1
|
Parvin S, Bagheri H, Halabian R, Arabfard M, Ghazvini A, Vahedi E, Najafi A, Ghanei M. Comprehensive transcriptomics analysis of peripheral blood mononuclear cells in exposure to mustard gas. Int Immunopharmacol 2025; 150:114197. [PMID: 39946765 DOI: 10.1016/j.intimp.2025.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Sulfur mustard (SM) is a substance that causes blisters and has been repeatedly used by Iraq in chemical warfare against more than 100,000 Iranians. The main issue for these people is various pulmonary problems similar to chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS Our study analyzed the total RNA profile extracted using the RNA-seq technique from peripheral blood mononuclear cells (PBMCs) isolated from Mustard Lung (ML) patients of all three groups (Severe, Moderate, and Mild) in terms of disease in healthy control (HC) subjects on the BGISEQ platform (Paired-end, 7 GB data, and rRNA depletion). However, given the severe group's importance in clinical problems, we prioritized studying this group. Differentially expressed genes (DEGs) of the severe group versus HC were obtained using the limma package. DEGs were analyzed through bioinformatics tools, and their gene ontology (GO) and enrichment analysis (EA) were evaluated. Then, String-db and Cytoscape tools were used to search for the most important functional genes. RESULTS We identified SERPINA1, MAPK3, MMP9, FOXO3, SLC4A1, FCGR3B, CXCR2, PTGS2, HBA2, GPX1, IL1RN, IFNG, RPS29, CXCL1, FPR1, and RPS9 genes using hub and bottleneck criteria. Based on the analysis of important genes, several biological pathways were identified, including innate immunity, inflammatory response, and activation of neutrophils, cellular response to cytokines, and cellular response to oxidative stress, lipoxygenase pathway, and macrophage differentiation. CONCLUSION Innate immunity and neutrophils play a crucial role in the pathogenesis of these individuals. The signaling pathways of interleukins 4, 10, and 13 stimulate the differentiation of lung macrophages (MQs) into M2, essential for repair, remodeling, and inflammation. Additionally, reactive oxygen species (ROS) activate Protein kinase B (PKB), also known as AKT, through Phosphoinositide 3-kinases (PI3K) and increase the activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which results in decreased histone deacetylase 2 (HDAC2) being one of the important pathways of pathophysiology in these patients.
Collapse
Affiliation(s)
- Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ghazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Scholiers V, Fischer SM, Daelman B, Lehner S, Gaan S, Winne JM, Du Prez FE. Tailoring the Reprocessability of Thiol-Ene Networks through Ring Size Effects. Angew Chem Int Ed Engl 2025; 64:e202420657. [PMID: 39724466 DOI: 10.1002/anie.202420657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 12/28/2024]
Abstract
Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers. While it is known that thioether bonds can be triggered to exchange through transalkylation reactions, this process is usually slow, as thioether moieties not only have to be activated by an alkylating agent, but the activated thioether also has to associate with a second thioether moiety in a classical SN2-type process. Here, we present the rational design of dynamic polymer networks based on simple dithiol-based monomers and a fatty acid derived triene. Two neighboring thioethers can undergo a much faster bond exchange reaction, and we found that the exchange dynamics can be further tuned over almost three orders of magnitude by tailoring the distance between two thioether functionalities. This resulted in thioether-cross-linked materials that could be processed by extrusion, a continuous reprocessing technique that was previously not accessible for this class of cross-linked materials, while still exhibiting appealing creep-resistance below 70 °C.
Collapse
Affiliation(s)
- Vincent Scholiers
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Susanne M Fischer
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Bram Daelman
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Sandro Lehner
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse, 5, St. Gallen, 9014, Switzerland
| | - Sabyasachi Gaan
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse, 5, St. Gallen, 9014, Switzerland
| | - Johan M Winne
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Arabfard M, Behmard E, Maghsoudloo M, Dadgar E, Parvin S, Bagheri H. Identifying candidate RNA-seq biomarkers for severity discrimination in chemical injuries: A machine learning and molecular dynamics approach. Int Immunopharmacol 2025; 148:114090. [PMID: 39847951 DOI: 10.1016/j.intimp.2025.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Biomarkers play a crucial role across various fields by providing insights into biological responses to interventions. High-throughput gene expression profiling technologies facilitate the discovery of data-driven biomarkers through extensive datasets. This study focuses on identifying biomarkers in gene expression data related to chemical injuries by mustard gas, covering a spectrum from healthy individuals to severe injuries. MATERIALS AND METHODS The study utilized RNA-Seq data comprising 52 expression data samples for 54,583 gene transcripts. These samples were categorized into four classes based on the GOLD classification for chemically injured individuals: Severe (n = 14), Moderate (n = 11), Mild (n = 16), and healthy controls (n = 11). Data preparation involved examining an Excel file created in the R programming environment using MLSeq and devtools packages. Feature selection was performed using Genetic Algorithm and Simulated Annealing, with Random Forest algorithm employed for classification. Ab initio methods ensured computational efficiency and result accuracy, while molecular dynamics simulation acted as a virtual experiment bridging the gap between experimental and theoretical experiences. RESULTS A total of 12 models were created, each introducing a list of differentially expressed genes as potential biomarkers. The performance of models varied across group comparisons, with the Genetic Algorithm generally outperforming Simulated Annealing in most cases. For the Severe vs. Moderate group, GA achieved the best performance with an accuracy of 94.38%, recall of 91.64%, and specificity of 97.10%. The results highlight the effectiveness of GA in most group comparisons, while SA performed better in specific cases involving Moderate and Mild groups. These biomarkers were evaluated against the gene expression data to assess their expression changes between different groups of chemically injured individuals. Four genes were selected based on level expression for further investigation: CXCR1, EIF2B2, RAD51, and RXFP2. The expression levels of these genes were analyzed to determine their differential expression between the groups. CONCLUSION This study was designed as a computational effort to identify diagnostic biomarkers in basic biological system research. Our findings proposed a list of discriminative biomarkers capable of distinguishing between different groups of chemically injured individuals. The identification of key genes highlights the potential for biomarkers to serve as indicators of chemical injury severity, warranting further investigation to validate their clinical relevance and utility in diagnosis and treatment.
Collapse
Affiliation(s)
- Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Emad Dadgar
- Students' Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Thyagarajan A, Travers JB, Sahu RP. Relevance of the Platelet-activating factor system in chemical warfare agents-induced effects. Free Radic Biol Med 2025; 228:62-67. [PMID: 39706499 PMCID: PMC11788046 DOI: 10.1016/j.freeradbiomed.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The threats to chemical warfare-associated agents (CWA), including nitrogen mustard, are increasing, and no direct antidote is currently available to mitigate the deleterious cutaneous and systemic responses to prevent mortality. Though most of these agents act as alkylating agents, a significant knowledge gap exists in the molecular mechanisms of how these vesicants cause toxic effects. Studies, including ours, have shown that exposure to reactive oxygen species (ROS)-generating stimuli, including alkylating chemotherapeutic agents, and thermal burn injuries with ethanol produce the potent family of lipid mediators, Platelet-activating factor (PAF) agonists that induce local inflammation, and multi-system organ dysfunction (MOD). Notably, nano-sized microvesicle particles (MVPs), released from cells in response to stimuli, carry PAF-agonists and act as potent signaling agents to induce the local (cutaneous) and systemic responses. The current review highlights mechanistic insights and applicable approaches to mitigate CWA-induced local and systemic toxic responses with implications in cellular senescence and aging.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Dermatology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, 45428, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
5
|
Askari N, Nasiri L, Hassanpour H, Vaez-Mahdavi MR, Ardestani SK, Soroush MR, Poorfarzam S, Jamali D, Taghvaei M, Ghazanfari T. Association of hormone profile with various respiratory disorders in sulfur mustard-chemical veterans. Int Immunopharmacol 2025; 146:113847. [PMID: 39689595 DOI: 10.1016/j.intimp.2024.113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUNDS Chronic respiratory complications such as asthma, bronchiolitis obliterans, and chronic bronchitis are prevalent among individuals exposed to sulfur mustard (SM). This study investigates the hormonal changes associated with SM-induced respiratory disorders. METHODS A cross-sectional analysis was conducted involving 276 male participants exposed to SM during the Iraq-Iran war and 64 healthy controls. Serum levels of various hormones were measured. RESULTS Testosterone, dehydroepiandrosterone sulfate (DHEA-S), luteinizing hormone (LH), DHEA-S/cortisol ratio, and DHEA-S/prolactin ratio were decreased in the SM-exposed group compared to the control group while prolactin level and prolactin/cortisol ratio were increased (P < 0.05). The prolactin was increased in bronchiolitis obliterans, chronic bronchitis, and asthma compared to the control group while DHEA-S and DHEA-S/prolactin ratio were decreased in those disorders (P < 0.05). The testosterone was only decreased in asthma, and DHEA-S/cortisol ratio was only decreased in bronchiolitis obliterans and chronic bronchitis compared to control and other disorders (P < 0.05). The principle component analysis showed that the DHEA-S/cortisol and testosterone/cortisol ratios had the most contributing to interpatient variation in total SM-exposed patients in the principle component 1 (PC1). In patients with asthma and bronchiolitis obliterans, prolactin/cortisol and testosterone/cortisol ratios had the most contributing in PC1 while in patients with chronic bronchitis, the DHEA-S/cortisol and testosterone/cortisol ratios had the most contributing. CONCLUSION Hormones including testosterone, prolactin, and DHEA-S or their ratios (DHEA-S/cortisol and DHEA-S/prolactin ratios) had the most alterations as delayed effects of sulfur mustard. Also, DHEA-S/cortisol, DHEA-S/prolactin, testosterone/cortisol, and prolactin/cortisol had the most contributing in changes of hormone profile for SM-induced pulmonary disorders. These data may suggest the best parameters for evaluating of hormone profile of SM-exposed people.
