1
|
Çubuk S, Kaplan P, Nallbani BG, Yetimoğlu EK, Kahraman MV. A versatile reusable polymer-based sensor for aluminum analysis in various food matrices. Food Chem 2025; 471:142809. [PMID: 39788005 DOI: 10.1016/j.foodchem.2025.142809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Within the scope of this study, a polymer-based optical sensor that can polymerize under UV radiation and produce fluorescence when suitable functional monomers and crosslinkers were prepared for aluminum determination in yogurt, soybean flour, and meat samples. Parameters such as operating range, pH, sensitivity, selectivity, determination limit, and foreign ion effect were thoroughly investigated to validate the developed method and characterize this polymer-based membrane. The designed sensor has wavelengths of 322 nm for fluorescence excitation and 356 nm for emission, respectively. The studies were done at pH 3.0, and the sensor had a reaction time of 20-40 s. Furthermore, the linear range of the study is between 7.41 × 10-9-1.11 × 10-7 mol L-1, and the detection limit of the developed sensor was calculated as 2.09 × 10-9 mol L-1.
Collapse
Affiliation(s)
- Soner Çubuk
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey.
| | - Pelin Kaplan
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey
| | - Belma Gjergjizi Nallbani
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey; UBT - Higher Education Institution, Faculty of Pharmacy, Lagjia Kalabria, 10000 Prishtina, Republic of Kosovo
| | - Ece Kök Yetimoğlu
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey
| | - Memet Vezir Kahraman
- Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
2
|
Liu T, Wang W, Du J, Liu H, Wu J, Wang C, Tang M, Liu Y, Ju Y, Qu W, Zheng J, Zhao Y, Zhang Y. Aluminum promotes B1 cells to produce IL-10 and impairs adaptive immune system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125791. [PMID: 39914566 DOI: 10.1016/j.envpol.2025.125791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Aluminum (Al) is a metal existing in the human body, yet the immunotoxicity of Al remains elusive. To investigate the immunotoxicity of Al, C57BL/6 mice were treated with 200 or 800 ppm Al via drinking water for 3 months, and thereafter the adaptive immune system was evaluated. In addition, mouse splenocytes and human peripheral blood mononuclear cells (PBMC) were treated with Al in vitro to assess the impact of Al in vitro. Treatment with Al reduced the production of IgM and IgG in the serum, and the activation of B cells, CD4 T cells and CD8 T cells in the spleen of mice; treatment with Al in vitro suppressed the production of IgM and IgG, and the activation of B cells, CD4 T cells and CD8 T cells in mouse splenocytes and human PBMC. In vitro co-culture assays suggested that the suppressed adaptive immunity was due to B cells modified by Al. In terms of mechanism, a direct action of Al on B1 cells induced the B1 cells to be IL-10-producing cells and thereby suppressed the adaptive immune system, which was critically dependent on the Jak1/3-STAT signaling. This study reveals that Al suppresses the adaptive immunity via induction of IL-10-producing B1 cells.
Collapse
Affiliation(s)
- Ting Liu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Hongyue Liu
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Jiaojiao Wu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Chuanxuan Wang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - MengKe Tang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yalin Liu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yingzi Ju
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Weidong Qu
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jianheng Zheng
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China.
| | - Yifan Zhao
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China.
| | - Yubin Zhang
- School of Public Health, School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
He C, Hu Q, Liu C, Chu Y, Jia J, Zhang X, Niu Q. Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis. ACS Chem Neurosci 2025; 16:329-341. [PMID: 39804702 DOI: 10.1021/acschemneuro.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)3], respectively. They were intraperitoneally injected every other day for three months. PC12 cells were divided into four dose groups: 0, 100, 200, and 400 μmol/L Al(mal)3, and four intervention groups: inhibitor NC, Al(mal)3 + inhibitor NC, miR-98-5p inhibitor, and Al(mal)3 + miR-98-5p inhibitor. The Morris water maze was used to test the learning and memory abilities of rats. Hematoxylin and eosin staining was used to observe the arrangement and quantity of neurons in the CA1 area of the rat hippocampus. Cell viability was detected using the Cell Counting Kit-8. Cell apoptosis was detected using flow cytometry and the 5-ethynyl-2'-deoxyuridine assay. Real-time polymerase chain reaction and Western blotting were used to detect the expression levels of miR-98-5p, IGF2 mRNA, IGF2/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway proteins, and apoptosis-related proteins caspase3 and cleaved caspase3. The dual-luciferase assay was used to determine the targeting relationship between miR-98-5p and IGF2 mRNA. As the dose of aluminum exposure increased, the escape latency of rats gradually prolonged, and the target quadrant residence time and the number of crossing platforms gradually decreased. The arrangement of neurons in the hippocampal CA1 area was significantly loose, and their number gradually decreased. The total and early apoptosis rates of PC12 cells gradually increased, and the cell proliferation rate slowed down. Both in vivo and in vitro experimental results showed that with the increase of aluminum exposure dose, the relative expression levels of miR-98-5p and caspase3 and cleaved caspase3 proteins gradually increased, while the relative expression levels of IGF2 mRNA and IGF2, p-JAK2 (Tyr1007/1008), and p-STAT3 (Tyr705) proteins gradually decreased. After inhibiting miR-98-5p in the aluminum exposure group, the cell apoptosis rate and expression of apoptosis-related proteins decreased, and the expression of IGF2 mRNA and IGF2/JAK2/STAT3 proteins increased. These results indicate that miR-98-5p plays a vital role in aluminum-induced neurotoxicity by targeting IGF2.
