1
|
Pathology of triple negative breast cancer. Semin Cancer Biol 2020; 72:136-145. [PMID: 32544511 DOI: 10.1016/j.semcancer.2020.06.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast tumor lacking hormone receptors expression and HER2 gene amplification and represents 24 % of newly diagnosed breast neoplasms. In this review, pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the seminal studies that defined this subtype of breast cancer by a molecular point of view. This paper also focuses on practical issues raised in clinical routine by the introduction of genetic expression breast cancer profiling and the innovative prognostic and predictive impact on triple-negative breast cancer pathology. Moreover, histopathological aspects of triple-negative neoplasms are also mentioned, underlying the importance of histologic diagnosis of particular cancer subtypes with decisive impact on clinical outcome. Importantly, focus on new therapeutic frontier represented by immunotherapy is illustrated, with particular mention of immune checkpoint inhibitors introduction in TNBC therapy and their impact on future treatments.
Collapse
|
2
|
Grassi TF, Bidinotto LT, Lopes GAD, Zapaterini JR, Rodrigues MAM, Barbisan LF. Maternal western-style diet enhances the effects of chemically-induced mammary tumors in female rat offspring through transcriptome changes. Nutr Res 2018; 61:41-52. [PMID: 30683438 DOI: 10.1016/j.nutres.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that early life intake of high-fat diet or western-style diet (WD) enhances the development of mammary tumors in adult female rats. Thus, we hypothesized that maternal WD throughout pregnancy and the lactation period could speed up the development of MNU-induced mammary tumors and alter their gene expression. For this, the present study investigated the gene expression profile of chemically-induced mammary tumors in female rat offspring from dams fed a WD or a control diet. Pregnant female Sprague-Dawley rats received a WD (high-fat, low-fiber and oligoelements) or a control diet from gestational day 12 until post-natal day (PND) 21. At PND 21, female offspring received a single dose of N-Methyl-N-Nitrosourea (MNU, 50 mg/kg body weight) and were fed a control diet for 13 weeks. Tumor incidence, multiplicity, and latency were recorded and mammary gland samples were collected for histopathology and gene expression analysis. Tumor multiplicity and histological grade were significantly higher and tumor latency was lower in WD offspring compared to control offspring. Transcriptome profiling identified 57 differentially expressed genes in tumors from WD offspring as compared to control offspring. There was also an increase in mRNA expression of genes such as Emp3, Ccl7, Ets1, Abcc5, and Cyr61, indicative of more aggressive disease detected in tumors from WD offspring. Thus, maternal WD diet increased MNU-induced mammary carcinogenesis in adult female offspring through transcriptome changes that resulted in a more aggressive disease.
Collapse
Affiliation(s)
- Tony F Grassi
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil; UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata -FACISB, Barretos 14785-002, SP, Brazil
| | - Gisele A D Lopes
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil
| | - Joyce R Zapaterini
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil; UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil
| | - Maria A M Rodrigues
- UNESP - Univ. Estadual Paulista, Botucatu Medical School, Department of Pathology, Botucatu, 18610-307, SP, Brazil
| | - Luís F Barbisan
- UNESP - Univ. Estadual Paulista, Institute of Biosciences of Botucatu, Department of Morphology, Botucatu 18618-689, SP, Brazil.
| |
Collapse
|
3
|
Okita Y, Kimura M, Xie R, Chen C, Shen LTW, Kojima Y, Suzuki H, Muratani M, Saitoh M, Semba K, Heldin CH, Kato M. The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB. Sci Signal 2017; 10:10/474/eaak9397. [DOI: 10.1126/scisignal.aak9397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Cai YD, Zhang Q, Zhang YH, Chen L, Huang T. Identification of Genes Associated with Breast Cancer Metastasis to Bone on a Protein–Protein Interaction Network with a Shortest Path Algorithm. J Proteome Res 2017; 16:1027-1038. [DOI: 10.1021/acs.jproteome.6b00950] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu-Dong Cai
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Qing Zhang
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Yu-Hang Zhang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Lei Chen
- College
of Information Engineering, Shanghai Maritime University, Shanghai 201306, People’s Republic of China
| | - Tao Huang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| |
Collapse
|
5
|
Dontu G, Ince TA. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation. J Mammary Gland Biol Neoplasia 2015; 20:51-62. [PMID: 26286174 PMCID: PMC4595531 DOI: 10.1007/s10911-015-9341-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022] Open
Abstract
Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.
