1
|
Bour RK, Garner GT, Peirce SM, Christ GJ. Optimized Biomanufacturing for Treatment of Volumetric Muscle Loss Enables Physiomimetic Recovery. Tissue Eng Part A 2025; 31:373-386. [PMID: 38832858 DOI: 10.1089/ten.tea.2023.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Volumetric muscle loss (VML) injuries are defined by loss of sufficient skeletal muscle to produce persistent deficits in muscle form and function, with devastating lifelong consequences to both soldiers and civilians. There are currently no satisfactory treatments for VML injuries. The work described herein details the implementation of a fully enclosed bioreactor environment (FEBE) system that efficiently interfaces with our existing automated bioprinting and advanced biomanufacturing methods for cell deposition on sheet-based scaffolds for our previously described tissue-engineered muscle repair (TEMR) technology platform. Briefly, the TEMR technology consists of a porcine bladder acellular matrix seeded with skeletal muscle progenitor cells and preconditioned via 10% uniaxial cyclic stretch in a bioreactor. Overall, TEMR implantation in an established rat tibialis anterior (TA) VML injury model can result in 60 to ∼90% functional recovery. However, our original study documented >50% failure rate. That is, more than half of the implanted TEMR constructs produced no functional improvement beyond no treatment/repair. The high failure rate was attributed to the untoward mechanical disruption of TEMR during surgical implantation. In a follow-up study, adjustments were made to the geometry of both the VML injury and the TEMR construct, and the "nonresponder" group was reduced from over half the TEMR-treated animals to just 33%. Nonetheless, additional improvement is needed for clinical applicability. The main objectives of the current study were twofold: (1) explore the use of advanced biomanufacturing methods (i.e., FEBE bioreactor) to further improve TEMR reliability (i.e., increase functional response rate), (2) determine if previously established bioprinting methods, when coupled to the customized FEBE system would further improve the rate, magnitude or amplitude of functional outcomes following TEMR implantation in the same rat TA VML injury model. The current study demonstrates the unequivocal benefits of a customized bioreactor system that reduces manipulation of TEMR during cell seeding and maturation via bioprinting while simultaneously maximizing TEMR stability throughout the biofabrication process. This new biomanufacturing strategy not only accelerated the rate of functional recovery, but also eliminated all TEMR failures. In addition, implementation of bioprinting resulted in more physiomimetic skeletal muscle characteristics of repaired muscle tissue.
Collapse
Affiliation(s)
- Rachel K Bour
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Gavin T Garner
- Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Plastic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S. Temporary immersion systems (TISs): A comprehensive review. J Biotechnol 2022; 357:56-83. [PMID: 35973641 DOI: 10.1016/j.jbiotec.2022.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
The temporary immersion systems (TISs) have been widely used in plant biotechnology. TISs have different advantages from the point of micropropagation and production of secondary metabolites over other continuous liquid-phase bioreactors. The current work presents the structure, operation mode, configuration type, and micropropagation or secondary metabolite production in TISs. This review deals with the advantages and disadvantages of TISs and the factors affecting their performance. Future research could focus on new designs based on CFD simulation, facilitating sterilization, and combining TISs with other bioreactors (e.g., mist bioreactors) to make a hybrid bioreactor.
Collapse
Affiliation(s)
- Amir Hossein Mirzabe
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Hajiahmad
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Fadavi
- Department of Food Technology, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Shahin Rafiee
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| |
Collapse
|
3
|
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S. Design of nutrient gas-phase bioreactors: a critical comprehensive review. Bioprocess Biosyst Eng 2022; 45:1239-1265. [PMID: 35562481 DOI: 10.1007/s00449-022-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
To reach an efficient and economical gas-phase bioreactor is still one of the most critical challenges in biotechnology engineering. The numerous advantages of gas-phase bioreactors (GPBs) as well as disadvantages of these bioreactors should be exactly recognized, and efforts should be made to eliminate these defects. The first step in upgrading these bioreactors is to identify their types and the results of previous research. In the present work, a summary of the studies carried out in the field of cultivation in these bioreactors, their classification, their components, their principles and relations governing elements, modeling them, and some of their inherent engineering aspects are presented. Literature review showed that inoculation of shoots, roots, adventurous roots, callus, nodal explants, anther, nodal segment, somatic embryo, hairy roots, and fungus is reported in 15, 2, 2, 2, 3, 2, 1, 1, 37, and 5 cases, respectively.