Collapse
Affiliation(s)
- Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Hu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Congying Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yafen Chu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jingjing Jia
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Zhang
- Anesthesiology College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
4
|
Hangan T, Bjorklund G, Chirila S. Exploring the Potential Link between Aluminum-Containing Deodorants/Antiperspirants and Breast Cancer: A Comprehensive Review. Curr Med Chem 2025; 32:417-433. [PMID: 38173070 DOI: 10.2174/0109298673269343231025070053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 01/05/2024]
Abstract
The potential association between aluminum-containing deodorants/antiperspirants and breast cancer has been investigated and debated. This paper comprehensively analyzes existing literature to examine the evidence and provide insights into this relationship. This comprehensive review discusses aspects related to the absorption and distribution of aluminum compounds, its effects on the induction of oxidative stress, the estrogenic activity of aluminum, and potential disruption of hormonal pathways, and the potential role in breast cancer induction. Currently, available research, consisting of epidemiological studies as well as clinical trials, together with meta-analyses and previously published reviews conducted on identifying the relationship between aluminum-containing deodorants/antiperspirants and the risk of breast cancer were also analyzed and discussed. Societal factors, personal hygiene considerations, and lifestyle changes contribute to the increased usage of antiperspirants, but they do not establish a direct causal connection with breast cancer. Further research employing larger-scale studies and rigorous methodologies must validate the existing findings and explore the underlying mechanisms involved. Continued multidisciplinary research efforts and collaboration between researchers, regulatory bodies, and public health authorities are vital to developing a more definitive understanding of this complex topic.
Collapse
Affiliation(s)
- Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Sergiu Chirila
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
5
|
Sawicka E, Wiatrowska N. The Potential Metalloestrogenic Effect of Aluminum on Breast Cancer Risk for Antiperspirant Users. Int J Mol Sci 2024; 26:99. [PMID: 39795956 PMCID: PMC11719928 DOI: 10.3390/ijms26010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The etiopathogenesis of breast cancer depends on genetic conditions, but recently more attention has been paid to the dependence of BC on certain environmental factors, for example, metalloestrogens, which include aluminum (Al) contained in antiperspirants used daily. The use of Al derivatives in antiperspirants in concentrations specified by the FDA, as well as European regulations (SCCS, 2020), do not classify Al as a hazardous and carcinogenic substance for humans. However, Al used to treat excessive sweating raises concerns, as many in vitro studies indicate that it can cause gene instability, change gene expression or increase oxidative stress, and also affect the body's hormonal balance as a metalloestrogen. The environmental reality is that the breast is constantly exposed to many different chemicals, such as Al. This article reviews the literature to determine whether Al-based products can harm the body, as there are many facts and myths on the subject. The aim of the study is to present the current state of knowledge on the use of aluminum antiperspirants and the risk of breast cancer (BC). The article is based on data from the scientific literature, published in the PubMed and Google Scholar databases, as well as Science Direct, Scopus, Ovid MEDLINE, Ovid EMbase. It includes articles published in the years 2003-2023 mainly in English. Literature databases regarding human and animal studies were searched. To sum up, evaluating the effect of Al as a risk factor for breast cancer requires many studies using different research models focused on long-term exposure to Al-containing antiperspirants. Consumers are advised to limit their exposure to Al by making a conscious choice to minimize exposure to this compound.
Collapse
Affiliation(s)
- Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Natalia Wiatrowska
- Students’ Scientific Society at the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
6
|
Bonfiglio R, Giacobbi E, Palumbo V, Casciardi S, Sisto R, Servadei F, Scioli MP, Schiaroli S, Cornella E, Cervelli G, Sica G, Candi E, Melino G, Mauriello A, Scimeca M. Aluminum Concentration Is Associated with Tumor Mutational Burden and the Expression of Immune Response Biomarkers in Colorectal Cancers. Int J Mol Sci 2024; 25:13388. [PMID: 39769153 PMCID: PMC11676456 DOI: 10.3390/ijms252413388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Environmental pollution poses a significant risk to public health, as demonstrated by the bioaccumulation of aluminum (Al) in colorectal cancer (CRC). This study aimed to investigate the potential mutagenic effect of Al bioaccumulation in CRC samples, linking it to the alteration of key mediators of cancer progression, including immune response biomarkers. Aluminum levels in 20 CRC biopsy samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that Al bioaccumulation occurred in 100% of the cases. A correlation between Al levels and tumor mutation burden was observed. Furthermore, RNA sequencing revealed a significant association between Al concentration and the expression of the immune checkpoint molecule CTLA-4. Although correlations with PD-1 and PD-L1 were not statistically significant, a trend was observed. Additionally, a correlation between Al levels and both the presence of myeloid cells and IFNγ expression was detected, linking Al exposure to inflammatory responses within the tumor microenvironment. These findings suggested that Al can play a role in CRC progression by promoting both genetic mutations and immune evasion. Given the ubiquitous presence of Al in industrial and consumer products, dietary sources, and environmental pollutants, these results underscored the need for stricter regulatory measures to control Al exposure.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefania Schiaroli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Elena Cornella
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giulio Cervelli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giuseppe Sica
- Department of Surgery, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| |
Collapse
|
7
|
Molly Subhash H, Ofoegbuna T, H Oliveira A, Pierce MC, Pillai S. Infrared thermal imaging for assessing human perspiration and evaluating antiperspirant product efficacy. Sci Rep 2024; 14:24994. [PMID: 39443511 PMCID: PMC11499672 DOI: 10.1038/s41598-024-73878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
In humans, perspiration regulates core body temperature. Therefore, objectively evaluating it is essential for studying sweat gland function and mechanisms, particularly in antiperspirant efficacy studies. Various approaches have been developed for measuring human perspiration and evaluating antiperspirant efficacy, but are unsuitable for robust and routine clinical testing applications. This paper shows how infrared thermography, utilizing both high- and low-resolution modes, functions as a multiscale imaging modality. The high-resolution mode extracts physiological parameters (respiratory ~ 0.3 Hz and heart rate ~ 1.0 Hz) and visualizes the reduction of the sweat pore radii (from 359 ± 155 μm to 161 ± 47 μm) after antiperspirant application, consistent with known mechanisms of pore plugging and constriction induced by aluminum salts. The low-resolution mode quantitatively maps sweat retention in underarm clothing. All study participants in a clinical trial showed reduced sweat retention on their T-shirts due to antiperspirants, with reductions ranging from approximately 37-97% and an average reduction of 77.7 ± 22.1% using the developed methodology and tested antiperspirant. Overall, this non-invasive technique presents significant potential for clinical and personal care product evaluations, particularly in the early stages of product development.