Collapse
Affiliation(s)
- Nayere Askari
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran; Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Leila Nasiri
- Health Equity Research Center, Shahed University, Tehran, Iran
| | - Hossein Hassanpour
- Health Equity Research Center, Shahed University, Tehran, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad-Reza Vaez-Mahdavi
- Health Equity Research Center, Shahed University, Tehran, Iran; Department of Physiology, Medical Faculty, Shahed University, Tehran, Iran
| | - Sussan Kaboudanian Ardestani
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | | | | | - Davood Jamali
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Mahdieh Taghvaei
- Endocrinology and Metabolism Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
6
|
Shariatpanahi S, Rashidi A, Soroush MR, Poorfarzam S, Faghihzadeh E, Yaraee R, Ghazanfari T. High-titer rheumatologic markers in serum of veterans with severe pulmonary complications 25-30 years after sulfur mustard exposure. Int Immunopharmacol 2025; 146:113875. [PMID: 39709907 DOI: 10.1016/j.intimp.2024.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Sulfur mustard (SM), known as the "king of toxic agents," continues to pose a potential danger due to its ability to cause widespread damage, including ongoing corrosive effects. We aimed to determine the rheumatologic markers in SM veterans suffering from severe pulmonary manifestations. The serologic markers, including ANA, anti-DNA, rheumatoid factor (RF), and CRP, between SM-exposed veterans (n = 229) with severe problems and not-SM-exposed residents with no pulmonary disease history (n = 63), 25-30 years after SM exposure were compared. Moreover, SM-exposed veterans were divided into subgroups, including bronchiolitis obliterans, chronic bronchitis, and asthma, based on specialists' diagnoses, and all the data were compared among these clinical subgroups. Autoantibodies were assessed by standard indirect immunofluorescence and/or ELISA. The levels of serum hs-CRP were determined using an immunoturbidometry technique in both the patient and control groups. Statistical analysis was performed using SPSS software. Patients had significantly elevated ANA (P = 0.000), anti-DNA (P = 0.024), RF (P = 0.000), and CRP (P = 0.000) levels compared to the matched control group. These results indicate a possible autoimmune circumstance in this population and suggest the need to follow up the autoimmunity-related markers in all SM-exposed individuals, since they might be a valuable prognostic biomarker for stratifying patients for the future risk of autoimmunity development.
Collapse
Affiliation(s)
| | - Azadeh Rashidi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | | | | - Elham Faghihzadeh
- Department of Epidemiology and Biostatistics, School of Medicine, Zanjan University, Tehran, Iran
| | - Roya Yaraee
- Department of Immunology, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
7
|
Cheng J, Liu H, Yu W, Dong X, Sai Y, Ye F, Dan G, Chen M, Zhao Y, Zhang X, Zou Z. Nitrogen mustard induces dynamic nuclear protein spectrum change and DNA-protein crosslinking, with p97 mediating repair. Heliyon 2024; 10:e37401. [PMID: 39290288 PMCID: PMC11407038 DOI: 10.1016/j.heliyon.2024.e37401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrogen mustard (NM) is a chemotherapeutic agent capable of alkylating nucleophilic proteins and DNA, causing severe cell damage. However, no reports have been on the dynamic changes in proteomics induced by NM. In this study, we established a model of acute exposure to NM for 1 h and a continuous cultured model for 24 h after NM removal (repair stage) using 16HBE cells. The nuclear protein spectrum and nuclear proteins crosslinked with DNA were analyzed, and the function of p97 during NM damage was examined. An hour of NM exposure resulted in severe changes in the nuclear protein spectrum and protein into the cell nucleus, which is mainly involved in nuclear acid-related issues. After 24 h, the return to normal process of the types and amounts of differentially expressed proteins was inhibited by si-p97. The main processes involved in si-p97 intervention were nucleocytoplasmic transport, processing in the endoplasmic reticulum, metabolic abnormalities, and DNA-response; however. An hour of exposure to NM increased DNA-protein crosslinking (DPC), total-H2AX, and p-H2AX. In contrast, si-p97 only further increased or maintained their levels at 24 h yet not at 1 h. The effect of the proteasome inhibitor, MG132, was similar to that of si-p97. The siRNA of DVC1, a partner of p97, also increased the DPC content. Both si-p97 and si-DVC1 increased the cytoplasmic levels of the proteasome (PSMD2). These results suggest acute NM exposure induces severe nuclear protein spectral changes, rapid protein influx into the nucleus, DPC formation, and DNA double-strand breaks. Furthermore, our data indicated that p97 is involved in normal protein spectrum maintenance and DPC removal after NM withdrawal, requiring the participation of DVC1 and the proteasome.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
- Department of Clinic, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Haoyin Liu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xunhu Dong
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Feng Ye
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Wang Z, Wu Y, Zhang Z, Sheng X, Fang S, Liu Y, Gong Y, Wang M, Song N, Huang F. A Pillar[5]arene-Containing Metal-Organic Framework for Rapid and Highly Capable Adsorption of a Mustard Gas Simulant. J Am Chem Soc 2024; 146:23330-23337. [PMID: 39110895 DOI: 10.1021/jacs.4c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mustard gas causes irreversible damage upon inhalation or contact with the human body. Consequently, the development of adsorbents for effective interception of mustard gas at low concentrations and high flow rates is an urgent necessity. Here we report a stable porous pillar[5]arene-containing metal-organic framework (MOF) based on zirconium (EtP5-Zr-scu), demonstrating that embedding pillar[5]arene units in MOFs can provide specific binding sites for efficient adsorption of a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). EtP5-Zr-scu achieves a higher capacity and more rapid adsorption compared to its counterpart without embedded pillar[5]arene units (H4tcpt-Zr-scu) and perethylated pillar[5]arene (EtP5) alone. Single crystal X-ray diffraction and solid-state nuclear magnetic resonance reveal that the enhanced performance of EtP5-Zr-scu is derived from the host-guest complexation between CEES and pillar[5]arene moieties. Moreover, breakthrough experiments confirmed that the interception performance of EtP5-Zr-scu against CEES (800 ppm, 120 mL/min) was significantly improved (566 min/g) compared with H4tcpt-Zr-scu (353 min/g) and EtP5 (0.873 min/g), attributed to the integration of open channels with specific recognition sites. This work marks a significant advancement in the development of macrocycle-incorporated crystalline framework materials with recognition sites for the efficient capture of guest molecules.
Collapse
Affiliation(s)
- Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhenguo Zhang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuai Fang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yide Gong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Mengbin Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Nan Song
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
9
|
Poudel S, Kaffash E, Zhao L, Pangeni R, Chow WN, Xu Q. Dexamethasone sodium phosphate loaded nanoparticles for prevention of nitrogen mustard induced corneal injury. Exp Eye Res 2024; 243:109902. [PMID: 38641196 PMCID: PMC11184523 DOI: 10.1016/j.exer.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.
Collapse
Affiliation(s)
- Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ehsan Kaffash
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Long Zhao
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Woon Nam Chow
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
10
|
Nakatani R, Das S, Negishi Y. The structure and application portfolio of intricately architected silver cluster-assembled materials. NANOSCALE 2024; 16:9642-9658. [PMID: 38644768 DOI: 10.1039/d4nr00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Silver Cluster-Assembled Materials (SCAMs) represent a new frontier of crystalline extended solids hallmarked by their customizable structures, commendable stabilities, and unique physical/chemical properties. Since their discovery in 2017, the diversity of organic linkers has endowed SCAMs with ingenious architectures and the application scenario has expanded beyond photoluminescence sensing to environmental sustainability and biomedical applications. It is critically important to chronicle these recent key advances and review the progress of SCAMs that can enable translating the material discoveries into real implementation. Herein, we provide a succinct overview of the trajectory of SCAM research, with crucial insights into atomic-level structural correlations with the phenomena at the nanoscale and discuss the gaps and opportunities that are still open in addition to charting a roadmap for future research directions.
Collapse
Affiliation(s)
- Riki Nakatani
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
11
|
Bellomo A, Herbert J, Kudlak MJ, Laskin JD, Gow AJ, Laskin DL. Identification of early events in nitrogen mustard pulmonary toxicity that are independent of infiltrating inflammatory cells using precision cut lung slices. Toxicol Appl Pharmacol 2024; 486:116941. [PMID: 38677601 PMCID: PMC11887942 DOI: 10.1016/j.taap.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 μM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 μM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.