Collapse
Affiliation(s)
- Amir Hossein Mirzabe
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| | - Ali Hajiahmad
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran. .,Department of Mechanical Engineering of Biosystems, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Fadavi
- Department of Food Technology, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Shahin Rafiee
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran
| |
Collapse
|
4
|
Wang B, Patnaik SS, Brazile B, Butler JR, Claude A, Zhang G, Guan J, Hong Y, Liao J. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs. Crit Rev Biomed Eng 2017; 43:455-71. [PMID: 27480586 DOI: 10.1615/critrevbiomedeng.2016016066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi; Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Sourav S Patnaik
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - Bryn Brazile
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - J Ryan Butler
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - Andrew Claude
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Ohio
| | - Jianjun Guan
- Department of Material Science and Technology, Ohio State University, Columbus, Ohio
| | - Yi Hong
- Department of Biomedical Engineering, Alabama State University, Montgomery, Alabama
| | - Jun Liao
- Department of Biological Engineering and College of Veterinary Medicine, Mississippi State University, Mississippi
| |
Collapse
|
5
|
Lei Y, Ferdous Z. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering. Biotechnol Prog 2016; 32:543-53. [PMID: 26929197 DOI: 10.1002/btpr.2256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/19/2016] [Indexed: 01/05/2023]
Abstract
With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016.
Collapse
Affiliation(s)
- Ying Lei
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| | - Zannatul Ferdous
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| |
Collapse
|
6
|
Parvin Nejad S, Blaser MC, Santerre JP, Caldarone CA, Simmons CA. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing? Adv Drug Deliv Rev 2016; 96:161-75. [PMID: 26555371 DOI: 10.1016/j.addr.2015.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
Surgical replacement of dysfunctional valves is the primary option for the treatment of valvular disease and congenital defects. Existing mechanical and bioprosthetic replacement valves are far from ideal, requiring concomitant anticoagulation therapy or having limited durability, thus necessitating further surgical intervention. Heart valve tissue engineering (HVTE) is a promising alternative to existing replacement options, with the potential to synthesize mechanically robust tissue capable of growth, repair, and remodeling. The clinical realization of a bioengineered valve relies on the appropriate combination of cells, biomaterials, and/or bioreactor conditioning. Biomechanical conditioning of valves in vitro promotes differentiation of progenitor cells to tissue-synthesizing myofibroblasts and prepares the construct to withstand the complex hemodynamic environment of the native valve. While this is a crucial step in most HVTE strategies, it also may contribute to fibrosis, the primary limitation of engineered valves, through sustained myofibrogenesis. In this review, we examine the progress of HVTE and the role of mechanical conditioning in the synthesis of mechanically robust tissue, and suggest approaches to achieve myofibroblast quiescence and prevent fibrosis.
Collapse
|
7
|
A computational analysis of the impact of mass transport and shear on three-dimensional stem cell cultures in perfused micro-bioreactors. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32:462-84. [PMID: 24417915 PMCID: PMC3959761 DOI: 10.1016/j.biotechadv.2013.12.012] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic.
Collapse
Affiliation(s)
- Christina W Cheng
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA.
| | - Loran D Solorio
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA.
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
König F, Hollweck T, Pfeifer S, Reichart B, Wintermantel E, Hagl C, Akra B. A Pulsatile Bioreactor for Conditioning of Tissue-Engineered Cardiovascular Constructs under Endoscopic Visualization. J Funct Biomater 2012; 3:480-96. [PMID: 24955628 PMCID: PMC4031004 DOI: 10.3390/jfb3030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/27/2012] [Accepted: 07/09/2012] [Indexed: 12/28/2022] Open
Abstract
Heart valve disease (HVD) is a globally increasing problem and accounts for thousands of deaths yearly. Currently end-stage HVD can only be treated by total valve replacement, however with major drawbacks. To overcome the limitations of conventional substitutes, a new clinical approach based on cell colonization of artificially manufactured heart valves has been developed. Even though this attempt seems promising, a confluent and stable cell layer has not yet been achieved due to the high stresses present in this area of the human heart. This study describes a bioreactor with a new approach to cell conditioning of tissue engineered heart valves. The bioreactor provides a low pulsatile flow that grants the correct opening and closing of the valve without high shear stresses. The flow rate can be regulated allowing a steady and sensitive conditioning process. Furthermore, the correct functioning of the valve can be monitored by endoscope surveillance in real-time. The tubeless and modular design allows an accurate, simple and faultless assembly of the reactor in a laminar flow chamber. It can be concluded that the bioreactor provides a strong tool for dynamic pre-conditioning and monitoring of colonized heart valve prostheses physiologically exposed to shear stress.
Collapse
Affiliation(s)
- Fabian König
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Trixi Hollweck
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Stefan Pfeifer
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Bruno Reichart
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Erich Wintermantel
- Chair of Medical Engineering, Technical University Munich, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Christian Hagl
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| | - Bassil Akra
- Department of Cardiac Surgery, Medical Center Munich University, Marchioninistr. 15, Munich 81377, Germany.
| |
Collapse
|
10
|
Teo A, Mantalaris A, Lim M. Hydrodynamics and bioprocess considerations in designing bioreactors for cardiac tissue engineering. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2050-1218-1-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Hollweck T, Akra B, Häussler S, Uberfuhr P, Schmitz C, Pfeifer S, Eblenkamp M, Wintermantel E, Eissner G. A novel pulsatile bioreactor for mechanical stimulation of tissue engineered cardiac constructs. J Funct Biomater 2011; 2:107-18. [PMID: 24956300 PMCID: PMC4030939 DOI: 10.3390/jfb2030107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/18/2011] [Indexed: 11/17/2022] Open
Abstract
After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC) colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.
