Department of Parasitology, Faculty of Medicine, Ankara University, Ankara 06230, Türkiye;
| | - Fulya Bayındır Bilman
- Department of Medical Microbiology, İzmir City Hospital, İzmir 35540, Türkiye; (G.E.); (F.B.B.)
| | - Hadiye Demirbakan
- Department of Medical Microbiology, Faculty of Medicine, Sanko University, Gaziantep 27090, Türkiye;
| | - Seda Güdül Havuz
- Samsun Provincial Health Directorate, Samsun Bafra State Hospital, Department of Medical Microbiology, Samsun 55400, Türkiye;
| | - Esra Kaya
- Department of Medical Microbiology, Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaraş 46100, Türkiye;
| | - Özlem Koyuncu Özyurt
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz Univertsity, Antalya 07070, Türkiye;
| | - Gülay Yetkin
- Bakırköy Dr Sadi Konuk Education and Research Hospital, Hamidiye Faculty of Medicine, Health Science University, İstanbul 34140, Türkiye;
| | - Orçun Zorbozan
- Department of Medical Microbiology, Faculty of Medicine, Bakircay University, İzmir 35665, Türkiye;
| |
Collapse
|
2
|
Perrott SL, Kar SP. Appraisal of the causal effect of Chlamydia trachomatis infection on epithelial ovarian cancer risk: a two-sample Mendelian randomisation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.13.24315417. [PMID: 39484261 PMCID: PMC11527080 DOI: 10.1101/2024.10.13.24315417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background History of Chlamydia trachomatis infection has previously been associated with epithelial ovarian cancer (EOC) in observational studies. We conducted a two-sample univariable Mendelian randomisation (MR) study to examine whether genetically predicted seropositivity to the C. trachomatis major outer membrane protein (momp) D is causally associated with EOC. Methods MR analyses employed genetic associations derived from UK Biobank as proxies for momp D seropositivity in 25 509 EOC cases and 40 941 controls that participated in the Ovarian Cancer Association Consortium. Findings were replicated using a GWAS meta-analyses of global biobanks including the UK Biobank, FinnGen and BioBank Japan. Results Genetically predicted momp D seropositivity was associated with overall and high-grade serous EOC risk in inverse-variance weighted (IVW) and MR-Egger univariable MR analysis (odds ratio (OR) 1.06; 95% confidence interval (CI) 1.02-1.10, and OR 1.08; 95%CI 1.01-1.16, respectively). Replication yielded similar results for overall EOC (OR 1.11; 95%CI 1.01-1.22). Conclusion This MR study supports a causative link between C. trachomatis infection and overall and high-grade serous EOC.
Collapse
Affiliation(s)
- Sarah L. Perrott
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Siddhartha P. Kar
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
3
|
Chandra R, Kumari S. Environment and gynaecologic cancers. Oncol Rev 2024; 18:1430532. [PMID: 39440071 PMCID: PMC11493732 DOI: 10.3389/or.2024.1430532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In the current era, environmental factors are well established as major causative agents for all cancers especially lung and breast cancer. We sought to review the current available literature on the topic pertaining to gynaecologic cancers. Although a few factors are well established in literature, others need more research to conclude.
Collapse
Affiliation(s)
- Rudrika Chandra
- Obstetrics and Gynaecology, Command Hospital, Panchkula, Haryana, India
| | - Sarita Kumari
- Department of Gynaecologic Oncology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Ray A, Moore TF, Naik DSL, Borsch DM. Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1515. [PMID: 39336556 PMCID: PMC11434611 DOI: 10.3390/medicina60091515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic inflammation. If this detrimental condition persists, a sequence of pathological events can occur, such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several other diseases-both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon are the two most common malignancies occurring worldwide (except for female breast cancer). Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E. coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to play an important role in the dissemination of cancer cells from the primary colonic site. Currently, seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers). Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages (viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being evaluated for this purpose.
Collapse
Affiliation(s)
- Amitabha Ray
- School of Health Professions, D’Youville University, 320 Porter Ave, Buffalo, NY 14201, USA
| | - Thomas F. Moore
- College of Health Sciences, Glenville State University, Glenville, WV 26351, USA;
| | - Dayalu S. L. Naik
- ICMR National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Daniel M. Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA;
| |
Collapse
|
5
|
Andersson N, Waterboer T, Nylander E, Idahl A. Seroprevalence of sexually transmitted infections over 44 years - A cross-sectional study in Sweden. Int J STD AIDS 2024; 35:696-702. [PMID: 38659325 PMCID: PMC11308287 DOI: 10.1177/09564624241248874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Sexually transmitted infections (STIs) may cause substantial individual suffering and a large economic burden for society. This study examined the seroprevalence of Chlamydia trachomatis, Mycoplasma genitalium, herpes simplex virus (HSV) types 1 and 2, and several human papillomaviruses (HPV) in the Swedish population over time. METHODS The study population consisted of 30-year-old women attending maternity care, and 50 year-old men and women attending health check-ups, from 1975 to 2018. Antibody status was determined by multiplex serology and quantified using median reporter fluorescence intensity (MFI). RESULTS A total of 891 samples were analysed (519 from 30-year-old women, 186 from 50 year-old women and 186 from 50 year-old men). Of these, 41.5% showed seropositivity for Chlamydia trachomatis, 16.7% for Mycoplasma genitalium, 70.5% for HSV-1, 14.9% for HSV-2, 13.2% for high-risk HPV, and 8.3% for low-risk HPV. Seropositivity for Mycoplasma genitalium, HSV-1 and especially Chlamydia trachomatis decreased over time. CONCLUSIONS There was a decrease over time in Chlamydia trachomatis seroprevalence, probably due to contact tracing, testing and early treatment; this might also have affected Mycoplasma genitalium seroprevalence. Despite the reduction, seroprevalences are still high, so continued and new efforts to reduce STI incidence are essential.