Collapse
Affiliation(s)
| | | | - Abmael H Oliveira
- Colgate-Palmolive Company, Piscataway, NJ, 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | |
Collapse
|
8
|
Echeveste P, Fernández-Juárez V, Brito-Echeverría J, Rodríguez-Romero A, Tovar-Sánchez A, Agawin NS. Toxicity of inorganic nanoparticles and commercial sunscreens on marine bacteria. CHEMOSPHERE 2024; 364:143066. [PMID: 39128774 DOI: 10.1016/j.chemosphere.2024.143066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The Balearic Islands, a top tourist destination for sunny beaches, face physical and chemical pressures from human activities, impacting keystone species like the endemic seagrass Posidonia oceanica and its associated microbiome. This study evaluated the effects of ZnO and TiO2 nanoparticles and three commercial sunscreens with varying protection factors (50 or 90) and chemical complexities (1- SPF50_E "eco-friendly"; 2- SPF50 not "eco-friendly"; 3- SPF90 not "eco-friendly") on five heterotrophic bacteria (Pseudomonas azotifigens, Marinobacterium litorale, Thiothrix nivea, Sedimenticola thiotaurini and Cobetia sp) and two autotrophic cyanobacteria (Halothece sp. and Fischerella muscicola) associated to P. oceanica, as well as a natural leaf epiphytic community. Results indicated that TiO2 affected all heterotrophic bacteria, while ZnO was toxic to only two species, while autotrophs were unaffected. Commercial sunscreens impacted three heterotrophs and the natural epiphytic community, while autotrophs were only affected by SPF50. SPF50_E reduced phosphorus uptake, and both SPF50 and SPF90 decreased alkaline phosphatase activity. Reactive oxygen species production was mainly induced by SPF90, followed by SPF50_E and SPF50. Generally, the smallest bacteria were most sensitive to UV-filters (UVFs). This study indicates that UVFs exposure may alter the epiphytic community structure of P. oceanica.
Collapse
Affiliation(s)
- Pedro Echeveste
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain.
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | | | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Nona S Agawin
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain
| |
Collapse
|
9
|
Zhang J, Han P, Yang F, Jiang B. Advances in the treatment of axillary bromhidrosis. Skin Res Technol 2024; 30:e13895. [PMID: 39096181 PMCID: PMC11297419 DOI: 10.1111/srt.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Bromhidrosis, characterized by foul-smelling sweat, is a prevalent condition that significantly affects patients' social and psychological well-being. METHODS This review presents novel treatment approaches and discusses the pros and cons of various treatment options for axillary bromhidrosis. RESULTS Extensive research has explored numerous treatment modalities for bromhidrosis. This article systematically reviews both surgical and nonsurgical interventions utilized in clinical practice. CONCLUSION By synthesizing available evidence, this review aims to offer evidence-based recommendations for effectively managing bromhidrosis, considering factors such as treatment efficacy, safety profiles, patient preferences, and clinical outcomes.
Collapse
Affiliation(s)
- Jianfei Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated HospitalHengyang Medical School, University of South ChinaHengyangChina
| | - Pengpeng Han
- Department of Burns and Plastic Surgery, The Second Affiliated HospitalHengyang Medical School, University of South ChinaHengyangChina
| | - Feng Yang
- Department of Burns and Plastic Surgery, The Second Affiliated HospitalHengyang Medical School, University of South ChinaHengyangChina
| | - Bin Jiang
- Department of Burns and Plastic Surgery, The Second Affiliated HospitalHengyang Medical School, University of South ChinaHengyangChina
| |
Collapse
|
10
|
Ganhör C, Mayr L, Zolles J, Almeder M, Kazemi M, Mandl M, Wechselberger C, Bandke D, Theiner S, Doppler C, Schweikert A, Müller M, Puh Š, Kotnik M, Langer R, Koellensperger G, Bernhard D. Airborne Aluminum as an Underestimated Source of Human Exposure: Quantification of Aluminum in 24 Human Tissue Types Reveals High Aluminum Concentrations in Lung and Hilar Lymph Node Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11292-11300. [PMID: 38888518 PMCID: PMC11223461 DOI: 10.1021/acs.est.4c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Aluminum (Al) is the most abundant metal in the earth's crust, and humans are exposed to Al through sources like food, cosmetics, and medication. So far, no comprehensive data on the Al distribution between and within human tissues were reported. We measured Al concentrations in 24 different tissue types of 8 autopsied patients using ICP-MS/MS (inductively coupled plasma-tandem mass spectrometry) under cleanroom conditions and found surprisingly high concentrations in both the upper and inferior lobes of the lung and hilar lymph nodes. Al/Si ratios in lung and hilar lymph node samples of 12 additional patients were similar to the ratios reported in urban fine dust. Histological analyses using lumogallion staining showed Al in lung erythrocytes and macrophages, indicating the uptake of airborne Al in the bloodstream. Furthermore, Al was continuously found in PM2.5 and PM10 fine dust particles over 7 years in Upper Austria, Austria. According to our findings, air pollution needs to be reconsidered as a major Al source for humans and the environment.
