1
|
Kogel U, Wong ET, Szostak J, Tan WT, Lucci F, Leroy P, Titz B, Xiang Y, Low T, Wong SK, Guedj E, Ivanov NV, Schlage WK, Peitsch MC, Kuczaj A, Vanscheeuwijck P, Hoeng J. Impact of whole-body versus nose-only inhalation exposure systems on systemic, respiratory, and cardiovascular endpoints in a 2-month cigarette smoke exposure study in the ApoE -/- mouse model. J Appl Toxicol 2021; 41:1598-1619. [PMID: 33825214 PMCID: PMC8519037 DOI: 10.1002/jat.4149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.
Collapse
Affiliation(s)
- Ulrike Kogel
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Justyna Szostak
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Wei Teck Tan
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Francesco Lucci
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrice Leroy
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Bjoern Titz
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Yang Xiang
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Tiffany Low
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Sin Kei Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Emmanuel Guedj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, Bergisch Gladbach, Germany
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| |
Collapse
|
2
|
Boué S, Goedertier D, Hoeng J, Kuczaj A, Majeed S, Mathis C, May A, Phillips B, Peitsch MC, Radtke F, Schlage WK, Tan WT, Vanscheeuwijck P. State-of-the-art methods and devices for the generation, exposure, and collection of aerosols from heat-not-burn tobacco products. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847319897869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tobacco harm reduction is increasingly recognized as a promising approach to accelerate the decline in smoking prevalence and smoking-related population harm. Potential modified risk tobacco products (MRTPs) must undergo a rigorous premarket toxicological risk assessment. The ability to reproducibly generate, collect, and use aerosols is critical for the characterization, and preclinical assessment of aerosol-based candidate MRTPs (cMRTPs), such as noncombusted cigarettes, also referred to as heated tobacco products, tobacco heating products, or heat-not-burn (HNB) tobacco products. HNB tobacco products generate a nicotine-containing aerosol by heating tobacco instead of burning it. The aerosols generated by HNB products are qualitatively and quantitatively highly different from cigarette smoke (CS). This constitutes technical and experimental challenges comparing the toxicity of HNB aerosols with CS. The methods and experimental setups that have been developed for the study of CS cannot be directly transposed to the study of HNB aerosols. Significant research efforts are dedicated to the development, characterization, and validation of experimental setups and methods suitable for HNB aerosols. They are described in this review, with a particular focus on the Tobacco Heating System version 2.2. This is intended to support further studies, the objective evaluation and verification of existing evidence, and the development of scientifically substantiated HNB MRTPs.
Collapse
Affiliation(s)
- Stéphanie Boué
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anne May
- Consultants in Science, Epalinges, Switzerland
| | - Blaine Phillips
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Manuel C Peitsch
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Falk Radtke
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Wei Teck Tan
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Patrick Vanscheeuwijck
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
3
|
Phillips B, Szostak J, Titz B, Schlage WK, Guedj E, Leroy P, Vuillaume G, Martin F, Buettner A, Elamin A, Sewer A, Sierro N, Choukrallah MA, Schneider T, Ivanov NV, Teng C, Tung CK, Lim WT, Yeo YS, Vanscheeuwijck P, Peitsch MC, Hoeng J. A six-month systems toxicology inhalation/cessation study in ApoE -/- mice to investigate cardiovascular and respiratory exposure effects of modified risk tobacco products, CHTP 1.2 and THS 2.2, compared with conventional cigarettes. Food Chem Toxicol 2019; 126:113-141. [PMID: 30763686 DOI: 10.1016/j.fct.2019.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Smoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.2 (CHTP1.2) and tobacco heating system 2.2 (THS 2.2), on the cardiorespiratory system over a 6-month period. In addition, cessation or switching to CHTP1.2 after 3 months of CS exposure was assessed. A systems toxicology approach combining physiology, histology and molecular measurements was used to evaluate the impact of MRTP aerosols in comparison to CS. CHTP1.2 and THS2.2 aerosols, compared with CS, demonstrated lower impact on the cardiorespiratory system, including low to absent lung inflammation and emphysematous changes, and reduced atherosclerotic plaque formation. Molecular analyses confirmed the lower engagement of pathological mechanisms by MRTP aerosols than CS. Both cessation and switching to CHTP1.2 reduced the observed CS effects to almost sham exposure levels.
Collapse
Affiliation(s)
- Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Charles Teng
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ching Keong Tung
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Wei Ting Lim
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ying Shan Yeo
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
4
|
Cigarette smoke condensate may disturb immune function with apoptotic cell death by impairing function of organelles in alveolar macrophages. Toxicol In Vitro 2018; 52:351-364. [DOI: 10.1016/j.tiv.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/24/2023]
|
5
|
Phillips BW, Schlage WK, Titz B, Kogel U, Sciuscio D, Martin F, Leroy P, Vuillaume G, Krishnan S, Lee T, Veljkovic E, Elamin A, Merg C, Ivanov NV, Peitsch MC, Hoeng J, Vanscheeuwijck P. A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. I. Inhalation exposure, clinical pathology and histopathology. Food Chem Toxicol 2018; 116:388-413. [PMID: 29654848 DOI: 10.1016/j.fct.2018.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 01/25/2023]
Abstract
Within the framework of a systems toxicology approach, the inhalation toxicity of aerosol from a novel tobacco-heating potentially modified risk tobacco product (MRTP), the carbon-heated tobacco product (CHTP) 1.2, was characterized and compared with that of mainstream smoke (CS) from the 3R4F reference cigarette in a 90-day nose-only rat inhalation study in general accordance with OECD TG 413. CHTP1.2 is a heat-not-burn product using a carbon heat source to produce an aerosol that contains nicotine and tobacco flavor. At equal or twice the nicotine concentration in the test atmospheres, inhalation of CHTP1.2 aerosol led to a significantly lower exposure to harmful constituents and induced less respiratory tract irritation, systemic, and pathological effects compared with CS. Nasal epithelial changes were less pronounced in the CHTP1.2- than in the CS-exposed groups and reverted in the nicotine concentration-matched group after a recovery period. Lung inflammation was minimal in the CHTP1.2-treated groups compared with the moderate extent seen in the 3R4F groups. Many other toxicological endpoints evaluated did not show CHTP1.2 aerosol exposure-related effects, and no effects not seen for 3R4F were observed. These observations were consistent with findings from previous studies in which rats were exposed to MRTP aerosols containing similar nicotine concentrations.