Collapse
Affiliation(s)
- Nirina Andersson
- Department of Public Health and Clinical Medicine, Dermatology and Venereology, Umeå University, Umeå, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany
| | - Elisabet Nylander
- Department of Public Health and Clinical Medicine, Dermatology and Venereology, Umeå University, Umeå, Sweden
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Rodrigues R, Sousa C, Vale N. Deciphering the Puzzle: Literature Insights on Chlamydia trachomatis-Mediated Tumorigenesis, Paving the Way for Future Research. Microorganisms 2024; 12:1126. [PMID: 38930508 PMCID: PMC11205399 DOI: 10.3390/microorganisms12061126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Some infectious agents have the potential to cause specific modifications in the cellular microenvironment that could be propitious to the carcinogenesis process. Currently, there are specific viruses and bacteria, such as human papillomavirus (HPV) and Helicobacter pylori, that are well established as risk factors for neoplasia. Chlamydia trachomatis (CT) infections are one of the most common bacterial sexually transmitted infections worldwide, and recent European data confirmed a continuous rise across Europe. The infection is often asymptomatic in both sexes, requiring a screening program for early detection. Notwithstanding, not all countries in Europe have it. Chlamydia trachomatis can cause chronic and persistent infections, resulting in inflammation, and there are plausible biological mechanisms that link the genital infection with tumorigenesis. Herein, we aimed to understand the epidemiological and biological plausibility of CT genital infections causing endometrial, ovarian, and cervical tumors. Also, we covered some of the best suitable in vitro techniques that could be used to study this potential association. In addition, we defend the point of view of a personalized medicine strategy to treat those patients through the discovery of some biomarkers that could allow it. This review supports the need for the development of further fundamental studies in this area, in order to investigate and establish the role of chlamydial genital infections in oncogenesis.
Collapse
Affiliation(s)
- Rafaela Rodrigues
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal
| | - Carlos Sousa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
7
|
Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol 2024; 21:389-400. [PMID: 38548868 DOI: 10.1038/s41571-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Globally, ovarian cancer is the eighth most common cancer in women, accounting for an estimated 3.7% of cases and 4.7% of cancer deaths in 2020. Until the early 2000s, age-standardized incidence was highest in northern Europe and North America, but this trend has changed; incidence is now declining in these regions and increasing in parts of eastern Europe and Asia. Ovarian cancer is a very heterogeneous disease and, even among the most common type, namely epithelial ovarian cancer, five major clinically and genetically distinct histotypes exist. Most high-grade serous ovarian carcinomas are now recognized to originate in the fimbrial ends of the fallopian tube. This knowledge has led to more cancers being coded as fallopian tube in origin, which probably explains some of the apparent declines in ovarian cancer incidence, particularly in high-income countries; however, it also suggests that opportunistic salpingectomy offers an important opportunity for prevention. The five histotypes share several reproductive and hormonal risk factors, although differences also exist. In this Review, we summarize the epidemiology of this complex disease, comparing the different histotypes, and consider the potential for prevention. We also discuss how changes in the prevalence of risk and protective factors might have contributed to the observed changes in incidence and what this might mean for incidence in the future.
Collapse
Affiliation(s)
- Penelope M Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Public Health, The University of Queensland, Herston, Queensland, Australia.
| | - Susan J Jordan
- School of Public Health, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
8
|
Capozzi VA, Incognito GG, Scarpelli E, Palumbo M, Randazzo CL, Pino A, La Verde M, Ronsini C, Riemma G, Gaiano M, Romeo P, Palmara V, Berretta R, Cianci S. Exploring the Relationship between Ovarian Cancer and Genital Microbiota: A Systematic Review and Meta-Analysis. J Pers Med 2024; 14:351. [PMID: 38672978 PMCID: PMC11051512 DOI: 10.3390/jpm14040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Ovarian cancer (OC) remains a significant health challenge globally, with high mortality rates despite advancements in treatment. Emerging research suggests a potential link between OC development and genital dysbiosis, implicating alterations in the microbiome composition as a contributing factor. To investigate this correlation, a meta-analysis was conducted following PRISMA and MOOSE guidelines, involving eight studies encompassing 3504 patients. Studies investigating the role of upper and inferior genital tract dysbiosis were included, with particular reference to HPV infection and/or history of pelvic inflammatory disease. The analysis revealed no significant difference in genital dysbiosis prevalence between OC patients and healthy controls. Although previous literature suggests associations between dysbiosis and gynecologic cancers, such as cervical and endometrial cancers, the findings regarding OC are inconclusive. Methodological variations and environmental factors may contribute to these discrepancies, underscoring the need for standardized methodologies and larger-scale studies. Despite the limitations, understanding the microbiome's role in OC development holds promise for informing preventive and therapeutic strategies. A holistic approach to patient care, incorporating microbiome monitoring and personalized interventions, may offer insights into mitigating OC risk and improving treatment outcomes. Further research with robust methodologies is warranted to elucidate the complex interplay between dysbiosis and OC, potentially paving the way for novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Vito Andrea Capozzi
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Giosuè Giordano Incognito
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Elisa Scarpelli
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Marco Palumbo
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Marco La Verde
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gaetano Riemma
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michela Gaiano
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Paola Romeo
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| | - Vittorio Palmara
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| | - Roberto Berretta
- Department of Obstetrics and Gynecology, University Hospital of Parma, 43125 Parma, Italy
| | - Stefano Cianci
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood “G. Barresi”, University of Messina, 98122 Messina, Italy
| |
Collapse
|
9
|
Cao W, Fu X, Zhou J, Qi Q, Ye F, Li L, Wang L. The effect of the female genital tract and gut microbiome on reproductive dysfunction. Biosci Trends 2024; 17:458-474. [PMID: 38104979 DOI: 10.5582/bst.2023.01133] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microorganisms are ubiquitous in the human body; they are present in various areas including the gut, mouth, skin, respiratory tract, and reproductive tract. The interaction between the microbiome and reproductive health has become an increasingly compelling area of study. Disruption of the female genital tract microbiome can significantly impact the metabolism of amino acids, carbohydrates, and lipids, increasing susceptibility to reproductive tract diseases such as vaginitis, chronic endometritis, endometrial polyps, endometriosis, and polycystic ovary syndrome. The gut microbiome, considered an endocrine organ, plays a crucial role in the reproductive endocrine system by interacting with hormones like estrogen and androgens. Imbalances in the gut microbiome composition can lead to various diseases and conditions, including polycystic ovary syndrome, endometriosis, and cancer, although research on their mechanisms remains limited. This review highlights the latest advancements in understanding the female genital tract and gut microbiomes in gynecological diseases. It also explores the potential of microbial communities in the treatment of reproductive diseases. Future research should focus on identifying the molecular mechanisms underlying the association between the microbiome and reproductive diseases to develop new and effective strategies for disease prevention, diagnosis, and treatment related to female reproductive organs.
