1
|
Kumar S, Malviya R, Sridhar SB, Wadhwa T, Shareef J, Meenakshi DU. Polysaccharide-based implant drug delivery systems for precise therapy: Recent developments, and future trends. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:407-427. [PMID: 39675419 DOI: 10.1016/j.pharma.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Implantable drug delivery systems offer numerous benefits, including effective drug administration at lower concentrations, fewer side effects, and improved patient compliance. Various polymers are used for fabricating implants, with biopolymers, particularly polysaccharides, being notable for their ability to modulate drug delivery characteristics. The review aims to describe the strategies employed in the development of polysaccharide-based implants and provide a comprehensive understanding of various polysaccharides such as starch, cellulose, alginate, chitosan, pullulan, carrageenan, dextran, hyaluronic acid, agar, pectin, and gellan gum in the fabrication of implant for targeted therapy. The review explores the biomedical applications of polysaccharide-based implantable devices, highlighting recent advancements in the development of these systems. Detailed discussions cover implants used in the oral cavity, nasal cavity, bone, ocular applications, and antiviral therapy. Additionally, regulatory considerations concerning implantable drug delivery are emphasized. The findings of the study show that polysaccharides can be used for the development of implants for drug delivery applications.
Collapse
Affiliation(s)
- Suraj Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No 17 A, Yamuna Expressway, Greater Noida, U.P., India; Pragya College of Pharmaceutical Sciences, Shanti Nagar, Gaya, Bihar, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No 17 A, Yamuna Expressway, Greater Noida, U.P., India.
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Tarun Wadhwa
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | | |
Collapse
|
2
|
Fang G, Hao P, Qiao R, Liu BX, Shi X, Wang Z, Sun P. Stimuli-responsive chitosan based nanoparticles in cancer therapy and diagnosis: A review. Int J Biol Macromol 2024; 283:137709. [PMID: 39549789 DOI: 10.1016/j.ijbiomac.2024.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Chitosan, obtained through deacetylation of chitin, has been shown to a promising biopolymer for the development of nano- and micro-particles. In spite of inherent anti-cancer activity of chitosan, the employment of this carbohydrate polymer for the synthesis of nanoparticles opens a new gate in disease therapy. The properties of chitosan including biocompatibility, biodegradability, and modifiability are vital in enhancing these nanoparticles, allowing for improved solubility and interaction with cellular targets. Among the pathological events, cancer has demonstrated an increase in incidence rate and therefore, the chitosan nanoparticles have been significantly utilized in cancer therapy. The present review emphasizes on the role of stimuli-responsive chitosan nanoparticles in the field of cancer therapy. The stimuli-responsive nanoparticles can release the cargo in the tumor site that not only improves the anti-cancer activity of chemotherapy drugs, but also diminishes their systemic toxicity. The stimuli-responsive chitosan nanoparticles can respond to endogenous and exogenous stimuli including pH, redox and light to release cargo. This improves the specificity towards tumor cells and enhances accumulation of drugs and/or drugs. The light-responsive chitosan nanoparticles can cause photothermal and photodynamic therapy in tumor ablation and provide theranostic feature that is cancer diagnosis and therapy simultaneously.
Collapse
Affiliation(s)
- Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Peng Hao
- Department of Joint Surgery, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing 400038, PR China
| | - Ruonan Qiao
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bi-Xia Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiujuan Shi
- School of Medicine, Tongji university, Shanghai 200092, China.
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital, Inner Mongolia Campus, Afliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, China.
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Parlayıcı Ş, Pehlivan E. Methylene blue removal using nano-TiO 2/MWCNT/Chitosan hydrogel composite beads in aqueous medium. CHEMOSPHERE 2024; 365:143244. [PMID: 39251160 DOI: 10.1016/j.chemosphere.2024.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Dyestuff, one of the most hazardous compounds in terms of threats to people and the environment, is found in wastewater from industrial usage. The removal of Methylene Blue (MB) from a water-based medium has been studied by numerous researchers using a variety of adsorbents. To remove MB from aqueous solution, nano-TiO2/MWCNT/Chitosan hydrogel composite beads (n-TiO2/MWCNT/Cht) were developed in this study using a sol-gel method. This research discusses the characterisation of a new adsorbent substance using Infrared Spectroscopy (FT-IR) analysis and scanning electron microscopy (SEM). The optimal pH, adsorbent dosage, duration, and starting concentration were ascertained by analyzing the removal efficiencies of MB using the batch adsorption method. Adsorption behaviour at the equilibrium state has been investigated using a variety of adsorption isotherms, including Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir adsorption isotherm has been useful to clarify adsorption behaviors. nTiO2-Cht/MWCNT had an adsorption capacity of 80.65 mg/g for MB. The pseudo-second-order kinetic model offered the best agreement to the experimental data for the adsorption of MB. Kinetic models of pseudo-first-order and pseudo-second-order were employed to explore the adsorption processes of MB on the n-TiO2/MWCNT/Cht. This study demonstrated the efficiency of n-TiO2/MWCNT/Cht for the removal of MB from a water-based solution.
Collapse
Affiliation(s)
- Şerife Parlayıcı
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| | - Erol Pehlivan
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| |
Collapse
|
4
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Lu L, Wang Q, Zhang W, Gao M, Xv Y, Li S, Dong H, Chen D, Yan P, Dong Z. Urea Coated with Polyaspartic Acid-Chitosan Increases Foxtail Millet ( Setaria italica L. Beauv.) Grain Yield by Improving Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 13:415. [PMID: 38337948 PMCID: PMC10857690 DOI: 10.3390/plants13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Innovative measures of nitrogen (N) fertilization to increase season-long N availability is essential for gaining the optimal foxtail millet (Setaria italica L. Beauv.) productivity and N use efficiency. A split plot field experiment was conducted using the foxtail millet variety Huayougu 9 in 2020 and 2021 in Northeast China to clarify the physiological mechanism of a novel polyaspartic acid-chitosan (PAC)-coated urea on N assimilation and utilization from foxtail millet. Conventional N fertilizer (CN) and the urea-coated -PAC treatments were tested under six nitrogen fertilizer application levels of 0, 75, 112.5, 150, 225, and 337.5 kg N ha-1. The results showed that compared to CN, PN increased the foxtail millet yield by 5.53-15.75% and 10.43-16.17% in 2020 and 2021, respectively. PN increased the leaf area index and dry matter accumulation by 7.81-18.15% and 12.91-41.92%, respectively. PN also enhanced the activities of nitrate reductase, glutamine synthetase, glutamic oxaloacetic transaminase, and glutamic-pyruvic transaminase, thereby increasing the soluble protein in the leaf, plant, and grain N content at harvest compared to CN. Consequently, partial factor productivity from applied N, the agronomic efficiency of applied N, recovery efficiency of applied N, and physiological efficiency of applied N of foxtail millet under PN treatments compared to CN were increased. The improvement effect of the items above was more noticeable under the low-middle N application levels (75, 112.5, and 150 kg N ha-1). In conclusion, the PAC could achieve the goal of high yield and high N use efficiency in foxtail millet under the background of a one-time basic fertilizer application.
Collapse
Affiliation(s)
- Lin Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (W.Z.); (Y.X.); (H.D.); (D.C.)
| | - Qi Wang
- Beijing Agricultural Technology Extension, Beijing 100029, China;
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (W.Z.); (Y.X.); (H.D.); (D.C.)