Collapse
Affiliation(s)
- Blaine W Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Ulrike Kogel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Davide Sciuscio
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Subash Krishnan
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Tom Lee
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Emilija Veljkovic
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|
6
|
Brunssen C, Giebe S, Hofmann A, Brux M, Morawietz H. Evaluation of Cytotoxic, Oxidative, and Pro-Inflammatory Effects of Aqueous Cigarette Smoke Extract on Human Monocytes: A Potential Model System for Assessment of Next-Generation Tobacco and Nicotine Products. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sindy Giebe
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Melanie Brux
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Abstract
The aim of future research in this area is to provide the mechanistic understanding and the tools for effective prevention, early diagnosis, and therapy of lung cancer. With the established causal link between cigarette smoking and the risk of developing lung cancer, the most effective prevention is certainly not to smoke. A much better mechanistic understanding of lung cancer and its variability will support the development and evaluation of potentially reduced risk products for those who maintain smoking as well as for the development of early diagnostic tools and targeted therapies. Because of the complexity of lung cancer and the long duration for its development, nonclinical and clinical research efforts need to complement each other. Recent promising advances in this research area are the understanding of the interaction between genotoxic and epigenetic effects of smoking, the development of laboratory animal models for lung tumorigenesis by smoke inhalation, the unraveling of molecular pathways and signatures in clinical lung cancer research useful for developing diagnostic tools and therapeutic approaches, and the first successful therapy for lung cancer—although less suitable for smokers. The above—in combination with emerging data sets from explorative non-clinical and clinical studies as well as improved modeling approaches—are setting the stage for accelerated progress towards developing successful early diagnostic tools and therapies as well as for the assessment of new consumer products with potentially reduced risk.
Collapse
|
8
|
Oviedo A, Lebrun S, Kogel U, Ho J, Tan WT, Titz B, Leroy P, Vuillaume G, Bera M, Martin F, Rodrigo G, Esposito M, Dempsey R, Ivanov NV, Hoeng J, Peitsch MC, Vanscheeuwijck P. Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke. Regul Toxicol Pharmacol 2016; 81 Suppl 2:S93-S122. [DOI: 10.1016/j.yrtph.2016.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
9
|
Wong ET, Kogel U, Veljkovic E, Martin F, Xiang Y, Boue S, Vuillaume G, Leroy P, Guedj E, Rodrigo G, Ivanov NV, Hoeng J, Peitsch MC, Vanscheeuwijck P. Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke. Regul Toxicol Pharmacol 2016; 81 Suppl 2:S59-S81. [DOI: 10.1016/j.yrtph.2016.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
10
|
Lo Sasso G, Titz B, Nury C, Boué S, Phillips B, Belcastro V, Schneider T, Dijon S, Baumer K, Peric D, Dulize R, Elamin A, Guedj E, Buettner A, Leroy P, Kleinhans S, Vuillaume G, Veljkovic E, Ivanov NV, Martin F, Vanscheeuwijck P, Peitsch MC, Hoeng J. Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in Apoe -/- mice--a systems toxicology analysis. Inhal Toxicol 2016; 28:226-40. [PMID: 27027324 DOI: 10.3109/08958378.2016.1150368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
The liver is one of the most important organs involved in elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, including those that exert biological effects and cause smoking-related diseases. Though CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate pre-existing chronic liver disease. In this study, we integrated toxicological endpoints with molecular measurements and computational analyses to investigate effects of exposures on the livers of Apoe(-/- )mice. Mice were exposed to 3R4F reference CS, to an aerosol from the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product (MRTP) or to filtered air (Sham) for up to 8 months. THS2.2 takes advantage of a "heat-not-burn" technology that, by heating tobacco, avoids pyrogenesis and pyrosynthesis. After CS exposure for 2 months, some groups were either switched to the MRTP or filtered air. While no group showed clear signs of hepatotoxicity, integrative analysis of proteomics and transcriptomics data showed a CS-dependent impairment of specific biological networks. These networks included lipid and xenobiotic metabolism and iron homeostasis that likely contributed synergistically to exacerbating oxidative stress. In contrast, most proteomic and transcriptomic changes were lower in mice exposed to THS2.2 and in the cessation and switching groups compared to the CS group. Our findings elucidate the complex biological responses of the liver to CS exposure. Furthermore, they provide evidence that THS2.2 aerosol has reduced biological effects, as compared with CS, on the livers of Apoe(-/- )mice.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Bjoern Titz
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Catherine Nury
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Stéphanie Boué
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Blaine Phillips
- b Philip Morris International Research Laboratories , Singapore , Singapore , and
| | - Vincenzo Belcastro
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Thomas Schneider
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Sophie Dijon
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Karine Baumer
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Daruisz Peric
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Remi Dulize
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Ashraf Elamin
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Emmanuel Guedj
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | | | - Patrice Leroy
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Samuel Kleinhans
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Gregory Vuillaume
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Emilija Veljkovic
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Nikolai V Ivanov
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Florian Martin
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | | | - Manuel C Peitsch
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| | - Julia Hoeng
- a Philip Morris International Research and Development , Neuchatel , Switzerland
| |
Collapse
|
11
|
Phillips B, Veljkovic E, Boué S, Schlage WK, Vuillaume G, Martin F, Titz B, Leroy P, Buettner A, Elamin A, Oviedo A, Cabanski M, De León H, Guedj E, Schneider T, Talikka M, Ivanov NV, Vanscheeuwijck P, Peitsch MC, Hoeng J. An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe-/- Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes. Toxicol Sci 2016; 149:411-32. [PMID: 26609137 PMCID: PMC4725610 DOI: 10.1093/toxsci/kfv243] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Smoking cigarettes is a major risk factor in the development and progression of cardiovascular disease (CVD) and chronic obstructive pulmonary disease (COPD). Modified risk tobacco products (MRTPs) are being developed to reduce smoking-related health risks. The goal of this study was to investigate hallmarks of COPD and CVD over an 8-month period in apolipoprotein E-deficient mice exposed to conventional cigarette smoke (CS) or to the aerosol of a candidate MRTP, tobacco heating system (THS) 2.2. In addition to chronic exposure, cessation or switching to THS2.2 after 2 months of CS exposure was assessed. Engaging a systems toxicology approach, exposure effects were investigated using physiology and histology combined with transcriptomics, lipidomics, and proteomics. CS induced nasal epithelial hyperplasia and metaplasia, lung inflammation, and emphysematous changes (impaired pulmonary function and alveolar damage). Atherogenic effects of CS exposure included altered lipid profiles and aortic plaque formation. Exposure to THS2.2 aerosol (nicotine concentration matched to CS, 29.9 mg/m(3)) neither induced lung inflammation or emphysema nor did it consistently change the lipid profile or enhance the plaque area. Cessation or switching to THS2.2 reversed the inflammatory responses and halted progression of initial emphysematous changes and the aortic plaque area. Biological processes, including senescence, inflammation, and proliferation, were significantly impacted by CS but not by THS2.2 aerosol. Both, cessation and switching to THS2.2 reduced these perturbations to almost sham exposure levels. In conclusion, in this mouse model cessation or switching to THS2.2 retarded the progression of CS-induced atherosclerotic and emphysematous changes, while THS2.2 aerosol alone had minimal adverse effects.