Collapse
Affiliation(s)
- Wenli Cao
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Xiayan Fu
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Feijun Ye
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
10
|
Zhou Q, Meng Q. Insights into the Microbial Composition of Intratumoral, Reproductive Tract, and Gut Microbiota in Ovarian Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:107-118. [PMID: 38805127 DOI: 10.1007/978-3-031-58311-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
According to the latest global cancer data, ovarian cancer is the deadliest among all gynecological malignant tumors and ranks fifth in terms of mortality. Its etiology and pathogenesis are unknown, and the 5-year survival rate of patients with advanced ovarian cancer is only 40% (Sung et al. CA Cancer J Clin 71:209-49, 2021). Recent research has shown that the human microbiota plays a crucial role in the development and progression of tumors, including ovarian cancer. Numerous studies have highlighted the complex connections between the reproductive tract microbiota, intestinal microbiota, and ovarian cancer (Jacobson et al. PeerJ 9:e11574, 2021). Therefore, this chapter will delve into composition, function, and the correlation between microbiota and immunity in the field of ovarian cancer microbiota, as well as the potential of bacteria in therapeutics and diagnostics of ovarian cancer.
Collapse
Affiliation(s)
- Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China.
| | - Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Jonsson S, Jonsson H, Lundin E, Häggström C, Idahl A. Pelvic inflammatory disease and risk of epithelial ovarian cancer: a national population-based case-control study in Sweden. Am J Obstet Gynecol 2024; 230:75.e1-75.e15. [PMID: 37778677 DOI: 10.1016/j.ajog.2023.09.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Epithelial ovarian cancer is an insidious disease, and women are often diagnosed when the disease is beyond curative treatment. Accordingly, identifying modifiable risk factors is of paramount importance. Inflammation predisposes an individual to cancer in various organs, but whether pelvic inflammatory disease is associated with an increased risk of epithelial ovarian cancer has not been fully determined. OBJECTIVE This study aimed to investigate a possible association between clinically verified pelvic inflammatory disease and the risk of epithelial ovarian cancer. STUDY DESIGN In this national population-based case-control study, all women in Sweden diagnosed with epithelial ovarian cancer between 1999 and 2020 and 10 controls for each were identified, matched for age and residential district. Using several Swedish nationwide registers, data on previous pelvic inflammatory disease and potential confounding factors (age, parity, educational level, and previous gynecologic surgery) were retrieved. Adjusted odds ratios and 95% confidence intervals were estimated using conditional logistic regression. Histotype-specific analyses were performed for the subgroup of women diagnosed with epithelial ovarian cancer between 2015 and 2020. Moreover, hormonal contraceptives and menopausal hormone therapy were adjusted in addition to the aforementioned confounders. RESULTS This study included 15,072 women with epithelial ovarian cancer and 141,322 controls. Most women (9102 [60.4%]) had serous carcinoma. In a subgroup of cases diagnosed between 2015 and 2020, high-grade serous carcinoma (2319 [60.0%]) was identified. A total of 168 cases (1.1%) and 1270 controls (0.9%) were diagnosed with pelvic inflammatory disease. Previous pelvic inflammatory disease was associated with an increased risk of epithelial ovarian cancer (adjusted odds ratio, 1.39; 95% confidence interval, 1.17-1.66) and serous carcinoma (adjusted odds ratio, 1.46; 95% confidence interval, 1.18-1.80) for the entire study population. For the subgroup of women diagnosed in 2015-2020, pelvic inflammatory disease was associated with high-grade serous carcinoma (adjusted odds ratio, 1.43; 95% confidence interval, 1.01-2.04). The odds ratios of the other histotypes were as follows: endometrioid (adjusted odds ratio, 0.13; 95% confidence interval, 0.02-1.06), mucinous (adjusted odds ratio, 1.55; 95% confidence interval, 0.56-4.29), and clear cell carcinoma (adjusted odds ratio, 2.30; 95% confidence interval, 0.90-5.86). A dose-response relationship was observed between the number of pelvic inflammatory disease episodes and the risk of epithelial ovarian cancer (Ptrend<.001). CONCLUSION A history of pelvic inflammatory disease is associated with an increased risk of epithelial ovarian cancer and a dose-response relationship is evident. Histotype-specific analyses show an association with increased risk of serous epithelial ovarian cancer and high-grade serous carcinoma and potentially also with clear cell carcinoma, but there is no significant association with other histotypes. Infection and inflammation of the upper reproductive tract might have serious long-term consequences, including epithelial ovarian cancer.
Collapse
Affiliation(s)
- Sarah Jonsson
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden.
| | - Håkan Jonsson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Eva Lundin
- Pathology Unit, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Christel Häggström
- Department of Public Health and Clinical Medicine, Registry Centre North, Umeå University, Umeå, Sweden
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Skarga E, Surcel HM, Kaaks R, Waterboer T, Fortner RT. Sexually Transmitted Infections and Risk of Epithelial Ovarian Cancer: Results From the Finnish Maternity Cohort. J Infect Dis 2023; 228:1621-1629. [PMID: 37196097 PMCID: PMC10681868 DOI: 10.1093/infdis/jiad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Sexually transmitted infections, specifically Chlamydia trachomatis (CT), may be associated with epithelial ovarian cancer (EOC) risk. The association between CT and EOC subtypes is unclear. Our aim was to investigate whether history of CT and other infections (Mycoplasma genitalium [MG], herpes simplex virus type 2 [HSV-2], and human papillomavirus [HPV]) are associated with EOC risk by histotype. METHODS We measured antibodies (Abs) to CT, MG, HSV-2, and HPV-16/18 in serum samples in a nested case-control study in the Finnish Maternity Cohort (N = 484 cases 1:1 matched to controls). Logistic regression was used to calculate relative risks (RRs) and 95% confidence intervals (CIs) in seropositive versus seronegative individuals in all cases, as well as serous (n = 249), clear cell and endometrioid (n = 91), and mucinous (n = 144) EOC. RESULTS CT seropositivity was not associated with EOC risk (eg, CT pGP3-Ab: RR, 0.92 [95% CI, .72-1.19]), regardless of disease subtype. We observed a positive association between MG seropositivity and mucinous EOC (RR, 1.66 [95% CI, 1.09-2.54]; P for heterogeneity by histotype ≤ .001), but not other subtypes. No associations were observed with seropositivity to multiple STIs. CONCLUSIONS CT infection was not associated with EOC risk, with associations observed only for MG and mucinous EOC. Mechanisms linking MG to mucinous EOC remain to be elucidated.