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ming Gao
- Institute of Crop Resources Sciences, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (M.G.); (S.L.)
| | - Yanli Xv
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (W.Z.); (Y.X.); (H.D.); (D.C.)
| | - Shujie Li
- Institute of Crop Resources Sciences, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (M.G.); (S.L.)
| | - Haosheng Dong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (W.Z.); (Y.X.); (H.D.); (D.C.)
| | - Disu Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (W.Z.); (Y.X.); (H.D.); (D.C.)
| | - Peng Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (W.Z.); (Y.X.); (H.D.); (D.C.)
| | - Zhiqiang Dong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (W.Z.); (Y.X.); (H.D.); (D.C.)
- College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
7
|
He W, Shi C, Yin J, Huang F, Yan W, Deng J, Zhang B, Wang B, Wang H. Spinal cord decellularized matrix scaffold loaded with engineered basic fibroblast growth factor-overexpressed human umbilical cord mesenchymal stromal cells promoted the recovery of spinal cord injury. J Biomed Mater Res B Appl Biomater 2023; 111:51-61. [PMID: 35799479 DOI: 10.1002/jbm.b.35131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord injury (SCI) will lead to irreversible damage of sensory and motor function of central nervous system, which seriously affects patient's quality of life. A variety of nerve engineering materials carrying various stem cells and cell growth factors had used to promote the repair of SCI, but they could not mimic the actual matric niche at spinal cord to promote cell proliferation and differentiation. Thus, developing novel biomaterial providing better niche of spinal cord is a new strategy to treat the severe SCI. In this study, we constructed porcine spinal cord decellularized matrix scaffold (SC-DM) with biocompatibility to load engineered basic fibroblast growth factor-overexpressing human umbilical cord mesenchymal stromal cells (bFGF-HUCMSCs) for treating SCI. The continuously released bioactive bFGF factors from grafted bFGF-HUCMSCs and three-dimensional niche by SC-DM promoted the differentiation of endogenous stem cells into neurons with nerve conduction function, leading a markedly motor function recovery of SCI. These results indicated that the functional bFGF-HUCMSCs/SC-DM scaffold provided more suitable matric niche for nerve cells, that would be a promising strategy for the clinical application of SCI.
Collapse
Affiliation(s)
- Wenli He
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jia Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Feifei Huang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenjing Yan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Deng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Reshamwala R, Shah M. Regenerative Approaches in the Nervous System. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
9
|
Inhibition of Chitosan with Different Molecular Weights on Barley-Borne Fusarium graminearum during Barley Malting Process for Improving Malt Quality. Foods 2022; 11:foods11193058. [PMID: 36230134 PMCID: PMC9564282 DOI: 10.3390/foods11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
There are many Fusarium graminearum contaminations in barley that are often associated with malt and beer quality issues. Thus, it is important to find a biological antifungal agent to prevent the growth of F. graminearum during malting. Minimum inhibition concentration (MIC) of chitosan for mycelial growth and spore germination of F. graminearum was 2.6 g/L and 1.6 g/L, respectively, indicating that the F. graminearum strain was highly sensitive toward chitosan. Chitosan with a molecular weight of 102.7 kDa was added at 0.5 g/kg during the first steeping stage, resulting in the maximum inhibition rate of F. graminearm in barley. The biomass of F. graminearm and deoxynivalenol content in the infected barley at the end of germination with 0.5 g/kg chitosan treatment were decreased by 50.7% and 70.5%, respectively, when compared with the infected barley without chitosan. Chitosan could remove the negative effects of F. graminearm infection on barley germination and malt quality, which makes the application of chitosan during the steeping process as a potential antifungal agent in the malting process to protect from F. graminearum infection.
Collapse
|
10
|
Polysaccharide Based Implantable Drug Delivery: Development Strategies, Regulatory Requirements, and Future Perspectives. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Implantable drug delivery systems advocate a wide array of potential benefits, including effective administration of drugs at lower concentrations and fewer side-effects whilst increasing patient compliance. Amongst several polymers used for fabricating implants, biopolymers such as polysaccharides are known for modulating drug delivery attributes as desired. The review describes the strategies employed for the development of polysaccharide-based implants. A comprehensive understanding of several polysaccharide polymers such as starch, cellulose, alginate, chitosan, pullulan, carrageenan, dextran, hyaluronic acid, agar, pectin, gellan gum is presented. Moreover, biomedical applications of these polysaccharide-based implantable devices along with the recent advancements carried out in the development of these systems have been mentioned. Implants for the oral cavity, nasal cavity, bone, ocular use, and antiviral therapy have been discussed in detail. The regulatory considerations with respect to implantable drug delivery has also been emphasized in the present work. This article aims to provide insights into the developmental strategies for polysaccharide-based implants.
Collapse
|
11
|
Ding X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application. Carbohydr Polym 2022; 297:120011. [DOI: 10.1016/j.carbpol.2022.120011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023]
|
12
|
Cheng Y, Zhang Y, Wu H. Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Front Bioeng Biotechnol 2022; 9:807533. [PMID: 35223816 PMCID: PMC8864123 DOI: 10.3389/fbioe.2021.807533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurological condition caused by trauma, inflammation, and other diseases, which often leads to permanent changes in strength and sensory function below the injured site. Changes in the microenvironment and secondary injuries continue to pose challenges for nerve repair and recovery after SCI. Recently, there has been progress in the treatment of SCI with the use of scaffolds for neural tissue engineering. Polymeric fibers fabricated by electrospinning have been increasingly used in SCI therapy owing to their biocompatibility, complex porous structure, high porosity, and large specific surface area. Polymer fibers simulate natural extracellular matrix of the nerve fiber and guide axon growth. Moreover, multiple channels of polymer fiber simulate the bundle of nerves. Polymer fibers with porous structure can be used as carriers loaded with drugs, nerve growth factors and cells. As conductive fibers, polymer fibers have electrical stimulation of nerve function. This paper reviews the fabrication, characterization, and application in SCI therapy of polymeric fibers, as well as potential challenges and future perspectives regarding their application.
Collapse
Affiliation(s)
- Yuanpei Cheng
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Han Wu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Liu H, Ye X, Chen S, Sun A, Duan X, Zhang Y, Zou H, Zhang Y. Chitosan as additive affects the bacterial community, accelerates the removals of antibiotics and related resistance genes during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148381. [PMID: 34146805 DOI: 10.1016/j.scitotenv.2021.148381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Manures, storages for antibiotic resistance genes (ARGs), pollute soil and water as well as endanger human health. Recently, we have been searching a better solution to remove antibiotics and ARGs during aerobic composting. Here, the dynamics of chitosan addition on the profiles of 71 ARGs, bacterial communities, chlortetracycline (CTC), ofloxacin (OFX) were investigated in chicken manure composting and compared with zeolite addition. Chitosan addition effectively reduces antibiotics contents (CTC under detection limit, OFX 90.96%), amounts (18) and abundance (56.7%, 11.1% higher than zeolite addition) of ARGs and mobile genetic elements (MGEs) after 42 days composting. Network analysis indicated that a total of 27 genera strains assigned into 4 phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) were the potential hosts of ARGs. Redundancy analysis (RDA) demonstrated that bacterial community succession is the main contributor in the variation of ARGs. Overall, chitosan addition may effect bacterial composition by influencing physic-chemical properties and the concentration of antibiotics, Cu2+, Zn2+ to reduce the risk of ARG transmission. This study gives a new strategy about antibiotics and ARGs removal from composting on the basis of previous studies.