Collapse
Affiliation(s)
- Clara Ganhör
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Lukas Mayr
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Julia Zolles
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Marion Almeder
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Matin Kazemi
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Markus Mandl
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Christian Wechselberger
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Dave Bandke
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Sarah Theiner
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Doppler
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Andreas Schweikert
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Marina Müller
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Špela Puh
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Michaela Kotnik
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| | - Rupert Langer
- Institute
of Clinical Pathology and Molecular Pathology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Gunda Koellensperger
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - David Bernhard
- Division
of Pathophysiology, Institute of Physiology and Pathophysiology, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
- Clinical
Research Institute for Cardiovascular and Metabolic Diseases, Medical
Faculty, Johannes Kepler University, Linz 4020, Austria
| |
Collapse
|
11
|
Ganhör C, Rezk M, Doppler C, Ruthmeier T, Wechselberger C, Müller M, Kotnik M, Puh Š, Messner B, Bernhard D. Aluminum, a colorful gamechanger: Uptake of an aluminum-containing food color in human cells and its implications for human health. Food Chem 2024; 442:138404. [PMID: 38237295 DOI: 10.1016/j.foodchem.2024.138404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/15/2024]
Abstract
Aluminum is added to many food colors to change their solubility. This study compares the aluminum-containing food color carmine with its aluminum-free version carminic acid (both E 120), hypothesizing that the addition of aluminum does not only change the color's solubility, but also its effects on human cells. We could show that carmine, but not carminic acid, is taken up by gastrointestinal Caco-2 and umbilical vein endothelial cells (HUVEC). Clear differences between gene expression profiles of Caco-2 cells exposed to carmine, carminic acid or control were shown. KEGG analysis revealed that carmine-specific genes suppress oxidative phosphorylation, and showed that this suppression is associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. Furthermore, carmine, but not carminic acid, increased proliferation of Caco-2 cells. Our findings show that a food color containing aluminum induces different cellular effects compared to its aluminum-free form, which is currently not considered in EU legislation.
Collapse
Affiliation(s)
- Clara Ganhör
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Marlene Rezk
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
| | - Christian Doppler
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Teresa Ruthmeier
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | - Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Marina Müller
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Michaela Kotnik
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Špela Puh
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria; Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
12
|
Oezen G, Kraus L, Schentarra EM, Bolten JS, Huwyler J, Fricker G. Aluminum and ABC transporter activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104451. [PMID: 38648870 DOI: 10.1016/j.etap.2024.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aluminum is the third most common element on Earth´s crust and despite its wide use in our workaday life it has been associated with several health risks after overexposure. In the present study the impact of aluminum salts upon ABC transporter activity was studied in the P-GP-expressing human blood-brain barrier cell line hCMEC/D3, in MDCKII cells overexpressing BCRP and MRP2, respectively, and in freshly isolated, functionally intact kidney tubules from Atlantic killifish (Fundulus heteroclitus), which express the analog ABC transporters, P-gp, Bcrp and Mrp2. In contrast to previous findings with heavy metals salts (cadmium(II) chloride or mercury(II) chloride), which have a strong inhibitory effect on ABC transporter activity, or zinc(II) chloride and sodium arsenite, which have a stimulatory effect upon ABC transport function, the results indicate no modulatory effect of aluminum salts on the efflux activity of the human ABC transporters P-GP, BCRP and MRP2 nor on the analog transporters P-gp, Bcrp and Mrp2.
Collapse
Affiliation(s)
- Goezde Oezen
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Lisa Kraus
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Eva-Maria Schentarra
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Jan Stephan Bolten
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States; Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Joerg Huwyler
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States; Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University, Heidelberg 69120, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, United States.
| |
Collapse
|
13
|
Mercan S, Kilic MD, Zengin S, Yayla M. Experimental study for inorganic and organic profiling of toy makeup products: Estimating the potential threat to child health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33975-33992. [PMID: 38696006 PMCID: PMC11136717 DOI: 10.1007/s11356-024-33362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Inorganic elements are added to toys as impurities to give desired stability, brightness, flexibility, and color; however, these elements may cause numerous health issues after acute or chronic exposure. In this study, the inorganic profile of 14 elements (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Se, Sb, Pb, and Zn) in 63 toy makeup products was identified by inductively coupled plasma-mass spectrometry after microwave acid digestion method. Additionally, organic allergen fragrance was investigated by gas chromatography-mass spectrometry. The systemic exposure dosage (SED), margin of safety (MoS), lifetime cancer risk (LCR), hazard quotient (HQ), and hazard indices were used to assess the safety evaluation. Then, 57 out of 63 samples (90.48%) exceeded the limits at least for one toxic element with descending order Ni > Cr > Co > Pb > Sb > Cd > As > Hg. The SED values were compared with tolerable daily intake values and remarkably differences were found for Al and Pb. The MoS values for 57.15% of samples exceeded the limit value for Al, As, Cd, Co, Hg, Mn, Sb, and Zn elements. The LCR values were observed at 100% (n = 63), 79.37% (n = 50), 85.71% (n = 54), 77.78% (n = 49), and 18.87% (n = 10) for Cr, Ni, As, Pb, and Cd, respectively. Also, the skin sensitization risks were obtained for Cr and Ni at 26.980% (n = 17) and 9.52% (n = 6), respectively. The HQ values for 80% of samples were found to be ≥ 1 at least for one parameter. The investigation of fragrance allergens in samples did not show any significant ingredients. As a result, toy makeup products marketed in local stores were found to be predominantly unsafe. Children should be protected from harmful chemicals by regular monitoring and strict measures.
Collapse
Affiliation(s)
- Selda Mercan
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey.
| | - Mihriban Dilan Kilic
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Simge Zengin
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Murat Yayla
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
14
|
Hara F, Mizuyama N, Fujino T, Shrestha AK, Meetiyagoda TAOK, Takada S, Saji H, Mukai T, Hagimori M. Development of a water-soluble fluorescent Al 3+ probe based on phenylsulfonyl-2-pyrone in biological systems. Anal Chim Acta 2024; 1299:342436. [PMID: 38499421 DOI: 10.1016/j.aca.2024.342436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Al exists naturally in the environment and is an important component in acidic soils, which harm almost all plants. Furthermore, Al is widely used in food additives, cosmetics, and medicines, resulting in living organisms ingesting traces of Al orally or dermally every day. Accordingly, Al accumulates in the body, which can cause negative bioeffects and diseases, and this concern is gaining increasing attention. Therefore, to detect and track Al in the environment and in living organisms, the development of novel Al-selective probes that are water-soluble and exhibit fluorescence at long wavelengths is necessary. RESULTS In this study, an Al3+-selective fluorescent probe PSP based on a novel pyrone molecule was synthesized and characterized to detect and track Al in biological systems. PSP exhibited fluorescence enhancement at 580 nm in the presence of Al3+ in aqueous media. Binding analysis using Job's plot and structural analysis using 1H NMR showed that PSP formed a 1:1 complex with Al3+ at the two carbonyl groups of the dimethyl malonate of the pyrone ring. Upon testing in biological systems, PSP showed good cell membrane permeability, detected intracellular Al3+ in human breast cancer cells (MDA-MB-231), and successfully imaged accumulated Al3+ in Microcystis aeruginosa and the larvae of Rheocricotopus species. SIGNIFICANCE The novel Al3+-selective fluorescent probe PSP is highly effective and is expected to aid in elucidating the role of Al3+ in the environment and living organisms.