Collapse
Affiliation(s)
- Gabriela Dontu
- Stem Cell Group, Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London School of Medicine, 3rd Floor Bermondsey Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Tan A Ince
- Sylvester Comprehensive Cancer Center, Braman Family Breast Cancer Institute, Interdisciplinary Stem Cell Institute and Department of Pathology, University of Miami Miller School of Medicine, 1501 NW 10th Ave., Miami, 33136, FL, USA.
| |
Collapse
|
6
|
Pavlidou A, Kroupis C, Dimas K. Association of survivin splice variants with prognosis and treatment of breast cancer. World J Clin Oncol 2014; 5:883-894. [PMID: 25493226 PMCID: PMC4259950 DOI: 10.5306/wjco.v5.i5.883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/01/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was the overview of current knowledge regarding the use of survivin and its isoforms in prognosis and treatment of breast cancer. An advanced search of Medline was performed using the following search strategy: “(survivin isoforms) OR (survivin transcript variants) AND (breast cancer) AND (neoplasm OR tumor OR cancer OR carcinoma)”. Relevant studies were retrieved and processed thoroughly in order to analyze the related data. Besides wild-type survivin full-length transcript, another six splice variants have been identified. Overexpression of survivin and its isoforms leads to shorter overall and disease-free survival; the transcript variants are correlated with apoptosis and could assist prognosis prediction. It has been proved through numerous studies that inhibiting survivin isoforms might become a promising target of drug therapy of carcinomas. Use of small molecule YM155 could offer new therapy for triple negative breast cancer patients, while, chemotherapy with 5-fluorouracil + epirubicin + cyclophosphamide and Tax-Epi could be guided by survivin splice variants measurements. Survivin transcript variants could become prognostic biomarkers and could provide information about clinical management of patients suffering from breast cancer.
Collapse
|
7
|
Sternemalm J, Russnes HG, Zhao X, Risberg B, Nord S, Caldas C, Børresen-Dale AL, Stokke T, Patzke S. Nuclear CSPP1 expression defined subtypes of basal-like breast cancer. Br J Cancer 2014; 111:326-38. [PMID: 24901235 PMCID: PMC4102947 DOI: 10.1038/bjc.2014.297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/24/2014] [Accepted: 05/09/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The multi-exon CSPP1 gene, encoding for centrosome and microtubule-associated proteins involved in ciliogenesis and cell division, is a candidate oncogene in luminal breast cancer but expression of CSPP1 proteins remained unexplored. METHODS CSPP1 gene and protein expression was examined in normal mammary tissue, human breast cancer cell lines, and primary breast cancer biopsies from two patient cohorts. Cell type and epitope-dependent subcellular-specific CSPP1 staining pattern in normal mammary gland epithelium and cancer biopsies were correlated to molecular and clinical parameters. RESULTS A novel, nuclear localised CSPP1 isoform was exclusively detected in luminal epithelial cells, whereas cytoplasmic CSPP-L was generally expressed in normal mammary epithelium. Luminal cell-related nuclear CSPP1 expression was preserved in type-matched cell lines and carcinomas, and correlated to gene copy number and mRNA expression. In contrast, basal-like carcinomas displayed generally lower CSPP1 mRNA expression. Yet, a subgroup of basal-like breast carcinomas depicted nuclear CSPP1 expression, displayed luminal traits, and differed from nuclear CSPP1 devoid counterparts in expression of eight genes. Eight-gene signature defined groups of basal-like tumours from an independent cohort showed significant differences in survival. CONCLUSIONS Differential expression of a nuclear CSPP1 isoform identified biologically and clinically distinct subgroups of basal-like breast carcinoma.