Collapse
Affiliation(s)
- Trixi Hollweck
- Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | - Bassil Akra
- Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | - Simon Häussler
- Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | - Peter Uberfuhr
- Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | - Christoph Schmitz
- Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| | - Stefan Pfeifer
- Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching, Germany.
| | - Markus Eblenkamp
- Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching, Germany.
| | - Erich Wintermantel
- Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching, Germany.
| | - Günther Eissner
- Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany.
| |
Collapse
|
12
|
|
13
|
Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? GENES AND NUTRITION 2008; 4:13-22. [PMID: 19104883 DOI: 10.1007/s12263-008-0107-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/25/2008] [Indexed: 01/16/2023]
Abstract
The development and validation of reliable in vitro methods alternative to conventional in vivo studies in experimental animals is a well-recognised priority in the fields of pharmaco-toxicology and food research. Conventional studies based on two-dimensional (2-D) cell monolayers have demonstrated their significant limitations: the chemically and spatially defined three-dimensional (3-D) network of extracellular matrix components, cell-to-cell and cell-to-matrix interactions that governs differentiation, proliferation and function of cells in vivo is, in fact, lost under the simplified 2-D condition. Being able to reproduce specific tissue-like structures and to mimic functions and responses of real tissues in a way that is more physiologically relevant than what can be achieved through traditional 2-D cell monolayers, 3-D cell culture represents a potential bridge to cover the gap between animal models and human studies. This article addresses the significance and the potential of 3-D in vitro systems to improve the predictive value of cell-based assays for safety and risk assessment studies and for new drugs development and testing. The crucial role of tissue engineering and of the new microscale technologies for improving and optimising these models, as well as the necessity of developing new protocols and analytical methods for their full exploitation, will be also discussed.
Collapse
|
14
|
Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications. Ann Biomed Eng 2008; 36:1228-41. [DOI: 10.1007/s10439-008-9505-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
|
15
|
Klouda L, Vaz CM, Mol A, Baaijens FPT, Bouten CVC. Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1137-44. [PMID: 17701317 DOI: 10.1007/s10856-007-0171-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/16/2007] [Indexed: 05/16/2023]
Abstract
The selection of an appropriate scaffold represents one major key to success in tissue engineering. In cardiovascular applications, where a load-bearing structure is required, scaffolds need to demonstrate sufficient mechanical properties and importantly, reliable retention of these properties during the developmental phase of the tissue engineered construct. The effect of in vitro culture conditions, time and mechanical loading on the retention of mechanical properties of two scaffold types was investigated. First candidate tested was a poly-glycolic acid non-woven fiber mesh, coated with poly-4-hydroxybutyrate (PGA/P4HB), the standard scaffold used successfully in cardiovascular tissue engineering applications. As an alternative, an electrospun poly-epsilon-caprolactone (PCL) scaffold was used. A 15-day dynamic loading protocol was applied to the scaffolds. Additionally, control scaffolds were incubated statically. All studies were performed in a simulated physiological environment (phosphate-buffered saline solution, T=37 degrees C). PGA/P4HB scaffolds showed a dramatic decrease in mechanical properties as a function of incubation time and straining. Mechanical loading had a significant effect on PCL scaffold properties. Degradation as well as fiber fatigue caused by loading promote loss of mechanical properties in PGA/P4HB scaffolds. For PCL, fiber reorganization due to straining seems to be the main reason behind the brittle behavior that was pronounced in these scaffolds. It is suggested that those changes in scaffolds' mechanical properties must be considered at the application of in vitro tissue engineering protocols and should ideally be taken over by tissue formation to maintain mechanically stable tissue constructs.
Collapse
Affiliation(s)
- Leda Klouda
- Division of Biomechanics and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Shi Y. Numerical simulation of global hydro-dynamics in a pulsatile bioreactor for cardiovascular tissue engineering. J Biomech 2008; 41:953-9. [PMID: 18261734 DOI: 10.1016/j.jbiomech.2008.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/21/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
Abstract
Previous numerical simulations of the hydro-dynamic response in the various bioreactor designs were mostly concentrated on the local flow field analysis using computational fluid dynamics, which cannot provide the global hydro-dynamics information to assist the bioreactor design. In this research, a mathematical model is developed to simulate the global hydro-dynamic changes in a pulsatile bioreactor design by considering the flow resistance, the elasticity of the vessel and the inertial effect of the media fluid in different parts of the system. The developed model is used to study the system dynamic response in a typical pulsatile bioreactor design for the culturing of cardiovascular tissues. Simulation results reveal the detailed pressure and flow-rate changes in the different positions of the bioreactor, which are very useful for the evaluation of hydro-dynamic performance in the bioreactor designed. Typical pressure and flow-rate changes simulated agree well with the published experimental data, thus validates the mathematical model developed. The proposed mathematical model can be used for design optimization of other pulsatile bioreactors that work under different experimental conditions and have different system configurations.