Collapse
Affiliation(s)
- Fumiko Hara
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Naoko Mizuyama
- Division of Medical Innovation, Translational Research Center for Medical Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan; Strategic Research Area for Sustainable Development in East Asia, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Ashok Kumar Shrestha
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | | | - Shinya Takada
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan
| | - Hideo Saji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Masayori Hagimori
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan.
| |
Collapse
|
15
|
Demirel G, Sanajou S, Yirün A, Çakir DA, Berkkan A, Baydar T, Erkekoğlu P. Evaluation of possible neuroprotective effects of virgin coconut oil on aluminum-induced neurotoxicity in an in vitro Alzheimer's disease model. J Appl Toxicol 2024; 44:609-622. [PMID: 37989595 DOI: 10.1002/jat.4564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that affects various cognitive functions, behavior, and personality. AD is thought to be caused by a combination of genetic and environmental factors, including exposure to aluminum (Al). Virgin coconut oil (VCO) may have potential as a natural neuroprotectant against AD. Aim of this study was to determine neuroprotective effects of VCO on Al-induced neurotoxicity in an in vitro AD model. SH-SY5Y cells were initially cultured in normal growth medium and then differentiated by reducing fetal bovine serum content and adding retinoic acid (RA). Later, brain-derived neurotrophic factor (BDNF) was added along with RA. The differentiation process was completed on the seventh day. Study groups (n = 3) were designed as control group, VCO group, Al group, Al-VCO group, Alzheimer model (AD) group, AD + Al-exposed group (AD+Al), AD + VCO applied group (AD + VCO) and AD + Al-exposed + VCO applied group (AD + Al + VCO). Specific markers of AD (hyperphosphorylated Tau protein, amyloid beta 1-40 peptide, and amyloid precursor protein) were measured in all groups. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl, and reactive oxygen species) and neurotransmitter-related parameters (dopamine, dopamine transporter acetylcholine, and synuclein alpha levels, acetylcholinesterase activity) were measured comparatively in the study groups. VCO reduced amyloid beta and hyperphosphorylated Tau protein levels in the study groups. In addition, oxidative stress levels decreased, and neurotransmitter parameters improved with VCO. Our study shows that VCO may have potential therapeutic effects in Alzheimer's disease and further experiments are needed to determine its efficacy.
Collapse
Affiliation(s)
- Göksun Demirel
- Faculty of Pharmacy, Department of Toxicology, Cukurova University, Adana, Turkey
- Institute of Addiction and Forensic Sciences, Department of Forensic Sciences, Cukurova University, Adana, Turkey
| | - Sonia Sanajou
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Anil Yirün
- Faculty of Pharmacy, Department of Toxicology, Cukurova University, Adana, Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Deniz Arca Çakir
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara, Turkey
| | - Aysel Berkkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, Ankara, Turkey
| | - Terken Baydar
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoğlu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Chen J, Xia Y, Ben Y, Lu X, Dou K, Ding Y, Han X, Yang F, Wang J, Li D. Embryonic exposure to aluminum chloride blocks the onset of spermatogenesis through disturbing the dynamics of testicular tight junctions via upregulating Slc25a5 in offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170128. [PMID: 38242464 DOI: 10.1016/j.scitotenv.2024.170128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Studies have revealed neurotoxicity, hepatotoxicity, and developmental and reproductive toxicity in mice exposed to aluminum. However, relatively few studies have been conducted to clarify the mechanism underlying the impact of embryonic exposure to aluminum on the development of the male reproductive system in offspring. Pregnant mice were administered aluminum chloride (AlCl3) by gavage from day 12.5 of gestation until birth. Our findings demonstrated that embryonic exposure to AlCl3 disrupted testicular development and spermatogenesis by impairing testicular architecture, reducing sperm count, and upregulating the expression of tight junction (TJ) protein between Sertoli cells (SCs). Further in vitro studies revealed that treatment with AlCl3 stabilized TJ proteins Occludin and ZO-1 expression by inhibiting ERK signaling pathway activation, thereby upregulating Slc25a5 expression which induced ATP production leading to disruption of cytoskeletal protein homeostasis. Therefore, the study provided a new mechanistic insight into how AlCl3 exposure interfered with testicular development and spermatogenesis while suggesting that Slc25a5 might be a target affected by AlCl3 influencing cell metabolism.
Collapse
Affiliation(s)
- Junhan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yunhui Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yu Ben
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xinyan Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Kou Dou
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yibing Ding
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fenglian Yang
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Junli Wang
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
17
|
Shawahna R, Jaber M, Maqboul I, Hijaz H, Alawneh A, Imwas H. Aluminum Concentrations in Breast Milk Samples Obtained from Breastfeeding Women from a Resource-Limited Country: A Study of the Predicting Factors. Biol Trace Elem Res 2024; 202:1-8. [PMID: 37268844 DOI: 10.1007/s12011-023-03714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
This study assessed aluminum concentrations in breast milk samples obtained from breastfeeding women in resource-limited countries, estimated daily intake of aluminum by breastfed infants, and identified predictors of higher breast milk aluminum concentrations. A descriptive analytical approach was used in this multicenter study. Breastfeeding women were recruited from different maternity health clinics in Palestine. Aluminum concentrations in 246 breast milk samples were determined using an inductively coupled plasma-mass spectrometric method. The mean breast milk aluminum concentration was 2.1 ± 1.5 mg/L. The mean estimated daily intake of aluminum by infants was 0.37 ± 0.26 mg/kg body weight/day. Multiple linear regression showed that breast milk aluminum concentrations were predicted by living in urban areas, closer to industrial areas, waste disposals, frequent use of deodorants, and less frequent use of vitamins. Breast milk aluminum levels among Palestinian breastfeeding women were comparable to those previously determined in occupationally unexposed women.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
- Clinical Research Center, An-Najah National University Hospital, Nablus, Palestine.