Collapse
Affiliation(s)
- J Sternemalm
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - H G Russnes
- 1] Departments of Genetics, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway [2] Department of Pathology, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway [3] K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, N-0310 Oslo, Norway
| | - X Zhao
- Center for Cancer Systems Biology, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - B Risberg
- 1] Department of Pathology, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway [2] Institute for Medical Informatics, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - S Nord
- 1] Departments of Genetics, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway [2] K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, N-0310 Oslo, Norway
| | - C Caldas
- 1] Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK [2] Department of Oncology, University of Cambridge, Li Ka-Shing Centre, Robinson Way, Cambridge CB2 0RE, UK [3] Cambridge Breast Unit, Addenbrooke's Hospital and Cambridge National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - A L Børresen-Dale
- 1] Departments of Genetics, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway [2] K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, N-0310 Oslo, Norway
| | - T Stokke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - S Patzke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer Research, Oslo University Hospitals - Norwegian Radium Hospital, N-0310 Oslo, Norway
| |
Collapse
|
8
|
Boecker W, Stenman G, Loening T, Andersson MK, Sinn HP, Barth P, Oberhellmann F, Bos I, Berg T, Marusic Z, Samoilova V, Buchwalow I. Differentiation and histogenesis of syringomatous tumour of the nipple and low-grade adenosquamous carcinoma: evidence for a common origin. Histopathology 2014; 65:9-23. [PMID: 24382117 DOI: 10.1111/his.12358] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/27/2013] [Indexed: 01/09/2023]
Abstract
AIMS Syringomatous tumour of the nipple and low-grade adenosquamous carcinoma (LGAdSC) of the breast are regarded as distinct entities. To clarify the nature of these two lesions, we compared the expression of different lineage/differentiation markers in 12 syringomatous tumours of the nipple, nine LGAdSCs, and normal breast epithelium. METHODS AND RESULTS Using triple immunofluorescence labelling and quantitative RT-PCR for keratins, p63, and smooth muscle actin, we demonstrated that syringomatous tumour and LGAdSC contain p63+/K5/14+ tumour cells, K10+ squamous cells, and K8/18+ glandular cells, with intermediary cells being found in both lineages. Identical p63+/K5/14+ cells were also found in the normal breast duct epithelium. CONCLUSIONS Our data provide evidence that syringomatous tumour of the nipple and LGAdSC are identical or nearly identical lesions. They contain p63+/K5/14+ cells as the key cells from which the K10+ squamous lineage and the K8/18+ glandular lineage arise. On the basis of our findings in normal breast tissue and associated benign lesions, we suggest that p63+/K5/14+ cells of the normal breast duct epithelium or early related cells might play a key role in the neoplastic transformation of both syringomatous tumour and LGAdSC. We propose that the differentiation patterns found in both lesions reflect the early ontogenetic stages of the normal breast epithelium.
Collapse
Affiliation(s)
- Werner Boecker
- Institute for Hematopathology, Reference Centre for Gynaeco- and Breast Pathology, Hamburg, Germany; Gerhard-Domagk-Institute of Pathology, University of Muenster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Santagata S, Thakkar A, Ergonul A, Wang B, Woo T, Hu R, Harrell JC, McNamara G, Schwede M, Culhane AC, Kindelberger D, Rodig S, Richardson A, Schnitt SJ, Tamimi RM, Ince TA. Taxonomy of breast cancer based on normal cell phenotype predicts outcome. J Clin Invest 2014; 124:859-70. [PMID: 24463450 DOI: 10.1172/jci70941] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023] Open
Abstract
Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0-HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors.