Collapse
Affiliation(s)
- Elizaveta Skarga
- Division of Cancer Epidemiology, German Cancer Research Center
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Heljä-Marja Surcel
- Faculty of Medicine, University of Oulu, Oulu, Finland
- Biobank Borealis of Northern Finland, Oulu, Finland
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center
- Department of Research, Cancer Registry of Norway, Oslo
| |
Collapse
|
13
|
Mehra Y, Chalif J, Mensah-Bonsu C, Spakowicz D, O’Malley DM, Chambers L. The microbiome and ovarian cancer: insights, implications, and therapeutic opportunities. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023. [DOI: 10.20517/2394-4722.2023.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death in the United States. Most ovarian cancer patients are diagnosed with advanced-stage disease, which poses a challenge for early detection and effective treatment. At present, cytoreductive surgery and platinum-based chemotherapy are foundational for patients with newly diagnosed ovarian cancer, but unfortunately, most patients will recur and die of their disease. Therefore, there is a significant need to seek innovative, novel approaches for early detection and to overcome chemoresistance for ovarian cancer patients. The microbiome, comprising diverse microbial communities inhabiting various body sites, is vital in maintaining human health. Changes to the diversity and composition of the microbial communities impact the microbiota-host relationship and are linked to diseases, including cancer. The microbiome contributes to carcinogenesis through various mechanisms, including altered host immune response, modulation of DNA repair, upregulation of pro-inflammatory pathways, altered gene expression, and dysregulated estrogen metabolism. Translational and clinical studies have demonstrated that specific microbes contribute to ovarian cancer development and impact chemotherapy’s efficacy. The microbiome is malleable and can be altered through different approaches, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature regarding ovarian cancer and the microbiome of female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and options for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiome and ovarian cancer may provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
|
14
|
Chen W, Liu H, Huang X, Qian L, Chen L, Zhou Y, Liu Y, Liu Y, Wang Y, Zhang T, Zhou Y, Fang J, Yang J, Ni F, Guo C, Zhou Y. A single-cell landscape of pre- and post-menopausal high-grade serous ovarian cancer ascites. iScience 2023; 26:107712. [PMID: 37701567 PMCID: PMC10493500 DOI: 10.1016/j.isci.2023.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is a hormone-related cancer with high mortality and poor prognosis. Based on the transcriptome of 57,444 cells in ascites from 10 patients with HGSOC (including 5 pre-menopausal and 5 post-menopausal patients), we identified 14 cell clusters which were further classified into 6 cell types, including T cells, B cells, NK cells, myeloid cells, epithelial cells, and stromal cells. We discovered an increased proportion of epithelial cells and a decreased proportion of T cells in pre-menopausal ascites compared with post-menopausal ascites. GO analysis revealed the pre-menopausal tumor microenvironments (TME) are closely associated with viral infection, while the post-menopausal TME are mostly related to the IL-17 immune pathway. SPP1/CD44-mediated crosstalk between myeloid cells and B cells, NK cells, and stromal cells mainly present in the pre-menopausal group, while SPP1/PTGER4 -mediated crosstalk between myeloid cells and epithelial cells mostly present in the post-menopausal group.
Collapse
Affiliation(s)
- Wenying Chen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yonggang Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yujie Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yingying Wang
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Tianjiao Zhang
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Youyang Zhou
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang 31200, China
| | - Jingwen Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang 31200, China
| | - Jiaxuan Yang
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang 31200, China
| | - Fang Ni
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
15
|
Hathaway CA, Townsend MK, Sklar EM, Thomas-Purcell KB, Terry KL, Trabert B, Tworoger SS. The Association of Kidney Function and Inflammatory Biomarkers with Epithelial Ovarian Cancer Risk. Cancer Epidemiol Biomarkers Prev 2023; 32:1451-1457. [PMID: 37540498 PMCID: PMC10592177 DOI: 10.1158/1055-9965.epi-23-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND One of the mechanisms of ovarian tumorigenesis is through inflammation. Kidney dysfunction is associated with increased inflammation; thus, we assessed its relationship with ovarian cancer risk. METHODS In prospectively collected samples, we evaluated the association of kidney function markers and C-reactive protein (CRP) with ovarian cancer risk in the UK Biobank. We used multivariable-adjusted Cox proportional hazards models to evaluate quartiles of serum and urine markers with ovarian cancer risk overall and by histology. We assessed effect modification by CRP (≤3.0, >3.0 mg/L). RESULTS Among 232,908 women (1,110 ovarian cancer cases diagnosed from 2006-2020), we observed no association between estimated glomerular filtration rate and ovarian cancer risk (Q4 vs. Q1: HR, 1.00; 95% confidence intervals, 0.83-1.22). Potassium was associated with endometrioid (Q4 vs. Q1: 0.33, 0.11-0.98) and clear cell (4.74, 1.39-16.16) tumors. Poor kidney function was associated with a nonsignificant increase in ovarian cancer risk among women with CRP>3.0 mg/L (e.g., uric acid Q4 vs. Q1; 1.23, 0.81-1.86), but not CRP≤3.0 mg/L (0.83, 0.66-1.05). Other associations did not vary across CRP categories. CONCLUSIONS Kidney function was not clearly associated with ovarian cancer risk. Larger studies are needed to evaluate possible histology specific associations. Given the suggestive trend for increased ovarian cancer risk in women with poor kidney function and high CRP, future work is needed, particularly in populations with a high prevalence of inflammatory conditions. IMPACT This study provided the first evaluation of markers of kidney function in relation to ovarian cancer risk.
Collapse
Affiliation(s)
- Cassandra A. Hathaway
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
- Dr. Pallavi Patel College of Health Care Science, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary K. Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Elliot M. Sklar
- Dr. Pallavi Patel College of Health Care Science, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kamilah B. Thomas-Purcell
- Dr. Pallavi Patel College of Health Care Science, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kathryn L. Terry
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School; Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Britton Trabert
- Department of Obstetrics and Gynecology, University of Utah and Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
16
|
Sellers TA, Peres LC, Hathaway CA, Tworoger SS. Prevention of Epithelial Ovarian Cancer. Cold Spring Harb Perspect Med 2023; 13:a038216. [PMID: 37137500 PMCID: PMC10411689 DOI: 10.1101/cshperspect.a038216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Given the challenges with achieving effective and durable treatment for epithelial ovarian cancer, primary prevention is highly desirable. Fortunately, decades of research have provided evidence for several strategies that can be deployed to optimize risk reduction. These include surgery, chemoprevention, and lifestyle factor modifications. These broad categories vary in terms of the magnitude of risk reduction possible, the possible short-term and long-term side effects, the degree of difficulty, and acceptability. Thus, the concept of a risk-based model to personalize preventive interventions is advocated to guide discussion between care providers and women at risk. For women with inherited major gene mutations that greatly increase risk of ovarian cancer, surgical approaches have favorable risk to benefit ratios. Chemoprevention and lifestyle factor modifications portend a lower degree of risk reduction but confer lower risk of undesirable side effects. Since complete prevention is not currently possible, better methods for early detection remain a high priority.