| | - Mohammad Jaber
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
- An-Najah National University Hospital, Nablus, Palestine
| | - Iyad Maqboul
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
- An-Najah National University Hospital, Nablus, Palestine.
| | - Hatim Hijaz
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
- An-Najah National University Hospital, Nablus, Palestine
| | - Ala'a Alawneh
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Hanen Imwas
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
18
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
19
|
Hebert D, Nelson J, Diehl BN, Zito P. Single-Particle ICP-MS/MS Application for Routine Screening of Nanoparticles Present in Powder-Based Facial Cosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2681. [PMID: 37836322 PMCID: PMC10574118 DOI: 10.3390/nano13192681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The short- and long-term impacts of nanoparticles (NPs) in consumer products are not fully understood. Current European Union (EU) regulations enforce transparency on products containing NPs in cosmetic formulations; however, those set by the U.S. Food and Drug Administration are lacking. This study demonstrates the potential of single-particle inductively coupled plasma tandem mass spectrometry (spICP-MS/MS) as a screening method for NPs present in powder-based facial cosmetics (herein referred to as FCs). A proposed spICP-MS/MS method is presented along with recommended criteria to confirm particle presence and particle detection thresholds in seven FCs. FC products of varying colors, market values, and applications were analyzed for the presence of Bi, Cr, Mg, Mn, Pb, Sn, Ag, Al, and Zn NPs based on their ingredient lists as well as those commonly used in cosmetic formulations. The presence of NPs smaller than 100 nm was observed in all FC samples, and no correlations with their presence and market value were observed. Here, we report qualitative and semi-quantitative results for seven FC samples ranging in color, brand, and shimmer.
Collapse
Affiliation(s)
- Deja Hebert
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; (D.H.); (B.N.D.)
| | - Jenny Nelson
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA;
| | - Brooke N. Diehl
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; (D.H.); (B.N.D.)
| | - Phoebe Zito
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; (D.H.); (B.N.D.)
| |
Collapse
|
20
|
Moussaron A, Alexandre J, Chenard MP, Mathelin C, Reix N. Correlation between daily life aluminium exposure and breast cancer risk: A systematic review. J Trace Elem Med Biol 2023; 79:127247. [PMID: 37354712 DOI: 10.1016/j.jtemb.2023.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Epidemiological data indicate that the role of environmental factors on breast cancer (BC) incidence remains undetermined. Our daily life exposure to aluminium (Al) is suspected to influence BC development. This review proposes a state of the art on the association between Al and BC risk combined with a critical point of view on the subject. METHODS We searched the PubMed database using terms related to Al and BC up to November 18, 2022. Reports were eligible if they were cohort or case-control studies or meta-analyses. FINDINGS Six studies focused on the relationship between deodorant and antiperspirant use and BC incidence and didn't produce consistent results. Among 13 studies relating Al content in mammary tissues and BC risk, results are not unanimous to validate higher Al content in tumor tissues compared to healthy ones. We detail parameters that could explain this conclusion: the absence of statistical adjustments on BC risk factors in studies, the confusion between deodorant and antiperspirant terms, the non-assessment of global Al exposure, and the focus on Al in mammary tissues whereas a profile of several metals seems more appropriate. The clinical studies are retrospective. They were carried out on small cohorts and without a long follow-up. On the other hand, studies on cell lines have shown the carcinogenic potential of aluminum. Moreover, studies considered BC as a unique group whereas BC is a heterogeneous disease with multiple tumor subtypes determining the tumor aggressiveness. CONCLUSION In light of the precautionary principle and based on the data obtained, it is better to avoid antiperspirants that contain Al. Deodorants without aluminum are not implicated in breast cancer, either clinically or fundamentally.
Collapse
Affiliation(s)
| | - Julie Alexandre
- Department of Obstetrics, Centre Médico-chirurgical Et Obstétrical (CMCO), University Hospital of Strasbourg, Schiltigheim, France
| | - Marie-Pierre Chenard
- Service de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Department of Functional Genomics and Cancer, Institute of Genetics and Cellular and Molecular Biology, University of Strasbourg, Illkirch, France
| | - Carole Mathelin
- University Hospital of Strasbourg, Strasbourg, France; Department of Functional Genomics and Cancer, Institute of Genetics and Cellular and Molecular Biology, University of Strasbourg, Illkirch, France; Surgery Unit, Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Nathalie Reix
- ICube UMR 7357, University of Strasbourg/CNRS, Federation of Translational Medicine of Strasbourg (FMTS), Strasbourg, France; Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Serafin P, Zaremba M, Sulejczak D, Kleczkowska P. Air Pollution: A Silent Key Driver of Dementia. Biomedicines 2023; 11:biomedicines11051477. [PMID: 37239148 DOI: 10.3390/biomedicines11051477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In 2017, the Lancet Commission on Dementia Prevention, Intervention, and Care included air pollution in its list of potential risk factors for dementia; in 2018, the Lancet Commission on Pollution concluded that the evidence for a causal relationship between fine particulate matter (PM) and dementia is encouraging. However, few interventions exist to delay or prevent the onset of dementia. Air quality data are becoming increasingly available, and the science underlying the associated health effects is also evolving rapidly. Recent interest in this area has led to the publication of population-based cohort studies, but these studies have used different approaches to identify cases of dementia. The purpose of this article is to review recent evidence describing the association between exposure to air pollution and dementia with special emphasis on fine particulate matter of 2.5 microns or less. We also summarize here the proposed detailed mechanisms by which air pollutants reach the brain and activate the innate immune response. In addition, the article also provides a short overview of existing limitations in the treatment of dementia.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Malgorzata Zaremba
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|
22
|
Sanajou S, Erkekoğlu P, Şahin G, Baydar T. Role of aluminum exposure on Alzheimer's disease and related glycogen synthase kinase pathway. Drug Chem Toxicol 2023; 46:510-522. [PMID: 35443844 DOI: 10.1080/01480545.2022.2065291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aluminum (Al) is an environmentally abundant metal that is not essential for life. There is considerable evidence that Al as a neurotoxic xenobiotic may play a role in the pathogenesis of neurodegenerative diseases like Alzheimer's disease (AD). Exposure to aluminum has been shown to cause neuronal damage that resembles the symptoms of AD. In this review, we will summarize recent data about Al as the possible risk of incidence of AD. Then glycogen synthase kinase-3 beta (GSK3β) contributes to the hyperphosphorylation of Tau protein, the main component of neurofibrillary tangles, one of the hallmarks of AD as one of the mechanisms behind Al neurotoxicity will be covered. Overall, there is still a need for epidemiological studies and more in vivo and in vitro studies to determine the exact mechanisms of its neurotoxicity and the role of GSK3β in both Al toxic effect and AD.