Collapse
Affiliation(s)
- Alyssa Bellomo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Melissa J Kudlak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Shahid A, Yeung S, Miwalian R, Mercado A, Andresen BT, Huang Y. Mitigation of Nitrogen Mustard-Induced Skin Injury by the β-Blocker Carvedilol and Its Enantiomers. J Pharmacol Exp Ther 2024; 388:495-505. [PMID: 37827703 PMCID: PMC10801755 DOI: 10.1124/jpet.123.001663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard (NM) cause severe vesicating skin injuries. The pathologic mechanisms for the skin injury following mustard exposure are poorly understood; therefore, no effective countermeasure is available. Previous reports demonstrated the protective activity of carvedilol, a US Food and Drug Administration (FDA)-approved β-blocker, against UV radiation-induced skin damage. Thus, the current study evaluated the effects of carvedilol on NM-induced skin injuries in vitro and in vivo. In the murine epidermal cell line JB6 Cl 41-5a, β-blockers with different receptor subtype selectivity were examined. Carvedilol and both of its enantiomers, R- and S-carvedilol, were the only tested ligands statistically reducing NM-induced cytotoxicity. Carvedilol also reduced NM-induced apoptosis and p53 expression. In SKH-1 mice, NM increased epidermal thickness, damaged skin architecture, and induced nuclear factor κB (NF-κB)-related proinflammatory genes as assessed by RT2 Profiler PCR (polymerase chain reaction) Arrays. To model chemical warfare scenario, 30 minutes after exposure to NM, 10 μM carvedilol was applied topically. Twenty-four hours after NM exposure, carvedilol attenuated NM-induced epidermal thickening, Ki-67 expression, a marker of cellular proliferation, and multiple proinflammatory genes. Supporting the in vitro data, the non-β-blocking R-enantiomer of carvedilol had similar effects as racemic carvedilol, and there was no difference between carvedilol and R-carvedilol in the PCR array data, suggesting that the skin protective effects are independent of the β-adrenergic receptors. These data suggest that the β-blocker carvedilol and its enantiomers can be repurposed as countermeasures against mustard-induced skin injuries. SIGNIFICANCE STATEMENT: The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard cause severe vesicating skin injuries for which no effective countermeasure is available. This study evaluated the effects of US Food and Drug Administration (FDA)-approved β-blocker carvedilol on nitrogen mustard-induced skin injuries to repurpose this cardiovascular drug as a medical countermeasure.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Steven Yeung
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Rita Miwalian
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Angela Mercado
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Bradley T Andresen
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| |
Collapse
|
13
|
Mishra N, Kant R, Kandhari K, Tewari-Singh N, Anantharam P, Croutch CR, Pantcheva MB, Petrash JM, Araj H, Agarwal C, Agarwal R. Establishing a Dexamethasone Treatment Regimen To Alleviate Sulfur Mustard-Induced Corneal Injuries in a Rabbit Model. J Pharmacol Exp Ther 2024; 388:469-483. [PMID: 37316330 PMCID: PMC10801779 DOI: 10.1124/jpet.123.001680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Sulfur mustard (SM) is an ominous chemical warfare agent. Eyes are extremely susceptible to SM toxicity; injuries include inflammation, fibrosis, neovascularization (NV), and vision impairment/blindness, depending on the exposure dosage. Effective countermeasures against ocular SM toxicity remain elusive and are warranted during conflicts/terrorist activities and accidental exposures. We previously determined that dexamethasone (DEX) effectively counters corneal nitrogen mustard toxicity and that the 2-hour postexposure therapeutic window is most beneficial. Here, the efficacy of two DEX dosing frequencies [i.e., every 8 or 12 hours (initiated, as previously established, 2 hours after exposure)] until 28 days after SM exposure was assessed. Furthermore, sustained effects of DEX treatments were observed up to day 56 after SM exposure. Corneal clinical assessments (thickness, opacity, ulceration, and NV) were performed at the day 14, 28, 42, and 56 post-SM exposure time points. Histopathological assessments of corneal injuries (corneal thickness, epithelial degradation, epithelial-stromal separation, inflammatory cell, and blood vessel counts) using H&E staining and molecular assessments (COX-2, MMP-9, VEGF, and SPARC expressions) were performed at days 28, 42, and 56 after SM exposure. Statistical significance was assessed using two-way ANOVA, with Holm-Sidak post hoc pairwise multiple comparisons; significance was established if P < 0.05 (data represented as the mean ± S.E.M.). DEX administration every 8 hours was more potent than every 12 hours in reversing ocular SM injury, with the most pronounced effects observed at days 28 and 42 after SM exposure. These comprehensive results are novel and provide a comprehensive DEX treatment regimen (therapeutic-window and dosing-frequency) for counteracting SM-induced corneal injuries. SIGNIFICANCE STATEMENT: The study aims to establish a dexamethasone (DEX) treatment regimen by comparing the efficacy of DEX administration at 12 versus 8 hours initiated 2 hours after exposure. DEX administration every 8 hours was more effective in reversing sulfur mustard (SM)-induced corneal injuries. SM injury reversal during DEX administration (initial 28 days after exposure) and sustained [further 28 days after cessation of DEX administration (i.e., up to 56 days after exposure)] effects were assessed using clinical, pathophysiological, and molecular biomarkers.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Poojya Anantharam
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Claire R Croutch
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Mina B Pantcheva
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - J Mark Petrash
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Houmam Araj
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| |
Collapse
|
14
|
Nick HJ, Johnson CA, Stewart AR, Christeson SE, Bloomquist LA, Appel AS, Donkor AB, Veress LA, Logue BA, Bratcher PE, White CW. Mesna Improves Outcomes of Sulfur Mustard Inhalation Toxicity in an Acute Rat Model. J Pharmacol Exp Ther 2024; 388:576-585. [PMID: 37541763 PMCID: PMC10801720 DOI: 10.1124/jpet.123.001683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
Inhalation of high levels of sulfur mustard (SM), a potent vesicating and alkylating agent used in chemical warfare, results in acutely lethal pulmonary damage. Sodium 2-mercaptoethane sulfonate (mesna) is an organosulfur compound that is currently Food and Drug Administration (FDA)-approved for decreasing the toxicity of mustard-derived chemotherapeutic alkylating agents like ifosfamide and cyclophosphamide. The nucleophilic thiol of mesna is a suitable reactant for the neutralization of the electrophilic group of toxic mustard intermediates. In a rat model of SM inhalation, treatment with mesna (three doses: 300 mg/kg intraperitoneally 20 minutes, 4 hours, and 8 hours postexposure) afforded 74% survival at 48 hours, compared with 0% survival at less than 17 hours in the untreated and vehicle-treated control groups. Protection from cardiopulmonary failure by mesna was demonstrated by improved peripheral oxygen saturation and increased heart rate through 48 hours. Additionally, mesna normalized arterial pH and pACO2 Airway fibrin cast formation was decreased by more than 66% in the mesna-treated group at 9 hour after exposure compared with the vehicle group. Finally, analysis of mixtures of a mustard agent and mesna by a 5,5'-dithiobis(2-nitrobenzoic acid) assay and high performance liquid chromatography tandem mass spectrometry demonstrate a direct reaction between the compounds. This study provides evidence that mesna is an efficacious, inexpensive, FDA-approved candidate antidote for SM exposure. SIGNIFICANCE STATEMENT: Despite the use of sulfur mustard (SM) as a chemical weapon for over 100 years, an ideal drug candidate for treatment after real-world exposure situations has not yet been identified. Utilizing a uniformly lethal animal model, the results of the present study demonstrate that sodium 2-mercaptoethane sulfonate is a promising candidate for repurposing as an antidote, decreasing airway obstruction and improving pulmonary gas exchange, tissue oxygen delivery, and survival following high level SM inhalation exposure, and warrants further consideration.
Collapse
Affiliation(s)
- Heidi J Nick
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Carly A Johnson
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Amber R Stewart
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Sarah E Christeson
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Leslie A Bloomquist
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Amanda S Appel
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Abigail B Donkor
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Livia A Veress
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Brian A Logue
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Preston E Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| | - Carl W White
- Department of Pediatrics, National Jewish Health, Denver, Colorado (H.J.N., S.E.C., P.E.B.); Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado (H.J.N., C.A.J., A.R.S., S.E.C., L.A.B., L.A.V., P.E.B., C.W.W.); and Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota (A.S.A., A.B.D., B.A.L.)
| |
Collapse
|
15
|
Basu SK, Prislovsky A, Lenchik N, Stephenson DJ, Agarwal R, Chalfant CE, Mandal N. Mouse Model of Nitrogen Mustard Ocular Surface Injury Characterization and Sphingolipid Signaling. Int J Mol Sci 2024; 25:742. [PMID: 38255815 PMCID: PMC10815872 DOI: 10.3390/ijms25020742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Vesicating chemicals like sulfur mustard (SM) or nitrogen mustard (NM) can cause devastating damage to the eyes, skin, and lungs. Eyes, being the most sensitive, have complicated pathologies that can manifest immediately after exposure (acute) and last for years (chronic). No FDA-approved drug is available to be used as medical counter measures (MCMs) against such injuries. Understanding the pathological mechanisms in acute and chronic response of the eye is essential for developing effective MCMs. Here, we report the clinical and histopathological characterization of a mouse model of NM-induced ocular surface injury (entire surface) developed by treating the eye with 2% (w/v) NM solution for 5 min. Unlike the existing models of specific injury, our model showed severe ocular inflammation, including the eyelids, structural deformity of the corneal epithelium and stroma, and diminished visual and retinal functions. We also observed alterations of the inflammatory markers and their expression at different phases of the injury, along with an activation of acidic sphingomyelinase (aSMase), causing an increase in bioactive sphingolipid ceramide and a reduction in sphingomyelin levels. This novel ocular surface mouse model recapitulated the injuries reported in human, rabbit, and murine SM or NM injury models. NM exposure of the entire ocular surface in mice, which is similar to accidental or deliberate exposure in humans, showed severe ocular inflammation and caused irreversible alterations to the corneal structure and significant vision loss. It also showed an intricate interplay between inflammatory markers over the injury period and alteration in sphingolipid homeostasis in the early acute phase.
Collapse
Affiliation(s)
- Sandip K. Basu
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
| | - Amanda Prislovsky
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
- Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Nataliya Lenchik
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
| | - Daniel J. Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Charles E. Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Health Science Centre, Memphis, TN 38163, USA; (S.K.B.); (A.P.); (N.L.)
- Memphis VA Medical Center, Memphis, TN 38104, USA
- Department of Anatomy and Neurobiology, The University of Health Science Centre, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Alemi H, Dehghani S, Forouzanfar K, Surico PL, Narimatsu A, Musayeva A, Sharifi S, Wang S, Dohlman TH, Yin J, Chen Y, Dana R. Insights into mustard gas keratopathy- characterizing corneal layer-specific changes in mice exposed to nitrogen mustard. Exp Eye Res 2023; 236:109657. [PMID: 37722586 PMCID: PMC11583460 DOI: 10.1016/j.exer.2023.109657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Exposure to mustard agents, such as sulfur mustard (SM) and nitrogen mustard (NM), often results in ocular surface damage. This can lead to the emergence of various corneal disorders that are collectively referred to as mustard gas keratopathy (MGK). In this study, we aimed to develop a mouse model of MGK by using ocular NM exposure, and describe the subsequent structural changes analyzed across the different layers of the cornea. A 3 μL solution of 0.25 mg/mL or 5 mg/mL NM was applied to the center of the cornea via a 2-mm filter paper for 5 min. Mice were evaluated prior to and after exposure on days 1, 3, 7, 14, and 28 for 4 weeks using slit lamp examination with fluorescein staining. Anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) tracked changes in the epithelium, stroma, and endothelium of the cornea. Histologic evaluation was used to examine corneal cross-sections collected at the completion of follow-up. Following exposure, mice experienced central corneal epithelial erosion and thinning, accompanied by a decreased number of nerve branches in the subbasal plexus and increased activated keratocytes in the stroma in both dosages. The epithelium was recovered by day 3 in the low dose group, followed by exacerbated punctuate erosions alongside persistent corneal edema that arose and continued onward to four weeks post-exposure. The high dose group showed persistent epitheliopathy throughout the study. The endothelial cell density was reduced, more prominent in the high dose group, early after NM exposure, which persisted until the end of follow-up, along with increased polymegethism and pleomorphism. Microstructural changes in the central cornea at 4 weeks post-exposure included dysmorphic basal epithelial cells and reduced epithelial thickness, and in the limbal cornea included decreased cellular layers. We present a mouse model of MGK using NM that successfully replicates ocular injury caused by SM in humans who have been exposed to mustard gas.