Collapse
Affiliation(s)
- Thomas A Sellers
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Lauren C Peres
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
| | - Cassandra A Hathaway
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
17
|
Santacroce L, Palmirotta R, Bottalico L, Charitos IA, Colella M, Topi S, Jirillo E. Crosstalk between the Resident Microbiota and the Immune Cells Regulates Female Genital Tract Health. Life (Basel) 2023; 13:1531. [PMID: 37511906 PMCID: PMC10381428 DOI: 10.3390/life13071531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The female genital tract (FGT) performs several functions related to reproduction, but due to its direct exposure to the external environment, it may suffer microbial infections. Both the upper (uterus and cervix) and lower (vagina) FGT are covered by an epithelium, and contain immune cells (macrophages, dendritic cells, T and B lymphocytes) that afford a robust protection to the host. Its upper and the lower part differ in terms of Lactobacillus spp., which are dominant in the vagina. An alteration of the physiological equilibrium between the local microbiota and immune cells leads to a condition of dysbiosis which, in turn, may account for the outcome of FGT infection. Aerobic vaginitis, bacterial vaginosis, and Chlamydia trachomatis are the most frequent infections, and can lead to severe complications in reproduction and pregnancy. The use of natural products, such as probiotics, polyphenols, and lactoferrin in the course of FGT infections is an issue of current investigation. In spite of positive results, more research is needed to define the most appropriate administration, according to the type of patient.
Collapse
Affiliation(s)
- Luigi Santacroce
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Raffaele Palmirotta
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, “Alexander Xhuvani” University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, “Alexander Xhuvani” University of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.P.); (E.J.)
| |
Collapse
|
18
|
Ray A, Moore TF, Pandit R, Burke AD, Borsch DM. An Overview of Selected Bacterial Infections in Cancer, Their Virulence Factors, and Some Aspects of Infection Management. BIOLOGY 2023; 12:963. [PMID: 37508393 PMCID: PMC10376897 DOI: 10.3390/biology12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
In cancer development and its clinical course, bacteria can be involved in etiology and secondary infection. Regarding etiology, various epidemiological studies have revealed that Helicobacter pylori can directly impact gastric carcinogenesis. The Helicobacter pylori-associated virulence factor cytotoxin-associated gene A perhaps plays an important role through different mechanisms such as aberrant DNA methylation, activation of nuclear factor kappa B, and modulation of the Wnt/β-catenin signaling pathway. Many other bacteria, including Salmonella and Pseudomonas, can also affect Wnt/β-catenin signaling. Although Helicobacter pylori is involved in both gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma, its role in the latter disease is more complicated. Among other bacterial species, Chlamydia is linked with a diverse range of diseases including cancers of different sites. The cellular organizations of Chlamydia are highly complex. Interestingly, Escherichia coli is believed to be associated with colon cancer development. Microorganisms such as Escherichia coli and Pseudomonas aeruginosa are frequently isolated from secondary infections in cancer patients. In these patients, the common sites of infection are the respiratory, gastrointestinal, and urinary tracts. There is an alarming rise in infections with multidrug-resistant bacteria and the scarcity of suitable antimicrobial agents adversely influences prognosis. Therefore, effective implementation of antimicrobial stewardship strategies is important in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Thomas F Moore
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | | | | | - Daniel M Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| |
Collapse
|
19
|
Wood GE, Bradshaw CS, Manhart LE. Update in Epidemiology and Management of Mycoplasma genitalium Infections. Infect Dis Clin North Am 2023; 37:311-333. [PMID: 37105645 DOI: 10.1016/j.idc.2023.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Mycoplasma genitalium is a frequent cause of urogenital syndromes in men and women and is associated with adverse sequelae in women. M genitalium also infects the rectum, and may cause proctitis, but rarely infects the pharynx. Diagnosis requires nucleic acid amplification testing. Antibiotic resistance is widespread: more than half of infections are resistant to macrolides and fluoroquinolone resistance is increasing. Resistance-guided therapy is recommended for symptomatic patients, involving initial treatment with doxycycline to reduce organism load followed by azithromycin for macrolide-sensitive infections or moxifloxacin for macrolide-resistant infections. Neither screening nor tests of cure are recommended in asymptomatic persons.
Collapse
Affiliation(s)
- Gwendolyn E Wood
- Division of Infectious Diseases, University of Washington, Center for AIDS and STD, Box 359779, 325 9th Avenue, Seattle, WA 98104, USA.