Collapse
Affiliation(s)
- Hongdou Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Xuhong Ye
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Songling Chen
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Aobo Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Xinying Duan
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| | - Yanqing Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China; Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China.
| | - Yulong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Areas, Shenyang 110866, Liaoning, China
| |
Collapse
|
14
|
Trends of Chitosan Based Delivery Systems in Neuroregeneration and Functional Recovery in Spinal Cord Injuries. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most complicated nervous system injuries with challenging treatment and recovery. Regenerative biomaterials such as chitosan are being reported for their wide use in filling the cavities, deliver curative drugs, and also provide adsorption sites for transplanted stem cells. Biomaterial scaffolds utilizing chitosan have shown certain therapeutic effects on spinal cord injury repair with some limitations. Chitosan-based delivery in stem cell transplantation is another strategy that has shown decent success. Stem cells can be directed to differentiate into neurons or glia in vitro. Stem cell-based therapy, biopolymer chitosan delivery strategies, and scaffold-based therapeutic strategies have been advancing as a combinatorial approach for spinal cord injury repair. In this review, we summarize the recent progress in the treatment strategies of SCI due to the use of bioactivity of chitosan-based drug delivery systems. An emphasis on the role of chitosan in neural regeneration has also been highlighted.
Collapse
|
15
|
Li JJ, Liu H, Zhu Y, Yan L, Liu R, Wang G, Wang B, Zhao B. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:79-100. [PMID: 33267667 DOI: 10.1089/ten.teb.2020.0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Haifeng Liu
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Yuanyuan Zhu
- Department of Pharmacy, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Lei Yan
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Ruxing Liu
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Bin Wang
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Department of Sports Medicine and Adult Reconstruction Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Zhao
- Department of Orthopedics and Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
16
|
Hu Q, Luo Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int J Biol Macromol 2021; 179:125-135. [PMID: 33667554 DOI: 10.1016/j.ijbiomac.2021.02.216] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
To overcome the poor aqueous solubility and bioavailability of curcumin, emphasize its functional features, and broaden its applications in the food and pharmaceutical industries, many nanoscale systems have been widely applied for its encapsulation and delivery. Over many decades, chitosan as a natural biopolymer has been extensively studied due to its polycationic nature, biodegradability, biocompatibility, non-toxicity, and non-allergenic. Various chitosan-based nanocarriers with unique properties for curcumin delivery, including but not limited to, self-assembled nanoparticles, nanocomposites, nanoemulsions, nanotubes, and nanofibers, have been designed. This review focuses on the most-recently reported fabrication techniques of different types of chitosan-based nanocarriers. The functionalities of chitosan in each formulation which determine the physicochemical properties such as surface charge, morphology, encapsulation driving force, and release profile, were discussed in detail. Moreover, the current pharmaceutical applications of curcumin-loaded chitosan nanoparticles were elaborated. The role of chitosan in facilitating the delivery of curcumin and improving the therapeutic effects on many chronic diseases, including cancer, bacterial infection, wound healing, Alzheimer's diseases, inflammatory bowel disease, and hepatitis C virus, were illustrated. Particularly, the recently discovered mechanisms of action of curcumin-loaded chitosan nanoparticles against the abovementioned diseases were highlighted.
Collapse
Affiliation(s)
- Qiaobin Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210003, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
17
|
Development and optimization of a new hybrid chitosan-grafted graphene oxide/magnetic nanoparticle system for theranostic applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114515] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Abstract
In recent years, nanotechnology has attracted attention in many fields because it has several up-and-coming novel uses. Many researchers have suggested that chitosan nanoparticles (CS-NPs) and their derivatives are one of the best nanomaterials for delivering antibacterial activity. CS-NPs have a broad spectrum of antibacterial activity, but they manifest different inhibitory efficacy against gram-negative (G−) and gram-positive (G+) bacterial species. The mechanism of antibacterial action is an intricate process that varies between G− and G+ bacteria as a result of the differences in cell wall and cell membrane chemistry. In previous studies, greater antibacterial activity was more evident against G− bacteria than G+ bacteria, whereas in some studies G+ bacteria were more sensitive. Researchers predicted that the varied responses of bacteria are caused by the mixed hydrophilicity and negative charge distribution on the bacterial surface. Moreover, its activity depends on a number of variables including bacterial target (i.e., G− or G+ bacteria) and bacterial growth, as well as its concentration, pH, zeta-potential, molecular weight, and degree of acetylation. Therefore, this review examines current research on the mechanisms and factors affecting antibacterial activity, and application of CS-NPs specifically against animal and plant pathogenic bacteria.
Collapse
|
19
|
Chen L, Bai M, Du R, Wang H, Deng Y, Xiao A, Gan X. The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2152-2168. [PMID: 32646287 DOI: 10.1080/09205063.2020.1793706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Surface modification of titanium implants by siRNA is quite efficient for improving implant osseointegration. Loading siRNA onto their surface is a crucial factor for siRNA-functionalized implants to realize their biological function. Direct binding of siRNA to implants has low siRNA binding and releasing rate, so usually it needs to be mediated by vectors. Polymeric, nonmaterial-mediated and lipid-based vectors are types of non-viral vectors which are commonly used for delivering siRNA. Three major methods of loading process, namely simple physical adsorption, layer-by-layer assembly and electrodeposition, are also summarized. A brief introduction, the basic principle and the general procedure of each method are included. The loading efficiency, which can be measured both qualitatively and quantitatively, together with gene knockdown efficiency, cytotoxicity assay and osteogenesis of the three methods are compared. A good many applications in osteogenesis have also been described in this review.
Collapse
Affiliation(s)
- Liangrui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingxuan Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruiyu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P.R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
20
|
Roy H, Rahaman SA, Kumar TV, Nandi S. Current Development on Chitosan-based Antimicrobial Drug Formulations for the Wound Healing. Curr Drug Discov Technol 2020; 17:534-541. [PMID: 31971111 DOI: 10.2174/1570163817666200123122532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Derived from polyose, chitosan is an outstanding natural linear polysaccharide comprised of random arrangement of β-(1-4)-linked D-Glucosamine and N-acetyl-DGlucosamine units. OBJECTIVE Researchers have been using chitosan as a network forming or gelling agent with economically available, present polyose, low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and don't suffer the danger of transmission animal infective agent. METHODS Furthermore, recent studies gear up the chitosan used in the development of various biopharmaceutical formulations, including nanoparticles, hydrogels, implants, films, fibers, etc. Results: These formulations produce potential activities as antimicrobials, cancer treatment, medical aid, and wound healing, controlled unleash device or drug trigger retarding device and 3DBiomedical sponge, etc. Conclusion: The present article discusses the development of various drug formulations utilizing chitosan as biopolymers for the repairing of broken tissues and healing in case of wound infection.