Collapse
Affiliation(s)
- Blaine Phillips
- *Philip Morris International Research Laboratories Pte Ltd, The Kendall #02-07, Science Park II, Singapore 117406
| | - Emilija Veljkovic
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Stéphanie Boué
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- WK Schlage Biology Consulting, 51429 Bergisch Gladbach, Germany; and
| | - Gregory Vuillaume
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | | | - Ashraf Elamin
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Alberto Oviedo
- *Philip Morris International Research Laboratories Pte Ltd, The Kendall #02-07, Science Park II, Singapore 117406
| | - Maciej Cabanski
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Héctor De León
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland;
| |
Collapse
|
12
|
A 7-month cigarette smoke inhalation study in C57BL/6 mice demonstrates reduced lung inflammation and emphysema following smoking cessation or aerosol exposure from a prototypic modified risk tobacco product. Food Chem Toxicol 2015; 80:328-345. [PMID: 25843363 DOI: 10.1016/j.fct.2015.03.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 01/13/2023]
Abstract
Modified risk tobacco products (MRTP) are designed to reduce smoking-related health risks. A murine model of chronic obstructive pulmonary disease (COPD) was applied to investigate classical toxicology end points plus systems toxicology (transcriptomics and proteomics). C57BL/6 mice were exposed to conventional cigarette smoke (3R4F), fresh air (sham), or a prototypic MRTP (pMRTP) aerosol for up to 7 months, including a cessation group and a switching-to-pMRTP group (2 months of 3R4F exposure followed by fresh air or pMRTP for up to 5 months respectively). 3R4F smoke induced the typical adaptive changes in the airways, as well as inflammation in the lung, associated with emphysematous changes (impaired pulmonary function and alveolar damage). At nicotine-matched exposure concentrations of pMRTP aerosol, no signs of lung inflammation and emphysema were observed. Both the cessation and switching groups showed a similar reversal of inflammatory responses and no progression of initial emphysematous changes. A significant impact on biological processes, including COPD-related inflammation, apoptosis, and proliferation, was identified in 3R4F-exposed, but not in pMRTP-exposed lungs. Smoking cessation or switching reduced these perturbations to near sham-exposed levels. In conclusion, the mouse model indicated retarded disease progression upon cessation or switching to pMRTP which alone had no adverse effects.
Collapse
|
13
|
Fujimoto H, Tsuji H, Okubo C, Fukuda I, Nishino T, Lee KM, Renne R, Yoshimura H. Biological responses in rats exposed to mainstream smoke from a heated cigarette compared to a conventional reference cigarette. Inhal Toxicol 2015; 27:224-36. [PMID: 25969858 DOI: 10.3109/08958378.2015.1027799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The heated cigarette (HC) generates mainstream smoke by vaporizing the components of the tobacco rod using a carbon heat source at the cigarette tip. Mainstream smoke of HC contains markedly less chemical constituents compared to combusted cigarettes. Mainstream smoke from HC was generated under Health Canada Intense regimen and its biological effects were compared to those of Reference (3R4F) cigarettes, using nose-only 5-week and 13-week inhalation studies. In the 13-week study, SD rats were necropsied following exposure to mainstream smoke from each cigarette at 200, 600 or 1000 µg wet total particulate matter/L for 1 h/day, 7 days/week or following a 13-week recovery period. Histopathological changes in the respiratory tract were significantly lesser in HC groups; e.g. respiratory epithelial hyperplasia in the nasal cavity and accumulation of pigmented macrophages in alveoli. After a 13-week recovery, the lesions were completely or partially regressed, except for accumulation of pigmented macrophages in alveoli, in both HC and 3R4F groups. In the 5-week study, SD rats were necropsied following exposure to mainstream smoke of either cigarette at 600 or 1000 µg/L for 1 h, two times/day (with 30 min interval), 7 days/week or following a 4-week recovery period. Bronchoalveolar lavage fluid (BALF) analysis of neutrophil percentages and enzyme levels like γ-GT, ALP and LDH indicated that pulmonary inflammation was significantly less in HC groups compared to 3R4F groups. In conclusion, HC demonstrated significantly lower biological effects compared to 3R4F, based on the BALF parameters and histopathology.
Collapse
Affiliation(s)
- Hitoshi Fujimoto
- Product and Science Division, R&D Group, Japan Tobacco Inc. , Kanagawa , Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pisinger C, Døssing M. A systematic review of health effects of electronic cigarettes. Prev Med 2014; 69:248-60. [PMID: 25456810 DOI: 10.1016/j.ypmed.2014.10.009] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To provide a systematic review of the existing literature on health consequences of vaporing of electronic cigarettes (ECs). METHODS Search in: PubMed, EMBASE and CINAHL. INCLUSION CRITERIA Original publications describing a health-related topic, published before 14 August 2014. PRISMA recommendations were followed. We identified 1101 studies; 271 relevant after screening; 94 eligible. RESULTS We included 76 studies investigating content of fluid/vapor of ECs, reports on adverse events and human and animal experimental studies. Serious methodological problems were identified. In 34% of the articles the authors had a conflict of interest. Studies found fine/ultrafine particles, harmful metals, carcinogenic tobacco-specific nitrosamines, volatile organic compounds, carcinogenic carbonyls (some in high but most in low/trace concentrations), cytotoxicity and changed gene expression. Of special concern are compounds not found in conventional cigarettes, e.g. propylene glycol. Experimental studies found increased airway resistance after short-term exposure. Reports on short-term adverse events were often flawed by selection bias. CONCLUSIONS Due to many methodological problems, severe conflicts of interest, the relatively few and often small studies, the inconsistencies and contradictions in results, and the lack of long-term follow-up no firm conclusions can be drawn on the safety of ECs. However, they can hardly be considered harmless.
Collapse
Affiliation(s)
- Charlotta Pisinger
- Research Centre for Prevention and Health, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| | - Martin Døssing
- Medicinsk Afdeling, Frederikssund Hospital, DK-3600 Frederikssund, Denmark
| |
Collapse
|
15
|
Schramke H, Roemer E, Dempsey R, Hirter J, Meurrens K, Berges A, Weiler H, Vanscheeuwijck P, Schorp M. Toxicological assessment of kretek cigarettes. Part 7: The impact of ingredients added to kretek cigarettes on inhalation toxicity. Regul Toxicol Pharmacol 2014; 70 Suppl 1:S81-9. [DOI: 10.1016/j.yrtph.2014.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
|
16
|
Toxicological assessment of kretek cigarettes Part 3: kretek and American-blended cigarettes, inhalation toxicity. Regul Toxicol Pharmacol 2014; 70 Suppl 1:S26-40. [PMID: 25455226 DOI: 10.1016/j.yrtph.2014.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 11/20/2022]
Abstract
A typical Indonesian kretek cigarette brand and an experimental kretek reference cigarette were compared to the reference cigarette 2R4F in two 90-day inhalation studies. Male and female rats were exposed nose-only to mainstream smoke for 6 hours daily, for 90 consecutive days. Biological endpoints were assessed according to OECD guideline 413, with special emphasis on respiratory tract histopathology and on lung inflammation (broncho-alveolar lavage fluid levels of neutrophils, macrophages and lymphocytes). Histopathological alterations included: in the nose, hyperplasia and squamous metaplasia of the respiratory epithelium and squamous metaplasia and atrophy of the olfactory epithelium; in the larynx, epithelial squamous metaplasia and hyperplasia; in the lungs, accumulation of macrophages in alveoli and goblet cell hyperplasia in bronchial epithelium. The findings were qualitatively consistent with observations from previous similar studies on conventional cigarettes. Compared to 2R4F cigarette, however, kretek smoke exposure was associated with a pronounced attenuation of pulmonary inflammation and less severe histopathological changes in the respiratory tract. Neutrophilic inflammation was also significantly lower (>70%). These results are consistent with the observations made on smoke chemistry and in vitro toxicology. They do not support any increased toxicity of the smoke of kretek cigarettes compared to conventional American-blended cigarettes.