Collapse
Affiliation(s)
- Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shima Dehghani
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Katayoon Forouzanfar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Akitomo Narimatsu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Aytan Musayeva
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sina Sharifi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Malaviya R, Laskin JD, Businaro R, Laskin DL. Targeting Tumor Necrosis Factor Alpha to Mitigate Lung Injury Induced by Mustard Vesicants and Radiation. Disaster Med Public Health Prep 2023; 17:e553. [PMID: 37848400 PMCID: PMC10841250 DOI: 10.1017/dmp.2023.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.
Collapse
Affiliation(s)
- Rama Malaviya
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D. Laskin
- Departments of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Debra L. Laskin
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
18
|
Soleimani M, Baharnoori SM, Cheraqpour K, Momenaei B, Mirshahi R, Chow C, Shahjahan S, Nguyen T, Ashraf MJ, Huang X, Koganti R, Cheraghpour M, Ghassemi M, Djalilian AR. Cellular senescence implication in mustard keratopathy. Exp Eye Res 2023; 233:109565. [PMID: 37406956 PMCID: PMC10392783 DOI: 10.1016/j.exer.2023.109565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Mustard agents are vesicants that were used in warfare multiple times. They are potent alkylating agents that activate cellular pathways of apoptosis, increase oxidative stress, and induce inflammation. Eyes are particularly susceptible to mustard exposure with a wide range of ocular surface damage. Three main categories of mustard-related eye injuries are acute, chronic, and delayed-onset manifestations. Mustard keratopathy (MK) is a known complication characterized by corneal opacification, ulceration, thinning, and neovascularization that can lead to severe vision loss and discomfort. Recently, a few reports demonstrated the role of senescence induction as a new pathological mechanism in mustard-related injuries that could affect wound healing. We ran the first murine model of delayed-onset MK and nitrogen mustard-induced senescence, evaluating the pathological signs of senescence in the cornea using beta-galactosidase staining. Our results suggest that nitrogen mustard exposure causes senescence in the corneal cells, which could be the underlying mechanism for chronic and late-onset ocular surface damage. We also found a significant correlation between the percentage of positive beta-galactosidase staining and the degree of fibrosis in the cornea. This provides valuable insight into the possible role of anti-senescence drugs in the near future for accelerating corneal healing and restricting fibrosis in patients with mustard keratopathy.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bita Momenaei
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Reza Mirshahi
- Eye Research Center, The Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Collin Chow
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | | | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Xiaoke Huang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Bosholm CC, Zhu H, Yu P, Cheng K, Murphy SV, McNutt PM, Zhang Y. Therapeutic Benefits of Stem Cells and Exosomes for Sulfur-Mustard-Induced Tissue Damage. Int J Mol Sci 2023; 24:9947. [PMID: 37373093 PMCID: PMC10298660 DOI: 10.3390/ijms24129947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sulfur mustard (SM) is a highly toxic chemical agent that causes severe tissue damage, particularly to the eyes, lungs, and skin. Despite advances in treatment, there is a need for more effective therapies for SM-induced tissue injury. Stem cell and exosome therapies are emerging as promising approaches for tissue repair and regeneration. Stem cells can differentiate into multiple cell types and promote tissue regeneration, while exosomes are small vesicles that can deliver therapeutic cargo to target cells. Several preclinical studies demonstrated the potential of stem cell, exosome, or combination therapy for various tissue injury, showing improvements in tissue repairing, inflammation, and fibrosis. However, there are also challenges associated with these therapies, such as the requirement for standardized methods for exosome isolation and characterization, the long-term safety and efficacy and reduced SM-induced tissue injury of these therapies. Stem cell or exosome therapy was used for SM-induced eye and lung injury. Despite the limited data on the use for SM-induced skin injury, this therapy is a promising area of research and may offer new treatment options in the future. In this review, we focused on optimizing these therapies, evaluating their safety and efficacy, and comparing their efficacy to other emerging therapeutic approaches potentially for SM-induced tissue injury in the eye, lung, and skin.
Collapse
Affiliation(s)
- Carol Christine Bosholm
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Hainan Zhu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Pengfei Yu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA;
| | - Sean Vincent Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Patrick Michael McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA; (C.C.B.); (H.Z.); (P.Y.); (S.V.M.); (P.M.M.)
| |
Collapse
|
20
|
Caffin F, Boccara D, Piérard C. The Use of Hydrogel Dressings in Sulfur Mustard-Induced Skin and Ocular Wound Management. Biomedicines 2023; 11:1626. [PMID: 37371720 DOI: 10.3390/biomedicines11061626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Over one century after its first military use on the battlefield, sulfur mustard (SM) remains a threatening agent. Due to the absence of an antidote and specific treatment, the management of SM-induced lesions, particularly on the skin and eyes, still represents a challenge. Current therapeutic management is mainly limited to symptomatic and supportive care, pain relief, and prevention of infectious complications. New strategies are needed to accelerate healing and optimize the repair of the function and appearance of damaged tissues. Hydrogels have been shown to be suitable for healing severe burn wounds. Because the same gravity of lesions is observed in SM victims, hydrogels could be relevant dressings to improve wound healing of SM-induced skin and ocular injuries. In this article, we review how hydrogel dressings may be beneficial for improving the wound healing of SM-induced injuries, with special emphasis placed on their suitability as drug delivery devices on SM-induced skin and ocular lesions.
Collapse
Affiliation(s)
- Fanny Caffin
- Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - David Boccara
- Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
21
|
Soleimani M, Momenaei B, Baradaran-Rafii A, Cheraqpour K, An S, Ashraf MJ, Abedi F, Javadi MA, Djalilian AR. Mustard Gas-Induced Ocular Surface Disorders: An Update on the Pathogenesis, Clinical Manifestations, and Management. Cornea 2023; 42:776-786. [PMID: 36729713 PMCID: PMC10164045 DOI: 10.1097/ico.0000000000003182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Mustard gas (MG) is a potent blistering and alkylating agent that has been used for military and terrorism purposes. Ocular surface injuries are common after exposure to MG. This review provides an update on the pathophysiology, ocular surface complications, and treatment options for MG-related ocular injuries. METHODS Required information was obtained by reviewing various databases such as Cochrane Library, Google Scholar, and PubMed until March 2022. Data were collected by using keywords: "mustard gas" OR "sulfur mustard" AND "eye" OR "cornea" OR "ocular complication" OR "keratitis" OR "keratopathy" OR "limbal stem cell deficiency" OR "dry eye." RESULTS Chronic intracellular toxicity, inflammation, and ischemia have been shown to play an essential role in the pathogenesis of MG injury. Ocular surface injuries can have acute, chronic, and most distinctly a delayed-onset presentation leading to various degrees of limbal stem cell deficiency. To date, no treatment has been agreed on as the standard treatment for chronic/delayed-onset MG keratopathy. Based on the authors' experience, we propose a management algorithm for MG-related ocular surface injuries involving optimization of ocular health, anti-inflammatory therapy, and if needed surgical interventions. The management of chronic and delayed-onset presentation remains challenging. CONCLUSIONS MG keratopathy is a unique form of chemical injury which can lead to a range of ocular surface pathologies. Long-term anti-inflammatory therapy even in patients with seemingly mild disease may potentially reduce the likelihood of the development of more severe delayed-onset disease.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mohammad Ali Javadi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Alemi H, Dehghani S, Musayeva A, Nadari A, Narimatsu A, Sharifi S, Forouzanfar K, Wang S, Dohlman TH, Yin J, Chen Y, Dana R. Insights into mustard gas keratopathy: Characterizing corneal layer-specific changes in mice exposed to nitrogen mustard. Exp Eye Res 2023:109495. [PMID: 37142048 DOI: 10.1016/j.exer.2023.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Exposure to mustard agents, such as sulfur mustard (SM) and nitrogen mustard (NM), often results in ocular surface damage. This can lead to the emergence of various corneal disorders that are collectively referred to as mustard gas keratopathy (MGK). In this study, we aimed to develop a mouse model of MGK by using ocular NM exposure, and describe the subsequent structural changes analyzed across the different layers of the cornea. A 3 μL solution of 0.25 mg/mL NM was applied to the center of the cornea via a 2-mm filter paper for 5 min. Mice were evaluated prior to and after exposure on days 1 and 3, and weekly for 4 weeks using slit lamp examination with fluorescein staining. Anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) tracked changes in the epithelium, stroma, and endothelium of the cornea. Histologic evaluation and immunostaining were used to examine corneal cross-sections collected at the completion of follow-up. A biphasic ocular injury was observed in mice exposed to NM, most prominent in the corneal epithelium and anterior stroma. Following exposure, mice experienced central corneal epithelial erosions and thinning, accompanied by a decreased number of nerve branches in the subbasal plexus and increased activated keratocytes in the stroma. The epithelium was recovered by day 3, followed by exacerbated punctuate erosions alongside persistent stromal edema that arose and continued onward to four weeks post-exposure. The endothelial cell density was reduced on the first day after NM exposure, which persisted until the end of follow-up, along with increased polymegethism and pleomorphism. Microstructural changes in the central cornea at this time included dysmorphic basal epithelial cells, and in the limbal cornea included decreased cellular layers and p63+ area, along with increased DNA oxidization. We present a mouse model of MGK using NM that successfully replicates ocular injury caused by SM in humans who have been exposed to mustard gas. Our research suggests DNA oxidation contributes to the long-term effects of nitrogen mustard on limbal stem cells.