| | - Catriona S Bradshaw
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Lisa E Manhart
- Department of Epidemiology, University of Washington, Center for AIDS and STD, Box 359931, 325 9th Avenue, Seattle, WA 98104, USA
| |
Collapse
|
20
|
Yu J, Zhou Y, Luo H, Su X, Gan T, Wang J, Ye Z, Deng Z, He J. Mycoplasma genitalium infection in the female reproductive system: Diseases and treatment. Front Microbiol 2023; 14:1098276. [PMID: 36896431 PMCID: PMC9989269 DOI: 10.3389/fmicb.2023.1098276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Mycoplasma genitalium is a newly emerged sexually transmitted disease pathogen and an independent risk factor for female cervicitis and pelvic inflammatory disease. The clinical symptoms caused by M. genitalium infection are mild and easily ignored. If left untreated, M. genitalium can grow along the reproductive tract and cause salpingitis, leading to infertility and ectopic pregnancy. Additionally, M. genitalium infection in late pregnancy can increase the incidence of preterm birth. M. genitalium infections are often accompanied by co-infection with other sexually transmitted pathogens (Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis) and viral infections (Human Papilloma Virus and Human Immunodeficiency Virus). A recent study suggested that M. genitalium plays a role in tumor development in the female reproductive system. However, few studies endorsed this finding. In recent years, M. genitalium has evolved into a new "superbug" due to the emergence of macrolide-and fluoroquinolone-resistant strains leading to frequent therapy failures. This review summarizes the pathogenic characteristics of M. genitalium and the female reproductive diseases caused by M. genitalium (cervicitis, pelvic inflammatory disease, ectopic pregnancy, infertility, premature birth, co-infection, reproductive tumors, etc.), as well as its potential relationship with reproductive tumors and clinical treatment.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Zhou
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Tian Gan
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongliang Deng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
21
|
Hosseininasab-Nodoushan SA, Ghazvini K, Jamialahmadi T, Keikha M, Sahebkar A. Association of Chlamydia and Mycoplasma infections with susceptibility to ovarian cancer: A systematic review and meta-analysis. Semin Cancer Biol 2022; 86:923-928. [PMID: 34333041 DOI: 10.1016/j.semcancer.2021.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ovarian cancer is one of the most prevalent cancers with a high mortality rate in women. Published studies indicate that inflammation, DNA damage, and pelvic inflammatory disease (PID) are the most important risk factors for ovarian cancer and this could be induced and exacerbated by infectious agents such as Chlamydia trachomatis and Mycoplasma genitalium. The aim of this study was to determine the association between Chlamydia and Mycoplasma infections and the risk of ovarian cancer. METHODS We carried out a comprehensive search of PubMed, Scopus, Web of Science, Embase, and Google Scholar without limitation on publication date. All relevant studies which investigatived probable potential connection between Chlamydia and Mycoplasma infection and development of ovarian cancer were included. RESULTS Eighteen studies comprising a total of 8207 patients were evaluated in the study and this showed that the frequency of infection with Chlamydia and Mycoplasma among ovarian cancer patients was 32.6 % and 23 %, respectively. The results suggested that Chlamydia trachomatis infection increased the overall risk for ovarian cancer by 1.344 fold (OR: 1.344; 95 %CI: 1.19-1.50). Moreover, infection with Mycoplasma infections showed a week but not significant increased risk of ovarian cancer (OR: 1.12; 95 %CI: 0.86-1.44). However, the test for heterogeneity was significant among these studies. CONCLUSION This study confirmed the clinical relevance of Chlamydia and Mycoplasma infection and development of the ovarian cancer risk, although the significance was marginal and study heterogeneity was significant. This highlights the need for further studies in this area.
Collapse
Affiliation(s)
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Sánchez-Prieto M, Sánchez-Borrego R, Lubián-López DM, Pérez-López FR. Etiopathogenesis of ovarian cancer. An inflamm-aging entity? Gynecol Oncol Rep 2022; 42:101018. [PMID: 35719320 PMCID: PMC9198811 DOI: 10.1016/j.gore.2022.101018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OvCa) is a multifactorial disease. Several factors are involved in age-related increases in carcinogenesis. Exposure to inflammatory mediators contributes to increased cell division and genetic and epigenetic changes. We discuss the current carcinogenic hypotheses, sites of origin, and etiological factors of OvCa.
Ovarian cancer is one of the most common gynecologic cancers and has the highest mortality rate. The risk/protective factors of ovarian cancer suggest that its etiology is multifactorial. Several factors are involved in age-related increases in carcinogenesis, including the accumulation of senescent cells, inflammaging (a chronic inflammatory state that persists in the elderly), and immunosenescence (aging of the immune system) changes associated with poor immune surveillance. At sites of inflammation, exposure to high levels of inflammatory mediators, such as reactive oxygen species, cytokines, prostaglandins, and growth factors, contributes to increased cell division and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the proinflammatory tumor microenvironment contributes to ovarian cancer metastasis and chemoresistance. This narrative review of the literature was carried out to delineate the possible role of inflammaging in the etiopathogenesis of ovarian cancer development. We discuss the current carcinogenic hypotheses, sites of origin, and etiological factors of ovarian cancer. Treatment of inflammation may represent an attractive strategy for both the prevention and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Manuel Sánchez-Prieto
- Department of Obstetrics and Gynecology, Instituto Universitario Dexeus, Barcelona, Spain
- Corresponding author at: Instituto Universitario Dexeus, Sabino de Arana 5-19, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
23
|
Monroy-Iglesias MJ, Crescioli S, Beckmann K, Le N, Karagiannis SN, Van Hemelrijck M, Santaolalla A. Antibodies as biomarkers for cancer risk: a systematic review. Clin Exp Immunol 2022; 209:46-63. [PMID: 35380164 PMCID: PMC9307228 DOI: 10.1093/cei/uxac030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has linked the humoral immune response with the development of various cancers. Therefore, there is growing interest in investigating the predictive value of antibodies to assess overall and tissue site-specific cancer risk. Given the large amount of antibody types and the broad scope of the search (i.e. cancer risk), the primary aim of this systematic review was to present an overview of the most researched antibodies (i.e. immunoglobulin (Ig) isotypes (IgG, IgM, IgA, and IgE), tumour and self-antigen-reactive antibodies, infection-related antibodies) in relation to overall and site-specific cancer risk. We identified various antibody types that have been associated with the risk of cancer. While no significant associations were found for IgM serum levels, studies found an inconsistent association among IgE, IgA, and IgG serum levels in relation to cancer risk. When evaluating antibodies against infectious agents, most studies reported a positive link with specific cancers known to be associated with the specific agent recognized by serum antibodies (i.e. helicobacter pylori and gastric cancer, hepatitis B virus and hepatocellular carcinoma, and human papillomavirus and cervical cancer). Several reports identified autoantibodies, as single biomarkers (e.g. anti-p53, anti-MUC1, and anti-CA125) but especially in panels of multiple autoantibodies, to have potential as diagnostic biomarkers for specific cancer types. Overall, there is emerging evidence associating certain antibodies to cancer risk, especially immunoglobulin isotypes, tumour-associated antigen-specific, and self-reactive antibodies. Further experimental studies are necessary to assess the efficacy of specific antibodies as markers for the early diagnosis of cancer.