Collapse
Affiliation(s)
- Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Shaik A Rahaman
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Theendra V Kumar
- Department of Pharmaceutics, Nirmala College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
21
|
Repair strategies for traumatic spinal cord injury, with special emphasis on novel biomaterial-based approaches. Rev Neurol (Paris) 2020; 176:252-260. [PMID: 31982183 DOI: 10.1016/j.neurol.2019.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022]
Abstract
As a part of the central nervous system (CNS), the adult mammalian spinal cord displays only very poor ability for self-repair in response to traumatic lesions, which mostly lead to more or less severe, life-long disability. While even adult CNS neurons have a certain plastic potential, their intrinsic regenerative capacity highly varies among different neuronal populations and in the end, regeneration is almost completely inhibited due to extrinsic factors such as glial scar and cystic cavity formation, excessive and persistent inflammation, presence of various inhibitory molecules, and absence of trophic support and of a growth-supportive extracellular matrix structure. In recent years, a number of experimental animal models have been developed to overcome these obstacles. Since all those studies based on a single approach have yielded only relatively modest functional recovery, it is now consensus that different therapeutic approaches will have to be combined to synergistically overcome the multiple barriers to CNS regeneration, especially in humans. In this review, we particularly emphasize the hope raised by the development of novel, implantable biomaterials that should favor the reconstruction of the damaged nervous tissue, and ultimately allow for functional recovery of sensorimotor functions. Since human spinal cord injury pathology depends on the vertebral level and the severity of the traumatic impact, and since the timing of application of the different therapeutic approaches appears very important, we argue that every case will necessitate individual evaluation, and specific adaptation of therapeutic strategies.
Collapse
|
22
|
Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr Polym 2020; 227:115331. [DOI: 10.1016/j.carbpol.2019.115331] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|
23
|
Vigani B, Rossi S, Sandri G, Bonferoni MC, Rui M, Collina S, Fagiani F, Lanni C, Ferrari F. Dual-Functioning Scaffolds for the Treatment of Spinal Cord Injury: Alginate Nanofibers Loaded with the Sigma 1 Receptor (S1R) Agonist RC-33 in Chitosan Films. Mar Drugs 2019; 18:E21. [PMID: 31887983 PMCID: PMC7024184 DOI: 10.3390/md18010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
The present work proposed a novel therapeutic platform with both neuroprotective and neuroregenerative potential to be used in the treatment of spinal cord injury (SCI). A dual-functioning scaffold for the delivery of the neuroprotective S1R agonist, RC-33, to be locally implanted at the site of SCI, was developed. RC-33-loaded fibers, containing alginate (ALG) and a mixture of two different grades of poly(ethylene oxide) (PEO), were prepared by electrospinning. After ionotropic cross-linking, fibers were incorporated in chitosan (CS) films to obtain a drug delivery system more flexible, easier to handle, and characterized by a controlled degradation rate. Dialysis equilibrium studies demonstrated that ALG was able to form an interaction product with the cationic RC-33 and to control RC-33 release in the physiological medium. Fibers loaded with RC-33 at the concentration corresponding to 10% of ALG maximum binding capacity were incorporated in films based on CS at two different molecular weights-low (CSL) and medium (CSM)-solubilized in acetic (AA) or glutamic (GA) acid. CSL- based scaffolds were subjected to a degradation test in order to investigate if the different CSL salification could affect the film behavior when in contact with media that mimic SCI environment. CSL AA exhibited a slower biodegradation and a good compatibility towards human neuroblastoma cell line.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| | - Marta Rui
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| | - Francesca Fagiani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
- Scuola Universitaria IUSS, Istituto Universitario di Studi Superiori, 27100 Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy; (B.V.); (G.S.); (M.C.B.); (M.R.); (S.C.); (F.F.); (C.L.)
| |
Collapse
|
24
|
Naumenko E, Fakhrullin R. Halloysite Nanoclay/Biopolymers Composite Materials in Tissue Engineering. Biotechnol J 2019; 14:e1900055. [PMID: 31556237 DOI: 10.1002/biot.201900055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Indexed: 12/29/2022]
Abstract
Biocompatible materials for the fabrication of tissue substitutes are crucially important in the advancement of modern medicinal biotechnology. These materials, to serve their function, should be similar in physical, chemical, biological, and structural properties to native tissues which they are aimed to mimic. The porosity of artificial scaffolds is essential for normal nutrient transmission to cells, gas diffusion, and cell attachment and proliferation. Nanoscale inorganic additives and dopants are widely used to improve the functional properties of the polymer materials for tissue engineering. Among these inorganic dopants, halloysite nanotubes are arguably the most perspective candidates because of their biocompatibility and functional properties allowing to enhance significantly the mechanical and chemical stability of tissue engineering scaffolds. Here, this vibrant field of biotechnology for regenerative medicine is overviewed.
Collapse
Affiliation(s)
- Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Republic of Tatarstan, Russian Federation
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Republic of Tatarstan, Russian Federation
| |
Collapse
|
25
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
26
|
Crecente-Campo J, Guerra-Varela J, Peleteiro M, Gutiérrez-Lovera C, Fernández-Mariño I, Diéguez-Docampo A, González-Fernández Á, Sánchez L, Alonso MJ. The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish. J Control Release 2019; 308:98-108. [PMID: 31306677 DOI: 10.1016/j.jconrel.2019.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Macrophages are pivotal cells of the innate immune system specialized in the phagocytosis of foreign elements. Nanoparticles intentionally designed to target macrophages and modulate their response are of especial interest in the case of chronic inflammatory diseases, cancer and for vaccine development. This work aimed to understand the role of size and shell composition of polymeric nanocapsules (NCs) in their interaction with macrophages, both in vitro and in vivo. A systematic study was performed using two different sizes of inulin and chitosan NCs, negatively and positively charged, respectively, small (≈ 70 nm) and medium (170-250 nm). The in vitro results showed that small NCs interacted more efficiently with macrophages than their larger counterparts. Inulin NCs were significantly less toxic than chitosan NCs. Finally, following in vivo administration (intravenous/intramuscular) to zebrafish, small NCs, regardless of their composition, disseminated considerably faster and further than their medium size counterparts. These results emphasize how small changes in the nanometric range can lead to a remarkably different interaction with the immune cells and biodistribution profile.
Collapse
Affiliation(s)
- José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| | - Jorge Guerra-Varela
- Department of Zoology, Genetics & Physical Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Geneaqua S.L., Lugo, Spain
| | - Mercedes Peleteiro
- Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Universidade de Vigo, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Campus Universitario, Vigo 36310, Spain
| | - Carlha Gutiérrez-Lovera
- Department of Zoology, Genetics & Physical Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Iago Fernández-Mariño
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| | - Andrea Diéguez-Docampo
- Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Universidade de Vigo, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Campus Universitario, Vigo 36310, Spain
| | - África González-Fernández
- Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Universidade de Vigo, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Campus Universitario, Vigo 36310, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics & Physical Anthropology, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Worthen AJ, Irving KS, Lapitsky Y. Supramolecular Strategy Effects on Chitosan Bead Stability in Acidic Media: A Comparative Study. Gels 2019; 5:E11. [PMID: 30823549 PMCID: PMC6473334 DOI: 10.3390/gels5010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 02/03/2023] Open
Abstract
Chitosan beads attract interest in diverse applications, including drug delivery, biocatalysis and water treatment. They can be formed through several supramolecular pathways, ranging from phase inversion in alkaline solutions, to the ionic crosslinking of chitosan with multivalent anions, to polyelectrolyte or surfactant/polyelectrolyte complexation. Many chitosan bead uses require control over their stability to dissolution. To help elucidate how this stability depends on the choice of supramolecular gelation chemistry, we present a comparative study of chitosan bead stability in acidic aqueous media using three common classes of supramolecular chitosan beads: (1) alkaline solution-derived beads, prepared through simple precipitation in NaOH solution; (2) ionically-crosslinked beads, prepared using tripolyphosphate (TPP); and (3) surfactant-crosslinked beads prepared via surfactant/polyelectrolyte complexation using sodium salts of dodecyl sulfate (SDS), caprate (NaC10) and laurate (NaC12). Highly variable bead stabilities with dissimilar sensitivities to pH were achieved using these methods. At low pH levels (e.g., pH 1.2), chitosan/SDS beads were the most stable, requiring roughly 2 days to dissolve. In weakly acidic media (at pH 3.0⁻5.0), however, chitosan/TPP beads exhibited the highest stability, remaining intact throughout the entire experiment. Beads prepared using only NaOH solution (i.e., without ionic crosslinking or surfactant complexation) were the least stable, except at pH 5.0, where the NaC10 and NaC12-derived beads dissolved slightly faster. Collectively, these findings provide further guidelines for tailoring supramolecular chitosan bead stability in acidic media.