Collapse
Affiliation(s)
- Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shima Dehghani
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Aytan Musayeva
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Nadari
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Akitomo Narimatsu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sina Sharifi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Katayoun Forouzanfar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Paleiron N, Karkowski L, Bronstein AR, Amabile JC, Delarbre D, Mullot JU, Cazoulat A, Entine F, le Floch Brocquevieille H, Dorandeu F. [The role of the pulmonologist in an armed conflict]. Rev Mal Respir 2023; 40:156-168. [PMID: 36690507 DOI: 10.1016/j.rmr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Recent news points to the eventuality of an armed conflict on the national territory. STATE OF THE ART In this situation, pulmonologists will in all likelihood have a major role to assume in caring for the injured, especially insofar as chest damage is a major cause of patient death. PERSPECTIVES The main injuries that pulmonologists may be called upon to treat stem not only from explosions, but also from chemical, biological and nuclear hazards. In this article, relevant organizational and pedagogical aspects are addressed. Since exhaustiveness on this subject is unattainable, we are proposing training on specific subjects for interested practitioners. CONCLUSION The resilience of the French health system in a situation of armed conflict depends on the active participation of all concerned parties. With this in mind, it is of prime importance that the pneumological community be sensitized to the potential predictable severity of war-related injuries.
Collapse
Affiliation(s)
- N Paleiron
- HIA Sainte-Anne, service de pneumologie, Toulon, France.
| | - L Karkowski
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - A-R Bronstein
- HIA Sainte-Anne, service de pneumologie, Toulon, France
| | - J-C Amabile
- Service de protection radiologique des armées, Paris, France
| | - D Delarbre
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - J-U Mullot
- Service de santé des armées, Paris, France
| | - A Cazoulat
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | - F Entine
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | | | - F Dorandeu
- Service de santé des armées, Institut de recherche biomédicale des armées, Brétigny, France
| |
Collapse
|
24
|
Behrouzi SM, Shahriary A, Raoofi MR, Ghanei M, Ghaleh HE. Evaluation of the effects of dexamethasone in modulating breathing pattern decomplexification in rats with 2-chloroethyl ethyl sulfide-induced lung injury. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
"Background and Objectives: Sulfur mustard is a functional alkylating chemical warfare agent that gives rise to appalling lung injury. In people with pulmonary diseases, including asthma, the complication of respirational dynamics is reduced. However, the complexity of breathing patterns in lung injury caused by chemical agents is not clear. In the current study, the outcome of 2-chloroethyl ethyl sulfide (CEES), and mustard analogue, upon breathing pattern of rats without or with treatment were reviewed. Methods: The interbeat interval (IBI) and respiratory volume (RV) data have been acquired from spontaneous respiration rats with lung injury by CEES using a whole-body plethysmograph. We calculated mean and coefficient of variation, alpha exponent derived from detrended fluctuation analysis (DFA), and sample entropy of IBI and RV. Finding: Entropy examination of respiratory variation displayed reduced inconsistency (less complication) in the breathing pattern of this rat model of lung injury. The mustard analogue also led to increased lung inflammation in damaged rats. However, treatment by NAC and dexamethasone had a compelling impact on the complication of the breathing rhythm and lung inflammation of rats with lung injury. Conclusion: Our findings show that inflammation could be the possible origin of respiratory dynamics shifting apart from the normal variation in CEES-induced lung injury"
Collapse
|
25
|
Joseph LB, Gordon MK, Zhou P, Hahn RA, Lababidi H, Croutch CR, Sinko PJ, Heck DE, Laskin DL, Laskin JD. Sulfur mustard corneal injury is associated with alterations in the epithelial basement membrane and stromal extracellular matrix. Exp Mol Pathol 2022; 128:104807. [PMID: 35798063 PMCID: PMC10044521 DOI: 10.1016/j.yexmp.2022.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a highly reactive bifunctional alkylating agent synthesized for chemical warfare. The eyes are particularly sensitive to SM where it causes irritation, pain, photophobia, and blepharitis, depending on the dose and duration of exposure. In these studies, we examined the effects of SM vapor on the corneas of New Zealand white male rabbits. Edema and hazing of the cornea, signs of acute injury, were observed within one day of exposure to SM, followed by neovascularization, a sign of chronic or late phase pathology, which persisted for at least 28 days. Significant epithelial-stromal separation ranging from ~8-17% of the epithelial surface was observed. In the stroma, there was a marked increase in CD45+ leukocytes and a decrease of keratocytes, along with areas of disorganization of collagen fibers. SM also disrupted the corneal basement membrane and altered the expression of perlecan, a heparan sulfate proteoglycan, and cellular fibronectin, an extracellular matrix glycoprotein. This was associated with an increase in basement membrane matrix metalloproteinases including ADAM17, which is important in remodeling of the basement membrane during wound healing. Tenascin-C, an extracellular matrix glycoprotein, was also upregulated in the stroma 14-28 d post SM, a finding consistent with its role in organizing structural components of the stroma necessary for corneal transparency. These data demonstrate that SM vapor causes persistent alterations in structural components of the cornea. Further characterization of SM-induced injury in rabbit cornea will be useful for the identification of targets for the development of ocular countermeasures.
Collapse
Affiliation(s)
- Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America.
| | - Marion K Gordon
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Rita A Hahn
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Hamdi Lababidi
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | | | - Patrick J Sinko
- Department of Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Diane E Heck
- Department of Public Health, New York Medical College, Valhalla, NY 10595, United States of America
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, United States of America
| |
Collapse
|
26
|
Ghavami Shahri SH, Balali-Mood M, Heidarzadeh HR, Abrishami M. Ophthalmic Complications and Managements of Sulfur Mustard Exposure: A Narrative Review. ARCHIVES OF IRANIAN MEDICINE 2022; 25:647-657. [PMID: 37543890 PMCID: PMC10685765 DOI: 10.34172/aim.2022.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 08/07/2023]
Abstract
Sulfur mustard (SM) is a lethal chemical agent that affects many organs, particularly the eyes, respiratory system and skin. Even asymptomatic patients with documented SM vapor exposure may develop organ disorder many years later. Patients with even minor signs in the acute stage may experience late complications that necessitate surgery. Early decontamination and conservative measures could help the patients and decrease the complications. Despite decades of research, there is still no effective treatment for either acute or long-term SM-induced ocular complications. Even after multiple medications and surgical procedures, the majority of patients continue to have symptoms. For dry eye, punctual occlusion, autologous eye drops, and aggressive lubrication are used; for persistent epithelial defects (PED), tarsorrhaphy, amniotic membrane transplant, and stem cell transplantation are used; for total limbal stem cell deficiency (LSCD), living-related conjunctivolimbal allograft and keratolimbal allograft are used; for corneal vascularization, steroids, non-steroidal anti-inflammatory drugs, and anti-vascular endothelial growth factor prescribed; and for corneal opacities, corneal transplantation is done. Platelet rich plasma and topical drops containing stem cell transplantation for LSCD, photodynamic therapy paired with subconjunctival or topical anti-vascular endothelial growth factors for corneal vascularization, topical curcumin and topical ciclosporin-A for dry eye, and orbital fat-derived stem cells for PED are all alternative treatments that can be suggested. Despite the experimental and clinical research on the complications of SM exposure over the past decades, there is still no effective treatment for eye complications. However, supportive medical and surgical management has been applied with relatively good outcome.
Collapse
Affiliation(s)
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mojtaba Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Birjand, Iran
- Ocular Oncology Service, Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Dhummakupt E, Jenkins C, Rizzo G, Melka A, Carmany D, Prugh A, Horsmon J, Renner J, Angelini D. Proteomic, Metabolomic, and Lipidomic Analyses of Lung Tissue Exposed to Mustard Gas. Metabolites 2022; 12:815. [PMID: 36144218 PMCID: PMC9501011 DOI: 10.3390/metabo12090815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Sulfur mustard (HD) poses a serious threat due to its relatively simple production process. Exposure to HD in the short-term causes an inflammatory response, while long-term exposure results in DNA and RNA damage. Respiratory tract tissue models were exposed to relatively low concentrations of HD and collected at 3 and 24 h post exposure. Histology, cytokine ELISAs, and mass spectrometric-based analyses were performed. Histology and ELISA data confirmed previously seen lung damage and inflammatory markers from HD exposure. The multi-omic mass spectrometry data showed variation in proteins and metabolites associated with increased inflammation, as well as DNA and RNA damage. HD exposure causes DNA and RNA damage that results in variation of proteins and metabolites that are associated with transcription, translation and cellular energy.
Collapse
Affiliation(s)
- Elizabeth Dhummakupt
- US Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Edgewood, MD 21010, USA
| | - Conor Jenkins
- US Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Edgewood, MD 21010, USA
| | - Gabrielle Rizzo
- US Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Edgewood, MD 21010, USA
| | | | | | - Amber Prugh
- US Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Edgewood, MD 21010, USA
| | - Jennifer Horsmon
- US Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Threat Agent Sciences Division, Aberdeen Proving Ground, Edgewood, MD 21010, USA
| | - Julie Renner
- US Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Threat Agent Sciences Division, Aberdeen Proving Ground, Edgewood, MD 21010, USA
| | - Daniel Angelini
- US Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, BioSciences Division, Aberdeen Proving Ground, Edgewood, MD 21010, USA
| |
Collapse
|
28
|
Schmeißer W, Siegert M, Thiermann H, Rein T, John H. Highly stable peptide adducts from hard keratins as biomarkers to verify local sulfur mustard exposure of hair by high-resolution mass spectrometry. Arch Toxicol 2022; 96:2287-2298. [PMID: 35570235 PMCID: PMC9217830 DOI: 10.1007/s00204-022-03307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022]
Abstract
In the recent past, the blister agent sulfur mustard (SM) deployed by the terroristic group Islamic State has caused a huge number of civilian and military casualties in armed conflicts in the Middle East. The vaporized or aerolized agent might be inhaled and have direct contact to skin and hair. Reaction products of SM with plasma proteins (adducts) represent well-established systemic targets for the bioanalytical verification of exposure. The SM-derived hydroxyethylthioethyl (HETE)-moiety is attached to nucleophilic amino acid side chains and allows unambiguous adduct detection. For shipping of common blood and plasma samples, extensive packaging rules are to be followed as these matrices are considered as potentially infectious material. In contrast, hair is considered as non-infectious thus making its handling and transportation much less complicated. Therefore, we addressed this matrix to develop a procedure for bioanalytical verification. Following optimized lysis of SM-treated human scalp hair and pepsin-catalyzed proteolysis of adducts of keratin type I and II, microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) was used to detect three alkylated keratin-derived biomarker peptides: AE(-HETE)IRSDL, FKTIE(-HETE)EL, and LE(-HETE)TKLQF simultaneously. All bear the HETE-moiety bound to a glutamic acid residue. Protein adducts were stable for at least 14 weeks at ambient temperature and contact to air, and were not affected by washing the hair with shampoo. The biomarker peptides were also obtained from beard, armpit, abdominal, and pubic hair. This is the first report introducing stable local peptide adduct biomarkers from hair, that is easily accessible by a non-invasive sampling process.