Collapse
Affiliation(s)
| | | | - Kerri Beckmann
- Higher Degree by Research, University of South Australia, Adelaide, Australia
- Cancer Epidemiology and Population Health Research Group, University of South Australia, Adelaide, SE, Australia
| | - Nga Le
- Higher Degree by Research, University of South Australia, Adelaide, Australia
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), Centre for Cancer, Society, and Public Health, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Aida Santaolalla
- Correspondence: Aida Santaolalla, Translational Oncology and Urology Research (TOUR), Centre for Cancer, Society, and Public Health, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK.
| |
Collapse
|
24
|
DiMaio D, Emu B, Goodman AL, Mothes W, Justice A. Cancer Microbiology. J Natl Cancer Inst 2022; 114:651-663. [PMID: 34850062 PMCID: PMC9086797 DOI: 10.1093/jnci/djab212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Microbes play important roles in cancer from direct carcinogenic effects to their use in treatment. Cancers caused by microorganisms account for approximately 15% of cancers, primarily in low- and middle-income countries. Unique features of infectious carcinogens include their transmissibility, mutability, and specific immune interactions, which provide challenges and opportunities for cancer prevention and treatment. For these agents, infection control through exposure reduction, antivirals, antibiotics, and vaccines is cancer control. In addition, developing evidence suggests that microorganisms including the human microbiome can indirectly modulate cancer formation and influence the effectiveness and toxicity of cancer treatments. Finally, microorganisms themselves can be used to prevent or treat cancer. The convergence of these factors signals the emergence of a new field, cancer microbiology. Recognition of cancer microbiology will spur research, stimulate cross-disciplinary training, inform drug development, and improve public health.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Brinda Emu
- Yale Cancer Center, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Yale Cancer Center, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Walther Mothes
- Yale Cancer Center, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Amy Justice
- Yale Cancer Center, New Haven, CT, USA
- Department of General Medicine, Yale University, VA Medical Center, New Haven, CT, USA
| |
Collapse
|
25
|
A More Diverse Cervical Microbiome Associates with Better Clinical Outcomes in Patients with Endometriosis: A Pilot Study. Biomedicines 2022; 10:biomedicines10010174. [PMID: 35052854 PMCID: PMC8774211 DOI: 10.3390/biomedicines10010174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Infection-induced chronic inflammation is common in patients with endometriosis. Although microbial communities in the reproductive tracts of patients have been reported, little was known about their dynamic profiles during disease progression and complication development. Microbial communities in cervical mucus were collected by cervical swabs from 10 healthy women and 23 patients, and analyzed by 16S rRNA amplicon sequencing. The abundance, ecological relationships and functional networks of microbiota were characterized according to their prevalence, clinical stages, and clinical features including deeply infiltrating endometriosis (DIE), CA125, pain score and infertility. Cervical microbiome can be altered during endometriosis development and progression with a tendency of increased Firmicutes and decreased Actinobacteria and Bacteroidetes. Distinct from vaginal microbiome, upregulation of Lactobacillus, in combination with increased Streptococcus and decreased Dialister, was frequently associated with advanced endometriosis stages, DIE, higher CA125 levels, severe pain, and infertility. Significantly, reduced richness and diversity of cervical microbiome were detected in patients with more severe clinical symptoms. Clinical treatments against infertility can partially reverse the ecological balance of microbes through remodeling nutrition metabolism and transport and cell-cell/cell-matrix interaction. This study provides a new understanding on endometriosis development and a more diverse cervical microbiome may be beneficial for patients to have better clinical outcomes.
Collapse
|
26
|
Lu H, Wang Q, Liu W, Wen Z, Li Y. Precision strategies for cancer treatment by modifying the tumor-related bacteria. Appl Microbiol Biotechnol 2021; 105:6183-6197. [PMID: 34402938 DOI: 10.1007/s00253-021-11491-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Research on the roles of the bacteria in tumor development and progression is a rapidly emerging field. Increasing evidence links bacteria with the modification of the tumor immune microenvironment, which greatly influences the antitumor response. In view of the individual immune effects of various bacteria in various tumors, developing personalized bacteria-modulating therapy may be a key to successful antitumor treatment. This review emphasizes the critical role of the bacteria in immune regulation, including both the tumor bacteria and gut bacteria. Aiming at tumor-related bacteria, we focus on various precise modulation strategies and discuss their impact and potential for tumor suppression. Finally, engineered bacteria with tumor-targeting ability could achieve precise delivery of various payloads into tumors, acting as a precision tool. Therefore, a precise tumor-related bacteria therapy may be a promising approach to suppress the development of tumors, as well as an adjuvant therapy to improve the antitumor efficacy of other approaches. KEY POINTS: • The mini-review updates the knowledge on complex effect of bacteria in TME. • Insight into the interaction and adjustment of bacteria in gut for TME. • Prospects and limitations of bacteria-related personalized therapy in the clinical anticancer therapy.
Collapse
Affiliation(s)
- Huazhen Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
27
|
Horner PJ, Flanagan H, Horne AW. Is There a Hidden Burden of Disease as a Result of Epigenetic Epithelial-to-Mesenchymal Transition Following Chlamydia trachomatis Genital Tract Infection? J Infect Dis 2021; 224:S128-S136. [PMID: 34396405 DOI: 10.1093/infdis/jiab088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chlamydia trachomatis (CT), the most common bacterial sexually transmitted infection worldwide, has been widely researched for its involvement in many disease pathologies in the reproductive tract, including pelvic inflammatory disease, ectopic pregnancy, and tubal factor infertility. Recent findings, through the efforts to understand the pathogenesis of CT, suggest that CT can induce the process of epithelial-to-mesenchymal transition (EMT) through epigenetic changes in the epithelium of the female reproductive tract. This literature review aims to analyze the evidence for CT's ability to promote EMT and to pinpoint the areas that merit further investigation.
Collapse
Affiliation(s)
- Patrick J Horner
- Population Health Sciences, University of Bristol, Bristol, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, United Kingdom
| | - Heather Flanagan
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W Horne
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Paavonen J, Turzanski Fortner R, Lehtinen M, Idahl A. Chlamydia trachomatis, Pelvic Inflammatory Disease, and Epithelial Ovarian Cancer. J Infect Dis 2021; 224:S121-S127. [PMID: 34396414 DOI: 10.1093/infdis/jiab017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic, clinical, molecular and translational research findings support an interrelationship between Chlamydia trachomatis, pelvic inflammatory disease (PID), and epithelial ovarian cancer (EOC). Overall, the link between C. trachomatis, PID, and EOC seems to be relatively weak, although nondifferential misclassification bias may have attenuated the results. The predominant tubal origin of EOC and the role of chronic inflammation in tumorigenesis suggest that the association is biologically plausible. Thus, C. trachomatis and PID may represent potential risk factors or risk markers for EOC. However, many steps in this chain of events are still poorly understood and need to be addressed in future studies. Research gaps include time of exposure in relation to the long-term consequences and lag time to EOC. Data of differential risk for EOC between chlamydial and nonchlamydial PID is also needed. Another major research gap has been the absence of high-performance biomarkers for C. trachomatis, PID, and EOC, as well as EOC precursors. Biomarkers for C. trachomatis and PID leading to increased risk of EOC should be developed. If the association is confirmed, C. trachomatis and PID prevention efforts may play a role in reducing the burden of EOC.