Collapse
|
17
|
Younesi E, Ansari S, Guendel M, Ahmadi S, Coggins C, Hoeng J, Hofmann-Apitius M, Peitsch MC. CSEO - the Cigarette Smoke Exposure Ontology. J Biomed Semantics 2014; 5:31. [PMID: 25093069 PMCID: PMC4120729 DOI: 10.1186/2041-1480-5-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 07/03/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. RESULTS The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. CONCLUSIONS The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science.
Collapse
Affiliation(s)
- Erfan Younesi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michaela Guendel
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Shiva Ahmadi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Chris Coggins
- Carson Watts Consulting, 1266 Carson Watts Rd, King, NC 27021-7453, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
Kogel U, Schlage WK, Martin F, Xiang Y, Ansari S, Leroy P, Vanscheeuwijck P, Gebel S, Buettner A, Wyss C, Esposito M, Hoeng J, Peitsch MC. A 28-day rat inhalation study with an integrated molecular toxicology endpoint demonstrates reduced exposure effects for a prototypic modified risk tobacco product compared with conventional cigarettes. Food Chem Toxicol 2014; 68:204-17. [PMID: 24632068 DOI: 10.1016/j.fct.2014.02.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/26/2022]
Abstract
Towards a systems toxicology-based risk assessment, we investigated molecular perturbations accompanying histopathological changes in a 28-day rat inhalation study combining transcriptomics with classical histopathology. We demonstrated reduced biological activity of a prototypic modified risk tobacco product (pMRTP) compared with the reference research cigarette 3R4F. Rats were exposed to filtered air or to three concentrations of mainstream smoke (MS) from 3R4F, or to a high concentration of MS from a pMRTP. Histopathology revealed concentration-dependent changes in response to 3R4F that were irritative stress-related in nasal and bronchial epithelium, and inflammation-related in the lung parenchyma. For pMRTP, significant changes were seen in the nasal epithelium only. Transcriptomics data were obtained from nasal and bronchial epithelium and lung parenchyma. Concentration-dependent gene expression changes were observed following 3R4F exposure, with much smaller changes for pMRTP. A computational-modeling approach based on causal models of tissue-specific biological networks identified cell stress, inflammation, proliferation, and senescence as the most perturbed molecular mechanisms. These perturbations correlated with histopathological observations. Only weak perturbations were observed for pMRTP. In conclusion, a correlative evaluation of classical histopathology together with gene expression-based computational network models may facilitate a systems toxicology-based risk assessment, as shown for a pMRTP.
Collapse
Affiliation(s)
- Ulrike Kogel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Walter K Schlage
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Patrick Vanscheeuwijck
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany; Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland; Philip Morris International R&D, Philip Morris Research Laboratories bvba, Grauwmeer 14, Researchpark Haasrode, 3001 Leuven, Belgium.
| | - Stephan Gebel
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany.
| | - Ansgar Buettner
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany.
| | - Christoph Wyss
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Marco Esposito
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
19
|
Boué S, De León H, Schlage WK, Peck MJ, Weiler H, Berges A, Vuillaume G, Martin F, Friedrichs B, Lebrun S, Meurrens K, Schracke N, Moehring M, Steffen Y, Schueller J, Vanscheeuwijck P, Peitsch MC, Hoeng J. Cigarette smoke induces molecular responses in respiratory tissues of ApoE−/− mice that are progressively deactivated upon cessation. Toxicology 2013; 314:112-24. [DOI: 10.1016/j.tox.2013.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
|
20
|
Tsuji H, Fujimoto H, Matsuura D, Nishino T, Lee KM, Yoshimura H. Comparison of biological responses in rats under various cigarette smoke exposure conditions. J Toxicol Pathol 2013; 26:159-74. [PMID: 23914058 PMCID: PMC3695338 DOI: 10.1293/tox.26.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
A variety of exposure regimens of cigarette smoke have been used in animal models of lung diseases. In this study, we compared biological responses of smoke exposure in rats, using different smoke concentrations (wet total particulate matter [WTPM]), daily exposure durations, and total days of exposure. As a range-finding acute study, we first compared pulmonary responses between SD and F344 strains after a single nose-only exposure to mainstream cigarette smoke or LPS. Secondly, F344 rats were exposed to cigarette smoke for 2 or 13 weeks under the comparable daily exposure dose (WTPM concentration x daily exposure duration; according to Haber's rule) but at a different WTPM concentration or daily exposure duration. Blood carboxylhemoglobin was increased linearly to the WTPM concentration, while urinary nicotine plus cotinine value was higher for the longer daily exposure than the corresponding shorter exposure groups. Gamma glutamyl transferase activity in bronchoalveolar lavage fluid (BALF) was increased dose dependently after 2 and 13 weeks of cigarette smoke exposure, while the neutrophil content in BALF was not increased notably. Smoke-exposed groups showed reduced body weight gain and increased relative lung and heart weights. While BALF parameters and the relative lung weights suggest pulmonary responses, histopathological examination showed epithelial lesions mainly in the upper respiratory organs (nose and larynx). Collectively, the results indicate that, under the employed study design, the equivalent daily exposure dose (exposure concentration x duration) induces equivalent pulmonary responses in rats.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Product and Science Division, R&D Group, Japan Tobacco Inc., 6-2 Umegaka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Lietz M, Berges A, Lebrun S, Meurrens K, Steffen Y, Stolle K, Schueller J, Boue S, Vuillaume G, Vanscheeuwijck P, Moehring M, Schlage W, De Leon H, Hoeng J, Peitsch M. Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein E-deficient mice are attenuated by smoking cessation. Atherosclerosis 2013; 229:86-93. [DOI: 10.1016/j.atherosclerosis.2013.03.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/28/2013] [Accepted: 03/26/2013] [Indexed: 11/16/2022]
|
22
|
Zenzen V, Diekmann J, Gerstenberg B, Weber S, Wittke S, Schorp MK. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 2: Smoke chemistry and in vitro toxicological evaluation using smoking regimens reflecting human puffing behavior. Regul Toxicol Pharmacol 2012; 64:S11-34. [PMID: 22922180 DOI: 10.1016/j.yrtph.2012.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022]
Abstract
Chemical analysis of up to 49 harmful and potentially harmful constituents (HPHC) in mainstream smoke, in vitro cytotoxicity of the particulate and gas/vapor phase of mainstream smoke determined in the Neutral Red Uptake assay, and in vitro bacterial mutagenicity of the particulate phase determined in the Salmonella typhimurium Reverse Mutation (Ames) assay are reported for three Electrically Heated Cigarette Smoking System (EHCSS) series-K cigarettes, the University of Kentucky Reference Cigarette 2R4F, and a number of comparator commercial conventional lit-end cigarettes (CC) under ISO machine-smoking conditions and a total of 25 additional smoking regimens reflecting 'human puffing behavior' (HPB). The smoking machines were set to deliver nicotine yields for the EHCSS and comparator CC derived from the 10th percentile to the 90th percentile of nicotine uptake distributions in smokers determined in two clinical studies. Duplication of the smoking intensity 'per cigarette' on a smoking machine may provide an insight into product performance that is directly relevant to obtaining scientific evidence for reduced exposure substantiation based on mainstream cigarette smoke HPHC-to-nicotine regressions. The reported data support an overall evaluation of reduced exposure to HPHC and biological activity.