Collapse
Affiliation(s)
- Yubing Shi
- School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK.
| |
Collapse
|
17
|
|
18
|
Ingram JH, Korossis S, Howling G, Fisher J, Ingham E. The Use of Ultrasonication to Aid Recellularization of Acellular Natural Tissue Scaffolds for Use in Anterior Cruciate Ligament Reconstruction. ACTA ACUST UNITED AC 2007; 13:1561-72. [PMID: 17518726 DOI: 10.1089/ten.2006.0362] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering offers a promising solution to the replacement of anterior cruciate ligament. A decellularized porcine patella tendon scaffold was produced by immersing whole tissues sequentially in hypotonic buffer, 0.1% (w/v) sodium dodecyl sulfate (SDS) in hypotonic buffer, and nuclease solution prior to sterilization with 0.1% (w/v) peracetic acid. Initial studies revealed that primary human tenocytes would attach to, but failed to penetrate into, the decellularized scaffold. A novel use of ultrasonication was therefore developed to allow extrinsic cells to migrate into the acellular scaffold. Various intensities of ultrasonication were tested in order to produce a microscopically more open porous matrix without damaging the overall architecture of the scaffold. Ultrasonication treatment with the intensity of 360 W and a pulse time of 1 s for a total of 1 min was found to be the optimal treatment. This process did not have a significant effect upon the biochemical constituents (collagen, glycosaminoglycans), nor did it denature the collagen. Moreover, the acellular sonicated scaffold retained the essential biomechanical characteristics of the native tissue. Primary human tenocytes penetrated into the center of whole acellular sonicated scaffolds over a 3-week period in static culture. The viability of the cells in the center of the scaffold (depth of circa 2.5 mm) was, however, compromised. To circumvent the problem of nutrient limitation, acellular sonicated scaffolds were split into fascicular scaffolds (500 mum thick). Cells seeded onto the fascicular scaffolds penetrated throughout the scaffold and remained viable after 3 weeks of culture. This study has shown that an acellular biocompatible tendon scaffold can be produced using 0.1% (w/v) SDS and that ultrasonication can provide a novel method to enhance the recellularization of decellularized natural tissues.
Collapse
Affiliation(s)
- Joanne Helen Ingram
- Faculties of Engineering and Biological Sciences, Institute of Medical and Biological Engineering, University of Leeds, Leeds, West Yorkshire, United Kingdom.
| | | | | | | | | |
Collapse
|
19
|
Morsi YS, Yang WW, Owida A, Wong CS. Development of a novel pulsatile bioreactor for tissue culture. J Artif Organs 2007; 10:109-14. [PMID: 17574514 DOI: 10.1007/s10047-006-0369-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Accepted: 12/13/2006] [Indexed: 11/27/2022]
Abstract
The construction of tissue-engineered parts such as heart valves and arteries requires more than just the seeding of cells onto a biocompatible/biodegradable polymeric scaffold. It is essential that the functionality and mechanical integrity of the cell-seeded scaffold be investigated in vitro prior to in vivo implantation. The correct hemodynamic conditioning would lead to the development of tissues with enhanced mechanical strength and cell viability. Therefore, a bioreactor that can simulate physiological conditions would play an important role in the preparation of tissue-engineered constructs. In this article, we present and discuss the design concepts and criteria, as well as the development, of a multifunctional bioreactor for tissue culture in vitro. The system developed is compact and easily housed in an incubator to maintain sterility of the construct. Moreover, the proposed bioreactor, in addition to mimicking in vivo conditions, is highly flexible, allowing different types of constructs to be exposed to various physiological flow conditions. Initial verification of the hemodynamic parameters using Laser doppler anemometry indicated that the bioreactor performed well and produced the correct physiological conditions.
Collapse
Affiliation(s)
- Yos S Morsi
- Biomechanics and Tissue Engineering Group, IRIS, Faculty of Engineering and Industrial Sciences, H 66, PO Box 218, Hawthorn, VIC, 3122, Australia.