Collapse
Affiliation(s)
- Wolfgang Schmeißer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.,Department of Chemistry, Humboldt-Universität Zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany.,Proteros Biostructures GmbH, Bunsenstrasse 7a, 82152, Planegg, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
29
|
Goswami DG, Mishra N, Kant R, Agarwal C, Ammar DA, Petrash JM, Tewari-Singh N, Agarwal R. Effect of dexamethasone treatment at variable therapeutic windows in reversing nitrogen mustard-induced corneal injuries in rabbit ocular in vivo model. Toxicol Appl Pharmacol 2022; 437:115904. [PMID: 35108561 PMCID: PMC8849585 DOI: 10.1016/j.taap.2022.115904] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Nitrogen mustard (NM) is an analogue of the potent vesicating agent sulfur mustard, with well-established ocular injury models in rabbit eyes to study vesicant-induced ocular toxicity. The effects of NM-exposure to eyes may include irritation, redness, inflammation, fibrosis, epithelial degradation, blurred vision, partial/complete blindness, which may be temporary or permanent, depending on the route, duration, and dosage of exposure. Effective countermeasures against vesicant exposure are presently not available and are warranted in case of any terrorist activity or accidental leakage from stockpiles. Herein, our focus was to evaluate whether dexamethasone (DEX), an FDA approved potent corticosteroid with documented anti-inflammatory activities, could be an effective treatment modality. Accordingly, utilizing NM-induced corneal injuries in rabbit ocular in vivo model, we examined and compared the efficacy of DEX treatments when administration was started at early (2 h), intermediate (4 h), and late (6 h) therapeutic windows of intervention after NM-exposure and administered every 8 h thereafter. The effects of NM-exposure and DEX treatments were evaluated on clinical (corneal opacity, ulceration, and neovascularization), biological (epithelial thickness, epithelial-stromal separation, blood vessels density, and inflammatory cell and keratocyte counts) and molecular (COX-2 and VEGF expression) parameters, at day 1, 3, 7 and 14. Results indicated that DEX treatment markedly and effectively reversed the NM-induced injury markers in rabbit corneas. Early administration of DEX at 2 h was found to be most effective in reversing NM-induced corneal injuries, followed by DEX 4 h and DEX 6 h administration initiation, indicating that DEX has best efficacy at the early therapeutic window in our study model.
Collapse
Affiliation(s)
- Dinesh G. Goswami
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neha Mishra
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David A. Ammar
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - J. Mark Petrash
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America,Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
30
|
Timperley CM, Forman JE, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Curty C, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Mourão NMF, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S, Alwan WS, Suri V, Hotchkiss PJ, Ghanei M. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 3. On medical care and treatment of injuries from sulfur mustard. Toxicology 2021; 463:152967. [PMID: 34619302 DOI: 10.1016/j.tox.2021.152967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Blister agents damage the skin, eyes, mucous membranes and subcutaneous tissues. Other toxic effects may occur after absorption. The response of the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) to a request from the OPCW Director-General in 2013 on the status of medical countermeasures and treatments to blister agents is updated through the incorporation of the latest information. The physical and toxicological properties of sulfur mustard and clinical effects and treatments are summarised. The information should assist medics and emergency responders who may be unfamiliar with the toxidrome of sulfur mustard and its treatment.
Collapse
Affiliation(s)
- Christopher M Timperley
- Chair of the OPCW SAB from 2015-2018, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire, United Kingdom.
| | - Jonathan E Forman
- Science Policy Adviser and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands, from 2015-2018
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Augustin Baulig
- Secrétariat Général de la Défense et de la Sécurité Nationale (SGDSN), Paris, France
| | - Djafer Benachour
- LMPMP, Faculty of Technology, Ferhat Abbas University, Setif-1, Algeria
| | - Veronica Borrett
- La Trobe Institute for Agriculture and Food, La Trobe University, Victoria, 3086, Australia
| | | | | | | | - David Gonzalez
- Facultad De Química, Universidad de la República, Montevideo, Uruguay
| | | | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | - Syed K Raza
- Chairperson Accreditation Committee, National Accreditation Board for Testing and Calibration Laboratories (NABL), India
| | - Valentin Rubaylo
- State Scientific Research Institute of Organic Chemistry and Technology (GosNIIOKhT), Moscow, Russian Federation
| | - Alejandra Graciela Suárez
- Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Koji Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Cheng Tang
- Office for the Disposal of Japanese Abandoned Chemical Weapons, Ministry of National Defence, Beijing, China
| | - Ferruccio Trifirò
- Department of Industrial Chemistry, University of Bologna, Bologna, Italy
| | | | - Paula S Vanninen
- VERIFIN, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Slavica Vučinić
- National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
| | | | | | | | - Stian Holen
- Head of Strategy and Policy at the OPCW from 2009 to 2015
| | - Wesam S Alwan
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Vivek Suri
- Intern in the OPCW Office of Strategy and Policy, Summer 2018
| | - Peter J Hotchkiss
- Senior Science Policy Officer and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
31
|
Schmeißer W, Lüling R, Steinritz D, Thiermann H, Rein T, John H. Transthyretin as a target of alkylation and a potential biomarker for sulfur mustard poisoning: Electrophoretic and mass spectrometric identification and characterization. Drug Test Anal 2021; 14:80-91. [PMID: 34397154 DOI: 10.1002/dta.3146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022]
Abstract
For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 μM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.
Collapse
Affiliation(s)
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
32
|
Prihed H, Shifrovich A, Shamai Yamin T, Madmon M, Smolkin B, Chen R, Blanca M, Weissberg A. A novel approach for the detection and identification of sulfur mustard using liquid chromatography-electrospray ionization-tandem mass spectrometry based on its selective oxidation to sulfur mustard monoxide with N-iodosuccinimide. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4721. [PMID: 33848030 DOI: 10.1002/jms.4721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
A new derivatization strategy for the detection and identification of sulfur mustard (HD) via liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) is developed. The method incorporates selective oxidation of the sulfide group by the electrophilic iodine reagent N-iodosuccinimide (NIS) to produce sulfur mustard monoxide (HDSO). The derivatization reaction efficiencies were evaluated with acetonitrile extracts of soil, asphalt, cloth, Formica, and linoleum spiked with HD at concentrations of 50-5000 pg/ml and found to be similar to that with pure acetonitrile. The current derivatization approach is the first to preserve the identity of chloride groups and support HD regulation and evidentiary findings.
Collapse
Affiliation(s)
- Hagit Prihed
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Avital Shifrovich
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Tamar Shamai Yamin
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Moran Madmon
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Boris Smolkin
- Department of Organic Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Ravit Chen
- Department of Organic Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Merav Blanca
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Avi Weissberg
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| |
Collapse
|
33
|
Fuchs A, Giuliano EA, Sinha NR, Mohan RR. Ocular toxicity of mustard gas: A concise review. Toxicol Lett 2021; 343:21-27. [PMID: 33600921 DOI: 10.1016/j.toxlet.2021.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
Sulfur mustard (SM) is a chemical warfare agent that has been used throughout recent history and remains a threat today. Exposed soldiers and civilians experience a variety of symptoms primarily in the respiratory system, skin, and eyes. The ocular tissues are highly sensitive to damage by SM and undergo unique manifestations of acute, chronic, and delayed complications that can persist for months and years after exposure. The mechanisms of this unique mustard gas keratopathy are still not fully understood and animal models for the study of this disease are discussed. Recent advances in mechanisms of injury are included in this review. Ophthalmic manifestations of SM injury including persistent epithelial defects, limbal stem cell deficiency, corneal neovascularization, dry eye, and corneal opacification have been reported. A wide variety of medical and surgical therapies have been studied and are reviewed here along with potential future therapies.
Collapse
Affiliation(s)
- Allison Fuchs
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Elizabeth A Giuliano
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
34
|
Targeting TRPV1-mediated autophagy attenuates nitrogen mustard-induced dermal toxicity. Signal Transduct Target Ther 2021; 6:29. [PMID: 33487631 PMCID: PMC7829253 DOI: 10.1038/s41392-020-00389-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/30/2023] Open
Abstract
Nitrogen mustard (NM) causes severe vesicating skin injury, which lacks effective targeted therapies. The major limitation is that the specific mechanism of NM-induced skin injury is not well understood. Recently, autophagy has been found to play important roles in physical and chemical exposure-caused cutaneous injuries. However, whether autophagy contributes to NM-induced dermal toxicity is unclear. Herein, we initially confirmed that NM dose-dependently caused cell death and induced autophagy in keratinocytes. Suppression of autophagy by 3-methyladenine, chloroquine, and bafilomycin A1 or ATG5 siRNA attenuated NM-induced keratinocyte cell death. Furthermore, NM increased transient receptor potential vanilloid 1 (TRPV1) expression, intracellular Ca2+ content, and the activities of Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ), AMP-activated protein kinase (AMPK), unc-51-like kinase 1 (ULK1), and mammalian target of rapamycin (mTOR). NM-induced autophagy in keratinocytes was abolished by treatment with inhibitors of TRPV1 (capsazepine), CaMKKβ (STO-609), AMPK (compound C), and ULK1 (SBI-0206965) as well as TRPV1, CaMKKβ, and AMPK siRNA transfection. In addition, an mTOR inhibitor (rapamycin) had no significant effect on NM-stimulated autophagy or cell death of keratinocytes. Finally, the results of the in vivo experiment in NM-treated skin tissues were consistent with the findings of the in vitro experiment. In conclusion, NM-caused dermal toxicity by overactivating autophagy partially through the activation of TRPV1-Ca2+-CaMKKβ-AMPK-ULK1 signaling pathway. These results suggest that blocking TRPV1-dependent autophagy could be a potential treatment strategy for NM-caused cutaneous injury.