Collapse
Affiliation(s)
- Volker Zenzen
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Schorp MK, Tricker AR, Dempsey R. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 1: Non-clinical and clinical insights. Regul Toxicol Pharmacol 2012; 64:S1-10. [PMID: 22940435 DOI: 10.1016/j.yrtph.2012.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/16/2023]
Abstract
The following series of papers presents an extensive assessment of the Electrically Heated Cigarette Smoking System EHCSS series-K cigarette vs. conventional lit-end cigarettes (CC) as an example for an extended testing strategy for evaluation of reduced exposure. The EHCSS produces smoke through electrical heating of tobacco. The EHCSS series-K heater was designed for exclusive use with EHCSS cigarettes, and cannot be used to smoke (CC). Compared to the University of Kentucky Reference Research cigarette 2R4F and a series of commercial CC, mainstream cigarette smoke of both the non-menthol and menthol-flavored EHCSS cigarettes showed a reduced delivery of a series of selected harmful and potentially harmful constituents (HPHC), mutagenic activity determined using the Salmonella typhimurium Reverse Mutation (Ames) assay, and cytotoxicity in the Neutral Red Uptake Assay. Clinical evaluations confirmed reduced exposure to HPHC and excretion of mutagenic material under controlled clinical conditions. Reductions in HPHC exposure were confirmed in a real-world ambulatory clinical study. Potential biomarkers of cardiovascular risk were also reduced under real-world ambulatory conditions. A modeling approach, 'nicotine bridging', was developed based on the determination of nicotine exposure in clinical evaluations which indicated that exposure to HPHC for which biomarkers of exposure do not exist would also be reduced.
Collapse
Affiliation(s)
- Matthias K Schorp
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | | | | |
Collapse
|
24
|
Roemer E, Schorp MK, Piadé JJ, Seeman JI, Leyden DE, Haussmann HJ. Scientific assessment of the use of sugars as cigarette tobacco ingredients: a review of published and other publicly available studies. Crit Rev Toxicol 2012; 42:244-78. [PMID: 22263649 PMCID: PMC3296517 DOI: 10.3109/10408444.2011.650789] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/10/2011] [Accepted: 12/14/2011] [Indexed: 11/13/2022]
Abstract
Sugars, such as sucrose or invert sugar, have been used as tobacco ingredients in American-blend cigarettes to replenish the sugars lost during curing of the Burley component of the blended tobacco in order to maintain a balanced flavor. Chemical-analytical studies of the mainstream smoke of research cigarettes with various sugar application levels revealed that most of the smoke constituents determined did not show any sugar-related changes in yields (per mg nicotine), while ten constituents were found to either increase (formaldehyde, acrolein, 2-butanone, isoprene, benzene, toluene, benzo[k]fluoranthene) or decrease (4-aminobiphenyl, N-nitrosodimethylamine, N-nitrosonornicotine) in a statistically significant manner with increasing sugar application levels. Such constituent yields were modeled into constituent uptake distributions using simulations of nicotine uptake distributions generated on the basis of published nicotine biomonitoring data, which were multiplied by the constituent/nicotine ratios determined in the current analysis. These simulations revealed extensive overlaps for the constituent uptake distributions with and without sugar application. Moreover, the differences in smoke composition did not lead to relevant changes in the activity in in vitro or in vivo assays. The potential impact of using sugars as tobacco ingredients was further assessed in an indirect manner by comparing published data from markets with predominantly American-blend or Virginia-type (no added sugars) cigarettes. No relevant difference was found between these markets for smoking prevalence, intensity, some markers of dependence, nicotine uptake, or mortality from smoking-related lung cancer and chronic obstructive pulmonary disease. In conclusion, thorough examination of the data available suggests that the use of sugars as ingredients in cigarette tobacco does not increase the inherent risk and harm of cigarette smoking.
Collapse
Affiliation(s)
- Ewald Roemer
- Philip Morris International Management S.A., Operations Technical Services, Neuchâtel, Switzerland.
| | | | | | | | | | | |
Collapse
|
25
|
Discriminatory power of standard toxicity assays used to evaluate ingredients added to cigarettes. Regul Toxicol Pharmacol 2011; 62:49-61. [PMID: 22178773 DOI: 10.1016/j.yrtph.2011.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/24/2022]
Abstract
A tiered approach for testing ingredients in a cigarette matrix was developed and includes chemical-analytical testing and a standard battery of biological toxicity assays. These assays were adapted for comparative evaluation of mainstream smoke from experimental cigarettes with or without ingredients at various inclusion levels. This adaptation to test cigarette mainstream smoke may impact assay response. Since it is difficult to a priori determine discriminatory power, it was evaluated using a large experimental dataset from a multi-year program of cigarette ingredient testing performed at two separate laboratories. A statistical method, minimum detectable difference (MDD), was used as a measure of assay discriminatory power. MDD of cigarette smoke constituents ranged from 6% to 29% of the average. Salmonella mutagenicity and cytotoxicity test MDDs ranged from 20% to 81% and 18% to 49%, respectively. Body weight gain in 90-day nose-only inhalation studies yielded an MDD of 30-40%. Histopathological findings with severity scores between 0.5 and 1.5 had the lowest MDDs of 23% and higher. In general, discriminatory power decreased with increasing biological complexity and toxicological relevance of the assay. Beyond statistical analysis, however, a weight-of-the-evidence analysis by experienced researchers is required for toxicological assessment of a cigarette ingredient.
Collapse
|
26
|
Gaworski CL, Oldham MJ, Coggins CRE. Toxicological considerations on the use of propylene glycol as a humectant in cigarettes. Toxicology 2010; 269:54-66. [PMID: 20079797 DOI: 10.1016/j.tox.2010.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/21/2009] [Accepted: 01/06/2010] [Indexed: 11/30/2022]
Abstract
Propylene glycol (PG) is a humectant commonly used in cigarettes. Previous toxicological examinations of the effects on the addition of PG to tobacco used mixtures with several other flavoring agents. In the present work, toxicological comparisons were made of experimental cigarettes containing no added PG against otherwise similar cigarettes with three different amounts of PG added to the tobacco. The main toxicological comparison was a sub-chronic inhalation study with mainstream smoke in Sprague-Dawley rats (exposures of 150 mg/m(3) of total particulate matter, 6h exposure per day, for 90 consecutive days). The target PG concentrations in the tobacco of the four cigarette types were 0, 4, 7 and 10%. Additional studies with mainstream smoke were bacterial mutagenicity (5 Salmonella strains, both with and without metabolic activation, particulate phase only), cytotoxicity of both particulate and gas/vapor phases (using the neutral red uptake assay), and analytical chemistry (41 analytes). The graded inclusion of PG into experimental cigarettes resulted in increases in the smoke concentrations of propylene oxide, at very low concentrations. Broadly similar responses were seen across the four cigarette types, and the responses were similar to those previously described in the scientific literature. The addition of PG to experimental cigarettes reduced concentrations of some smoke components (e.g. nicotine), but had minimal effects on the biological responses. Most of the changes produced in the 90-days of exposure were resolved in a 42-day post-inhalation period.