Collapse
Affiliation(s)
- Sonia Sanajou
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Via Mersin 10, Turkey
| | - Pınar Erkekoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gönül Şahin
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Via Mersin 10, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Bryliński Ł, Kostelecka K, Woliński F, Duda P, Góra J, Granat M, Flieger J, Teresiński G, Buszewicz G, Sitarz R, Baj J. Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. Int J Mol Sci 2023; 24:7228. [PMID: 37108392 PMCID: PMC10139039 DOI: 10.3390/ijms24087228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Aluminium (Al) is the most ubiquitous metal in the Earth's crust. Even though its toxicity is well-documented, the role of Al in the pathogenesis of several neurological diseases remains debatable. To establish the basic framework for future studies, we review literature reports on Al toxicokinetics and its role in Alzheimer's disease (AD), autism spectrum disorder (ASD), alcohol use disorder (AUD), multiple sclerosis (MS), Parkinson's disease (PD), and dialysis encephalopathy (DE) from 1976 to 2022. Despite poor absorption via mucosa, the biggest amount of Al comes with food, drinking water, and inhalation. Vaccines introduce negligible amounts of Al, while the data on skin absorption (which might be linked with carcinogenesis) is limited and requires further investigation. In the above-mentioned diseases, the literature shows excessive Al accumulation in the central nervous system (AD, AUD, MS, PD, DE) and epidemiological links between greater Al exposition and their increased prevalence (AD, PD, DE). Moreover, the literature suggests that Al has the potential as a marker of disease (AD, PD) and beneficial results of Al chelator use (such as cognitive improvement in AD, AUD, MS, and DE cases).
Collapse
Affiliation(s)
- Łukasz Bryliński
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Katarzyna Kostelecka
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Filip Woliński
- Student Scientific Group, Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland
| | - Piotr Duda
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Joanna Góra
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Michał Granat
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Ryszard Sitarz
- I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland
| |
Collapse
|
24
|
Freire C, Iribarne-Durán LM, Gil F, Olmedo P, Serrano-Lopez L, Peña-Caballero M, Hurtado-Suazo JA, Alvarado-González NE, Fernández MF, Peinado FM, Artacho-Cordón F, Olea N. Concentrations and predictors of aluminum, antimony, and lithium in breast milk: A repeated-measures study of donors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120901. [PMID: 36565913 DOI: 10.1016/j.envpol.2022.120901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Aluminum (Al), antimony (Sb), and lithium (Li) are relatively common toxic metal(oid)s that can be transferred into breast milk and potentially to the nursing infant. This study assessed concentrations of Al, Sb, and Li in breast milk samples collected from donor mothers and explored the predictors of these concentrations. Two hundred forty-two pooled breast milk samples were collected at different times post-partum from 83 donors in Spain (2015-2018) and analyzed for Al, Sb, and Li concentrations. Mixed-effect linear regression was used to investigate the association of breast milk concentrations of these elements with the sociodemographic profile of the women, their dietary habits and utilization of personal care products (PCPs), the post-partum interval, and the nutritional characteristics of milk samples, among other factors. Al was detected in 94% of samples, with a median concentration of 57.63 μg/L. Sb and Li were detected in 72% and 79% of samples at median concentrations of 0.08 μg/L and 0.58 μg/L, respectively. Concentrations of Al, Sb, and Li were not associated with post-partum time. Al was positively associated with total lipid content of samples, weight change since before pregnancy, and coffee and butter intakes and inversely with meat intake. Li was positively associated with intake of chocolate and use of face cream and eyeliner and inversely with year of sample collection, egg, bread, and pasta intakes, and use of hand cream. Sb was positively associated with fatty fish, yoghurt, rice, and deep-fried food intakes and use of eyeliner and inversely with egg and cereal intakes and use of eyeshadow. This study shows that Al, Sb, and Li, especially Al, are widely present in donor breast milk samples. Their concentrations in the milk samples were most frequently associated with dietary habits but also with the lipid content of samples and the use of certain PCPs.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | - Fernando Gil
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 108016, Granada, Spain.