| | | | | | | |
Collapse
|
20
|
Androjna C, Spragg RK, Derwin KA. Mechanical Conditioning of Cell-Seeded Small Intestine Submucosa: A Potential Tissue-Engineering Strategy for Tendon Repair. ACTA ACUST UNITED AC 2007; 13:233-43. [PMID: 17518560 DOI: 10.1089/ten.2006.0050] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our long-term objective is to enhance tendon repair by delivering cells on natural biologic scaffolds to the repair site. Clinical outcomes may be improved by first preconditioning these cell-seeded constructs in bioreactors to enhance their properties at implantation and to deliver cells expressing a desired phenotype. In this work, we have investigated the effect of in vitro mechanical conditioning on small-intestine submucosa (SIS) scaffolds seeded with primary tendon cells (tenocytes). SIS scaffolds (with and without cells) were conditioned under various loading regimes over a 2-week period. In vitro cyclic loading significantly increased the biomechanical properties (e.g., stiffness) of cell-seeded SIS constructs (129.1 +/- 10.2%) from time 0. The stiffness change of cyclically loaded constructs without cells was 33.9 +/- 13.8% and of statically loaded constructs with cells was 34.0 +/- 15.2% and without cells was 33.4 +/- 10.7%. In the cell-seeded groups, our data demonstrate a direct role (e.g., cell tensioning) for cells in construct stiffening. In addition, the initial stiffness of the cell-seeded, cyclically loaded constructs was found to be a strong predictor of the change in construct stiffness. Despite the mechanical integrity of these constructs being significantly less than native tendon, our data show that structural properties can be improved with in vitro mechanical conditioning. These data provide the basis for future studies investigating in vitro conditioning (mechanical, chemical) of cell-seeded ECM scaffolds and the use of such constructs for enhancing tendon repair in vivo.
Collapse
Affiliation(s)
- Caroline Androjna
- The Cleveland Clinic, Department of Biomedical Engineering, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
21
|
Androjna C, Spragg RK, Derwin KA. Mechanical Conditioning of Cell-Seeded Small Intestine Submucosa: A Potential Tissue-Engineering Strategy for Tendon Repair. ACTA ACUST UNITED AC 2007. [DOI: 10.1089/ten.2007.13.ft-331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Bilodeau K, Mantovani D. Bioreactors for Tissue Engineering: Focus on Mechanical Constraints. A Comparative Review. ACTA ACUST UNITED AC 2006; 12:2367-83. [PMID: 16968176 DOI: 10.1089/ten.2006.12.2367] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Considering the current techniques in cell culture, the stimulation of cellular proliferation and the formation of bidimensional tissues such as skin are widely performed in academic and industrial research laboratories. However, the formation of cohesive, organized, and functional tissues by three-dimensional (3D) cell culture is complex. A suitable environment is required, which is achieved and maintained in a specific bioreactor, a device that reproduces the physiological environment (including biochemical and mechanical functions) specific to the tissue that is to be regenerated. Bioreactors can also be used to apply mechanical constraints during maturation of the regenerating tissue for studying and understanding the mechanical factors influencing tissue regeneration. In this work, the main types of bioreactors used for tissue engineering and regeneration, as well as their most common applications, were reviewed and compared. The importance of the mechanical properties applied to the scaffolds and the regenerating constructs has been often neglected. This review focused on the influence of mechanical stresses and strains during the culture period that leads to the final mechanical properties of the construct.
Collapse
Affiliation(s)
- Katia Bilodeau
- Laboratory for Biomaterials and Bioengineering, Department of Materials Engineering, Laval University & Research Center, Quebec University Hospital Center, Quebec City, Canada
| | | |
Collapse
|
23
|
Korossis S, Bolland F, Ingham E, Fisher J, Kearney J, Southgate J. Review: tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. TISSUE ENGINEERING 2006; 12:635-44. [PMID: 16674279 DOI: 10.1089/ten.2006.12.635] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of conditions encountered in urology result in bladder dysfunction and the need for bioengineered tissue substitutes. Traditionally, a number of synthetic materials and natural matrices have been used in experimental and clinical settings. However, the production of functional bladder tissue replacements remains elusive. The urinary bladder sustains considerable structural deformation during its normal function and represents an ideal model tissue in which to study the effects of biomechanical simulation on tissue morphogenesis, differentiation, and function. However, the actual role of mechanical forces within the bladder has received little attention. A strategy in which in vitro-generated tissue constructs are conditioned by exposure to the same mechanical forces as they would encounter in vivo could potentially be used both in the development of functional tissue replacements and to further study the role of biomechanical signalling. The purpose of this review is to examine the role and structure-function relationship of the urinary bladder and, through consultation of the literature available on mechanotransduction and tissue engineering of alternative tissues, to determine the factors that need to be considered when biomechanically engineering a functional bladder.
Collapse
Affiliation(s)
- Sotiris Korossis
- Biomedical Engineering Research Centre, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Yang C, Sodian R, Fu P, Lüders C, Lemke T, Du J, Hübler M, Weng Y, Meyer R, Hetzer R. In Vitro Fabrication of a Tissue Engineered Human Cardiovascular Patch for Future Use in Cardiovascular Surgery. Ann Thorac Surg 2006; 81:57-63. [PMID: 16368335 DOI: 10.1016/j.athoracsur.2005.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 06/30/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. METHODS We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. RESULTS Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. CONCLUSIONS Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.