Collapse
Affiliation(s)
- Charles L Gaworski
- Altria Client Services, 601 East Jackson Street, Richmond, VA 23261, USA.
| | | | | |
Collapse
|
27
|
Gaworski CL, Schramke H, Diekmann J, Meisgen TJ, Tewes FJ, Veltel DJ, Vanscheeuwijck PM, Rajendran N, Muzzio M, Haussmann HJ. Effect of filtration by activated charcoal on the toxicological activity of cigarette mainstream smoke from experimental cigarettes. Inhal Toxicol 2009; 21:688-704. [PMID: 19555222 DOI: 10.1080/08958370802406290] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Activated charcoal (AC) filtration reportedly decreases the yields of smoke vapor phase constituents including some identified as human carcinogens and respiratory irritants. Non-clinical studies including chemical smoke analysis, in vitro cytotoxicity and mutagenicity (bacterial and mammalian cells), and in vivo subchronic rat inhalation studies were carried out using machine smoking at ISO conditions with lit-end research cigarettes containing AC filters. The objective was to assess whether AC filter technology would alter the established toxicity profile of mainstream smoke by increasing or decreasing any known toxicological properties, or elicit new ones. The reduced yield of vapor phase irritants from AC filter cigarettes correlated with markedly decreased in vitro cytotoxicity and in vivo morphology of the nose and lower respiratory tract. Increased yields of particulate phase constituents (e.g. polycyclic aromatic hydrocarbons) in AC filtered smoke were noted in comparison to controls in some studies. The in vitro bacterial mutagenicity of AC filtered smoke particulate preparations was occasionally increased over control levels. Laryngeal epithelial thickness was increased in some rats inhaling AC filtered smoke in comparison to controls, an effect perhaps related to higher inspiratory flow. When tested under more intense Massachusetts Department of Public Health smoking conditions, AC filter associated reductions in vapor phase constituent yields were smaller than those seen with ISO conditions, but the effect on in vitro cytotoxicity remained.
Collapse
|
28
|
Tricker AR, Schorp MK, Urban HJ, Leyden D, Hagedorn HW, Engl J, Urban M, Riedel K, Gilch G, Janket D, Scherer G. Comparison of Environmental Tobacco Smoke (ETS) Concentrations Generated by an Electrically Heated Cigarette Smoking System and a Conventional Cigarette. Inhal Toxicol 2009; 21:62-77. [DOI: 10.1080/08958370802207334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Smoke chemistry, in vitro and in vivo toxicology evaluations of the electrically heated cigarette smoking system series K. Regul Toxicol Pharmacol 2008; 52:122-39. [DOI: 10.1016/j.yrtph.2008.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 11/24/2022]
|
30
|
Lemus R, Carmines EL, Van Miert E, Coggins CRE, Anskeit E, Gerstenberg B, Meisgen TJ, Schramke H, Stabbert R, Völkel H, Terpstra PM. Toxicological Comparisons of Cigarettes Containing Different Amounts of Vanillin. Inhal Toxicol 2008; 19:683-99. [PMID: 17510840 DOI: 10.1080/08958370701353205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vanillin is a flavoring agent used in cigarettes. Previous toxicological examinations of the effects on the addition of vanillin to tobacco used mixtures with several other flavoring agents. In the present work, toxicological comparisons were made of experimental cigarettes containing no added vanillin against otherwise similar cigarettes with three different amounts of vanillin added to the tobacco. The main toxicological comparison was a subchronic inhalation study with mainstream smoke in Sprague-Dawley rats (exposures of 150 mg/m3 of total particulate matter, 6 h exposure per day, for 90 consecutive days). Vanillin concentrations in the tobacco of the 4 cigarette types at the end of the study were 0, 67, 1233, and 3109 ppm. Additional studies with mainstream smoke were Salmonella mutagenicity (5 bacterial strains, both with and without metabolic activation, particulate phase only), cytotoxicity of both particulate and gas/vapor phases (using the neutral red uptake assay), and analytical chemistry (49 analytes, including 5 metals). Similar responses were seen across the four cigarette types, and the responses were similar to those previously described in the scientific literature. At the same smoke concentration, the inhalation exposures produced effectively the same responses, in each of the four groups. Most of the changes produced in the 90 days of exposure were resolved in a 42-day postinhalation period. The addition of vanillin to tobacco at inclusion rates up to 3109 ppm did not influence a broad range of toxicological endpoints.
Collapse
Affiliation(s)
- Ranulfo Lemus
- Philip Morris USA, Inc., Richmond, Virginia 23234, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Patskan GJ, Podraza KF, Meurrens K, Coggins CRE, Friedrichs B, Gerstenberg B, Gomm W, Schnell P, Stabbert R, Veltel D, Weber S, Terpstra P. Toxicological comparisons of three styles of a commercial U.S. cigarette (Marlboro with the 1R4F reference cigarette. Inhal Toxicol 2008; 20:695-721. [PMID: 18464057 DOI: 10.1080/08958370801935174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Toxicological comparisons were made of three commercial cigarettes, namely Marlboro full flavor, Marlboro Lights, and Marlboro Ultra Lights, with the 1R4F reference cigarette. The main comparison was a 90-d inhalation study with mainstream smoke at 150 mg total particulate matter per cubic meter, in Sprague-Dawley rats using 6 h/d and 7 d/w exposures. The principal endpoint was histopathology of the respiratory tract, along with examinations of free lung cell counts after broncho-alveolar lavage. Additional studies on mainstream smoke included Salmonella mutagenicity, cytotoxicity of particulate and gas/vapor phases, and analytical chemistry. The exposures produced effectively the same responses in each of the four groups, and the histopathology results in the commercial cigarette groups were also effectively the same. The 1R4F was also tested at 75 and 200 mg/m(3), and most of the histopathology results obtained here showed dose-response relationships. The free lung cell responses were similar in the 1R4F/commercial cigarette comparison, and there were dose-related changes in the 1R4F groups, most notably for neutrophils. Most of the changes produced in the 90-d of exposure were resolved in a 42-d post-inhalation period. Responses in the in vitro and analytical assays for the four cigarettes were in general similar, when data were expressed either per mg TPM or per mg tar yield. There were judged to be no toxicologically meaningful differences between the profiles evaluated at similar smoke concentrations for the three commercial cigarettes and for the 1R4F using these assays.
Collapse
|
32
|
Moennikes O, Vanscheeuwijck PM, Friedrichs B, Anskeit E, Patskan GJ. Reduced toxicological activity of cigarette smoke by the addition of ammonia magnesium phosphate to the paper of an electrically heated cigarette: subchronic inhalation toxicology. Inhal Toxicol 2008; 20:647-63. [PMID: 18464053 PMCID: PMC2442902 DOI: 10.1080/08958370701813273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 11/17/2007] [Indexed: 11/09/2022]
Abstract
Cigarette smoke is a complex chemical mixture that causes a variety of diseases, such as lung cancer. With the electrically heated cigarette smoking system (EHCSS), temperatures are applied to the tobacco below those found in conventional cigarettes, resulting in less combustion, reduced yields of some smoke constituents, and decreased activity in some standard toxicological tests. The first generation of electrically heated cigarettes (EHC) also resulted in increased formaldehyde yields; therefore, a second generation of EHC was developed with ammonium magnesium phosphate (AMP) in the cigarette paper in part to address this increase. The toxicological activity of mainstream smoke from these two generations of EHC and of a conventional reference cigarette was investigated in two studies in rats: a standard 90-day inhalation toxicity study and a 35-day inhalation study focusing on lung inflammation. Many of the typical smoke exposure-related changes were found to be less pronounced after exposure to smoke from the second-generation EHC with AMP than to smoke from the first-generation EHC or the conventional reference cigarette, when compared on a particulate matter or nicotine basis. Differences between the EHC without AMP and the conventional reference cigarette were not as prominent. Overall, AMP incorporated in the EHC cigarette paper reduced the inhalation toxicity of the EHCSS more than expected based on the observed reduction in aldehyde yields.