Collapse
Affiliation(s)
- Andrew J Worthen
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| | - Kelly S Irving
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
28
|
Bardakova KN, Akopova TA, Kurkov AV, Goncharuk GP, Butnaru DV, Burdukovskii VF, Antoshin AA, Farion IA, Zharikova TM, Shekhter AB, Yusupov VI, Timashev PS, Rochev YA. From Aggregates to Porous Three-Dimensional Scaffolds through a Mechanochemical Approach to Design Photosensitive Chitosan Derivatives. Mar Drugs 2019; 17:E48. [PMID: 30634710 PMCID: PMC6356335 DOI: 10.3390/md17010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022] Open
Abstract
The crustacean processing industry produces large quantities of waste by-products (up to 70%). Such wastes could be used as raw materials for producing chitosan, a polysaccharide with a unique set of biochemical properties. However, the preparation methods and the long-term stability of chitosan-based products limit their application in biomedicine. In this study, different scale structures, such as aggregates, photo-crosslinked films, and 3D scaffolds based on mechanochemically-modified chitosan derivatives, were successfully formed. Dynamic light scattering revealed that aggregation of chitosan derivatives becomes more pronounced with an increase in the number of hydrophobic substituents. Although the results of the mechanical testing revealed that the plasticity of photo-crosslinked films was 5⁻8% higher than that for the initial chitosan films, their tensile strength remained unchanged. Different types of polymer scaffolds, such as flexible and porous ones, were developed by laser stereolithography. In vivo studies of the formed structures showed no dystrophic and necrobiotic changes, which proves their biocompatibility. Moreover, the wavelet analysis was used to show that the areas of chitosan film degradation were periodic. Comparing the results of the wavelet analysis and X-ray diffraction data, we have concluded that degradation occurs within less ordered amorphous regions in the polymer bulk.
Collapse
Affiliation(s)
- Kseniia N Bardakova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
- Institute of Photonic Technologies, Research center "Crystallography and Photonics", Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russia.
| | - Tatiana A Akopova
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, 70 Profsoyuznaya st., Moscow 117393, Russia.
| | - Alexander V Kurkov
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
| | - Galina P Goncharuk
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, 70 Profsoyuznaya st., Moscow 117393, Russia.
| | - Denis V Butnaru
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
| | - Vitaliy F Burdukovskii
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 Sakhyanovoy st., Ulan-Ude 670047, Russia.
| | - Artem A Antoshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
| | - Ivan A Farion
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, 6 Sakhyanovoy st., Ulan-Ude 670047, Russia.
| | - Tatiana M Zharikova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
- Institute for Urology and Reproductive Health, Sechenov University, 2-1 Bolshaya Pirogovskaya st., Moscow 119435, Russia.
| | - Anatoliy B Shekhter
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
| | - Vladimir I Yusupov
- Institute of Photonic Technologies, Research center "Crystallography and Photonics", Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russia.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
- Institute of Photonic Technologies, Research center "Crystallography and Photonics", Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russia.
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 119991, Russia.
| | - Yury A Rochev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russia.
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway (NUI Galway), University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
29
|
Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater 2019; 83:13-28. [PMID: 30414483 DOI: 10.1016/j.actbio.2018.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Microglia are multi-functional cells that play a vital role in establishing and maintaining the function of the nervous system and determining the fate of neurons following injury or neuropathology. The roles of microglia are diverse and essential to the capacity of the nervous system to recover from injury, however sustained inflammation can limit recovery and drive chronic disease processes such as neurodegenerative disorders. When assessing implantable therapeutic devices in the central nervous system, an improved lifetime of the implant is considered achievable through the attenuation of microglial inflammation. Consequently, there is a tremendous underexplored potential in biomaterial and engineered design to modulate neuroinflammation for therapeutic benefit. Several strategies for improving device compatibility reviewed here include: biocompatible coatings, improved designs in finer and flexible shapes to reduce tissue shear-related scarring, and loading of anti-inflammatory drugs. Studies about microglial cell cultures in 3D hydrogels and nanoscaffolds to assess various injuries and disorders are also discussed. A variety of other microglia-targeting treatments are also reviewed, including nanoparticulate systems, cellular backpacks, and gold plinths, with the intention of delivering anti-inflammatory drugs by targeting the phagocytic nature of microglia. Overall, this review highlights recent advances in biomaterials targeting microglia and inflammatory function with the potential for improving implant rejection and biocompatibility studies. STATEMENT OF SIGNIFICANCE: Microglia are the resident immune cells of the central nervous system, and thus play a central role in the neuroinflammatory response against conditions than span acute injuries, neuropsychiatric disorders, and neurodegenerative disorders. This review article presents a summary of biomaterials research that target microglia and other glial cells in order to attenuate neuroinflammation, including but not limited to: design of mechanically compliant and biocompatible stimulation electrodes, hydrogels for high-throughput 3D modelling of nervous tissue, and uptake of nanoparticle drug delivery systems. The goal of this paper is to identify strengths and gaps in the relevant literature, and to promote further consideration of microglia behaviour and neuroinflammation in biomaterial design.