Collapse
Affiliation(s)
- Chao Yang
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This paper reviews reports on three-dimensional mammalian tissue growth in bioreactors and the corresponding mammalian tissue growth requirements. The needs for nutrient and waste removal of several mammalian tissues are reviewed and compared with the environment of many reactors currently in use such as the continuous stirred tank, the hollow fiber, the Couette-Taylor, the airlift, and the rotating-wall reactors developed by NASA. Many studies conclude that oxygen supply appears to be one of the most important factors limiting tissue growth. Various correlations to describe oxygen mass transfer are presented and discussed with the aim to provide some guidance to design, construct, and test reactors for tissue mass culture. To obtain tissue thickness clinically valuable, dimensionless and other types of analysis tend to point out that diffusive transport will have to be matched with an important convection to bring sufficient oxygen molecular flux to the growing cells located within a tissue mass. As learned from solid-state fermentation and hairy root culture, during the growth of large biomass, heterogeneity (i.e., channeling, temperature gradients, non-uniform cell growth, transfer gradients, etc.) can cause some important problems and these should be addressed in tissue engineering as well. Reactors (along with the scaffolds) should be designed to minimize these issues. The role of the uterus, the reactor built by Nature, is examined, and the environment provided to a growing embryo is reported, yielding possible paths for further reactor developments. Finally, the importance of cell seeding methods is also addressed.
Collapse
Affiliation(s)
- Yves Martin
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical Engineering, Université de Sherbrooke, Sherbrooke, Qué., Canada J1K 2R1
| | | |
Collapse
|
27
|
Breuer CK, Mettler BA, Anthony T, Sales VL, Schoen FJ, Mayer JE. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. ACTA ACUST UNITED AC 2005; 10:1725-36. [PMID: 15684681 DOI: 10.1089/ten.2004.10.1725] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heart valve disease is a significant medical problem worldwide. Current treatment for heart valve disease is heart valve replacement. State of the art replacement heart valves are less than ideal and are associated with significant complications. Using the basic principles of tissue engineering, promising alternatives to current replacement heart valves are being developed. Significant progress has been made in the development of a tissue-engineered semilunar heart valve substitute. Advancements include the development of different potential cell sources and cell-seeding techniques; advancements in matrix and scaffold development and in polymer chemistry fabrication; and the development of a variety of bioreactors, which are biomimetic devices used to modulate the development of tissue-engineered neotissue in vitro through the application of biochemical and biomechanical stimuli. This review addresses the need for a tissue-engineered alternative to the current heart valve replacement options. The basics of heart valve structure and function, heart valve disease, and currently available heart valve replacements are discussed. The last 10 years of investigation into a tissue-engineered heart valve as well as current developments are reviewed. Finally, the early clinical applications of cardiovascular tissue engineering are presented.
Collapse
|
28
|
Narita Y, Hata KI, Kagami H, Usui A, Ueda M, Ueda Y. Novel Pulse Duplicating Bioreactor System for Tissue-Engineered Vascular Construct. ACTA ACUST UNITED AC 2004; 10:1224-33. [PMID: 15363178 DOI: 10.1089/ten.2004.10.1224] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell culture in a biomimetic environment is known to improve the mechanical endurance of tissue-engineered cardiovascular components. Our goal was to generate a bioreactor that can reproduce a wide range of pulsatile flows with a completely physiological pressure profile. The morphology and biochemical properties of tissue-engineered products were also studied to test the usefulness of this novel bioreactor. The combination of an outflow valve, compliance chamber, and resistant clamps together with a balloon pumping system was able to successfully reproduce both physiological systolic and diastolic pressures. The compliance chamber was especially effective in transforming the original peaky pressure waveform into a physiological pressure profile. The tissues, cultured under a physiological pressure waveform with pulsatile flow, presented widely distributed cells in close contact with each other. They also showed significantly higher cell numbers, total protein content, and proteoglycan-glycosaminoglycan content than cultured tissues under a peaky pressure wave or under static conditions. This new bioreactor system is suitable for evaluating a favorable environment for tissue-engineered cardiovascular components.
Collapse
Affiliation(s)
- Yuji Narita
- Department of Cardiothoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Godbey WT, Hindy SBS, Sherman ME, Atala A. A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials 2004; 25:2799-805. [PMID: 14962558 DOI: 10.1016/j.biomaterials.2003.09.056] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 09/15/2003] [Indexed: 11/18/2022]
Abstract
A novel rotor was constructed to allow for the seeding of porous scaffolds via centrifugal force. Using cell seeding times of 10 min, this method placed significantly (roughly 3-fold) more cells into poly(glycolic acid) scaffolds than 24 h of spinner flask seeding or static seeding. There were no significant differences in the mitochondrial activity per cell between the 3 seeding methods. Cell distribution was noted to be homogeneous throughout the scaffold thickness for the centrifugation method, as opposed to surface seeding for the spinner flask method. Centrifugation was especially efficient at low cell concentrations (1.33 x 10(5) cells/ml). This system is useful for the seeding of biomaterials having cylindrical or planar geometries, and may be used under conditions that require low cell numbers and/or short seeding time periods.