Collapse
Affiliation(s)
- Jorma Paavonen
- Professor Emeritus, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
29
|
Chambers LM, Bussies P, Vargas R, Esakov E, Tewari S, Reizes O, Michener C. The Microbiome and Gynecologic Cancer: Current Evidence and Future Opportunities. Curr Oncol Rep 2021; 23:92. [PMID: 34125319 DOI: 10.1007/s11912-021-01079-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW We review the emerging evidence regarding the relationship between the microbiota of the gastrointestinal and female reproductive tracts and gynecologic cancer. RECENT FINDINGS The microbiome has essential roles in maintaining health. In recent years, the microbiota of the gastrointestinal and female reproductive tracts have been linked to many diseases, including gynecologic cancer. Alterations to the bacterial populations in a microbiota, or dysbiosis, have been shown to favor a pro-carcinogenic state through altered immune responses, dysregulated hormone metabolism, and modulation of the cell cycle. Pre-clinical and clinical studies have emerged, demonstrating that specific bacteria or microbial communities may be associated with increased risk for uterine, ovarian, and cervical cancers. Notably, numerous studies have linked a non-Lactobacillus-dominant vaginal microbiota, composed of anaerobic bacteria, with HPV infection, persistence, and development of invasive cervical cancer. Similarly, next-generation high-throughput sequencing techniques have enabled the characterization of unique microbiotas in patients with malignant and benign gynecologic conditions, shedding light on new associations between bacterial species and gynecologic cancers. Harnessing the power of the microbiome for early diagnosis, therapeutic intervention and modulation creates tremendous potential to optimize gynecologic cancer outcomes in the future.
Collapse
Affiliation(s)
- Laura M Chambers
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Parker Bussies
- Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Roberto Vargas
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Emily Esakov
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Surabhi Tewari
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Ofer Reizes
- Case Comprehensive Cancer Center, Cleveland, OH, USA.,Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chad Michener
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
30
|
Mechanisms of High-Grade Serous Carcinogenesis in the Fallopian Tube and Ovary: Current Hypotheses, Etiologic Factors, and Molecular Alterations. Int J Mol Sci 2021; 22:ijms22094409. [PMID: 33922503 PMCID: PMC8122889 DOI: 10.3390/ijms22094409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian high-grade serous carcinomas (HGSCs) are a heterogeneous group of diseases. They include fallopian-tube-epithelium (FTE)-derived and ovarian-surface-epithelium (OSE)-derived tumors. The risk/protective factors suggest that the etiology of HGSCs is multifactorial. Inflammation caused by ovulation and retrograde bleeding may play a major role. HGSCs are among the most genetically altered cancers, and TP53 mutations are ubiquitous. Key driving events other than TP53 mutations include homologous recombination (HR) deficiency, such as BRCA 1/2 dysfunction, and activation of the CCNE1 pathway. HR deficiency and the CCNE1 amplification appear to be mutually exclusive. Intratumor heterogeneity resulting from genomic instability can be observed at the early stage of tumorigenesis. In this review, I discuss current carcinogenic hypotheses, sites of origin, etiologic factors, and molecular alterations of HGSCs.
Collapse
|
31
|
Li H, Zang Y, Wang C, Li H, Fan A, Han C, Xue F. The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol 2020; 10:609488. [PMID: 33425785 PMCID: PMC7785791 DOI: 10.3389/fcimb.2020.609488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The female reproductive tract microenvironment includes microorganisms, metabolites, and immune components, and the balance of the interactions among them plays an important role in maintaining female reproductive tract homeostasis and health. When any one of the reproductive tract microorganisms, metabolites, or immunity is out of balance, it will affect the other two, leading to the occurrence and development of diseases and the appearance of corresponding symptoms and signs, such as infertility, miscarriage, premature delivery, and gynecological tumors caused by infectious diseases of the reproductive tract. Nutrients in the female reproductive tract provide symbiotic and pathogenic microorganisms with a source of nutrients for their own reproduction and utilization. At the same time, this interaction with the host forms a variety of metabolites. Changes in metabolites in the host reproductive tract are related not only to the interaction between the host and microbiota under dysbiosis but also to changes in host immunity or the environment, all of which will participate in the pathogenesis of diseases and lead to disease-related phenotypes. Microorganisms and their metabolites can also interact with host immunity, activate host immunity, and change the host immune status and are closely related to persistent genital pathogen infections, aggravation of infectious diseases, severe pregnancy outcomes, and even gynecological cancers. Therefore, studying the interaction between microorganisms, metabolites, and immunity in the reproductive tract cannot only reveal the pathogenic mechanisms that lead to inflammation of the reproductive tract, adverse pregnancy outcomes and tumorigenesis but also provide a basis for further research on the diagnosis and treatment of targets.
Collapse
Affiliation(s)
- Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Parida S, Sharma D. The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Res 2020; 81:790-800. [PMID: 33148661 DOI: 10.1158/0008-5472.can-20-2629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The human body is colonized by the microbial cells that are estimated to be as abundant as human cells, yet their genome is roughly 100 times the human genome, providing significantly more genetic diversity. The past decade has observed an explosion of interest in examining the existence of microbiota in the human body and understanding its role in various diseases including inflammatory bowel disease, neurologic diseases, cardiovascular disorders, and cancer. Many studies have demonstrated differential community composition between normal tissue and cancerous tissue, paving the way for investigations focused on deciphering the cause-and-effect relationships between specific microbes and initiation and progression of various cancers. Also, evolving are the strategies to alter tumor-associated dysbiosis and move it toward eubiosis with holistic approaches to change the entire neighborhood or to neutralize pathogenic strains. In this review, we discuss important pathogenic bacteria and the underlying mechanisms by which they affect cancer progression. We summarize key microbiota alterations observed in multiple tumor niches, their association with clinical stages, and their potential use in cancer diagnosis and management. Finally, we discuss microbiota-based therapeutic approaches.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|