Collapse
Affiliation(s)
- C Tsui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K Koss
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
30
|
Minkal, Ahuja M, Bhatt D. Polyelectrolyte complex of carboxymethyl gum katira-chitosan: Preparation and characterization. Int J Biol Macromol 2018; 106:1184-1191. [DOI: 10.1016/j.ijbiomac.2017.08.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/09/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
|
31
|
Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M, Mouffle C, Benassy MN, Taxi J, David L, Nothias F. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 2017; 138:91-107. [DOI: 10.1016/j.biomaterials.2017.05.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/04/2023]
|
32
|
Rajiv S, Drilling A, Bassiouni A, Harding M, James C, Robinson S, Moratti S, Wormald PJ. Chitosan Dextran gel as an anti adhesion agent in a postlaminectomy spinal sheep model. J Clin Neurosci 2017; 40:153-156. [DOI: 10.1016/j.jocn.2017.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
33
|
Nawrotek K, Marqueste T, Modrzejewska Z, Zarzycki R, Rusak A, Decherchi P. Thermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat. J Biomed Mater Res A 2017; 105:2004-2019. [PMID: 28324618 DOI: 10.1002/jbm.a.36067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 11/06/2022]
Abstract
The present study was designed to provide an appropriate micro-environment for regenerating axotomized neurons and proliferating/migrating cells. Because of its intrinsic permissive properties, biocompatibility and biodegradability, we chose to evaluate the therapeutic effectiveness of a chitosan-based biopolymer. The biomaterial toxicity was measured through in vitro test based on fibroblast cell survival on thermogelling chitosan lactate hydrogel substrate and then polymer was implanted into a C2 hemisection of the rat spinal cord. Animals were randomized into three experimental groups (Control, Lesion and Lesion + Hydrogel) and functional tests (ladder walking and forelimb grip strength tests, respiratory assessment by whole-body plethysmography measurements) were used, once a week during 10 weeks, to evaluate post-traumatic recoveries. Then, electrophysiological examinations (reflexivity of the sub-lesional region, ventilatory adjustments to muscle fatigue known to elicit the muscle metaboreflex and phrenic nerve recordings during normoxia and temporary hypoxia) were performed. In vitro results indicated that the chitosan matrix is a non-toxic biomaterial that allowed fibroblast survival. Furthermore, implanted animals showed improvements of their ladder walking scores from the 4th week post-implantation. Finally, electrophysiological recordings indicated that animals receiving the chitosan matrix exhibited recovery of the H-reflex rate sensitive depression, the ventilatory response to repetitive muscle stimulation and an increase of the phrenic nerve activity to asphyxia compared to lesioned and nonimplanted animals. This study indicates that hydrogel based on chitosan constitute a promising therapeutic approach to repair damaged spinal cord or may be used as an adjuvant with other treatments to enhance functional recovery after a central nervous system damage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2004-2019, 2017.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Tanguy Marqueste
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe « Plasticité des Systèmes Nerveux et Musculaire », Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288, Marseille Cedex 09, France
| | - Zofia Modrzejewska
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Roman Zarzycki
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Agnieszka Rusak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Medico-Dental Faculty, Krakowska 26 Street, Wroclaw, Poland, 50-425
| | - Patrick Decherchi
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe « Plasticité des Systèmes Nerveux et Musculaire », Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288, Marseille Cedex 09, France
| |
Collapse
|
34
|
Pogorielov M, Kravtsova A, Reilly GC, Deineka V, Tetteh G, Kalinkevich O, Pogorielova O, Moskalenko R, Tkach G. Experimental evaluation of new chitin-chitosan graft for duraplasty. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:34. [PMID: 28110458 DOI: 10.1007/s10856-017-5845-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Natural materials such as collagen and alginate have promising applications as dural graft substitutes. These materials are able to restore the dural defect and create optimal conditions for the development of connective tissue at the site of injury. A promising material for biomedical applications is chitosan-a linear polysaccharide obtained by the deacetylation of chitin. It has been found to be nontoxic, biodegradable, biofunctional and biocompatible in addition to having antimicrobial characteristics. In this study we designed new chitin-chitosan substitutes for dura mater closure and evaluated their effectiveness and safety. Chitosan films were produced from 3 % of chitosan (molar mass-200, 500 or 700 kDa, deacetylation rate 80-90%) with addition of 20% of chitin. Antimicrobial effictively and cell viability were analysed for the different molar masses of chitosan. The film containing chitosan of molar mass 200 kDa, had the best antimicrobial and biological activity and was successfully used for experimental duraplasty in an in vivo model. In conclusion the chitin-chitosan membrane designed here met the requirements for a dura matter graft exhibiting the ability to support cell growth, inhibit microbial growth and biodegradade at an appropriate rate. Therefore this is a promising material for clinical duroplasty.
Collapse
Affiliation(s)
- M Pogorielov
- Medical Institute, Sumy State University, 2, R-Korsakova street, Sumy, 40007, Ukraine.
| | - A Kravtsova
- Neurosurgery Department, Kharkov National Medical University, Kharkiv, Ukraine
| | - G C Reilly
- Department of Materials Science and Engineering, INSIGNEO institute for in silico medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S1 3JD, Sheffield, UK
| | - V Deineka
- Medical Institute, Sumy State University, 2, R-Korsakova street, Sumy, 40007, Ukraine
| | - G Tetteh
- Department of Materials Science and Engineering, INSIGNEO institute for in silico medicine, University of Sheffield, Pam Liversidge Building, Mappin Street, S1 3JD, Sheffield, UK
| | | | - O Pogorielova
- Medical Institute, Sumy State University, 2, R-Korsakova street, Sumy, 40007, Ukraine
| | - R Moskalenko
- Medical Institute, Sumy State University, 2, R-Korsakova street, Sumy, 40007, Ukraine
| | - G Tkach
- Medical Institute, Sumy State University, 2, R-Korsakova street, Sumy, 40007, Ukraine
| |
Collapse
|
35
|
Slotkin JR, Pritchard CD, Luque B, Ye J, Layer RT, Lawrence MS, O'Shea TM, Roy RR, Zhong H, Vollenweider I, Edgerton VR, Courtine G, Woodard EJ, Langer R. Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 2017; 123:63-76. [PMID: 28167393 DOI: 10.1016/j.biomaterials.2017.01.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/08/2016] [Accepted: 01/22/2017] [Indexed: 12/30/2022]
Abstract
Tissue loss significantly reduces the potential for functional recovery after spinal cord injury. We previously showed that implantation of porous scaffolds composed of a biodegradable and biocompatible block copolymer of Poly-lactic-co-glycolic acid and Poly-l-lysine improves functional recovery and reduces spinal cord tissue injury after spinal cord hemisection injury in rats. Here, we evaluated the safety and efficacy of porous scaffolds in non-human Old-World primates (Chlorocebus sabaeus) after a partial and complete lateral hemisection of the thoracic spinal cord. Detailed analyses of kinematics and muscle activity revealed that by twelve weeks after injury fully hemisected monkeys implanted with scaffolds exhibited significantly improved recovery of locomotion compared to non-implanted control animals. Twelve weeks after injury, histological analysis demonstrated that the spinal cords of monkeys with a hemisection injury implanted with scaffolds underwent appositional healing characterized by a significant increase in remodeled tissue in the region of the hemisection compared to non-implanted controls. The number of glial fibrillary acidic protein immunopositive astrocytes was diminished within the inner regions of the remodeled tissue layer in treated animals. Activated macrophage and microglia were present diffusely throughout the remodeled tissue and concentrated at the interface between the preserved spinal cord tissue and the remodeled tissue layer. Numerous unphosphorylated neurofilament H and neuronal growth associated protein positive fibers and myelin basic protein positive cells may indicate neural sprouting inside the remodeled tissue layer of treated monkeys. These results support the safety and efficacy of polymer scaffolds in a primate model of acute spinal cord injury. A device substantially similar to the device described here is the subject of an ongoing human clinical trial.
Collapse
Affiliation(s)
| | - Christopher D Pritchard
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Luque
- InVivo Therapeutics Corporation, Cambridge, MA, USA
| | - Janice Ye
- InVivo Therapeutics Corporation, Cambridge, MA, USA
| | | | | | - Timothy M O'Shea
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roland R Roy
- Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Isabel Vollenweider
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - V Reggie Edgerton
- Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Departments of Neurobiology and Neurology, University of California, Los Angeles, CA, USA
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Eric J Woodard
- Department of Neurosurgery, New England Baptist Hospital, Boston, MA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Hu Q, Wang T, Zhou M, Xue J, Luo Y. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. Int J Biol Macromol 2016; 92:812-819. [DOI: 10.1016/j.ijbiomac.2016.07.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 01/31/2023]
|
37
|
Hu Q, Luo Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydr Polym 2016; 151:624-639. [DOI: 10.1016/j.carbpol.2016.05.109] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/30/2016] [Accepted: 05/29/2016] [Indexed: 01/09/2023]
|
38
|
Hu Q, Wang T, Zhou M, Xue J, Luo Y. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5893-5900. [PMID: 27379913 DOI: 10.1021/acs.jafc.6b02255] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.