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 108016, Granada, Spain.
| | - Laura Serrano-Lopez
- Neonatology Unit, Virgen de las Nieves University Hospital, 18014, Granada, Spain.
| | - Manuela Peña-Caballero
- Neonatology Unit, Virgen de las Nieves University Hospital, 18014, Granada, Spain; Human Milk Bank, Virgen de las Nieves University Hospital, 18012, Granada, Spain.
| | | | - Nelva E Alvarado-González
- Instituto Especializado de Análisis (IEA), Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain.
| | - Francisco M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Nuclear Medicine Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| |
Collapse
|
25
|
Eiró-Quirino L, Lima WFD, Aragão WAB, Bittencourt LO, Mendes PFS, Fernandes RM, Rodrigues CA, Dionízio A, Buzalaf MAR, Monteiro MC, Cirovic A, Cirovic A, Puty B, Lima RR. Exposure to tolerable concentrations of aluminum triggers systemic and local oxidative stress and global proteomic modulation in the spinal cord of rats. CHEMOSPHERE 2023; 313:137296. [PMID: 36410523 DOI: 10.1016/j.chemosphere.2022.137296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The tolerable aluminum (Al) intake levels for humans are constantly under review by regulatory agencies due to novel pre-clinical evidence on the neurotoxicity of prolonged Al exposure; however, little is known about the effects of Al on the spinal cord. This study aimed to investigate potential adverse effects on both spinal cord and systemic biochemical balance after prolonged exposure to a low dose of Al. Twenty adult rats were distributed in the control (distilled water) and exposed group (8.3 mg of AlCl3/kg/day). After 60 days, both blood and spinal cord samples were collected for oxidative stress and proteomic analyses. In plasma and erythrocytes, glutathione level was not different between groups; however, exposure to AlCl3 significantly decreased glutathione level in the spinal cord. Thiobarbituric acid reactive substances levels in the plasma and spinal cord of animals from the control group were significantly lower than those animals exposed to AlCl3. Exposure to AlCl3 significantly modulated the expression of proteins associated with the cell cycle, stimulus-response, cytoskeleton, nervous system regulation, protein activity, and synaptic signaling. Therefore, prolonged exposure to a low dose of Al triggered oxidative stress and proteomic changes that may affect spinal cord homeostasis.
Collapse
Affiliation(s)
- Luciana Eiró-Quirino
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Weslley Ferreira de Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Caroline Azulay Rodrigues
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Aline Dionízio
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, Brazil
| | | | - Marta Chagas Monteiro
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
26
|
Quality and safety investigation of commonly used topical cosmetic preparations. Sci Rep 2022; 12:18299. [PMID: 36316522 PMCID: PMC9622732 DOI: 10.1038/s41598-022-21771-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Cosmetic and personal care products are considered an essential part of our daily care routine; hence, these products must be stable and safe for human use. This study aimed to assess the quality and safety of the most common cosmetic preparations. To select the products to be tested, a cross-sectional survey was distributed featuring the most used types and brands of products. Based on 447 responses from both males and females with different ages and education levels, 21 products from different brands were selected and tested in terms of microbial load, heavy metal content, and organoleptic properties. Microbial contamination was investigated using the aerobic plate count method. Lead (Pb), aluminum (Al), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), zinc (Zn), iron (Fe), and arsenic (As) impurities were analyzed using an inductively coupled plasma mass spectrometer. The products included sunblock, lip balm, hand cream, hair cream, shampoo, cleanser, baby oil, baby powder, bar soap, hair dye, makeup, deodorant, hair serum, shaving gel, and toothpaste. Microbial contamination was found in 14 of the products, ranging between 1467.5 and 299.5 cfu/ml. The most commonly isolated microorganisms were Staphylococcus aureus and Bacillus species. Most of the tested products showed metal impurities, with toothpaste having the highest concentrations of Pb, Cr, As, Cu and Ni. The samples did not show lumps or discoloration, did not have characteristic odors, and had pH values ranging from 6.90 to 8.10. The continuous usage of such products could lead to serious negative consequences. As a result, ensuring the quality of cosmetic products is critical. Regulatory authorities are required to enforce strict legislation on cosmetic manufacturing to assess and ensure the quality and safety of the products before they reach consumers.
Collapse
|
27
|
Zhao Y, Pogue AI, Alexandrov PN, Butler LG, Li W, Jaber VR, Lukiw WJ. Alteration of Biomolecular Conformation by Aluminum-Implications for Protein Misfolding Disease. Molecules 2022; 27:5123. [PMID: 36014365 PMCID: PMC9412470 DOI: 10.3390/molecules27165123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The natural element aluminum possesses a number of unique biochemical and biophysical properties that make this highly neurotoxic species deleterious towards the structural integrity, conformation, reactivity and stability of several important biomolecules. These include aluminum's (i) small ionic size and highly electrophilic nature, having the highest charge density of any metallic cation with a Z2/r of 18 (ionic charge +3, radius 0.5 nm); (ii) inclination to form extremely stable electrostatic bonds with a tendency towards covalency; (iii) ability to interact irreversibly and/or significantly slow down the exchange-rates of complex aluminum-biomolecular interactions; (iv) extremely dense electropositive charge with one of the highest known affinities for oxygen-donor ligands such as phosphate; (v) presence as the most abundant metal in the Earth's biosphere and general bioavailability in drinking water, food, medicines, consumer products, groundwater and atmospheric dust; and (vi) abundance as one of the most commonly encountered intracellular and extracellular metallotoxins. Despite aluminum's prevalence and abundance in the biosphere it is remarkably well-tolerated by all plant and animal species; no organism is known to utilize aluminum metabolically; however, a biological role for aluminum has been assigned in the compaction of chromatin. In this Communication, several examples are given where aluminum has been shown to irreversibly perturb and/or stabilize the natural conformation of biomolecules known to be important in energy metabolism, gene expression, cellular homeostasis and pathological signaling in neurological disease. Several neurodegenerative disorders that include the tauopathies, Alzheimer's disease and multiple prion disorders involve the altered conformation of naturally occurring cellular proteins. Based on the data currently available we speculate that one way aluminum contributes to neurological disease is to induce the misfolding of naturally occurring proteins into altered pathological configurations that contribute to the neurodegenerative disease process.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Cell Biology & Anatomy, LSU Health Science Center, New Orleans, LA 70112, USA
| | | | | | - Leslie G. Butler
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wenhong Li
- Department of Pharmacology, Jiangxi University of TCM, Nanchang 330004, China
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotek Research, Toronto, ON M5S 1A8, Canada
- Russian Academy of Medical Sciences, 113152 Moscow, Russian
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, LSU Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|