Collapse
Affiliation(s)
- W T Godbey
- Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Fu P, Sodian R, Lüders C, Lemke T, Kraemer L, Hübler M, Weng Y, Hoerstrup SP, Meyer R, Hetzer R. Effects of Basic Fibroblast Growth Factor and Transforming Growth Factor-β on Maturation of Human Pediatric Aortic Cell Culture for Tissue Engineering of Cardiovascular Structures. ASAIO J 2004; 50:9-14. [PMID: 14763486 DOI: 10.1097/01.mat.0000104815.21056.08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Optimal in vitro conditions are necessary for the development of a strong, well structured, and functional tissue engineered cardiovascular structure eventually designed for implantation. To further optimize in vitro conditions for cell proliferation and extracellular matrix formation in tissue engineering of cardiovascular structures, in this study, ascorbic acid and growth factors as additives to standard cell culture medium were evaluated for their effect on tissue development in vitro. Biodegradable polymer patches [polyglycolic acid (PGA) coated with poly-4-hydroxybutyrate (P4HB)] were seeded with human pediatric aortic cells and cultured for 7 and 28 days. Group A was cultured with standard medium (DMEM with 10% fetal calf serum and 1% antibiotics) supplemented with ascorbic acid; group B was cultured with standard medium plus ascorbic acid and basic fibroblast growth factor (bFGF); group C was cultured with standard medium adding ascorbic acid and transforming growth factor (TGF). Analysis of the cell seeded polymer constructs included DNA assay, collagen assay, and histologic and immunohistochemical examination for cell proliferation and collagen formation. After 7 and 28 days of culture, group B and group C showed a significantly higher DNA content compared with group A. The addition of bFGF (group B) led to a markedly higher collagen synthesis after 28 days of culture compared with the additives in groups C and A. The histologic and immunohistochemical examination also revealed a more dense, organized tissue development with pronounced matrix protein formation in the tissue engineered structures in group B after 28 days of culture. When seeded on to the polymeric scaffold, human vascular cells proliferate and form organized cell tissue after 28 days of culture. The addition of bFGF and ascorbic acid to the standard medium enhances cell proliferation and collagen synthesis on the biodegradable polymer, which leads to the formation of more mature, well organized tissue engineered structures.
Collapse
Affiliation(s)
- Ping Fu
- Department of Cardiothoracic and Vascular Surgery, Laboratory for Tissue Engineering, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cardiac tissue engineering has emerged as a promising approach to replace or support an infarcted cardiac tissue and thus may hold a great potential to treat and save the lives of patients with heart diseases. By its broad definition, tissue engineering involves the construction of tissue equivalents from donor cells seeded within 3-D biomaterials, then culturing and implanting the cell-seeded scaffolds to induce and direct the growth of new, healthy tissue. In this review, we present an up-to-date summary of the research in cardiac tissue engineering, with an emphasis on the design principles and selection criteria that have been used in two key technologies employed in tissue engineering, (1) biomaterials technology, for the creation of 3-D porous scaffolds which are used to support and guide the tissue formation from dissociated cells, and (2) bioreactor cultivation of the 3-D cell constructs during ex-vivo tissue engineering, which aims to duplicate the normal stresses and flows experienced by the tissues.
Collapse
Affiliation(s)
- Michal Shachar
- Department of Biotechnology Engineering and The Institute for Applied Biosciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | | |
Collapse
|
32
|
Engelmayr GC, Hildebrand DK, Sutherland FWH, Mayer JE, Sacks MS. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 2003; 24:2523-32. [PMID: 12695079 DOI: 10.1016/s0142-9612(03)00051-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dynamic flexure is a major mode of deformation in the native heart valve cusp, and may effect the mechanical and biological development of tissue engineered heart valves (TEHV). To explore this hypothesis, a novel bioreactor was developed to study the effect of dynamic flexural stimulation on TEHV biomaterials. It was implemented in a study to compare the effect of uni-directional cyclic flexure on the effective stiffness of two candidate TEHV scaffolds: a non-woven mesh of polyglycolic acid (PGA) fibers, and a non-woven mesh of PGA and poly L-lactic acid (PLLA) fibers, both coated with poly 4-hydroxybutyrate (P4HB). The bioreactor has the capacity to dynamically flex 12 rectangular samples (25 x 7.5 x 2mm) under sterile conditions in a cell culture incubator. Sterility was maintained in the bioreactor for at least 5 weeks of incubation. Flexure tests to measure the effective stiffness in the "with-flexure" (WF) and opposing "against-flexure" (AF) directions indicated that dynamically flexed PGA/PLLA/P4HB scaffolds were approximately 72% (3 weeks) and 76% (5 weeks) less stiff than static controls (p<0.01), and that they developed directional anisotropy by 3 weeks of incubation (stiffer AF, p<0.01). In contrast, both dynamically flexed and static PGA/P4HB scaffolds exhibited a trend of decreased stiffness with incubation, with no development of directional anisotropy. Dynamically flexed PGA/P4HB scaffolds were significantly less stiff than static controls at 3 weeks (p<0.05). Scanning electron microscopy revealed signs of heterogeneous P4HB coating and fiber disruption, suggesting possible explanations for the observed mechanical properties. These results indicate that dynamic flexure can produce quantitative and qualitative changes in the mechanical properties of TEHV scaffolds, and suggest that these differences need to be accounted for when comparing the effects of mechanical stimulation on the development of cell-seeded TEHV constructs.