Collapse
Affiliation(s)
- O Moennikes
- Philip Morris Products S.A., PMI Research and Development, Neuchâtel, Switzerland.
| | | | | | | | | |
Collapse
|
33
|
Roemer E, Stabbert R, Veltel D, Müller BP, Meisgen TJ, Schramke H, Anskeit E, Elves RG, Fournier JA. Reduced toxicological activity of cigarette smoke by the addition of ammonium magnesium phosphate to the paper of an electrically heated cigarette: smoke chemistry and in vitro cytotoxicity and genotoxicity. Toxicol In Vitro 2008; 22:671-81. [PMID: 18261880 DOI: 10.1016/j.tiv.2007.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/16/2007] [Accepted: 12/19/2007] [Indexed: 11/28/2022]
Abstract
The effects of the addition of ammonium magnesium phosphate (AMP) to the paper of an electrically heated cigarette (EHC) prototype on smoke composition and toxicity were quantified and the underlying mechanisms investigated. Smoke from EHC prototypes with and without AMP and from conventional cigarettes, i.e. the University of Kentucky Standard Reference Cigarette 1R4F and eight American-blend market cigarettes, was compared. Endpoints for comparison were smoke chemistry, where toxic constituents were measured, cytotoxic activity, as measured in murine fibroblasts embryo cells by the Neutral Red Uptake Assay, and genotoxic activity, as measured in bacteria by the Salmonella Reverse Mutation Assay and in murine lymphoma cells by the TK Assay. The addition of AMP to the EHC led to a reduction of toxic substances and toxicological activity of approximately 30% compared to the EHC without AMP. Compared to the conventional cigarettes, the EHC with AMP showed reductions of 75-90%. Smoke from the EHCs generated in nitrogen atmospheres supplemented with different concentrations of ammonia and oxygen was assayed for its in vitro cytotoxicity and genotoxicity. The results indicate that the ammonia released by AMP at the heating site of the EHC is responsible for the reductions in cytotoxicity and mutagenicity for the EHC with AMP compared with the EHC without AMP. Thus, while the EHC approach distinctly reduces toxic smoke constituents compared to conventional cigarettes, the use of AMP in the paper of an EHC leads to further distinct reductions. In the study presented here, in vitro assays were used as quantitative tools to investigate toxicity-related mechanisms.
Collapse
Affiliation(s)
- E Roemer
- Philip Morris Products S.A., PMI Research and Development, 2000 Neuchatel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gaworski CL, Coggins CRE, Carmines EL. Palladium alters cigarette smoke toxicological profile, but accumulates in the lungs of rats during inhalation exposure. Inhal Toxicol 2008; 20:167-82. [PMID: 18236231 DOI: 10.1080/08958370701821284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The use of a palladium (Pd) catalyst has been proposed to promote combustion of tobacco, thereby reducing concentrations of certain toxic components of smoke, including polyaromatic hydrocarbons (PAHs). In the present work, toxicological comparisons were made using experimental cigarettes containing no added Pd, against otherwise similar cigarettes containing three different amounts of Pd as potassium tetrachloropalladate added to the tobacco. A full analysis of smoke chemistry was made, along with a subchronic 90-day inhalation study with mainstream smoke (rats exposed to 150 mg/m(3) of total particulate matter, 6 h/day for 90 consecutive days) and in vitro evaluations of Salmonella mutagenicity, cytotoxicity, and in vivo clastogenicity (micronucleus). Addition of Pd to the tobacco resulted in 20-30% reductions in the concentrations of 6 PAHs and 2 aromatic amines, but it also resulted in transfer of Pd to smoke and in 10-50% increases in concentrations of several tobacco-specific nitrosamines. Mutagenicity was reduced by about 50% in 2 of 5 strains of Salmonella (with S9 only), while the cytotoxicity and micronucleus assays showed no changes. Histopathology responses were similar across the four smoke inhalation groups. Smoke Cd was reduced by 40-70% in the smoke, leading to lower lung concentrations; however, the presence of Pd in smoke led to accumulation of Pd in the lungs increasing in both a dose-and an exposure-related manner. While catalysts such as Pd addition may alter the typical chemical/toxicological profile of smoke, a concern arises regarding the "risk-benefit" of the addition of such chemically active materials as Pd to cigarette tobacco, leading to potential pulmonary accumulation with unknown consequences.
Collapse
|
35
|
Lu B, Kerepesi L, Wisse L, Hitchman K, Meng QR. Cytotoxicity and gene expression profiles in cell cultures exposed to whole smoke from three types of cigarettes. Toxicol Sci 2007; 98:469-78. [PMID: 17494027 DOI: 10.1093/toxsci/kfm112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study was to evaluate and compare the cytotoxicity and gene expression profiles in cell cultures exposed to whole smoke generated from a full flavor cigarette (Test 1), a low tar cigarette (Test 2), and an ultra-low tar cigarette (Test 3). In addition, a reference cigarette 2R4F was evaluated for cytotoxicity. Neutral red (NR) cytotoxicity assay was performed to determine relative cell death at each exposure concentration (n = 6). LC(50) was generated using wet total particular matter (WTPM), cigarette number, or nicotine concentrations. The overall order of cytotoxicity was Test 1 >> 2R4F approximately Test 2 > Test 3. Cell culture samples were collected for RNA extraction at WTPM concentrations of each cigarette that gave similar nicotine concentrations. Affymetrix mouse whole genome 430 2.0 array was used to characterize the gene expression profiles for each cigarette. A total of 598 genes in Test 1, 176 genes in Test 2, and 234 genes in Test 3 samples were differentially expressed compared to the concurrent sham controls. The major biological processes associated with the changed genes in Test 1 samples were down-regulated DNA replication and cell proliferation; the same biological processes were much less affected in Test 2 and Test 3 samples. The common findings in all three cigarettes types were increased glutathione biosynthesis/consumption and inflammatory response, which are known biological effects caused by smoke exposure. The most significantly up-regulated genes were CYP1A1, GSTs, Hmox1, and Procr in smoke-exposed samples, which are either related to well-studied mechanisms of smoke exposure-related diseases or potential new biomarkers for assessing and monitoring biological effects of cigarette smoke exposure in vivo and in smokers. In summary, both the NR cytotoxicity assay and gene expression profiling were able to differentiate the three types of test cigarettes, and the results demonstrated reduced biological effects for the Test 2 and Test 3 cigarettes compared to the Test 1 cigarette in BALB/c-3T3 Cells.