Collapse
|
35
|
Singh SK, Klein JA, Wright HN, Tewari-Singh N. Phosgene oxime: a highly toxic urticant and emerging chemical threat. Toxicol Mech Methods 2020; 31:288-292. [PMID: 33297803 DOI: 10.1080/15376516.2020.1861670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Highly toxic industrial chemicals that are widely accessible, and hazardous chemicals like phosgene oxime (CX) that can be easily synthesized, pose a serious threat as potential chemical weapons. In addition, their accidental release can lead to chemical emergencies and mass casualties. CX, an urticant, or nettle agent, grouped with vesicating agents, causes instant pain, injury and systemic effects, which can lead to mortality. With faster cutaneous penetration, corrosive properties, and more potent toxicity compared to other vesicating agents, CX causes instantaneous and severe tissue damage. CX, a potential chemical terrorism threat agent, could therefore be weaponized with other chemical warfare agents to enhance their harmful effects. CX is the least studied vesicant and its acute and long-term toxic effects as well as its mechanism of action are largely unknown. This has hampered the identification of therapeutic targets and the development of effective medical countermeasures. There are only protective measures, decontamination, and supportive treatments available for reducing the toxic effects from CX exposure. This review summarizes CX toxicity, its known mechanism of action, and our current studies exploring the role of mast cell activation and associated signaling pathways in CX cutaneous exposure under the National Institutes of Health Countermeasures Against Chemical Threats program. Potential treatment options and the development of effective targeted countermeasures against CX-induced morbidity and mortality is also discussed.
Collapse
Affiliation(s)
- Satyendra K Singh
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Joshua A Klein
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Holly N Wright
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
36
|
Mishra N, Raina K, Agarwal R. Deciphering the role of microRNAs in mustard gas-induced toxicity. Ann N Y Acad Sci 2020; 1491:25-41. [PMID: 33305460 DOI: 10.1111/nyas.14539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
Mustard gas (sulfur mustard, SM), a highly vesicating chemical warfare agent, was first deployed in warfare in 1917 and recently during the Iraq-Iran war (1980s) and Syrian conflicts (2000s); however, the threat of exposure from stockpiles and old artillery shells still looms large. Whereas research has been long ongoing on SM-induced toxicity, delineating the precise molecular pathways is still an ongoing area of investigation; thus, it is important to attempt novel approaches to decipher these mechanisms and develop a detailed network of pathways associated with SM-induced toxicity. One such avenue is exploring the role of microRNAs (miRNAs) in SM-induced toxicity. Recent research on the regulatory role of miRNAs provides important results to fill in the gaps in SM toxicity-associated mechanisms. In addition, differentially expressed miRNAs can also be used as diagnostic markers to determine the extent of toxicity in exposed individuals. Thus, in our review, we have summarized the studies conducted so far in cellular and animal models, including human subjects, on the expression profiles and roles of miRNAs in SM- and/or SM analog-induced toxicity. Further detailed research in this area will guide us in devising preventive strategies, diagnostic tools, and therapeutic interventions against SM-induced toxicity.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
37
|
Radbel J, Laskin DL, Laskin JD, Kipen HM. Disease-modifying treatment of chemical threat agent-induced acute lung injury. Ann N Y Acad Sci 2020; 1480:14-29. [PMID: 32726497 DOI: 10.1111/nyas.14438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid lung pathology induced by exposure to chemical warfare agents, including vesicants, phosgene, chlorine, and ricin. In this review, we describe the pathology associated with the development of ARDS in humans and experimental models of acute lung injury following animal exposure to these high-priority threat agents. Potential future approaches to disease-modifying treatment used in preclinical animal studies, including antioxidants, anti-inflammatories, biologics, and mesenchymal stem cells, are also described. As respiratory pathologies, including ARDS, are the major cause of morbidity and mortality following exposure to chemical threat agents, understanding mechanisms of disease pathogenesis is key to the development of efficacious therapeutics beyond the primary intervention principle, which remains mechanical ventilation.
Collapse
Affiliation(s)
- Jared Radbel
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| | - Howard M Kipen
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
38
|
Malaviya R, Abramova EV, Rancourt RC, Sunil VR, Napierala M, Weinstock D, Croutch CR, Roseman J, Tuttle R, Peters E, Casillas RP, Laskin JD, Laskin DL. Progressive Lung Injury, Inflammation, and Fibrosis in Rats Following Inhalation of Sulfur Mustard. Toxicol Sci 2020; 178:358-374. [PMID: 33002157 PMCID: PMC7751178 DOI: 10.1093/toxsci/kfaa150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sulfur mustard (SM) inhalation causes debilitating pulmonary injury in humans which progresses to fibrosis. Herein, we developed a rat model of SM toxicity which parallels pathological changes in the respiratory tract observed in humans. SM vapor inhalation caused dose (0.2-0.6 mg/kg)-related damage to the respiratory tract within 3 days of exposure. At 0.4-0.6 mg/kg, ulceration of the proximal bronchioles, edema and inflammation were observed, along with a proteinaceous exudate containing inflammatory cells in alveolar regions. Time course studies revealed that the pathologic response was biphasic. Thus, changes observed at 3 days post-SM were reduced at 7-16 days; this was followed by more robust aberrations at 28 days, including epithelial necrosis and hyperplasia in the distal bronchioles, thickened alveolar walls, enlarged vacuolated macrophages, and interstitial fibrosis. Histopathologic changes were correlated with biphasic increases in bronchoalveolar lavage (BAL) cell and protein content and proliferating cell nuclear antigen expression. Proinflammatory proteins receptor for advanced glycation end product (RAGE), high-mobility group box protein (HMGB)-1, and matrix metalloproteinase (MMP)-9 also increased in a biphasic manner following SM inhalation, along with surfactant protein-D (SP-D). Tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS), inflammatory proteins implicated in mustard lung toxicity, and the proinflammatory/profibrotic protein, galectin (Gal)-3, were upregulated in alveolar macrophages and in bronchiolar regions at 3 and 28 days post-SM. Inflammatory changes in the lung were associated with oxidative stress, as reflected by increased expression of heme oxygenase (HO)-1. These data demonstrate a similar pathologic response to inhaled SM in rats and humans suggesting that this rodent model can be used for mechanistic studies and for the identification of efficacious therapeutics for mitigating toxicity.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Raymond C Rancourt
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Marta Napierala
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Daniel Weinstock
- Janssen Boitherapeutics, Janssen Research & Development, Spring House, Pennsylvania 19477
| | - Claire R Croutch
- Medical Research Portfolio, MRIGlobal, Kansas City, Missouri 64110
| | - Julie Roseman
- Medical Research Portfolio, MRIGlobal, Kansas City, Missouri 64110
| | - Rick Tuttle
- Medical Research Portfolio, MRIGlobal, Kansas City, Missouri 64110
| | - Eric Peters
- Medical Research Portfolio, MRIGlobal, Kansas City, Missouri 64110
| | | | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854,To whom correspondence should be addressed at Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854. E-mail:
| |
Collapse
|
39
|
Khazdair MR, Rezaeetalab F, Rafatpanah H, Boskabady MH. The effect of Zataria multiflora on inflammatory cytokine and respiratory symptoms in veterans exposed to sulfur mustard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22451-22460. [PMID: 32314290 DOI: 10.1007/s11356-020-08855-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The effect of Zataria multiflora (Z. multiflora) on serum cytokine, chemokines, and respiratory symptoms in the veterans exposed to sulfur mustard (SM) more than two decades (27-30 years) ago was conducted in 2018. Thirty-four patients were randomly assigned to the placebo group (P, mean age (54.40 ± 5.51)) and two treated groups with Z. multiflora extract 5 and 10 mg/kg/day (Z5 and 10; mean age, 58.50 ± 3.60 and 55.18 ± 4.11, respectively). Serum levels of tumor necrosis factor (TNF-α), monocyte chemotactic protein 1 (MCP-1), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), forced expiratory volume-one second (FEV1), and respiratory symptoms including chest wheeze (CW), night wheeze (NW), night cough (NC), and cough and wheeze during exercise (ECW) were assessed at the baseline (phase 0), 1 and 2 months after starting treatment (phase I and II, respectively). The value of FEV1 was significantly increased in Z10 in phase I and II compared with that in phase 0 (p < 0.01 for both) and in Z5 in phase II compared with phase I and 0 (p < 0.001for both). All respiratory symptoms significantly decreased in Z5 and 10 in phase I and II compared with those in phase 0 (p < 0.05 to p < 0.001). Serum levels of TNF-α and VEGF were decreased in Z5 and 10 in phase I and II compared with those in phase 0 (p < 0.05 to p < 0.001). Serum levels of MCP-1 and EGF were decreased in Z10 in phase I and II compared with those in phase 0 (p < 0.05 to p < 0.001). The percent change of respiratory symptoms, serum levels of cytokines during the treatment period, was significantly improved in the treated groups compared with that in the placebo group. Two months' of treatment with Z. multiflora improved cytokine levels, respiratory symptom, and FEV1 values in SM-exposed patients.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Rezaeetalab
- COPD Research Center, Department of Internal Medicine, Imam-Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
40
|
Schneider T, Brüssow N, Yuvanc A, Budisa N. Synthesis of New Aza‐ and Thia‐Crown Ether Based Amino Acids. ChemistrySelect 2020. [DOI: 10.1002/slct.202000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias Schneider
- Institute of ChemistryTechnical University of Berlin Müller-Breslau-Str. 10 Berlin 10623 Germany
| | - Nico Brüssow
- Institute of ChemistryTechnical University of Berlin Müller-Breslau-Str. 10 Berlin 10623 Germany
| | - Alev Yuvanc
- Institute of ChemistryTechnical University of Berlin Müller-Breslau-Str. 10 Berlin 10623 Germany
| | - Nediljko Budisa
- Institute of ChemistryTechnical University of Berlin Müller-Breslau-Str. 10 Berlin 10623 Germany
- Department of ChemistryUniversity of Manitoba 144 Dysart Rd, 360 Parker Building R3T 2 N2 Winnipeg, MB Canada
| |
Collapse
|
41
|
Wahler G, Heck DE, Heindel ND, Laskin DL, Laskin JD, Joseph LB. Antioxidant/stress response in mouse epidermis following exposure to nitrogen mustard. Exp Mol Pathol 2020; 114:104410. [PMID: 32113906 DOI: 10.1016/j.yexmp.2020.104410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/13/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nitrogen mustard (NM) is a highly reactive bifunctional alkylating agent that induces inflammation, edema and blistering in skin. An important mechanism mediating the action of NM and related mustards is oxidative stress. In these studies a modified murine patch-test model was used to analyze DNA damage and the antioxidant/stress response following NM exposure in isolated epidermis. NM (20 μmol) was applied to glass microfiber filters affixed to a shaved dorsal region of skin of CD-1 mice. NM caused structural damage to the stratum corneum as reflected by increases in transepidermal water loss and skin hydration. This was coordinate with edema, mast cell degranulation and epidermal hyperplasia. Within 3 h of NM exposure, a 4-fold increase in phosphorylated histone H2AX, a marker of DNA double-stranded breaks, and a 25-fold increase in phosphorylated p53, a DNA damage marker, were observed in the epidermis. This was associated with a 40% increase in 8-oxo-2'-deoxyguanosine modified DNA in the epidermis and a 4-fold increase in 4-hydroxynonenal modified epidermal proteins. At 12 h post NM, there was a 3-75 fold increase in epidermal expression of antioxidant/stress proteins including heme oxygenase-1, thioredoxin reductase, superoxide dismutase, glutathione reductase, heat shock protein 27 and cyclooxygenase 2. These data indicate that NM induces early oxidative epidermal injury in mouse skin leading to an antioxidant/stress response. Agents that enhance this response may be useful in mitigating mustard-induced skin injury.