Collapse
Affiliation(s)
- George C Engelmayr
- Engineered Tissue Mechanics Laboratory, McGowan Institute for Regenerative Medicine, Department of Bioengineering, University of Pittsburgh, 100 Technology Drive, Room 250, Pittsburgh, PA 15219, USA
| | | | | | | | | |
Collapse
|
33
|
Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL, Stark P, Martin I, Richmond JC, Vunjak-Novakovic G. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 2002; 124:742-9. [PMID: 12596643 DOI: 10.1115/1.1519280] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advanced bioreactors are essential for meeting the complex requirements of in vitro engineering functional skeletal tissues. To address this need, we have developed a computer controlled bench-top bioreactor system with capability to apply complex concurrent mechanical strains to three-dimensional matrices independently housed in 24 reactor vessels, in conjunction with enhanced environmental and fluidic control. We demonstrate the potential of this new system to address needs in tissue engineering, specifically toward the development of a tissue engineered anterior cruciate ligament from human bone-marrow stromal cells (hBMSC), where complex mechanical and biochemical environment control is essential to tissue function. Well-controlled mechanical strains (resolution of < 0.1 micron for translational and < 0.1 degree for rotational strain) and dissolved oxygen tension (between 0%-95% +/- 1%) could be applied to the developing tissue, while maintaining temperature at 37 +/- 0.2 degrees C about developing tissue over prolonged periods of operation. A total of 48 reactor vessels containing cell culture medium and silk fiber matrices were run for up to 21 days under 90 degrees rotational and 2 mm translational deformations at 0.0167 Hz with only one succumbing to contamination due to a leak at an medium outlet port. Twenty-four silk fiber matrices seeded with human bone marrow stromal cells (hBMSCs) housed within reactor vessels were maintained at constant temperature (37 +/- 0.2 degrees C), pH (7.4 +/- 0.02), and pO2 (20 +/- 0.5%) over 14 days in culture. The system supported cell spreading and growth on the silk fiber matrices based on SEM characterization, as well as the differentiation of the cells into ligament-like cells and tissue (Altman et al., 2001).
Collapse
Affiliation(s)
- Gregory H Altman
- Tufts University, Department of Chemical & Biological Engineering, Bioengineering Center, 4 Colby Street, Medford, MA 02155, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sodian R, Lemke T, Fritsche C, Hoerstrup SP, Fu P, Potapov EV, Hausmann H, Hetzer R. Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering. TISSUE ENGINEERING 2002; 8:863-70. [PMID: 12459065 DOI: 10.1089/10763270260424222] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One approach to the tissue engineering of vascular structures is to develop in vitro conditions in order ultimately to fabricate functional vascular tissues before final implantation. In our experiment, we aimed to develop a new combined cell seeding and perfusion system that provides sterile conditions during cell seeding and biomechanical stimuli in order to fabricate autologous human vascular tissue in vitro. The cell seeding and perfusion system is made of Plexiglas and is completely transparent (Berlin Heart, Berlin, Germany; University Hospital Benjamin Franklin, Berlin, Germany). The whole system consists of a cell seeding chamber that can be incorporated into the perfusion system and an air-driven respirator pump connected to the bioreactor. The cell culture medium continuously circulates through a closed-loop system. We thus developed a cell seeding device for static and dynamic seeding of vascular cells onto a polymeric vascular scaffold and a closed-loop perfused bioreactor for long-term vascular conditioning. The cell seeding chamber can be easily connected to the bioreactor, which combines continuous, pulsatile perfusion and mechanical stimulation to the tissue-engineered conduit. Adjusting the stroke volume, the stroke rate, and the inspiration/expiration time of the ventilator allows various pulsatile flows and different levels of pressure. The whole system is a highly isolated cell culture setting, which provides a high level of sterility and a gas supply and fits into a standard humidified incubator. The device can be sterilized by ethylene oxide and assembled with a standard screwdriver. Our newly developed combination of a cell seeding and conditioning device provides sterile conditions and biodynamic stimuli for controlled tissue development and in vitro conditioning of an autologous tissue-engineered vessel.
Collapse
Affiliation(s)
- Ralf Sodian
- Department of Thoracic and Cardiovascular Surgery, Laboratory for Tissue Engineering, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|