Collapse
Affiliation(s)
- Binbin Lu
- Batttelle Toxicology Northwest, 902 Battelle Boulevard, PO Box 999, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
36
|
Counts ME, Hsu FS, Tewes FJ. Development of a commercial cigarette "market map" comparison methodology for evaluating new or non-conventional cigarettes. Regul Toxicol Pharmacol 2006; 46:225-42. [PMID: 16989926 DOI: 10.1016/j.yrtph.2006.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Indexed: 11/17/2022]
Abstract
A "market map" comparison methodology for cigarette smoke chemistry yields is presented. Federal Trade Commission machine-method smoke chemistry was determined for a range of filtered cigarettes from the US marketplace. These data were used to develop illustrative market maps for each smoke constituent as analytical tools for comparing new or non-conventional cigarettes to a sampling of the broader range of marketplace cigarettes. Each market map contained best-estimate "market-means," showing the relationship between commercial cigarette constituent and tar yields, and yield "market ranges" defined by prediction intervals. These market map means and ranges are the basis for comparing new cigarette smoke yields to those of conventional cigarettes. The potential utility of market maps for evaluating differences in smoke chemistry was demonstrated with 1R4F and 2R4F Kentucky reference cigarettes, an Accord cigarette, and an Advance cigarette. Conventional cigarette tobacco nicotine, nitrate, soluble ammonia, and tobacco specific nitrosamine levels are reported. Differences among conventional cigarette constituent yields at similar tar levels were explained in part by the chemical composition range of those cigarette tobaccos. The study also included a comparison of smoke constituent yields and in vitro smoke cytotoxicity and mutagenicity assay results for the 1R4F Kentucky reference cigarette and its replacement 2R4F. Significant smoke yield differences were noted for lead, NNK, and NNN. The majority of their smoke constituent yields were within the market range developed from the sampled conventional cigarettes. Within the sensitivity and specificity of the in vitro bioassays used, smoke toxic activity differences for the two reference cigarettes were not statistically significant. These results add to the limited information available for the 2R4F reference cigarette.
Collapse
Affiliation(s)
- M E Counts
- Philip Morris USA Research Center, PO Box 23234, Richmond, VA 23261, USA.
| | | | | |
Collapse
|
37
|
Van Miert E, Dumont X, Bernard A. CC16 as a marker of lung epithelial hyperpermeability in an acute model of rats exposed to mainstream cigarette smoke. Toxicol Lett 2005; 159:115-23. [PMID: 16165332 DOI: 10.1016/j.toxlet.2005.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/02/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
The Clara cell secretory protein (CC16), which is produced along the tracheal-bronchial tree, has been shown to be a sensitive marker for the detection of lung hyperpermeability. Cigarette smoke inhalation has been associated with increased lung epithelial permeability. In this study we investigated the changes in CC16 in serum and bronchoalveolar lavage fluid (BALF) from female Sprague Dawley rats after a single exposure (2 x 1 h) to diluted mainstream cigarette smoke (MS) from the Reference Cigarette 2R4F. Rats were nose-only exposed to MS at concentrations of 0 (sham exposure), 250, 500, 750, 1000 or 1250 microg total particulate matter per liter. At 2, 4, 15 and 24h after exposure, serum and BALF-samples were collected. CC16 was determined in BALF and serum. Albumin in BALF, another marker for lung permeability was also determined. A trend towards a lower CC16 recovery was observed in BALF from smoke-exposed rats. The CC16 concentration in serum showed a marked (up to five-fold) concentration- and time-dependent increase after MS exposure. The increase of CC16 in serum was most prominent at the early timepoints, i.e. 2 and 4 h after exposure, and a return to baseline concentrations was obvious at 24 h after exposure. The effect of MS exposure on the amount of albumin in BALF was limited (up to 60% increase). This study clearly showed that CC16 is a good marker for the assessment of the increased permeability of the lung/blood barrier after MS-exposure.
Collapse
Affiliation(s)
- E Van Miert
- Unit of Industrial Toxicology and Occupational Medicine, Department of Public Health, Catholic University of Louvain, Brussels, Belgium.
| | | | | |
Collapse
|
38
|
Stabbert R, Voncken P, Rustemeier K, Haussmann HJ, Roemer E, Schaffernicht H, Patskan G. Toxicological evaluation of an electrically heated cigarette. Part 2: Chemical composition of mainstream smoke. J Appl Toxicol 2003; 23:329-39. [PMID: 12975772 DOI: 10.1002/jat.924] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chemical composition of mainstream smoke from an electrically heated cigarette (EHC) and that of mainstream smoke from the University of Kentucky Reference Cigarette 1R4F was analyzed. In contrast to the 1R4F, which is a conventional, lit-end cigarette, the EHC is smoked in a microprocessor-controlled lighter with electrical heater elements. The electrical heating causes the tobacco under the heater element to burn at a low temperature during each puff. A comprehensive list of chemical constituents was analyzed in mainstream smoke. The list is a combination of those compounds suggested for analysis in cigarette smoke by a US Consumer Product Safety Commission proposal in 1993, and those cigarette smoke constituents identified by the International Agency on Research on Cancer as being present in cigarette smoke and characterized as carcinogens. The low pyrolysis/combustion temperature of tobacco in the EHC causes distinct shifts in the composition of the smoke compared with a conventional cigarette. A significant drop was seen in the yields of almost all toxicologically relevant constituents. On a per cigarette basis almost two-thirds of the constituents were reduced by at least 80%, whereas on an equal total particulate matter basis about two-thirds of the constituents were reduced by at least 50%, with many constituents reduced by more than 90%.
Collapse
Affiliation(s)
- R Stabbert
- Philip Morris Research Laboratories, Fuggerstrasse 3, D-51149 Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Patskan G, Reininghaus W. Toxicological evaluation of an electrically heated cigarette. Part 1: Overview of technical concepts and summary of findings. J Appl Toxicol 2003; 23:323-8. [PMID: 12975771 DOI: 10.1002/jat.923] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This series of papers provides a description of the toxicological evaluation of an electrically heated cigarette (EHC). With this novel cigarette design the tobacco is heated by a series of electric heating elements, which allows for greater control of the available heat and results in lower temperatures and less combustion compared with conventional lit-end cigarettes. This design was subjected to testing, including an evaluation of smoke chemistry, in vitro bacterial genotoxicity, in vitro mammalian cell cytotoxicity and a 90-day smoke inhalation study in rats. A conventional lit-end cigarette, the University of Kentucky Reference Cigarette 1R4F, was used as a point of comparison in these experiments. When adjusted for the yield of total particulate matter, the EHC delivered 50% lower amounts of about two-thirds of the 69 smoke constituents measured. Mutagenic activity (Salmonella reverse mutation assay) of the particulate phase material in the presence of metabolic activation was ca. 90% lower, with a slight reduction of activity in the absence of metabolic activation. Cytotoxic activity (neutral red assay) of the particulate phase material was ca. 40% lower, with about equal activity of the gas/vapor-phase material. Equal activity was noted between cigarette types in a whole smoke rat inhalation assay. The results from this series of tests demonstrate that the EHC produces a much different smoke--with an at least partially reduced yield of smoke constituents and biological activity--from that of a standard reference cigarette.
Collapse
Affiliation(s)
- G Patskan
- Philip Morris USA, RD&E, Research Center, 4201 Commerce Road, Richmond, VA 23234, USA.
| | | |
Collapse
|