Collapse
Affiliation(s)
- Gabriella Wahler
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, United States.
| |
Collapse
|
42
|
Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Effect of Zataria multiflora on serum cytokine levels and pulmonary function tests in sulfur mustard-induced lung disorders: A randomized double-blind clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112325. [PMID: 31707049 DOI: 10.1016/j.jep.2019.112325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zataria multiflora (Z. multiflora) belongs to the Lamiaceae family and has several traditional uses owing to its antiseptic, aesthetic, antispasmodic, analgesic, and antidiarrheal properties. AIM OF THE STUDY We aimed to investigate the effect of Z. multiflora on serum cytokine levels and pulmonary function tests (PFT) in patients exposed to sulfur mustard (SM) for a long term (27-30 years). MATERIALS AND METHODS Thirty-five patients were randomly assigned to the placebo group (P) and two experimental groups treated with Z. multiflora extracts, i.e., 5 and 10 mg/kg/day (Z5 and Z10). Serum levels of cytokines including IL (2, 4, 6, 8, and 10) and IFN-γ as well as PFT indices such as maximum mid-expiratory flow (MMEF) and maximum expiratory flow at 25, 50, and 75% of vital capacity (VC) (MEF25, 50, and 75) were assessed at the beginning (phase 0) and at the end of 4 and 8 weeks (phases I and II, respectively) after starting the treatment. RESULTS Serum levels of IL-2, IL-6, and IL-8 were significantly decreased, while serum levels of IL-10 and IFN-γ were significantly increased in the Z5 and Z10 treatment groups in phases I and II as compared to those in phase 0 (p < 0.05 to p < 0.001). MMEF and MEF25, 50, and 75 values were significantly increased in the Z5 group in phase II and in the Z10 group in phases I and II compared to those in phase 0 (p < 0.05 to p < 0.001). The percent change in serum cytokine levels and the change in MEF25, 50, and 75 during the two-month treatment period were significantly higher in the treatment groups than in the placebo group. CONCLUSIONS Two months of treatment with Z. multiflora reduced inflammation, while it enhanced anti-inflammatory cytokines and improved PFT indices in SM-exposed patients.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Pharmaceutical Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahideh Ghorani
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Azam Alavinezhad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Long-term Respiratory Effects of Mustard Vesicants. Toxicol Lett 2020; 319:168-174. [PMID: 31698045 DOI: 10.1016/j.toxlet.2019.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard and related vesicants are cytotoxic alkylating agents that cause severe damage to the respiratory tract. Injury is progressive leading, over time, to asthma, bronchitis, bronchiectasis, airway stenosis, and pulmonary fibrosis. As there are no specific therapeutics available for victims of mustard gas poisoning, current clinical treatments mostly provide only symptomatic relief. In this article, the long-term effects of mustards on the respiratory tract are described in humans and experimental animal models in an effort to define cellular and molecular mechanisms contributing to lung injury and disease pathogenesis. A better understanding of mechanisms underlying pulmonary toxicity induced by mustards may help in identifying potential targets for the development of effective clinical therapeutics aimed at mitigating their adverse effects.
Collapse
|
44
|
Stawicki S, Le N, Garg M, Izurieta R, Garg S, Papadimos T, Arquilla B, Miller A, Khan A, Worlton T, Firstenberg M, Galwankar S, Raina S, Anderson H, Jeanmonod R, Kaufmann K, Jeanmonod D, De Wulf A, McCallister D, Bloem C, Opara I, Martin N, Asensio J. What's new in Academic International Medicine? International health security agenda – Expanded and re-defined. INTERNATIONAL JOURNAL OF ACADEMIC MEDICINE 2020. [DOI: 10.4103/ijam.ijam_113_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Time course study of oxidative stress in sulfur mustard analog 2‑chloroethyl ethyl sulfide-induced toxicity. Int Immunopharmacol 2019; 73:81-93. [DOI: 10.1016/j.intimp.2019.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
|
46
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Acute corneal injury in rabbits following nitrogen mustard ocular exposure. Exp Mol Pathol 2019; 110:104275. [PMID: 31233733 DOI: 10.1016/j.yexmp.2019.104275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Sulfur mustard (SM), a potent vesicating chemical warfare agent, and its analog nitrogen mustard (NM), are both strong bi-functional alkylating agents. Eyes, skin, and the respiratory system are the main targets of SM and NM exposure; however, ocular tissue is most sensitive, resulting in severe ocular injury. The mechanism of ocular injury from vesicating agents' exposure is not completely understood. To understand the injury mechanism from exposure to vesicating agents, NM has been previously employed in our toxicity studies on primary human corneal epithelial cells and ex vivo rabbit cornea organ culture model. In the current study, corneal toxicity from NM ocular exposure (1%) was analyzed for up to 28 days post-exposure in New Zealand White male rabbits to develop an acute corneal injury model. NM exposure led to conjunctival and eyelid swelling within a few hours after exposure, in addition to significant corneal opacity and ulceration. An increase in total corneal thickness and epithelial degradation was observed starting at day 3 post-NM exposure, which was maximal at day 14 post-exposure and did not resolve until 28 days post-exposure. There was an NM-induced increase in the number of blood vessels and inflammatory cells, and a decrease in keratocytes in the corneal stroma. NM exposure resulted in increased expression levels of cyclooxygenase-2, Interleukin-8, vascular endothelial growth factor and Matrix Metalloproteinase 9 indicating their involvement in NM-induced corneal injury. These clinical, biological, and molecular markers could be useful for the evaluation of acute corneal injury and to screen for therapies against NM- and SM-induced ocular injury.
Collapse
|
48
|
Khazdair MR, Boskabady MH. The effect of carvacrol on inflammatory mediators and respiratory symptoms in veterans exposed to sulfur mustard, a randomized, placebo-controlled trial. Respir Med 2019; 150:21-29. [DOI: 10.1016/j.rmed.2019.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 01/22/2023]
|
49
|
Balali-Mood M, Riahi-Zanjani B, Mahmoudi M, Sadeghi M. Current status of the acquired immune system of Iranian patients with long-term complications of sulfur mustard poisoning. ACTA ACUST UNITED AC 2019; 27:43-48. [PMID: 30715678 DOI: 10.1007/s40199-019-00239-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/04/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sulfur mustard (SM) is a powerful blistering chemical warfare agent that has genotoxic effects. Cells with excessive proliferation such as lymphocytes may inherit this cellular toxicity which can lead to their malfunctions in the long-term. This study was designed to evaluate the status of acquired immunity among SM poisoned veterans around three decades after exposure. METHODS Thirty five male Iranian veterans having at least 25% disability due to SM poisoning with long-term complications in the respiratory system, skin or eyes were investigated. Non-functional/functional tests including hematological parameters, immunostaining analysis, lymphocyte proliferation assay, cytokine profile, and levels of total serum IgM, IgG and IgA were performed. RESULTS The results showed that most of the parameters of adaptive immune system of the veterans were currently within the normal ranges. However, changes in the proliferation index (PI) of lymphocytes showed problems with the lymphocytes which cannot be proliferated appropriately. PI values for PBMCs (peripheral blood mononuclear cells) in presence of PHA (Phytohemagglutinin-A) and LPS (lipopolysaccharide) mitogens were 1.16 ± 0.14 and 1.13 ± 0.07, respectively which are less than expected. CONCLUSIONS Based on the results gathered in this study, most of the parameters of acquired immunity were normal. However, the observed failure of lymphocyte functions may disrupt physiological activity of whole immune system leading to long-term complications; including recurrent respiratory tract infections. Indeed, further cellular and molecular studies with regard to lymphocytes function are required to better understand the status of adaptive immunity in these patients. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Khazdair MR, Boskabady MH. A double-blind, randomized, placebo-controlled clinical trial on the effect of carvacrol on serum cytokine levels and pulmonary function tests in sulfur mustard induced lung injury. Cytokine 2019; 113:311-318. [DOI: 10.1016/j.cyto.2018.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/07/2018] [Accepted: 07/28/2018] [Indexed: 01/26/2023]
|