Collapse
|
10
|
Camerlingo R, Ferraro GA, De Francesco F, Romano M, Nicoletti G, Di Bonito M, Rinaldo M, D'Andrea F, Pirozzi G. The role of CD44+/CD24-/low biomarker for screening, diagnosis and monitoring of breast cancer. Oncol Rep 2013; 31:1127-32. [PMID: 24366074 DOI: 10.3892/or.2013.2943] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/30/2013] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSCs) have been defined as 'a cell within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor'. The CSC hypothesis postulates that a small subpopulation of cancer cells drives tumor initiation, growth and metastasis. CSCs have been isolated from breast cancer using CD44+/CD24-/low phenotype. The purpose of the present study was to evaluate the expression of CD44+/CD24-/low in two diverse breast carcinomas (ductal and lobular), and to determine the correlation between expression of CD44+/CD24-/low, and clinicopathological characteristics starting from human fresh breast cancer specimens. We analyzed specimens from 57 patients using CD44 and CD24 markers by flow cytometry and immunohistochemistry and correlated the CD44+/CD24-/low phenotype with clinicopathological characteristics. Moreover, mammosphere formation was tested. In all specimens tested, CD44+/CD24-/low phenotype was detectable with mean percentage of 4.73% as confirmed also by immunohistochemical analyses. A significant statistical association was found among these phenotypic groups and age, grade G3, estrogen and progesterone receptor, Ki-67 as well as lymph node metastasis. No correlation was found for histological type. In conclusion, our data showed that CD44+/CD24-/low phenotype was found at a high frequency in tumors pT2, G3, pN3, positive for Ki-67, and negative for estrogen and progesterone receptors highlighting the hypothesis that CD44+/CD24-/low profile correlates with the more aggressive clinical-pathological features of the disease.
Collapse
Affiliation(s)
- Rosa Camerlingo
- Department of Experimental Oncology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Giuseppe Andrea Ferraro
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Francesco De Francesco
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Maurizio Romano
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Gianfranco Nicoletti
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Maurizio Di Bonito
- Department of Pathology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Massimo Rinaldo
- Department of Senology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Francesco D'Andrea
- Department of Orthopedic, Traumatologic, Rehabilitative and Plastic-Reconstructive Sciences, Second University of Naples, Naples, Italy
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, National Cancer Institute, G. Pascale, Naples, Italy
| |
Collapse
|
11
|
Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljković M, Krafft C, Popp J. Molecular pathology via IR and Raman spectral imaging. JOURNAL OF BIOPHOTONICS 2013; 6:855-86. [PMID: 24311233 DOI: 10.1002/jbio.201300131] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 05/21/2023]
Abstract
During the last 15 years, vibrational spectroscopic methods have been developed that can be viewed as molecular pathology methods that depend on sampling the entire genome, proteome and metabolome of cells and tissues, rather than probing for the presence of selected markers. First, this review introduces the background and fundamentals of the spectroscopies underlying the new methodologies, namely infrared and Raman spectroscopy. Then, results are presented in the context of spectral histopathology of tissues for detection of metastases in lymph nodes, squamous cell carcinoma, adenocarcinomas, brain tumors and brain metastases. Results from spectral cytopathology of cells are discussed for screening of oral and cervical mucosa, and circulating tumor cells. It is concluded that infrared and Raman spectroscopy can complement histopathology and reveal information that is available in classical methods only by costly and time-consuming steps such as immunohistochemistry, polymerase chain reaction or gene arrays. Due to the inherent sensitivity toward changes in the bio-molecular composition of different cell and tissue types, vibrational spectroscopy can even provide information that is in some cases superior to that of any one of the conventional techniques.