Collapse
Affiliation(s)
- Qiaobin Hu
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Taoran Wang
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Mingyong Zhou
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
39
|
Betz VM, Sitoci-Ficici KH, Uckermann O, Leipnitz E, Iltzsche A, Thirion C, Salomon M, Zwipp H, Schackert G, Betz OB, Kirsch M. Gene-activated fat grafts for the repair of spinal cord injury: a pilot study. Acta Neurochir (Wien) 2016; 158:367-78. [PMID: 26592254 DOI: 10.1007/s00701-015-2626-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a complex disease requiring a concerted multi-target approach. The most appropriate combination of therapeutic gene, cellular vehicle, and space filling scaffold still has to be determined. We present an approach that employs syngeneic adipose tissue serving as a three-dimensional biological implant, source of progenitor cells, and delivery system for therapeutic genes. In this pilot experiment, we evaluated the feasibility and short-term effects using gene-activated autologous fat grafts after SCI. METHODS An experimental SCI model was established in syngeneic Fischer 344 rats by a T9-T10 hemimyelonectomy. Fat tissue was harvested from two donor rats. Animals were divided into four groups and treated with either (i) fat grafts activated by an adenoviral vector carrying the human NT-3 cDNA, (ii) or BDNF, (iii) or with untreated fat grafts or (iv) remained untreated. Animals were euthanized either 7 or 21 days after surgery, and spinal cord tissue was investigated by histological and immunohistochemical methods. RESULTS NT-3 and BDNF were produced by gene-activated fat grafts for at least 21 days in vitro and in vivo. Fat tissue grafts remained stable at the site of implantation at 7 days and at 21 days. Neither BDNF-activated nor NT-3-activated fat graft had a detectable limiting effect on the neuronal degeneration. BDNF recruited microglia to perilesional site and attenuated their inflammatory response. CONCLUSIONS Gene-activated syngeneic fat tissue serves as a three-dimensional biological material delivering therapeutic molecules to the site of SCI over an extended period of time. The BDNF-fat graft attenuated the inflammatory response. Whether these findings translate into functional recovery will require extended observation times.
Collapse
Affiliation(s)
- Volker M Betz
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - K Hakan Sitoci-Ficici
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Elke Leipnitz
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Anne Iltzsche
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | | | | | - Hans Zwipp
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Oliver B Betz
- Department of Orthopedic Surgery, University Hospital Grosshadern, University of Munich, Munich, Germany.
| | - Matthias Kirsch
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
40
|
Vulcani V, Franzo V, Rabelo R, Rabbers A, Assis B, D'Ávila M, Antoni S. In vivo biocompatibility of nanostructured Chitosan/Peo membranes. ARQ BRAS MED VET ZOO 2015. [DOI: 10.1590/1678-4162-8286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrospinning is a technique that allows the preparation of nanofibers from various materials. Chitosan is a natural and abundant easily obtained polymer, which, in addition to those features, proved to be biocompatible. This work used nanostructured chitosan and polyoxyethylene membranes as subcutaneous implants in Wistar rats to evaluate the biocompatibility of the material. Samples of the material and tissues adjacent to the implant were collected 7, 15, 30, 45 and 60 days post-implantation. Macroscopic integration of the material to the tissues was observed in the samples and slides for histopathological examination that were prepared. It was noticed that the material does not stimulate the formation of adherences to the surrounding tissues and that there is initial predominance of neutrophilia and lymphocytosis, with a declining trend according to the increase of time, featuring a non-persistent acute inflammatory process. However, the material showed fast degradation, impairing the macroscopic observation after fifteen days of implantation. It was concluded that the material is biocompatible and that new studies should be conducted, modifying the time of degradation by changes in obtaining methods and verifying the biocompatibility in specific tissues for biomedical applications.
Collapse
|
41
|
Mawad D, Warren C, Barton M, Mahns D, Morley J, Pham BT, Pham NT, Kueh S, Lauto A. Lysozyme depolymerization of photo-activated chitosan adhesive films. Carbohydr Polym 2015; 121:56-63. [DOI: 10.1016/j.carbpol.2014.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023]
|
42
|
Jian R, Yixu Y, Sheyu L, Jianhong S, Yaohua Y, Xing S, Qingfeng H, Xiaojian L, Lei Z, Yan Z, Fangling X, Huasong G, Yilu G. Repair of spinal cord injury by chitosan scaffold with glioma ECM and SB216763 implantation in adult rats. J Biomed Mater Res A 2015; 103:3259-72. [PMID: 25809817 DOI: 10.1002/jbm.a.35466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 01/13/2015] [Accepted: 03/21/2015] [Indexed: 02/06/2023]
Abstract
The loss of spinal cord tissue and the cavity formation are major obstacles to the repair of spinal cord injury (SCI). In the study, the scaffold of chitosan+ECM+SB216763 was fabricated and used for the repair of injured spinal cord injury. First, the biocompatibility of the scaffold was analyzed and results showed that the scaffold had a good compatibility with the neural stem cells. Especially, the processes of differentiated neural stem cell embedded in the scaffold were found in the experiment. At the same time, we also investigated the effect of scaffold on the differentiation of neural stem cell. The results showed that the scaffold of chitosan+ECM+SB216763 could significantly promote the differentiation of neural stem cells into neurons, astrocytes, and oligodendrocytes relative to those in other groups. In order to probe the application of scaffold in vivo, the rat models of spinal cord hemisection were set up and scaffolds were implanted into transected gap. Then the electrophysiology and BBB score were evaluated and results showed that the amplitude, latency period and BBB score in chitosan+ECM+SB216763 group were dramatically better than those in other groups. In addition, the differentiation of neural stem cells into nerve cells was also assayed and the results revealed that the number of neural stem cells differentiating into neuron, astrocytes and oligodendrocytes in chitosan+ECM+SB216763 group was significantly bigger than those in other groups. All these data suggested that the scaffold of chitosan+ECM+SB216763 would be a promising medium for the repair of injured spinal cord.