Collapse
Affiliation(s)
- Max Diem
- Laboratory for Spectral Diagnosis LSpD, Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nestal de Moraes G, Vasconcelos FC, Delbue D, Mognol GP, Sternberg C, Viola JPB, Maia RC. Doxorubicin induces cell death in breast cancer cells regardless of Survivin and XIAP expression levels. Eur J Cell Biol 2013; 92:247-56. [PMID: 24064045 DOI: 10.1016/j.ejcb.2013.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the leading cause of deaths in women around the world. Resistance to therapy is the main cause of treatment failure and still little is known about predictive biomarkers for response to systemic therapy. Increasing evidence show that Survivin and XIAP overexpression is closely associated with chemoresistance and poor prognosis in breast cancer. However, their impact on resistance to doxorubicin (dox), a chemotherapeutic agent widely used to treat breast cancer, is poorly understood. Here, we demonstrated that dox inhibited cell viability and induced DNA fragmentation and activation of caspases-3, -7 and -9 in the breast cancer-derived cell lines MCF7 and MDA-MB-231, regardless of different p53 status. Dox exposure resulted in reduction of Survivin and XIAP mRNA and protein levels. However, when we transfected cells with a Survivin-encoding plasmid, we did not observe a cell death-resistant phenotype. XIAP and Survivin silencing, either alone or in combination, had no effect on breast cancer cells sensitivity towards dox. Altogether, we demonstrated that breast cancer cells are sensitive to the chemotherapeutic agent dox irrespective of Survivin and XIAP expression levels. Also, our findings suggest that dox-mediated modulation of Survivin and XIAP might sensitize cells to taxanes when used in a sequential regimen.
Collapse
Affiliation(s)
- Gabriela Nestal de Moraes
- Cellular and Molecular Hemato-Oncology Laboratory, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Praça da Cruz Vermelha, 23/6° andar, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Values of MMP-2 and MMP-9 in Tumor Tissue of Basal-Like Breast Cancer Patients. Cell Biochem Biophys 2013; 68:143-52. [DOI: 10.1007/s12013-013-9701-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Davis MB, Liu X, Wang S, Reeves J, Khramtsov A, Huo D, Olopade OI. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity. Mol Cancer 2013; 12:40. [PMID: 23663560 PMCID: PMC3663705 DOI: 10.1186/1476-4598-12-40] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 04/03/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. METHODS We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. RESULTS We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. CONCLUSIONS Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product.
Collapse
Affiliation(s)
- Melissa B Davis
- The Institute for Genomics and Systems Biology, University of Chicago Biological Sciences Division, Chicago, IL, USA
- Department of Human Genetics, University of Chicago Biological Sciences Division, Chicago, IL, USA
- Georgia Health Sciences University, Athens, GA 30602, USA
- University of Georgia Medical Partnership, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xinyu Liu
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Shiyao Wang
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Jaxk Reeves
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Andrey Khramtsov
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Dezheng Huo
- Department of Health Studies, Center for Clinical Cancer Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Rudmann D, Cardiff R, Chouinard L, Goodman D, Küttler K, Marxfeld H, Molinolo A, Treumann S, Yoshizawa K. Proliferative and nonproliferative lesions of the rat and mouse mammary, Zymbal's, preputial, and clitoral glands. Toxicol Pathol 2013; 40:7S-39S. [PMID: 22949413 DOI: 10.1177/0192623312454242] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammary gland of laboratory rodents is an important organ for the evaluation of effects of xenobiotics, especially those that perturb hormonal homeostasis or are potentially carcinogenic. Mammary gland cancer is a leading cause of human mortality and morbidity worldwide and is a subject of major research efforts utilizing rodent models. Zymbal's, preputial, and clitoral glands are standard tissues that are evaluated in animal models that enable human risk assessment of xenobiotics. A widely accepted and utilized international harmonization of nomenclature for mammary, Zymbal's, preputial, and clitoral gland lesions in laboratory animals will improve diagnostic alignment among regulatory and scientific research organizations and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Daniel Rudmann
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46225, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|