Collapse
Affiliation(s)
- Rao Jian
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Yixu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lin Sheyu
- Department of Biological Sciences, School of Life Sciences, Nantong University, Nantong, China
| | - Shen Jianhong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Yaohua
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Su Xing
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Huang Qingfeng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lu Xiaojian
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhang Lei
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhen Yan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiong Fangling
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Gao Huasong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Gao Yilu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
43
|
Sarvaiya J, Agrawal Y. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72:454-65. [DOI: 10.1016/j.ijbiomac.2014.08.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
|
44
|
Li H, Koenig AM, Sloan P, Leipzig ND. In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 2014; 35:9049-57. [DOI: 10.1016/j.biomaterials.2014.07.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
45
|
Oliveira MB, Ribeiro MP, Miguel SP, Neto AI, Coutinho P, Correia IJ, Mano JF. In vivo high-content evaluation of three-dimensional scaffolds biocompatibility. Tissue Eng Part C Methods 2014; 20:851-64. [PMID: 24568682 PMCID: PMC4229707 DOI: 10.1089/ten.tec.2013.0738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/18/2014] [Indexed: 11/12/2022] Open
Abstract
While developing tissue engineering strategies, inflammatory response caused by biomaterials is an unavoidable aspect to be taken into consideration, as it may be an early limiting step of tissue regeneration approaches. We demonstrate the application of flat and flexible films exhibiting patterned high-contrast wettability regions as implantable platforms for the high-content in vivo study of inflammatory response caused by biomaterials. Screening biomaterials by using high-throughput platforms is a powerful method to detect hit spots with promising properties and to exclude uninteresting conditions for targeted applications. High-content analysis of biomaterials has been mostly restricted to in vitro tests where crucial information is lost, as in vivo environment is highly complex. Conventional biomaterials implantation requires the use of high numbers of animals, leading to ethical questions and costly experimentation. Inflammatory response of biomaterials has also been highly neglected in high-throughput studies. We designed an array of 36 combinations of biomaterials based on an initial library of four polysaccharides. Biomaterials were dispensed onto biomimetic superhydrophobic platforms with wettable regions and processed as freeze-dried three-dimensional scaffolds with a high control of the array configuration. These chips were afterward implanted subcutaneously in Wistar rats. Lymphocyte recruitment and activated macrophages were studied on-chip, by performing immunocytochemistry in the miniaturized biomaterials after 24 h and 7 days of implantation. Histological cuts of the surrounding tissue of the implants were also analyzed. Localized and independent inflammatory responses were detected. The integration of these data with control data proved that these chips are robust platforms for the rapid screening of early-stage in vivo biomaterials' response.
Collapse
Affiliation(s)
- Mariana B. Oliveira
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maximiano P. Ribeiro
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- UDI-IPG—Research Unit for Inland Development, Polytechnic Institute of Guarda, Guarda, Portugal
| | - Sónia P. Miguel
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana I. Neto
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula Coutinho
- UDI-IPG—Research Unit for Inland Development, Polytechnic Institute of Guarda, Guarda, Portugal
| | - Ilídio J. Correia
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - João F. Mano
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
46
|
Genipin-crosslinked chitosan/poly-l-lysine gels promote fibroblast adhesion and proliferation. Carbohydr Polym 2014; 108:91-8. [DOI: 10.1016/j.carbpol.2014.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/21/2022]
|
47
|
Kumar P, Choonara Y, Modi G, Naidoo D, Pillay V. Cur(Que)min: A neuroactive permutation of Curcumin and Quercetin for treating spinal cord injury. Med Hypotheses 2014; 82:437-41. [DOI: 10.1016/j.mehy.2014.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/18/2014] [Indexed: 11/26/2022]
|
48
|
Uskoković V, Desai TA. In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J Pharm Sci 2013; 103:567-79. [PMID: 24382825 DOI: 10.1002/jps.23824] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one--HAp. Embedment of 5-10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of up to 2 mg/cm(2) and significantly dropped, by about 50%, at higher particle concentrations (4 and 8 mg/cm(2)). The gene expression of osteocalcin, a mineralization inductor, and the transcription factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm(2) HAp/chitosan composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given particles. The peak in the expression of osteogenic markers paralleling the osteoblastic differentiation was also delayed most for the cell population incubated with HAp/chitosan particles. Overall, the positive effect of chitosan coating on the drug elution profile of HAp nanoparticles as carriers for the controlled delivery of antibiotics in the treatment of osteomyelitis was compensated for by the lower bacteriostatic efficiency and the comparatively unviable cell response to the composite material, especially at higher dosages.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94158-2330
| | | |
Collapse
|
49
|
Bavariya AJ, Andrew Norowski P, Mark Anderson K, Adatrow PC, Garcia-Godoy F, Stein SH, Bumgardner JD. Evaluation of biocompatibility and degradation of chitosan nanofiber membrane crosslinked with genipin. J Biomed Mater Res B Appl Biomater 2013; 102:1084-92. [PMID: 24323703 DOI: 10.1002/jbm.b.33090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/17/2013] [Accepted: 11/16/2013] [Indexed: 11/08/2022]
Abstract
Chitosan, a natural polysaccharide, has demonstrated potential as a degradable biocompatible guided bone regeneration membrane. This study aimed to evaluate the in vivo biocompatibility and degradation of chitosan nanofiber membranes, with and without genipin crosslinking as compared with a commercial collagen membrane in rat model. Chitosan nanofiber membranes, with and without genipin crosslinking, and collagen membrane (control) were implanted subcutaneously in the backs of 30 rats. The membranes were analyzed histologically at 2, 4, 8, 12, 16, and 20 weeks. Sections were viewed and graded by a blinded pathologist using a 4-point scoring system (0 = absent, 1 = mild, 2 = moderate, and 3 = severe) to determine the tissue reaction to the membranes and to observe membrane degradation. There was no statistically significant difference in histological scores among chitosan and collagen membranes at different time points. Absence or minimal inflammation was observed in 57-74% of the membranes across all groups. Most chitosan membranes persisted for 16-20 weeks, whereas most collagen membranes disappeared by resorption at 12-16 weeks. The general tissue response to chitosan nanofiber membranes with and without genipin crosslinking, was similar to that of control commercial collagen membrane. However, the chitosan membranes exhibited slower degradation rates than collagen membranes.
Collapse
Affiliation(s)
- Ankit J Bavariya
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, Tennessee
| | | | | | | | | | | | | |
Collapse
|
50
|
Santos SG, Lamghari M, Almeida CR, Oliveira MI, Neves N, Ribeiro AC, Barbosa JN, Barros R, Maciel J, Martins MCL, Gonçalves RM, Barbosa MA. Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response. Acta Biomater 2013; 9:7209-17. [PMID: 23571000 DOI: 10.1016/j.actbio.2013.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/21/2013] [Accepted: 04/02/2013] [Indexed: 12/25/2022]
Abstract
Designing new biomaterials that can modulate the inflammatory response instead of attempting just to reduce it constitutes a paradigm change in regenerative medicine. This work aimed to investigate the capacity of an immunomodulatory biomaterial to enhance bone regeneration. For that purpose we incorporated a molecule with well-established pro-inflammatory and pro-healing roles, fibrinogen, in chitosan scaffolds. Two different incorporation strategies were tested, leading to concentrations of 0.54±0.10mg fibrinogen g(-1) scaffold immediately upon adsorption (Fg-Sol), and 0.34±0.04mg fibrinogen g(-1) scaffold after washing (Fg-Ads). These materials were implanted in a critical size bone defect in rats. At two months post-implantation the extent of bone regeneration was examined by histology and the systemic immune response triggered was evaluated by determining the percentages of myeloid cells, T and B lymphocytes in the draining lymph nodes. The results obtained indicate that the fibrinogen incorporation strategy conditioned the osteogenic capacity of biomaterials. Fg-Ads scaffolds led to more bone formation, and the presence of Fg stimulated angiogenesis. Furthermore, animals implanted with Fg-Ads scaffolds showed significant increases in the percentages of B lymphocytes and myeloid cells in the draining lymph nodes, while levels of T lymphocytes were not significantly different. Finally, a significant increase in TGF-β1 was detected in the plasma of animals implanted with Fg-Ads. Taken together the results presented suggest a potential correlation between the elicited immune response and biomaterial osteogenic performance.
Collapse
Affiliation(s)
- S G Santos
- Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|